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Abstract

We consider the following maker-breaker game on a bispanning graph i.e. a
graph that has a partition of the edge set E into two spanning trees E1 and
E2. Initially the edges of E1 are purple and the edges of E2 blue. Maker and
breaker move alternately. In a move of the maker a blue edge is coloured
purple. The breaker then has to recolour a different edge blue in such a way
that the purple and the blue edges are spanning trees again. The goal of
the maker is to exchange all colours, i.e. to make E1 blue and E2 purple.
We prove that a sufficient but not necessary condition for the breaker to win
is that the graph contains a K4. Furthermore we characterize the structure
of a partition of a wheel into two spanning trees and show that the maker
wins on wheels Wn with n ≥ 4 and provide an example of a graph where, for
some partitions, the maker wins, for some others, the breaker wins. We also
describe an efficient algorithm for the recognition of bispanning graphs.

Keywords: maker-breaker game, bispanning graph, unique single element
exchange, wheel, basis exchange
2000 MSC: 05B35, 05C05, 05C57, 91A43

1. Introduction

A graph G = (V,E) is a bispanning graph if its edge set admits a partition
E = E1∪̇E2 into two spanning trees, i.e. such that (V,E1) and (V,E2) are
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trees. A block matroid is a matroid M on a ground set E such that E =
X1∪̇X2 for two bases X1, X2 of M . So a bispanning graph is a graphic block
matroid. In this paper we often identify a graph G with its corresponding
graphic matroid M(G). For basic terminology on graphs resp. matroids we
refer to [2] resp. [12].

Consider the following game which is played by two players, a maker
Alice and a breaker Bob, on a bispanning graph G = (V,E) given with a
partition E = E1∪̇E2 of the edge set into two spanning trees. During the
game, some edges are in the dynamic set P of purple edges, the other edges
in the dynamic set B of blue edges. Initially, P = E1 and B = E2. The
players move alternately, the maker begins. A move of the maker consists in
colouring a blue edge e purple, i.e. P −→ P ∪ {e} and B −→ B \ {e}. After
that the breaker must colour a purple edge f 6= e blue in such a way that
the purple and blue edges each form a spanning tree again. If the maker can
enforce that the purple and blue edges are completely exchanged in a finite
number of steps, i.e. P = E2 and B = E1, the maker wins. Otherwise, i.e. if
the breaker can achieve an infinite sequence of moves without reaching the
winning configuration for Alice, the breaker wins. We call this game base
exchange game for bispanning graphs.

This paper deals with the question: Given a bispanning graph G = (V,E)
and a partition of the edge set E = E1∪̇E2 into a purple and a blue spanning
tree, which player has a winning strategy for the game described above?

This game is motivated by questions about the connectivity of several
matroid base exchange graphs in [14]. It seems to be surprisingly difficult
to study the structure of these graphs already in the graphic case [1, 6].
Frequently, a block matroid sits at the heart of the problem.

Our results seem to suggest that the answer to the question of the ex-
istence of a winning strategy for the maker might be based solely on the
question of connectivity of a certain derived graph, the so-called graph of left
unique exchanges.

Graphs of similar types have occured in several more general contexts on
block matroids. Several authors [3, 10, 14] analyze the connectivity of some
of these graphs. We will describe the four most important types of such
graphs and resume results and conjectures on this connectivity problem in
the following.

The graph τ2(M) of a block matroid M has as vertices all pairs (B1, B2) of
disjoint bases E = B1∪̇B2. We have an edge ((B1, B2), (B

′
1, B

′
2)) if and only

if (B′1, B
′
2) arises from (B1, B2) by a symmetric swap, i.e. for some e ∈ B2
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and f ∈ B1 we have

B′1 = (B1 ∪ {e}) \ {f} and B′2 = (B2 \ {e}) ∪ {f}.

The graph τ1(M) of a matroid M has as vertices its bases. We have an
edge (B1, B

′
1) if and only if B′1 = (B1 ∪ {e}) \ {f}. Note that identifying B1

with (B1, E \B1), τ2(M) maybe considered as induced subgraph of τ1(M).
In order to explain the next graphs we recall some definitions from ma-

troid theory. Let M be a matroid on the ground set E. If B is a basis and
e /∈ B, the fundamental circuit C(B, e) is the unique circuit (i.e. minimum
dependent set) contained in B∪e. If B is a basis and e ∈ B, the fundamental
cocircuit D(B, e) is the set of all elements f , so that (B \ {e}) ∪ {f} is a
basis.

The graph τ4(M) of left unique exchanges has as vertices all pairs (B1, B2)
of disjoint bases E = B1∪̇B2. We have an edge ((B1, B2), (B

′
1, B

′
2)) if and

only if there exist e ∈ B2, f ∈ B1 such that

B′1 = (B1 ∪ {e}) \ {f} and B′2 = (B2 \ {e}) ∪ {f}

and if C(B1, e) denotes the fundamental circuit andD(B2, e) the fundamental
cocircuit, then

C(B1, e) ∩D(B2, e) = {e, f}. (1)

The definition of the graph τ3(M) of unique exchanges is the same as the
definition for τ4(M) except that (1) is replaced by

C(B1, e) ∩D(B2, e) = {e, f} or D(B1, f) ∩ C(B2, f) = {e, f}. (2)

We have

E(τ4(M)) ⊆ E(τ3(M)) ⊆ E(τ2(M)) = E(τ1(M)[V (τ2(M))]) ⊆ E(τ1(M)).

We list some partial results and remaining open questions concerning the
problem of connectivity of the τi.

It is clear from the basis axioms of a matroid that

Proposition 1. For every block matroid M , τ1(M) is connected.

Proposition 2 (Farber, Richter Shank [3]). For every graphic matroid M ,
τ2(M) is connected.
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Both Propositions 1 and 2 state in particular that τ1(G) and τ2(G) are
connected for every bispanning graph G.

Conjecture 3 (White [14], see also [1]). For every block matroid M , τ2(M)
is connected.

Conjecture 4. For every regular block matroid M , τ2(M) is connected.

If M∗ denotes the dual matroid of a matroid M , then obviously τ2(M) ≡
τ2(M

∗), hence Proposition 2 implies the connectivity of τ2(M) for cographic
block matroids M . The proof method used in [3] combined with Seymour’s
result [13], which says that a regular matroid is either graphic, cographic or
a very special configuration, might help to find a proof that extends Propo-
sition 2 to regular block matroids.

Not much is known about the structure of the graph τ3(M). While τ3(U
4
2 )

consists of 6 isolated vertices, Neil White [14] gives evidence for the following.

Conjecture 5 (White [14]). For every regular block matroid M , τ3(M) is
connected.

However, we do not even know whether τ3(M) is connected for (the
graphic matroid M of) a bispanning graph. An interesting side result of
our paper is that τ4(M) is not connected in general, even in the case of (a
graphic matroid M of) a bispanning graph. Namely, the proof of Lemma 14
and Theorem 23 imply the following.

Theorem 6. τ4(M) is disconnected for the graphic matroid of K4, but con-
nected for all larger wheels.

On the other hand, McGuinness [10] proves that τ4(M) has no isolated
vertices if M is regular.

Block matroids and bispanning graphs are a classical subject of research.
The first remarkable result on bispanning graphs seems to be the following
theorem on the cyclic base order by Farber et al. [3] implying Proposition 2.

Theorem 7 (Wiedemann [15], see also [3, 8]). Let G be a bispanning graph
with a partition (B1, B2) into two spanning trees with r edges. Then the edges
inside B1 and B2 can be ordered to lists B̃1 resp. B̃2, so that any r consecutive
edges in the cyclic order B̃1, B̃2 form a spanning tree of G.
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Van den Heuvel and Thomassé [5] brought to our attention that Gabow [4]
and Wiedemann [15] conjecture that Theorem 7 can be generalized to block
matroids (replacing spanning trees by matroid bases). This conjecture is still
open for decades.

Now let us return to our game. White [14] defines the following matroid
analogue of the graph game described above: On a block matroid with base
pair (X1, X2), the maker chooses a ∈ X1 and the breaker must choose b ∈ X2

such that X1 − a + b and X2 − b + a are new bases for the next move. If
after a finite series of moves X1 and X2 are exchanged, the maker wins. We
call this game W (1). The graph τ4(M) can be regarded as the graph of all
moves the maker can enforce in game W (1). In the game corresponding to
τ3(M), which we call W (2), the maker is allowed to choose a ∈ X1 or b ∈ X2.
The breaker then must recreate two new bases different from the bases of the
previous move.

Our game is the special case of W (1) for graphic matroids. Note that
W (2) is the same for graphic and cographic matroids. Our game has more
strict rules than W (2). The difference can be seen by the example of the
K4 (see Section 4). Here the breaker has a winning strategy for our game,
but not for W (2). Conjecture 5 would imply that for every regular matroid
M the maker has a winning strategy for W (2). Similarly, in all examples
we know for the game W (1) the maker has a winning strategy starting from
(B1, B2) if and only if there is a path from (B1, B2) to (B2, B1) in τ4(M(G)).

The paper is organized as follows. An algorithm for the recognition of
bispanning graphs is given in Section 2. In Section 3 we introduce basic
terminology and results for the base exchange game on graphs. We prove
that the breaker wins on bispanning graphs that contain a K4 in Section 4.
However, in Section 5 we show that a breaker-win graph does not necessarily
contain a K4. Section 6 deals with the structure of partitions of the edge
set of wheels into spanning trees. These results are needed for Section 7 in
which we show that the maker has a winning strategy on wheels that are
not the K4. In Section 8 we give an example of a bispanning graph in which
the maker wins for some partitions, and the breaker for other. Some open
questions, in particular on complexity issues, are discussed in Section 9.

2. The recognition of bispanning graphs

In this section we will describe an efficient algorithm for the recognition
of bispanning graphs. It may be considered as a specialization of a matroid
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intersection algorithm, with a slight difference to the classic one of Lawler [9].
Instead of augmenting a set that is independent in both matroids, we always
keep a basis of one matroid and try to increase its rank in the second one
using an alternating path. This is similar to the bipartite matching algorithm
presented in [7]. Although using matroid terms we could recognize block
matroids along the way, in the following we will present the algorithm and
its proof in purely graph theoretic terms.

The basic idea of the algorithm is the following. For a given graph G =
(V,E) with suitable number of edges, we start with a spanning tree T and
consider the complement C0 = E \ T . Either the complement is already
a spanning tree or, using a search tree, we either find an alternating path
that enables us to modify the tree in such a way that we reduce the number
of components of C0 or we find a certificate that proves that G is not a
bispanning graph.

Before we formulate the algorithm we need some notation. LetG = (V,E)
be a graph and E ′ ⊆ E. The boundary ∂(E ′) of E ′ in G is the set of all edges
whose terminal vertices lie in different components of the graph (V,E ′). Let
T be a spanning tree of G. The fundamental cut D(T, e) for e ∈ T is the set
of all edges of ∂(T \ e).

The main iteration of the recognition algorithm is the algorithm described
in Fig. 1.

The routine augment(f, ei) does the following. Backtracking the labels
starting from ei until an edge labeled 0+ is encountered, we find a sequence
of edges which alternatingly is labeled with + and −. By the construction
of the algorithm every +-labeled edge is in T and every −-labeled edge and
f are in C0 = E \ T . Let S+ resp. S− be the +- resp. −-labeled edges in the
sequence. In the augmentation step we define

T ′ := (T ∪ S− ∪ {f}) \ S+

C ′ := (C0 ∪ S+) \ (S− ∪ {f})

This completes the description of the algorithm.
We have to show that after such an augmentation step T ′ is again a

spanning tree and C ′ has a component less than C0. We prove this by in-
duction on the number k of +-labeled edges in the sequence. Let w.l.o.g.
e1, e2, e3, . . . , e2k−1, f be the sequence in reverse order, starting with e1 la-
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Input: Graph G = (V,E) with |E| = 2|V | − 2, E = {e1, e2, . . . , e2|V |−2}
(1) Determine a spanning tree T of G
(2) C0 := E \ T , CRest := C0

(3) if C0 is connected, output “G is bispanning graph”
(4) Queue Q := ∅
(5) label every edge e ∈ ∂(C0) with 0+, add e to Q
(6) while Q 6= ∅
(6a) remove the first element ei from Q
(6b) if ei is labeled with +:
(6b1) if ∃ cycle C ⊆ C0 and f ∈ D(T, ei) ∩ C:

augment(f, ei) and stop
(6b2) else

for every unlabeled e ∈ D(T, ei)
label e with i−
add e to Q
CRest := CRest \ {e}

(6c) if ei is labeled with −:
label every unlabeled e ∈ ∂(CRest) with i+, add e to Q

Output:either (A) a pair of spanning trees (T,C0)
or (B) a new partition (T ′, C ′)

where C ′ has a component less than C0

and T ′ is spanning tree
or (C) a component S of CRest that has a cycle

Figure 1: An algorithm for bispanning graph recognition
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beled 0+. Let Sj = {e1, . . . , ej} for 1 ≤ j ≤ 2k, where e2k = f . Let

Tj = (T ∪ (Sj ∩ (S− ∪ {f}))) \ (Sj ∩ S+)

and
Cj = (C0 ∪ (Sj ∩ S+)) \ (Sj ∩ (S− ∪ {f})).

In particular, T2k = T ′, T0 = T and C2k = C ′.

Claim 8. (a) For 0 ≤ j ≤ k, T2j is a spanning tree.

(b) For 1 ≤ j ≤ k, C2j−1 has a component less than C0.

(c) The number of components of C2k−1 and C2k is equal.

Proof. We prove part (a) and (b) of the claim by induction on j.

(a) T0 is a spanning tree. Now, for k ≥ j > 0, assume by induction that
T2j−2 is a spanning tree. It suffices to prove that T2j is acyclic. Assume
it is not. Then e2j must close a cycle C with T2j−2 \ {e2j−1}. Recall e2j
got its (2j−1)−-label since e2j ∈ D(T, e2j−1). Hence, T \{e2j−1}∪{e2j}
is a tree and C must contain another even labeled element e2i. We
choose such with smallest possible index. Then e2i ∈ D(T, e2i−1) and
hence C ∩ D(T, e2i−1) 6= ∅. Since cuts and circuits meet in an even
number of elements, there must be another even labeled element e2` in
the intersection. This contradicts the fact that, by construction, the
sequence can meet every fundamental cut of T in at most one element.

(b) We prove this by induction on j. Since e1 ∈ ∂(C0), C1 = C0 ∪ {e1} has
a component less than C0. Now let j > 1. By induction, C2j−3 has a
component less than C0. By removing the −-labeled e2j−2, C2j−2 has
again the same number of components as C0. By adding the +-labeled
e2j−1 ∈ ∂C2j−2, C2j has a component less than C2j−2, i.e. a component
less than C0.

(c) Since f is chosen in (6b1) because it is a member of a cycle in C0,
removing f from C2j−1 does not increase the number of components.
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Claim 8 proves that in case of an augmentation step the algorithm ends
with output (B). We will now prove that, if the algorithm terminates with
output (C), the subgraph of unlabeled edges contains a subgraph that has
too many edges to be a bispanner. We need a lemma and another claim.

Lemma 9. Let G be a graph and H = (V,E) be an induced subgraph of G
with |E| > 2|V | − 2. Then G is not a bispanning graph.

Proof. Assume G is a bispanning graph with disjoint spanning trees T1 and
T2. By the pigeon hole principle, |T1 ∩ E| > |V | − 1 or |T2 ∩ E| > |V | − 1.
W.l.o.g. assume the first. But then T1 ∩ E contains a cycle, which is a
contradiction.

Claim 10. Assume the algorithm terminates but not in (A) or (B). Let
H = (V ′′, E ′′) be the subgraph of G induced by the vertex set V ′′ of some
component of CRest. Then H1 = (V ′′, T ∩ E ′′) is connected, thus a spanning
tree of H.

Proof. Assume H1 is disconnected. Let T ′ and T ′′ be two components of H1.
Since H2 = (V ′′, CRest ∩ E ′′) is connected, there is an edge e ∈ CRest ∩ E ′′
that connects T ′ and T ′′. On the other hand T ′ and T ′′ are connected by
a path of T -edges (not lying in H). Let ei be the first edge on the path
from T ′ to T ′′. So at a certain step of the algorithm, we had ei ∈ ∂(CRest),
therefore ei was labeled with +. When ei was taken from the queue Q, the
algorithm considered the fundamental cut D(T, ei). Since e ∈ D(T, ei) and
the algorithm did not produce an augmentation step, e was labeled with
−. But this is a contradiction, since e ∈ CRest and CRest contains only the
unlabeled elements of C0.

In case the algorithm does not end with output (A) or (B) it ends when
the Queue Q is empty. Then C0 = E \ T is not connected and hence must
contain a cycle. This also holds for CRest, since no cycle has been broken in
(6b2). By Claim 10, a component of CRest with a cycle induces a subgraph
H = (V ′′, E ′′) of G, such that (V ′′, T ∩ E ′′) is a spanning tree. Since the
number of edges of H is |E ′′| ≥ |V ′′| + |T ∩ E ′′| ≥ 2|V ′′| − 1, H is not
a bispanning graph. But H is an induced subgraph of G. By Lemma 9
this implies that G is not a bispanning graph. So the algorithm gives us a
certificate (a component with a cycle) for the fact that G is not a bispanning
graph.
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Proposition 11. Iterative application of the algorithm in Fig. 1 correctly
recognizes a bispanning graph resp. a non-bispanning graph in cubic time.

Proof. We repeat the algorithm as long as we have a partition into two
spanning trees (using the augmented (T ′, C ′) to initialize the new (T,C0)).
The correctness of the algorithm follows from Claim 8 and Claim 10 and the
preceeding discussion.

Since in each iteration the number of components is reduced by one,
we have at most |V | iterations. In each iteration every edge is labeled at
most once. For each labeled edge we have to determine some boundary,
which is possible by depth-first-search in linear time. So the running time is
O(|E|3) = O(|V |3).

3. General results on the base exchange game

For the discussion of the game, for any bispanning graphG, we use an aux-
iliary graph, the graph of left unique exchanges GF = τ4(M(G)). Recall that
its vertices are all pairs (E1, E2) of disjoint spanning trees with E = E1∪̇E2

of the bispanning graph G = (V,E). We have an edge ((E1, E2), (E
′
1, E

′
2)) if

and only if there is an edge e ∈ E2 such that, if it is coloured by the maker,
there is only a single edge f ∈ E1 the breaker may colour as feasible answer
in such a way that E ′1 = (E1 ∪ {e}) \ {f} and E ′2 = (E2 \ {e})∪ {f}. In this
case the move is called forced, and non-forced otherwise.

The following obvious Proposition is the basis for our further analysis:

Proposition 12. If GF is connected, then the maker has a winning strategy
for the base exchange game on the graph G for any starting partition into
two spanning trees.

The following proposition that the game is well-defined is the special case
of the well-known symmetric base exchange property of matroid theory.

Proposition 13. Let G = (V,E) be a bispanning graph with a partition
E = P ∪̇B of the edge set into two spanning trees. Then

∀b ∈ B∃p ∈ P : ((P \ {p}) ∪ {b}, (B \ {b}) ∪ {p}) is a partition into trees.

Proof. Let C(P, b) denote the fundamental circuit of P and b and D(B, b)
the fundamental cocircuit which in the graphic case is the cut induced by the

10



two components of B \{b}. Then |C(P, b)∩D(B, b)| is even, the intersection
contains b and

∀p ∈ C(P, b) ∩D(B, b) : ((P \ {p}) ∪ {b}, (B \ {b}) ∪ {p})

is a partition into trees.

4. Graphs where the breaker wins

The main purpose of this section is to show that the breaker has a winning
strategy if a bispanning graph contains the complete graph K4 as a subgraph.

Lemma 14. (a) KF
4 has three components.

(b) If (P,B) is an ordered partition of the edge set of K4 into two trees,
then (P,B) and (B,P ) lie in different components of KF

4 .

(c) If the maker plays the unique non-enforcing move the breaker has a
feasible move that does not leave the component.

Proof. (a) Any partition of K4 into two trees consists of two P4s, i.e. paths
on four vertices. Let abcd denote such a P4. Then the move of the
breaker is forced if and only if the maker does not close a C4, i.e.
plays edge ad. The forced moves (edges ac resp. bd) are indicated by
curved lines and the resulting configurations of forced moves are listed
in Fig. 2. Hence the component of the purple abcd consists of purple
{abcd, abdc, bacd, badc} and hence of four ordered partitions. As the
number of P4s in K4 is 1

2
4! = 12 the claim follows by symmetry.

abcd

bacd

abdc

abcd

badc

abcd

bacd

abdc

Figure 2: A component of KF
4

(b) The above analysis yields that the purple bdac lies in a different com-
ponent than abcd.

(c) By symmetry, again, it suffices to consider the case that the starting
configuration is a purple P4 abcd and the maker plays ad. Now the
breaker recolours bc to blue which yields a purple badc in the same
component.
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Summarizing the last Lemma implies:

Theorem 15. The breaker has a winning strategy on the K4 for any starting
configuration.

Theorem 16. If a bispanning graph G contains a bispanning graph H as
an induced subgraph, and the breaker has a winning strategy for H, then the
breaker has a winning strategy for G.

Proof. If a blue edge outside H is recoloured to purple by the maker, then
recolouring a purple edge in H would mean that the blue graph in H has
two edges more than the purple graph in H, therefore there is a blue cycle.
So the answer on recolouring outside H must also be an edge outside H.
Therefore the breaker can use his strategy on H, and if the maker plays
in the complement, the breaker plays in the complement. In this way the
spanning trees of H cannot be exchanged and thus the same holds for the
global spanning trees.

Corollary 17. For a bispanning graph that contains a K4 as subgraph the
breaker has a winning strategy.

5. A breaker-win graph without K4

By D6 we denote the 2-sum of two K4s “without glueing edge” (see Fig.
3). Clearly, K4 is a minor but not a subgraph of D6.

Theorem 18. For any partition E = E1 ∪E2 of the edge set of D6 into two
trees, the breaker has a winning strategy.

a

b′

a′

c

d

c′

d′f

e

b

Figure 3: The graph D6
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Proof. We consider two cases.

Case 1: E1 contains an edge of each of the pairs {a, a′}, {b, b′}, {c, c′}, {d, d′}
such that these four edges do not form a path. By symmetry, we may
assume, that A := {a, b, c′, d′} ⊆ E1. The proof is based on the fact
that E \ A is hamiltonian. Note, that any further edge x ∈ E \ A
will complement A to a tree such that E \ (A ∪ {x}) is a tree as well.
Therefore, if x = E1 \A and the maker recolours y ∈ E \ (A ∪ {x}) to
purple, the breaker recolours x to blue. Hence, A will never change its
colour and the breaker wins.

Case 2: First we will show that otherwise E1 must be disjoint from one
of the pairs {a, a′}, {b, b′}, {c, c′}, {d, d′}. Assume not, then E1 must
contain one edge of each pair, which altogether form a path. We may
assume, by symmetry, that {b, a, c, d′} ⊆ E1 implying {f, d, b′} ∈ E2.
As E2 forms a tree at least one of a′, c′ must be in E1, hence E1 contains
an edge from each pair (namely either {a, b, c′, d′} or {a′, b, c, d′}) which
altogether do not form a path.

Hence we may assume that {a, a′} ⊆ E2. Hence e ∈ E1 and thus w.l.o.g.
c′ ∈ E2. So we must not have an E2-path in the lower half connecting
the two vertices of degree 4. Therefore, E1 must contain a P4 in the
lower half, w.l.o.g. {b′, d, f} ⊆ E1, {b′, d, d′} ⊆ E1 or {b, b′, d} ⊆ E1 and,
again by symmetry, we may assume that E1 is one from {e, c, b′, d, f},
{e, c, b′, d, d′} or {e, c, b, b′, d} (see Fig. 4).

b′
b
a′

a
c

e

c′

d

d′f b′
b
a′

a e
c

c′

d

f d′

a e
c

c′a′
b

b′
d

f d′

Figure 4: The three possible trees E1 (fat edges) in Case 2

We will show that the breaker can assure, that {e, d, b′} never change
their colour. The maker’s moves and the answers of the breaker are
listed in Table 1.

In any case the breaker reinstalls a partition where E1 is disjoint from
either {a, a′} or {c, c′} and which contains the vertical edge adjacent to
this pair, i.e. e, and two independent edges from the other side, namely
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E1 := {e, c, b′, d, f}
a a′ b c′ d′

c c f c f

E1 := {e, c, b′, d, d′}
a a′ b c′ f
c c d′ c d′

E1 := {e, c, b, b′, d}
a a′ c′ d′ f
c c c b b

Table 1: Fixing b′, d, e.

b′, d. Hence, by symmetry, the breaker can ensure that {e, d, b′} never
change their colour and wins.

Remark 19. It can be shown [11] that the graph of left unique exchanges
DF

6 has exactly 8 components, four of size 6 corresponding to Case 1 of the
above proof and four of size 12 corresponding to Case 2.

6. On the structure and the number of partitions of a wheel into
two trees

We start with a crucial observation.

Proposition 20. (a) Let Wn = (V,E) denote the n-wheel and E = E1∪̇E2

be a partition of the edges into two trees. Let S ⊆ E denote the spokes
and S1 := S ∩ E1, R ⊆ E the rim edges and R1 := R ∩ E1. Let
c denote the hub and v0, . . . , vn−1 the outer vertices of Wn and S1 =
{cvi1 , cvi2 , . . . , cvik} in cyclic clockwise order. Then

R1 = R \ {vi1vi1+1, vi2vi2+1, . . . , vikvik+1} or

R1 = R \ {vi1vi1−1, vi2vi2−1, . . . , vikvik−1}

where indices are taken modulo n.

(b) If, on the other hand, S, R, S1, and R1 are as above for some partition
E = E1∪̇E2 satisfying |E1| = |E2| = n, then E1 and E2 both induce
trees if and only if ∅ 6= S1 6= S.

By Proposition 20, either the purple rim edges follow the purple spokes
counter-clockwise or clockwise. In the first case we speak of a left orientation,
see Fig. 5 left, in the second of a right orientation, see Fig. 5 center. Every
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purple spoke sij that is adjacent to a purple rim edge is called ending spoke.
There are some special configurations that we will refer to in the next section.
If a left orientation has only one purple spoke si, the configuration is called si-
left path, see Fig. 5 right. Its complement (i.e. the configuration with only one
blue spoke, namely si) is called si-left star. More generally, a left orientation
that has only one purple ending spoke si (but possibly other purple spokes)
is called an si-left half-star. The complement of an si-left half-star S is an
sj-left half-star for some j. We call sj−1 (mod n) (which is a purple spoke in
S) the beginning spoke of S. In all cases, si is also called special spoke. We
use analog notions for right orientations.

s7c

v1

v0
v7 v1

c

v0
v7

Figure 5: Left and right orientation and a left path

Proof of Proposition 20. (a) Since |V | = n+ 1, and E1 is a set of edges of
a spanning tree we must have |E1| = n and hence |R1| = n − k. If e
is a rim edge adjacent to two spokes from E2 it must be in E1, since
E2 has no triangle. Hence, each element from R \ R1 is of the form
vijvij+1 or vijvij−1. Assume that there exists vijvij+1 as well as vi`vi`−1
in E2 and cvij+1, cvi`−1 ∈ E2. If j = `, E2 would contain the cycle
vij+1vij , vijvij−1, vij−1c, cvij+1, thus necessarily j 6= `. We may choose
j, ` such that cvij precedes cvi` in S1. But this contradicts the fact that
E1 induces a connected graph.

(b) First note that if in R1 the left rim edge is missing at each spoke, the
same holds for R2, vice versa. The same holds if the right rim edge
is missing. Hence it suffices to show that E1 induces a tree. Since
|E1| = n this follows if E1 is acyclic. The latter is clear, since in each
path between two consecutive spokes of E1 exactly one rim edge is
missing. The claim follows.

Theorem 21. The number of partitions of the edge set of the wheel Wn into
two trees is 2n − 2.
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Proof. By Proposition 20 there is a bijection between the oriented proper
subsets of S and the trees whose complements are trees as well. We have
2 · (2n− 2) oriented proper subsets of S, and we have counted each partition
twice. The claim follows.

A matroid M is called an n-whirl if it has the same independent sets as
an n-wheel (regarded as a graphic matroid) plus one extra independent set,
namely the outer cycle of the n-wheel.

Corollary 22. The number of partitions of the element set of the n-whirl
into two bases is 2n − 1.

Proof. Compared to the wheel we have the additional partition into the
spokes and the rim.

7. The strategy of the maker for wheels

In this section we discover an important class of maker-win graphs, name-
ly the class of wheels. Wheels are the simplest, most natural example for
bispanning graphs with a high degree of symmetry.

Theorem 23. Let Wn = (V,E) be a wheel with n ≥ 4 and let E = E1∪̇E2

be a partition of the edges into two spanning trees. Let the edges of E1 be
purple and those of E2 be blue. Then the maker has a strategy in the base
exchange game to force an exchange of the colours of E1 and E2.

Proof. We will prove, using the following two lemmata, that W F
n is strongly

connected for n ≥ 5. By Observation 27, W F
4 is also strongly connected.

Then the theorem follows by Proposition 12.

Lemma 24. If C1, C2 are two sl-left orientations of the wheel Wn, n ≥ 5
with S2

1 ⊆ S1
1 , where Sk

1 denotes the set of purple spokes of Ck, then the
maker can enforce the transformation of C1 into C2.

Proof. We proceed by induction on the number k = |S1
1 | − |S2

1 |, the case
k = 0 being trivial. Let si ∈ S1

1 \ S2
1 . We distinguish two cases.

Case 1: C1 is not a left half-star with beginning spoke si.
The maker recolours vi+1vi, making it purple. Since C1 has at least 2
purple spokes, we may choose sj ∈ S1

1 such that sm 6∈ S1
1 for i < m < j.

In order to destroy the cycle cvivi+1 . . . vjc and to reinstall a bispanning
graph, since in this case not every purple rim edge is contained in the
cycle, by Proposition 20 the breaker is forced to colour si blue.
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Case 2: C1 is a left half star with beginning spoke si.
We may assume that i = n−1 and there is some 1 ≤ k ≤ n−2 such that
the spokes s0, . . . , sk−1 are blue and sk, . . . , sn−1 are purple in C1. In
case k = n− 2, the maker recolours sn−3 to purple, forcing the breaker
to colour the rim edge vn−3vn−2 blue. In case k ≥ n − 3, the maker
(additionally) recolours sn−4 to purple, forcing the breaker to colour
the rim edge vn−4vn−3 blue. After these up to two preparational steps,
the spokes sn−4, sn−3, sn−2, sn−1 are purple. Now the maker recolours
the rim edge vn−3vn−2 to purple, which forces the breaker to colour
the spoke sn−3 blue. Then the maker recolours the rim edge vn−1v0 to
purple, which forces the breaker to colour the spoke sn−1 blue. Then
the maker recolours the rim edge vn−4vn−3 to purple, which forces the
breaker to colour the spoke sn−4 blue. Possibly we have to invert the
preparational steps, i.e. in case n− 3 ≥ k ≥ n− 4 the maker recolours
the spoke sn−3 to purple (forcing the breaker to colour vn−3vn−2 blue)
and in case k = n− 4 the maker additionally recolours the spoke sn−4
to purple (forcing the breaker to colour vn−4vn−3 blue). After that the
purple spokes are exactly those of S1

1 \ {sn−1}.

Now, the claim follows by induction.

Note that the strategy of Case 1 would fail in Case 2, since then the
maker’s move is non-enforcing.

s7 s7s7 s7

Figure 6: Transforming the s7-left path into the s7-left star

Lemma 25. The maker can enforce the transformation of the si-left path of
the wheel Wn, n ≥ 4, into the si-left star.

Proof. First the maker recolours the rim edge vivi+1 to purple, so the breaker
is forced to make the rim edge vi−1vi blue, turning the si-left path into the
si-right path, see Fig. 6 left. Then the maker recolours the spoke si+2 to
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purple, so that the breaker is forced to colour the rim edge vi+1vi+2 blue, see
Fig. 6 center left. Now the maker inductively recolours the spokes si+2+j,
j = 1, 2, . . . , n−3 (indices mod n), each move forcing the breaker to recolour
the rim edge vi+2+j−1vi+2+j to blue, see Fig. 6 center right. Now, we are left
with the si+1-right star. In order to turn this into the si-left star it suffices to
recolour si+1 to purple, which forces the breaker to make si blue, see Fig. 6
right. Note that the first and last pair of moves requires n ≥ 4. In case
n = 3, si+1 and si−1 would be neighboured, and the breakers move is not
forced any more.

Theorem 26. W F
n is strongly connected for n ≥ 5.

Proof. The following chain of arguments is depicted in Figure 7. By Lemma
24 we can transform any left orientation C1 with spokes S1

1 where i ∈ S1
1

and j 6∈ S1
1 for given i 6= j into the si-left path. By Lemma 25 we can

transform the si-left path into the si-left star and by Lemma 24 again from
this we reach any left orientation C2 with spokes S2

1 and i 6∈ S2
1 , m ∈ S2

1 for
any m 6= i. Interchanging the roles of the indices we conclude that we can
transform this into C1 and hence the subgraph of W F

n induced by the left
orientations is strongly connected.

In the proof of Lemma 25 we, furthermore, transformed the si-left path
into the si+1-right star and this into the si-left star. Since by, symmetry,
the right orientations induce a strongly connected graph as well, the claim
follows.

i-left path i-left starleft or. left or.

m
∈6∋

j
6∋
ii ∈

(i+ 1)-right star

Figure 7: WF
n is strongly connected

In Case 2 of the proof of Lemma 24 we used the fact that n ≥ 5. However
an explicit computation of W F

4 shows that it is strongly connected as well.
For the details we refer to [11].
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Observation 27. The graph W F
4 is strongly connected.

Proof. For the graph W4 the graph W F
4 of forced transformations is depicted

in Fig. 8. All edges can be used in both directions.

In Fig. 8 the vertices that represent left orientations are coloured white,
the right orientations are coloured grey. Note that any path from a vertex
of degree 3 or 4 to its complement always uses changes of orientation. This
might indicate that the changes of orientation we used in Lemma 25 are
unavoidable.

1

23

4
5

6
7

8

1278 1238 1248 1258

256824682346134613681678

1578 1357

13471478

1247

3568 3456 3467 4678

45673567 2356

1235

2345 2358

25782457

1467

Figure 8: The wheel W4 and its graph WF
4 of forced transformations

8. A non-homogeneous graph

In this section we will consider the graph G = K3,3 + e where e is an
additional edge in one of the bipartitions. We will see that for some partitions
of G into two trees the breaker has a winning strategy, for others the breaker
has a winning strategy. Moreover, we will see that GF decomposes into two
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components, one containing 48 partitions, the other 24 partitions. The maker
wins exactly on half of the bispanning graphs of the bigger component.

In order to be able to describe this phenomenon more in detail, we start
by identifying the types of bispanning graphs which can occur in G. In Fig. 9
three types and their complements are depicted.

1 5

3

42

6

1 5

3

42

6

X Xc

1 5

3

42

6

1 5

3

42

6

Y Y c

1 5

3

42

6

1 5

3

42

6

Z Zc

Figure 9: Types X and Xc, Y and Y c, Z and Zc

We say two partitions are of the same type if there is an automorphism
of G transforming one into the other. It is easy to verify that in each case
there are exactly 12 pairs of the same type (and 12 pairs of the complement
of these types) since the autorphism group of G is S2×S3, where Si denotes
the permutation group on i elements. In pairs of the type X, Y , and Z the
special edge {1, 2} is purple, in the complements it is blue. Note that in a
pair of type X the purple and the blue edges form a P6, in a pair of type Z
the purple edges form a generalized star S1,2,2 and the blue edges form a P6,
and in a pair of type Y the purple edges form another generalized star S1,1,3

whereas the blue edges form an S1,2,2.

Theorem 28. (a) GF consists of two components A and B, where A con-
tains every partition of type Xc, Y c, Z, and Zc and B contains those
of types X and Y .

(b) The maker wins if the starting partition is of type Z or Zc.

(c) The breaker wins if the starting partition is of type X, Xc, Y , or Y c.

We will prove this theorem by a series of lemmata.

Lemma 29. The bispanning graphs of type X and type Y form a component
of GF . Moreover, the breaker has a strategy never to leave this component if
the game is started here.

Proof. In Fig. 10 we depict all possible results of a pair of moves, starting
from X (upper row) resp. from Y (lower row). Alice recolours some edge and
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in most cases Bob’s response is forced (grey edge). In the three non-forced
moves we show Bob’s possible moves in grey. In all three non-forced moves,
if the breaker plays the lower edge {1, 5}, either a partition of type X or of
type Y is created. In the forced moves it can be seen that also only types
X or Y are created, they are denoted as X resp. Y with the permutations
corresponding to the automorphisms.

X n.f. n.f. Y (12)(46) X(12)(45)Y (46)
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42
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1 5

3
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6

Y X(46) Y (56) Y (45)X(12)(46) n.f.
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42

6

1 5

3

42

6

1 5

3

42

6

1 5

3

42

6

1 5

3

42

6

1 5

3

42

6

Figure 10: Moves starting with Y

X Y (46) Y (456)

X (12)(45) X (12)

Y (56) X (465)

Figure 11: Paths of moves

In Fig. 11 we see paths of moves from X to Y (4, 6) and X(12)(45), X(12)
resp. X(465). Since {(12)(45), (12), (465)} is a generating set of the automor-
phism group of G, the partitions of types X and Y form a single component
of GF .

Lemma 30. Types Xc, Y c, Z and Zc are in the same component. In par-
ticular, each type Z can reach each type Zc.

Proof. In Fig. 12 we depict all forced and non-forced (n.f.) moves starting
from the bispanning graph Xc, Y c, Z, Zc, respectively. The answer of the
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breaker in forced moves is the grey edge. It can be seen that there are no
forced moves which obtain a partition of type X or Y .
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Figure 12: Moves starting with Xc, Y c, Z, resp. Zc

Furthermore each permutation of each of the four partitions Xc, Y c, Z,
and Zc can be reached from any one of them, as is proven by the paths in
Fig. 13.

This means that type Xc, Y c, Z, and Zc form a component of GF .

Lemma 31. If the initial partition is of type Xc or Y c, in the non-forced
moves the breaker has a strategy to obtain partitions of types Xc, Y c, Z or
Zc again (to stay in the same component).
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Zc(12)(56) Y c(12)(56)

Y c Xc(46) Z(465) Y c(12)(45)

Y c(56)

Figure 13: Paths of forced moves

Proof. In the non-forced moves of Fig. 12, if the breaker chooses the grey
edge for recolouring (not the grey-black dashed edges), he also obtains a
partition of a type which is displayed in brackets. This type is neither X nor
Y in any case.

This completes the proof of Theorem 28.

9. Concluding remarks

We have seen in the last section that there is a bispanning graph with
partitions E = E1∪̇E2 and E = F1∪̇F2 into spanning trees such that the
maker wins when the initial partition is (E1, E2) but the breaker wins when
the initial partition is (F1, F2). However, the following problem is still open.

Problem 32. Is there a bispanning graph G = (V,E) with partition E =
E1∪̇E2 into spanning trees such that the maker wins when the initial partition
is (E1, E2) but the breaker wins when the initial partition is (E2, E1)?

In all our examples, if the maker has a winning strategy for a bispanning
graph G with initial partition (E1, E2), the partition (E2, E1) was in the same
component. Note that a positive answer to Problem 32 implies a positive
answer to the following

Problem 33. Is there a bispanning graph G = (V,E) with partition E =
E1∪̇E2 into spanning trees such that the maker wins when the initial partition
is (E1, E2), but (E2, E1) and (E1, E2) lie in distinct components of GF?

Finally, we address some questions on the complexity of our problems.
Many games are PSPACE-complete, however there seems to be no obvious
reduction to our game.
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Problem 34. Is the problem to decide which player has a winning strategy
in the matroid games W (1) resp. W (2) a PSPACE-complete problem? Is
the problem even PSPACE-complete for bispanning graphs?

Conjecture 5 would imply a negative answer to the last question in the
case of W (2).

Problem 35. In case the auxiliary graph τi(M) is connected, what is its
diameter, for i = 2, 3, 4? Is it polynomial in the size of M?

Note that in the case of bispanning graphs G, we have seen that the
number of vertices of GF = τ4(M(G)) can be exponential in the size of G.
This is the case for wheels by Proposition 20.

Problem 36. In case Alice wins the game, how many moves does she need
in the worst case? Is there an upper bound on the number of moves which is
polynomial in the size of the bispanning graph?

Note that the answer to Problem 36 might be affirmative even if the
diameter of GF is exponentially large.
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[5] J. van den Heuvel and S. Thomassé, Cyclic orderings and cyclic arboric-
ity of matroids, Journal of Combinatorial Theory, Series B 102 (2012),
no. 3, 638–646.

[6] W. Hochstättler, The toric ideal of a cographic matroid is generated by
quadrics, Tech. Report feU-dmo023.10, FernUniversität in Hagen, 2010.

[7] W. Hochstättler, H. Jin, and R. Nickel, The hungarian method for a
mixed matching market, Tech. Report feU-dmo004.05, FernUniversität
in Hagen, 2005.

[8] Y. Kajitani, S. Ueno, and H. Miyano, Ordering of the elements of a
matroid such that its consecutive w elements are independent, Discrete
Math. 72 (1988), 187–194.

[9] E.L. Lawler, Matroid intersection algorithms, Math. Programming 9
(1975), 31–56.

[10] S. McGuinness, A base exchange property for regular matroids, submit-
ted for publication, 2011.

[11] M. Merkel, Das Basentauschspiel für Graphen, bachelor’s thesis, Fern-
Universität in Hagen, 2009.

[12] J. G. Oxley, Matroid theory, Oxford University Press, Oxford, 1992.

[13] P. D. Seymour, Decomposition of regular matroids, J. Combin. Theory
Ser. B 28 (1980), no. 3, 305–359.

[14] N.L. White, A unique exchange property for bases, Linear Algebra and
its Applications 31 (1980), 81 – 91.

[15] D. Wiedemann, Cyclic base orders of matroids, Technical Report,
1984/2006, http://www.plumbyte.com/cyclic base orders 1984.pdf.

25


	Introduction
	The recognition of bispanning graphs
	General results on the base exchange game
	Graphs where the breaker wins
	A breaker-win graph without K4
	On the structure and the number of partitions of a wheel into two trees
	The strategy of the maker for wheels
	A non-homogeneous graph
	Concluding remarks

