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Abstract

We introduce a procedure that solves the decision problem whether a
given matroid M is a gammoid. The procedure consists of three pieces:
First, we introduce a notion of a valid matroid tableau which captures the
current state of knowledge regarding the properties of matroids related to
the matroid under consideration. Second, we give a sufficient set of rules
that may be used to generate valid matroid tableaux. Third, we introduce a
succession of steps that ultimately lead to a decisive tableau starting with any
valid tableau. We argue that the decision problem scales well with respect
to parallel computation models.

Keywords. matroids, gammoids, directed graphs, decision problem

The Gammoid Class-Membership Problem is the following decision problem:
Given a matroid M = (E, I), determine whether M is a gammoid or not. It is a
well-known fact that the class of gammoids is closed under duality, minors, and
direct sums; and that it may not be characterized by a finite number of excluded
minors. D. Mayhew even showed that every gammoid is a minor of some ex-
cluded minor of the class of gammoids [11], therefore any attempt to solve this
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problem relying solely on excluded minors appears to be futile. We introduce a
decision procedure for Gammoid Class-Membership Problems that is guaranteed
to ultimately give an answer through exhaustive search, and which is also capa-
ble to incorporate knowledge of non-gammoids and strict gammoids in order to
give an answer before exhausting the search space in many cases. Furthermore,
the derivation steps described in our process may be carried out using massive
parallelism, since joining tableaux is a valid derivation.

1 Preliminaries
In this work, we consider matroids to be pairs M = (E, I) where E is a finite set
and I is a system of independent subsets of E subject to the usual axioms ([12],
Sec. 1.1). The family of bases of M shall be denoted by B(M), the family of flats
of M shall be denoted by F(M). If M = (E, I) is a matroid and X ⊆ E, then
the restriction of M to X shall be denoted by M |X ([12], Sec. 1.3). A matroid
N = (E ′, I ′) is an extension of M , if E ⊆ E ′ and I = {X ∈ I ′ | X ⊆ E} holds.
The dual matroid of M shall be denoted by M∗. A modular cut of M is a set
C ⊆ F(M) that is closed under super-flats and under the intersection of pairs
of modular flats. H.H. Crapo showed, that there is a one-to-one correspondence
between single-element extensions of a matroid M and its modular cuts [4].

Furthermore, the notion of a digraph shall be synonymous with what is de-
scribed more precisely as finite simple directed graph that may have some loops,
i.e. a digraph is a pair D = (V,A) where V is a finite set and A ⊆ V × V .
All standard notions related to digraphs in this work are in accordance with the
definitions found in [1]. A path in D = (V,A) is a non-empty and non-repeating
sequence p = p1p2 . . . pn of vertices pi ∈ V such that for each 1 ≤ i < n,
(pi, pi+1) ∈ A. By convention, we shall denote pn by p−1. Furthermore, the set of
vertices traversed by a path p shall be denoted by |p| = {p1, p2, . . . , pn} and the
set of all paths in D shall be denoted by P(D). For D = (V,A) and S, T ⊆ V ,
an S-T -separator is a set X ⊆ V such that every path p ∈ P(D) from s ∈ S to
t ∈ T has |p| ∩ V 6= ∅.

Definition 1.1. Let D = (V,A) be a digraph, and X, Y ⊆ V . A routing from X
to Y in D is a family of paths R ⊆ P(D) such that

(i) for each x ∈ X there is some p ∈ R with p1 = x,

(ii) for all p ∈ R the end vertex p−1 ∈ Y , and
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(iii) for all p, q ∈ R, either p = q or |p| ∩ |q| = ∅.

We shall write R : X →→ Y in D as a shorthand for “R is a routing from X to Y
in D”, and if no confusion is possible, we just write X →→ Y instead of R and
R : X →→ Y .

Definition 1.2. Let D = (V,A) be a digraph, E ⊆ V , and T ⊆ V . The gammoid
represented by (D,T,E) is defined to be the matroid Γ(D,T,E) = (E, I) where

I = {X ⊆ E | there is a routing X →→ T in D}.

The elements of T are usually called sinks in this context, although they are not
required to be actual sinks of the digraph D. To avoid confusion, we shall call the
elements of T targets in this work. A matroid M ′ = (E ′, I ′) is called gammoid, if
there is a digraph D′ = (V ′, A′) and a set T ′ ⊆ V ′ such that M ′ = Γ(D′, T ′, E ′).
A gammoid M is called strict, if there is a representation (D,T,E) of M with
D = (V,A) where V = E.

Definition 1.3. Let M = (E, I) be a matroid. Then M shall be strongly base-
orderable, if for every pair of bases B1, B2 ∈ B(M) there is a bijective map
ϕ : B1 −→ B2 such that (B1\X) ∪ ϕ[X] ∈ B(M) holds for all X ⊆ B1.

Lemma 1.4 ([10], Corollary 4.1.4). Let M = (E, I) be a gammoid. Then M is
strongly base-orderable.

For a proof, see [10].

Definition 1.5. Let M = (E, I) be a matroid. The α-invariant of M shall be the
map αM : 2E −→ Z that is uniquely characterized by the recurrence relation

αM(X) = |X| − rkM(X)−
∑

F∈F(M,X)

αM(F ),

where F(M,X) = {F ∈ F(M) | F ( X}.

Theorem 1.6 ([10], Theorems 2.2 and 2.4). Let M = (E, I) be a matroid. Then
M is a strict gammoid if and only if αM ≥ 0.

For a proof, see [10].



4 Immanuel Albrecht

Theorem 1.7 ([6], Theorem 13; [2], [3], [5]). Let F2 be the two-elementary field,
E,C finite sets, and let µ ∈ FE×C

2 be a matrix. Then the linear matroid M(µ)
is a gammoid if and only if there is no minor N of M(µ) which is isomorphic to
M(K4). The latter is the case if and only if M(µ) is isomorphic to the polygon
matroid of a series-parallel network.

For proofs of a sufficient set of implications which establish the equivalency
stated, refer to [2], [3], and [5].

Theorem 1.8 ([12], Theorem 6.5.4). Let M = (E, I) be a matroid. Then M is
isomorphic to the linear matroid M(µ) for some matrix µ ∈ FE×C

2 if and only
if M has no minor isomorphic to the uniform matroid U2,4 = (E ′, I ′), where
E ′ = {a, b, c, d}6= and I ′ =

{
X ⊆ E ′

∣∣ |X| ≤ 2
}

.

See [12], pp.193f, for a proof.

Definition 1.9. LetM = (E, I) be a matroid, X ⊆ E. The restrictionN = M |X
shall be a deflate ofM , ifE\X = {e1, e2, . . . , em} 6= can be ordered naturally, such
that for all i ∈ {1, 2, . . . ,m} the modular cut

Ci =
{
F ∈ F

(
M | (X ∪ {e1, e2, . . . , ei−1})

) ∣∣ ei ∈ clM(F )
}

has precisely one ⊆-minimal element. M shall be called deflated, if the only
deflate of M is M itself.

Lemma 1.10. Let M = (E, I) be a matroid, X ⊆ E and let N = M |X be a
deflate of M . Then M is a gammoid if and only if N is a gammoid.

Proof. If M is a gammoid, then N is a gammoid, since the class of gammoids is
closed under minors ([10], Sec. 1 and Cor. 4.1.3). Now let N be a gammoid, and
let E\X = {e1, e2, . . . , em}6= be implicitly ordered with the properties required in
Definition 1.9. We proof the statement of this lemma by induction on |E\X| = m.
The base case m = 0 is trivial, the induction step follows from the special case
where E\X = {e1}. Let F1 =

⋂
C1 be the unique minimal element of the

modular cut C1. Then M arises from N by adding a new point e1 to N , which is
in general position with respect to the flat F1. Let (D,T,X) be a representation
of N with D = (V,A) and e1 /∈ V . Let D′ = (V ∪ {e1}, A ∪ ({e1} × F1)). It is
easy to see that (D′, T, E) is a representation of M .

Theorem 1.11 ([8], Theorem 3). Let D = (V,A) be a digraph, E, T ⊆ V , and
r > 0 be the cardinality of a minimal E-T -separator in D. There is a set Z ⊆ V
with E ∪ T ⊆ Z and |Z| = O(|E| · |T | · r) such that for all X ⊆ E and Y ⊆ T
there is a minimal X-Y -separator S in D with S ⊆ Z.



Deciding Gammoid Class-Membership 5

For the proof, see [8], where the authors only give the O-behavior of the size of Z
in Theorem 1.11, but it is possible to derive the factor hidden in the O-notation by
inspecting their proof and the proof of [9] Lemma 4.1. We obtain that E ∪T ⊆ Z
and

|Z| ≤
(
r

1

)
·
(
|E|
1

)
·
(
|T |
1

)
+ |E|+ |T | = r · |E| · |T |+ |E|+ |T | .

Let (D,T,E) be a representation ofM where |T | = rkM(E) andD = (V,A). Let
Z ⊆ V be a subset of V as in the consequent of Theorem 1.11. Let D′ = (Z,A′)
be the digraph, where for all x, y ∈ Z, there is an arc

(x, y) ∈ A′ ⇐⇒ ∃p ∈ P(D;x, y) : |p| ∩ Z = {x, y}.

Thus there is an arc leaving y ∈ Z and entering z ∈ Z in D′ if there is a path
from y to z in D that never visits another vertex of Z. It is routine to show that
(D′, T, E) represents the same matroid as (D,T,E). Therefore we obtain:

Corollary 1.12. Let M = (E, I) be a gammoid. There is a representation
(D,T,E) of M where D = (V,A) such that |T | = rkM(E) and such that
|V | ≤ rkM(E)2 · |E|+ rkM(E) + |E|.

2 Matroid Tableaux
Definition 2.1. A matroid tableau is a tuple T = (G,G,M,X ,') where

(i) G is a matroid, called the goal of T,

(ii) G is a family of matroids, called the gammoids of T,

(iii) M is a family of matroids, called the intermediates of T,

(iv) X is a family of matroids, called the excluded matroids of T, and where

(v) ' is an equivalence relation on {G′ | G′ is a minor of G} ∪ G ∪ M ∪ X ,
called the equivalence of T.
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Definition 2.2. Let T = (G,G,M,X ,') be a matroid tableau. T shall be valid,

(i) if all matroids in G are indeed gammoids,

(ii) if no matroid inM is a strict gammoid,

(iii) if all matroids in X are indeed matroids which are not gammoids, and

(iv) if for every equivalence classes [M ]' of' we have that either [M ]' is fully
contained in the class of gammoids or [M ]' does not contain a gammoid.

Definition 2.3. Let T = (G,G,M,X ,') be a matroid tableau. T shall be deci-
sive, if T is valid and if either of the following holds:

(i) There is a matroid M ∈ G such that G 'M .

(ii) There is a matroid X ∈ X that is isomorphic to a minor of G.

(iii) For every extension N = (E ′, I ′) of G = (E, I) with

|E ′| = rkG(E)2 · |E|+ rkG(E) + |E|

there is a matroid M ∈M that is isomorphic to N .

Lemma 2.4. Let T = (G,G,M,X ,') be a decisive matroid tableau. Then G is
a gammoid if and only if there is a matroid M ∈ G such that G 'M .

Proof. Assume that such an M ∈ G exists. From Definition 2.2 we obtain that
M is a gammoid, and that in this case G ' M implies that G is a gammoid, too.
Now assume that no M ∈ G has the property G ' M . Since T is decisive, either
case (ii) or (iii) of Definition 2.3 holds. If case (ii) holds, then G cannot be a
gammoid since it has a non-gammoid minor, but the class of gammoids is closed
under minors. If case (iii) holds but not case (ii), then no extension of G = (E, I)
with k = rkG(E)2 · |E| + rkG(E) + |E| elements is a strict gammoid. Now
assume that G is a gammoid, then there is a digraph D = (V,A) with |V | ≤ k
vertices, such that G = Γ(D,T,E) for some T ⊆ V (Corollary 1.12). Let N ′ =
Γ(D,T, V ) ⊕ (V ′, {∅}) with V ′ ∩ V = ∅ and |V ′| + |V | = k. Clearly, N ′ is an
extension of G on a ground set with k elements, which is also a strict gammoid, a
contradiction to the assumption that N ′ is isomorphic to some N ∈ M, sinceM
is a family which consists of matroids that are not strict gammoids. Therefore we
may conclude that in case (iii) the matroid G is not a gammoid.
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3 Valid Derivations
A derivation is an operation on a finite number of input tableaux and possible
additional parameters with constraints that produces an output tableau. Further-
more, a derivation is valid, if the output tableau is valid for all sets of valid input
tableaux and possible additional parameters that satisfy the constraints.

Definition 3.1. Let Ti = (Gi,Gi,Mi,Xi,'(i)) be matroid tableaux for i ∈
{1, 2, . . . , n}. The joint tableau shall be the matroid tableaux

n⋃
i=1

Ti = (G1,G,M,X ,')

where

G =
n⋃

i=1

Gi, M =
n⋃

i=1

Mi, X =
n⋃

i=1

Xi,

and where ' is the smallest equivalence relation such that M '(i) N implies
M ' N for all i ∈ {1, 2, . . . , n}. In other words, ' is the equivalence relation on
the family of matroids {G′ | G′ is a minor of G}∪G ∪M∪X which is generated
by the relations '(1),'(2), . . . ,'(n).

Lemma 3.2. The derivation of the joint tableau is valid.

Proof. Clearly, G, M, and X inherit their desired properties of Definition 2.2
from the valid input tableaux Ti where i ∈ {1, 2, . . . , n}. Now let M ' N with
M 6= N . Then there are matroids M1,M2, . . . ,Mk and indexes i0, i1, . . . , ik ∈
{1, 2, . . . , n} such that there is a chain of '(i)-relations

M '(i0) M1 '(i1) M2 '(i2) · · · '(ik−1) Mk '(ik) N.

The assumption that the input tableaux are valid yields thatM is a gammoid if and
only if M1 is a gammoid, if and only if M2 is a gammoid, and so on. Therefore
it follows that M is a gammoid if and only if N is a gammoid, thus ' has the
desired property of Definition 2.2. Consequently,

⋃n
i=1Ti is a valid tableau.

Definition 3.3. Let T = (G,G,M,X ,') and T′ = (G,G ′,M′,X ′,'′) be ma-
troid tableaux. We say that T is a sub-tableau of T′ if G ⊆ G ′, M ⊆ M′, and
X ⊆ X ′ holds, and if M ' N implies M '′ N .
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Lemma 3.4. The derivation of a sub-tableau is valid.

Proof. Clearly T inherits the properties of Definition 2.2 from the validity of T′.

Definition 3.5. Let T = (G,G,M,X ,') be a matroid tableau. We shall call the
tableau [T]' = (G,G ′,M,X ′,') expansion tableau of T whenever

G ′ =
⋃
M∈G

[M ]' and X ′ =
⋃

M∈X

[M ]'.

Lemma 3.6. The derivation of the expansion tableau is valid.

Proof. If M ′ ∈ G ′, then there is some M ∈ G such that M ' M ′. Since we
assume T to be valid, we may infer that M ′ is a gammoid if and only if M is a
gammoid, and the latter is the case since M ∈ G. Therefore M ′ is a gammoid. An
analogous argument yields that if M ′ ∈ X ′, then M ′ is not a gammoid.

Definition 3.7. Let T = (G,G,M,X ,') be a matroid tableau. We shall call the
tableau [T]≡ = (G,G ′,M′,X ′,'′) extended tableau of T whenever

G ′ = G ∪ {M∗ |M ∈ G}, X ′ = X ∪ {M∗ |M ∈ X}, M′ =M∪X ′,

and when '′ is the smallest equivalence relation that contains the relations ' and
∼; where M ∼ N if and only if N is isomorphic to M or M∗.

Lemma 3.8. The derivation of the extended tableau is valid.

Proof. The class of gammoids is closed under duality, therefore a matroid M
is a gammoid if and only if M∗ is a gammoid. So G ′ and X ′ inherit their desired
properties of Definition 2.2 from the validity of T. IfM ∈M′\M, thenM ∈ X ′,
therefore M cannot be a strict gammoid.

Definition 3.9. Let T = (G,G,M,X ,') be a decisive matroid tableau. The
tableau T! = (G,G ′,M,X ′,') shall be the conclusion tableau for T if either

(i) G ′ = G ∪ {G′ | G′ is a minor of G}, X ′ = X , and the tableau T satisfies
case (i) of Definition 2.3; or

(ii) G ′ = G, X ′ = X ∪ {G}, and T satisfies case (ii) or (iii) of Definition 2.3.
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Corollary 3.10. The derivation of the conclusion tableau is valid.

Proof. Easy consequence of Lemma 2.4.

Definition 3.11. Let T = (G,G,M,X ,') be a matroid tableau, let M1 and M2

be matroids of the tableau, i.e.

{M1,M2} ⊆ {G′ | G′ is a minor of G} ∪ G ∪M∪X .

Furthermore, let M1 be a deflate of M2. The tableau

T(M1 'M2) = (G,G,M,X ,'′)

is called identified tableau for T with respect toM1 andM2 if the relation'′ is the
smallest equivalence relation, such that M1 '′ M2 holds, and such that M ′ ' N ′

implies M ′ '′ N ′.

Lemma 3.12. The derivation of an identified tableau is valid.

Proof. Follows from Lemma 1.10.

3.1 Valid Tableaux
Corollary 3.13. Let M = (E, I) be a matroid with αM ≥ 0. Then the matroid
tableau T is valid, where T = (M,G,M,X ,') with G = {M,M∗}, M = ∅,
X = ∅, and M ' N ⇔M = N .

Proof. See Theorem 1.6.

Corollary 3.14. Let M = (E, I) be a matroid with rkM(X) = 3, X ⊆ E with
αM(X) < 0. Then the matroid tableau T is valid, where T = (M,G,M,X ,')
with G = ∅,M = ∅, X = {M,M∗}, and M ' N ⇔M = N .

Proof. Follows from Theorem 1.6 together with the fact that every gammoid of
rank 3 is a strict gammoid ([7], Proposition 4.8).

Remark 3.15. Let M = (E, I) be a matroid, X ⊆ E with αM(X) < 0. Then the
matroid tableau T is valid, where T = (M,G,M,X ,') with G = ∅,M = {M},
X = ∅, and M ' N ⇔M = N .
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Corollary 3.16. Let M = (E, I) be a matroid. If M has no minor isomorphic
to M(K4) and no minor isomorphic to U2,4, then the matroid tableau T is valid,
where T = (M,G,M,X ,') with G = {M,M∗}, M = ∅, X = ∅, and M '
N ⇔M = N .

Proof. Direct consequence of Theorems 1.7 and 1.8.

Corollary 3.17. Let M = (E, I) be a matroid, B1, B2 ∈ B(M) be bases of M
such that for every bijection ϕ : B1\B2 −→ B2\B1 there is a set X ⊆ B1\B2

with the property (B1\X) ∪ ϕ[X] /∈ B(M). Then the matroid tableau T is valid,
where T = (M,G,M,X ,') with G = ∅, M = ∅, X = {M,M∗}, and M '
N ⇔M = N .

Proof. Direct consequence of Lemma 1.4.

3.2 Example
Consider the matroid G = G8,4,1 = (E, I) where E = {1, 2, . . . , 8} and where
I =

{
X ⊆ E

∣∣ |X| ≤ 4, X /∈ H
}

with

H =
{
{1, 3, 7, 8}, {1, 5, 6, 8}, {2, 3, 6, 8}, {4, 5, 6, 7}, {2, 4, 7, 8}

}
.

Clearly, αG(H) = 1 for all H ∈ H, and consequently αG(E) = 4− 5 = −1. The
dual matroid G∗ = (E, I∗) has I∗ =

{
X ⊆ E

∣∣ |X| ≤ 4, X /∈ H∗
}

with

H∗ =
{
{1, 2, 3, 8}, {1, 3, 5, 6}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 5, 6}

}
.

Thus αG∗(H ′) = 1 for all H ′ ∈ H∗, and so αG∗(E) = 4− 5 = −1, too. We start
with the valid tableaux

TG = (G, ∅, {G}, ∅, 〈 〉) and TG∗ = (G∗, ∅, {G∗}, ∅, 〈 〉) ,

where 〈.〉 denotes the generated equivalence relation defined on the set of matroids
occurring in the respective tableau. We may derive the extended joint tableau

T1 = [TG ∪TG∗ ]≡ = (G, ∅, {G,G∗}, ∅, 〈G ' G∗〉) .

Now observe that although G is deflated, G∗ is not deflated. We have

C∗8 =
{
F ∈ F (G∗|{1, 2, . . . , 7})

∣∣ 8 ∈ clG∗(F )
}

=
{
F ∈ F (G∗|{1, 2, . . . , 7})

∣∣ {1, 2, 3} ⊆ F
}
.
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Figure 1: Reconstruction of a representation of G8,4,1 from the matroid tableaux
in Section 3.2.

Let G∗7 = G∗|{1, 2, . . . , 7}. We have αG∗
7
({1, 2, . . . , 7}) = −1, thus G∗7 is not a

strict gammoid, and thus

TG∗
7

= (G∗7, ∅, {G∗7}, ∅, 〈 〉)

is a valid tableau. Since G∗7 is a deflate of G∗, each of them is an induced matroid
with respect to the other. Therefore we may identifyG∗ andG∗7 in the joint tableau

T2 =
(
T1 ∪TG∗

7

)
(G∗ ' G∗7) = (G, ∅, {G,G∗, G∗7}, ∅, 〈G ' G∗ ' G∗7〉) .

Now let G7 = (G∗7)
∗, and we have αG7 ≥ 0. Thus

TG7 = (G7, {G7}, ∅, ∅, 〈 〉)

is a valid tableau. We now may derive the decisive tableau

T3 = [T2 ∪TG7 ]≡ = (G, {G7}, {G,G∗, G∗7, G7}, ∅, 〈G ' G∗ ' G∗7 ' G7〉)

where case (i) of Definition 2.3 holds. Consequently, G is a gammoid.

4 Decision Procedure
We may start the procedure with the valid initial tableau T := (G, ∅, ∅, ∅, 〈 〉), or
any other valid tableau that we may have obtained using some heuristic or intuitive
derivation. For instance, if T′ is a tableau obtained for a different goal G′, then
the joint tableau T := (G, ∅, ∅, ∅, 〈 〉) ∪ T′ may be a better choice to start with,
because G and G′ may have common extensions and minors (up to isomorphy).
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Step 1. If T is decisive, stop. If the procedure is run in a parallel fashion, you
may choose to end a spawned thread here as long as there is another thread that
carries on the computation.

Step 2. Choose an intermediate goal M ∈ {G′ | G′ is a minor of G} ∪ M such
that M /∈ G ∪ X , preferably one with M ' G which is small both in rank and
cardinality. At this point, it is possible to spawn several parallel computations
with multiple choices of M . In this case, all subsequent updates of T shall be
considered atomic and synchronized.

Step 3. If TM = (M, ∅, ∅, ∅, 〈 〉)∪T is decisive, then set T :=
[
[T ∪ (TM !)]≡

]
'

and continue with Step 1.

Step 4. Determine whether M has a minor that is isomorphic to M(K4). If this is
the case, then TM = (M, ∅, ∅, {M,M∗}, 〈 〉) is valid, we set T :=

[
[T ∪TM ]≡

]
'

and then continue with Step 1.

Since M(K4) = (M(K4))
∗, we have that M(K4) is neither a minor of M nor

of M∗ when reaching the next step.

Step 5. Determine whether M has a minor that is isomorphic to U2,4. If this is not
the case, then TM = (M, {M,M∗}, ∅, ∅, 〈 〉) is valid, we set T :=

[
[T ∪TM ]≡

]
'

and then continue with Step 1.

Since U2,4 = (U2,4)
∗, we have that U2,4 is neither a minor of M nor of M∗

when reaching the next step.

Step 6. If M ∈ M, continue immediately with Step 7. If αM ≥ 0, then TM =
(M, {M,M∗}, ∅, ∅, 〈 〉) is valid, so we may set T :=

[
[T ∪TM ]≡

]
' and continue

with Step 1.

Step 7. If M∗ ∈ M, continue immediately with Step 8. If αM∗ ≥ 0, then
TM∗ = (M∗, {M,M∗}, ∅, ∅, 〈 〉) is valid, so we may set T :=

[
[T ∪TM∗ ]≡

]
'

and continue with Step 1.

Step 8. Determine whether M is strongly base-orderable. If this is not the case,
then TM = (M, ∅, ∅, {M,M∗}, 〈 〉) is valid, we set T :=

[
[T ∪TM ]≡

]
' and then

continue with Step 1.

The class of strong base-orderable matroids is closed under duality and minors
[5], therefore M∗ and all minors of M and M∗ are strongly base-orderable upon
reaching the next step.
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Step 9. Let M = (E, I). Determine whether there is some X ∈ I with |X| =
rkM(E) − 3 and some Y ⊆ E\X such that αM.(E\X)(Y ) < 0. If this is the
case, then the tableau TM = (M, ∅, ∅, {M,M∗}, 〈 〉) is valid, so we may set T :=[
[T ∪TM ]≡

]
' and then continue with Step 1.

Step 10. Let M∗ = (E, I∗). Determine whether there is some X ∈ I∗ with
|X| = rkM∗(E) − 3 and some Y ⊆ E\X such that αM∗.(E\X)(Y ) < 0. If this
is the case, then the tableau TM∗ = (M∗, ∅, ∅, {M,M∗}, 〈 〉) is valid, we may set
T :=

[
[T ∪TM∗ ]≡

]
' and then continue with Step 1.

Step 11. Determine whetherM is deflated. If not, then find a deflateN ofM with
a ground set of minimal cardinality, set T :=

[
[(T ∪TN) (M ' N)]≡

]
' where

TN =

{
(N, {N,N∗}, ∅, ∅, 〈 〉) if αN ≥ 0,

(N, ∅, {N}, ∅, 〈 〉) otherwise,

and continue with Step 1.

Step 12. Determine whether M∗ is deflated. If not, then find a deflate N of M∗

with a ground set of minimal cardinality, set T :=
[

[(T ∪TN) (M∗ ' N)]≡
]
'

where

TN =

{
(N, {N,N∗}, ∅, ∅, 〈 〉) if αN ≥ 0,

(N, ∅, {N}, ∅, 〈 〉) otherwise,

and continue with Step 1.

Step 13. Try to find an extensionN ofM with at most rkG(E)2·|E|+rkG(E)+|E|
elements such that N is not isomorphic to any M ′ ∈ G ∪ M ∪ X . Set T :=[

[T ∪TN ]≡
]
' where

TN =

{
(N, {N,N∗}, ∅, ∅, 〈 〉) if αN ≥ 0,

(N, ∅, {N}, ∅, 〈 〉) otherwise,

and continue with Step 1, or repeat this step and add multiple extensions of M . If
no such extension of M exists, then set M := G and continue with Step 5.

Clearly, if we continue this process long enough, then Step 13 ensures that the
tableau T will eventually become decisive for G by exhausting all isomorphism
classes of extensions of G with at most rkG(E)2 · |E| + rkG(E) + |E| elements.
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If the procedure is carried out in a parallel fashion, not all spawned threads have
to carry out Step 13, as long as it is guaranteed that the step is carried out again
and again eventually by some threads.
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