
Nonlinear Spectral Theory

Henning Wunderlich

Dr. Henning Wunderlich, Frankfurt, Germany

E-mail address : HenningWunderlich@t-online.de



1991 Mathematics Subject Classification. 46-XX,47-XX

I would like to sincerely thank Prof. Dr. Delio Mugnolo for his valuable advice
and support during the preparation of this thesis.



Contents

Introduction 5

Chapter 1. Spaces 7
1. Topological Spaces 7
2. Uniform Spaces 11
3. Metric Spaces 14
4. Vector Spaces 15
5. Topological Vector Spaces 18
6. Locally-Convex Spaces 21
7. Bornological Spaces 23
8. Barreled Spaces 23
9. Metric Vector Spaces 29
10. Normed Vector Spaces 30
11. Inner-Product Vector Spaces 31
12. Examples 31

Chapter 2. Fixed Points 39
1. Schauder-Tychonoff 39
2. Monotonic Operators 43
3. Dugundji and Quasi-Extensions 51
4. Measures of Noncompactness 53
5. Michael Selection 58

Chapter 3. Existing Spectra 59
1. Linear Spectrum and Properties 59
2. Spectra Under Consideration 63
3. Restriction to Linear Operators 76
4. Nonemptyness 77
5. Closedness 78
6. Boundedness 82
7. Upper Semicontinuity 84

Chapter 4. Applications 87
1. Nemyckii Operator 87
2. p-Laplace Operator 88
3. Navier-Stokes Equations 92

Bibliography 97

Index 101

3





Introduction

The term Spectral Theory was coined by David Hilbert in his studies of qua-
dratic forms in infinitely-many variables. This theory evolved into a beautiful blend
of Linear Algebra and Analysis, with striking applications in different fields of sci-
ence. For example, the formulation of the calculus of Quantum Mechanics (e.g.,
POVM) would not have been possible without such a (Linear) Spectral Theory at
hand. With such a successful beginning, the obvious question is, if it is possible
to extend Spectral Theory to the study of nonlinear operators. One reason is that
the macroscopic world is definitely not linear. A famous example is the dynamics
of fluids, modeled by the nonlinear Navier-Stokes equations. This work is meant as
an introduction to such a Nonlinear Spectral Theory.

In contrast to the linear theory, there is not a single spectrum, which does the
job in all situations. A plethora of spectra have been defined in the last decades,
tailored to the solution of specific (nonlinear) problems. We present a biased se-
lection with the Rhodius, Neuberger, Kačurovskĭı, Dörfner, Furi-Martelli-Vignoli
(FMV), and the Feng spectrum, respectively.

The linear spectrum enjoys a couple of favorable properties, like nonemptiness,
closedness, boundedness, and hence compactness. It is also upper semicontinuous,
meaning that it cannot expand suddenly, when the parameterized underlying oper-
ator changes continuously. In Chapter 3, we study such properties for the spectra
mentioned above. The content has been mainly taken from [ADPV04], but is pre-
sented differently. As main tools for analysis, deep results from Fixed-Point Theory
have been used. We present the necessary material in Chapter 2, with the proof of
the Theorem of Schauder-Tychonoff for locally-convex spaces as a highlight.

Chapter 4 is devoted to applications, where we apply Nonlinear Spectral The-
ory to the p-Laplace operator, a nonlinear generalization of the ordinary Laplacian.
We derive discreteness results for its spectrum and a nonlinear Fredholm Alterna-
tive. As a prerequisite for the proofs of these results, we need to develop the Theory
of Monotonic Operators, presented in Chapter 2. This material is generalized to
locally-convex spaces. Another object of study in Chapter 4 are the (stationary)
Navier-Stokes equations. We present the existence and smoothness of strong solu-
tions in bounded domains. The main insight for this proof is the above-mentioned
generalization of the Theory of Monotonic Operators beyond Banach spaces. By
construction, the theory traditionally only yields weak solutions, but with the right
function space plugged into this generalized theory, it is possible to obtain a strong
solution from a weak one.

As locally-convex spaces come with a lot of abstract and arguably difficult
overhead, both in definitions and in insights, when compared to Banach spaces, we
devote whole Chapter 1 to recap important results used in the sequel.

Coming back to Nonlinear Spectral Theory, one could argue that it is still an
infant theory, at the very beginning of its existence. It borrows heavily from other
theories, in particular Fixed-Point Theory, Selection Theory, Theory of Monotonic
Operators, and one could argue that everything could also be proven without the
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6 INTRODUCTION

terminology of Nonlinear Spectral Theory. But we think that – like with Category
Theory – this different angle in viewing on the subject matter is very fruitful.

Still, one of the major drawbacks of the current state of affairs is that the theory
has been developed mostly in the setting of Banach spaces, and not been extended
properly to arbitrary locally-convex spaces. Banach spaces are often too narrow
for applications, especially for partial differential equations. We think that going
in this more general direction of locally-convex spaces would be very promising.
Needless to say, it is even difficult to find textbooks presenting Linear Spectral
Theory in such a general setting.

Foremost due to limited time and space, and also due to our arguably biased
selection of topics, we do not cover important topics like

• Spectral aspects of Distribution Theory and, more general, of nuclear
spaces and operators, up to Schwartz’s kernel theorem for linear, nuclear
operators.1 This result is the most general form of a spectral theorem
possible.
• Leray-Schauder-Degree Theory for locally-convex spaces as a quantitative

extension of fixed-point theorems.2 There are similarities between the
properties of some of the solvability measures and such degrees.3

• Other important spectra defined in the literature, like the Väth phantoms
and their associated theory, the Weber, the Singhof-Weyer, or the Infante-
Webb spectrum, respectively.
• The study of numerical ranges for nonlinear problems.4 In the linear

case, they provide a powerful instrument to locate the spectrum of the
operator under consideration.

The mentioned topics easily fill, and in our opinion deserve, whole books on their
own to do them justice.

Nevertheless, despite all the shortcomings, we hope that you, the reader, enjoy
reading this work as much as we had pleasure in writing it!

Please note that this version of the thesis differs from the submitted one in the
correction of an error in Theorem 47, and in corresponding adapations of all results
based on this. In particular, this applies to Chapter 4, Section 3. We mark these
changes in more detail at the respective places. We also corrected few typographical
errors.

1 [SW99, Chapter III, Section 7.1]
2 [GD03, §8–§17]
3 [ADPV04, Chapter 7, Properties 7.1–7.5]
4 [ADPV04, Chapter 11]



CHAPTER 1

Spaces

To set the stage for the next chapters, we systematically recap well-known basic
definitions and statements, all circling around the intuitive notion of space. Here,
we use notation, definitions, and results from the excellent textbooks of Schaefer
[SW99], Querenburg [vQ01], Shirali [SV06], and Bourbaki [Bou98a, Bou98b],
respectively. Everything presented is known, except three highlights, interwoven in
this chapter, which are due to the author of this thesis: (i) A characterization of
two historically-relevant classes of barreled spaces, defined in the 1960’s by Pták
and connected with questions on the limits of Functional Analysis. (ii) A separation
of these classes, revisiting and solving a long-standing open problem in this part of
Functional Analysis. (iii) The definition of a new class of locally-convex spaces (W
spaces), which will play an important role in the generalization of the Theory of
Monotonic Operators, presented in Chapter 2. We also derive that relatives of the
Schwartz spaces are contained in this class.

1. Topological Spaces

1.1. Open Sets, Closed Sets, and Filters. A topological space is a set X ,
together with a topology defined over X . The elements of X are called points .
The topology can be defined in three equivalent ways, via a system of open sets, a
system of closed sets, and a neighborhood system.

A system of open sets is defined as a set of subsets of X , closed under arbitrary
unions and finite intersections.

A system of closed sets is defined as a set of subsets of X , closed under finite
unions and arbitrary intersections.

Clearly, given a set of open sets, the complements of these sets form a system
of closed sets, and vice versa. Given a set system of open or closed sets, a subset
of X is called open or closed set, if it is contained in the respective set system.
Furthermore, by definition of union and intersection, sets ∅ and X are contained in
every system of open or closed sets, and thus are both open and closed.

A filter F is a set of subsets of X such that ∅ /∈ F , X ∈ F , F is closed under
finite intersections, and F is closed under supersets, i.e., every F ′ ⊇ F is in F for
an F in F . We say that F is a filter on point x, if x ∈ ⋂F .

A neighborhood system is defined as a map N : X → P(X), x 7→ Nx = N (x),
such that each Nx is a filter on x, and for each N ∈ Nx, there exists an M ∈ Nx

such that for all y ∈M , we have N ∈ Ny.
For each x, the filter Nx called the neighborhood filter of x, and its sets are

called neighborhoods of x.
On the one hand, a given neighborhood system defines a set of open sets.1

Here, a set is open iff it is a neighborhood of each of its points. On the other hand,
a given set of open sets defines a neighborhood system.2 Here, each neighborhood
filter of a point x is defined as the set of all supersets of open sets containing x.

1[vQ01, 2.9]
2[vQ01, 2.8]
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8 1. SPACES

A filter base B is a set of nonempty subsets of X such that with every B1, B2 ∈
B, there exists B3 ∈ B with B3 ⊆ B1 ∩ B2. We say that B is a filter base on point
x, if x ∈ ⋂B.

Clearly, a filter base defines a filter. Here, the filter contains all supersets of
sets in the filter base.

A neighborhood-system base is defined as a map B : X → P(X), x 7→ Bx = B(x),
such that each Bx is a filter base on x, and for each D ∈ Bx, there exists B ∈ Bx

such that for all y ∈ B, there exists C ∈ By with C ⊆ D.
A given neighborhood-system base defines a neighborhood system. Here, the

neighborhood filters are defined via the filter bases.
Let X be a topological space, V ⊆ X a subset. Set N ⊆ X is called a neigh-

borhood of V , if N is a neighborhood for each point of V . Equivalently, there is an
open set O ⊆ X such that V ⊆ O ⊆ N .

1.2. Interior, Exterior, and Boundary. Fix a subset V ⊆ X . Point x is
called inner point of V , if V is a neighborhood of x. It is called outer point of V ,
if X\V is a neighborhood of x. It is a boundary point of V , if it is neither an inner
nor an outer point of V . A contact point (adherent point) of V is an inner or a
boundary point of V .

Let the interior of V be defined as the set V ◦ of inner points of V , let the
closure of V be the set V of contact points of V , and let the boundary of V be the
set ∂V of boundary points of V , respectively.

Equivalently, V ◦ is the largest open set contained in V , and V is the smallest
closed set containing V .3

For the interior, we have ∅◦ = ∅, A◦ ⊆ A, (A◦)◦ = A◦, (A ∩B)◦ = A◦ ∩B◦.

For the closure, we have ∅ = ∅, A ⊆ A, A = A, A ∪B = A ∪B.
For the boundary, we have ∂∅ = ∅, ∂∂A = ∅.
Let X be a topological space. A subset V ⊆ X is dense in X , if V = X .

1.3. Baire Spaces. Let X be a topological space. A subset A of X is called

nowhere dense (rare), if the interior of its closed hull is empty, i.e.,
(

A
)◦

= ∅.
Otherwise, it is called somewhere dense. A subset B of X is called meager (of first
category), if B is a countable union of nowhere-dense sets, i.e., B ⊆ ⋃nAn, with
B ∩An nowhere dense. Otherwise, it is called non-meager (of second category).

A topological space is called a Baire space, if every nonempty and open subset
is non-meager.

1.4. Open and Closed Maps. A map f : X → Y between topological spaces
X and Y is called open, if for every open set O ⊆ X , the image f(O) is open in Y .
It is called closed , if for every closed set A ⊆ X , the image f(A) is closed in Y .

Clearly, the identity idX : X → X , x 7→ x, is open / closed, and if f : X → Y
and g : Y → Z are open / closed, their composition f ◦ g is open / closed.

1.5. Convergence and Continuity. A filter F of spaceX converges to point
x, written F → x, if F contains the neighborhood filter Nx of x.

Map f : X → Y produces an image filter f(F) with filter base {f(M) |M ∈ F}.
Map f is (locally) continuous at point x, if for every filter F converging to x, the
image filter f(F) converges to f(x). This is equivalent to the property that for
every neighborhood V of f(x), set f−1(V ) is a neighborhood of x.4

Map f is (globally) continuous, if it is continuous at every point.5 This is
equivalent to the property that for every open set V of Y , set f−1(V ) is open in X .

3[vQ01, 2.15]
4[vQ01, 2.24(b), 5.17(b)]
5[vQ01, 2.24(a)]



1. TOPOLOGICAL SPACES 9

Clearly, the composition g ◦ f : X → Z of two continuous maps f : X → Y and
g : Y → Z is continuous at point x ∈ X , if f is continuous at x and g is continuous
at f(x).

In addition, the identity idX is (globally) continuous, and if f : X → Y and
g : Y → Z are (globally) continuous, their composition g◦f is (globally) continuous.6

Let X and Y be topological spaces, let f : X → Y be a map, and let A,B ⊆ X
be two closed subsets of X with A∪B = X . Then f is continuous iff its restrictions
f |A and f |B are continuous.7

A map f : X → Z is a homeomorphism, if f is bijective, and if both f and f−1

are continuous. Two topological spaces X and Y are homeomorphic, if there exists
a homeomorphism between them.

The identity map idX is a homeomorphism. Being homeomorphic is an equiv-
alence relation on the class of topological spaces.

A family F of maps between spaces X and Y is equicontinuous , if for all
neighborhoods V of F , the set

⋂

u∈F u
−1(V ) is a neighborhood in X .

A map i : X → Y is called embedding, if i : X → i(X) is a homeomorphism.
This is exactly the case if i is injective, continuous, and image-open.8

A sequence (xn)n defines an associated filter F via filter base B := {Bm}, with
Bm := {xn | n ≥ m}.9 Sequence (xn)n converges to a point x, written xn → x, if
for all neighborhoods U of x, there exists an n0 such that xn ∈ U for all n ≥ n0.
Clearly, xn → x iff F → x.

1.6. Initial and Final Topologies. Let S and T be two topologies over set
X . We call S coarser than T and T finer than S, if S ⊆ T .

The set of topologies on a fixed set X is partially ordered by inclusion. The
coarsest topology on X is the indiscrete topology, {∅, X}, the finest is the discrete
topology, 2X .

Given a fixed set X , for every family (Tι)ι∈I , of topologies on X , there exists
a uniquely-determined coarsest topology infι∈I Tι, which is coarser then every Tι.
Analogously, there exists a uniquely-determined finest topology supι∈I Tι, which is
finer then every Tι. Hence, the set of topologies over set X is a complete lattice.

Given a set X and a family of maps (fα : X → Xα)α∈A, the initial topology is

defined as the unique coarsest topology on X such that each map fα is continuous.10

As special cases of initial topologies, we mention subsets and products of topo-
logical spaces. A subset X of a topological space Y is given a topology, the subset
topology, by the initial topology via the inclusion map i : X → Y . A cartesian prod-
uct

∏

α∈AXα of topological spaces Xα is given a topology, the product topology, by
the initial topology via the projection maps pβ :

∏

α∈AXα → Xβ , (xα)α 7→ xβ .

Dually11, given a set X and a family of maps (fα : Xα → X)α∈A, the final
topology is defined as the unique finest topology on X such that each map fα is
continuous.12

In addition, as special cases of final topologies, we mention quotients and sums.
A quotient of a topological space X is a set Y together with a quotient map q : X →
Y such that Y is given a topology, the quotient topology, by the final topology via

6[vQ01, 2.20]
7[vQ01, 3.4]
8[vQ01, 3.5]
9[vQ01, 5.11(c)]
10[vQ01, 3.12, 3.13]
11We do not introduce Category Theory, and we do not discuss categorical aspects of these

topological constructions, because this would digress too much from the main topic of this thesis.
12[vQ01, 3.15, 3.16]



10 1. SPACES

map q. A (disjoint) sum
∑

α∈AXα is given a topology via the final topology
determined by the inclusion maps iβ : Xβ →

∑

α∈AXα.
Map f : X → Y between topological spaces X and Y is called image-open, if

for every open set O ⊆ X the image f(O) is open in f(X), the latter with the
subset topology.13

Clearly, the identity idX is image-open.

1.7. Countability and Separation Axioms. A topological space X is 1st-
countable (satisfies the first countability axiom), if there exists a neighborhood-
system base B for X such that B(x) is countable for each point x ∈ X . Space X
is called 2nd-countable (satisfies the second countability axiom), if there exists a
neighborhood-system base B for X such that

⋃

x∈X B(x) is countable. Space X is
separable, if it contains a countable and dense subset.

A topological spaceX is T0, if for each pair of points ofX , one of them possesses
a neighborhood, not containing the other point. It is T1, if for each pair of points
of X , each point possesses a neighborhood, not containing the other point. It is T2

(Hausdorff), if every two points possess disjoint neighborhoods. It is T3, if every
nonempty and closed subsetA ⊂ X and point x /∈ A possess disjoint neighborhoods.
It is T3a, if for every closed subset A ⊂ X and point x /∈ A, there exists a continuous
function f : X → [0, 1] such that f(A) = {0} and f(x) = 1. It is T4, if every two
disjoint and closed subsets possess disjoint neighborhoods. It is T4a, if for every
two disjoint, nonempty, and closed subsets A,B ⊂ X , there exists a continuous
function f : X → [0, 1] such that f(A) = {0} and f(B) = {1}.

Space X is called regular , if it is T1 and T3. It is fully regular , if it is T1 and
T3a. Finally, it is normal , if it is T1 and T4.

A space X is T1 iff every one-point set is closed.14 Hence, every T1 and T4a

space is T3a and thus fully regular.
It is T2 iff one of the following statements is true:15

(i) Every one-point set is the closure of its neighborhoods.
(ii) Every convergent filter has exactly one limit point.
(iii) The diagonal ∆ := {(x, x) | X} is closed in X ×X .

Lemma 1 (Urysohn). Every T4 space is T4a.
16

Every normal space is fully regular, every fully-regular space is regular, every
regular space is T2, every T2 space is T1, and finally, every T1 space is T0. In
addition, every T4a space is T4, and every T3a space is T3.

Theorem 2 (Tietze). Let X be a T4 space. Then for every closed subset A ⊆ X
and continuous function f : A→ R, there exists a continuous extension g : X → R

of f , i.e., g(x) = f(x) for all x ∈ A.17

We will prove a generalization of this theorem in Chapter 2.

1.8. Permanence Properties. The 1st-countable spaces are closed under
initial and final topologies. In particular, arbitrary products and subsets of 1st-
countable spaces are 1st-countable. The 2nd-countable spaces are closed under
final topologies. In general, they are not closed under initial topologies. At least,
they are closed under countable products and arbitrary subsets.

13In [SW99] image-open maps are called open. This may lead to confusion and wrong
results. Hence, we do not follow this deviation from standard terminology [Bou98a, I.§5].

14[vQ01, 6.3]
15[vQ01, 6.4]
16[vQ01, 7.1, 7.2]
17[vQ01, 7.7]



2. UNIFORM SPACES 11

Spaces, which are Ti, i ∈ {0, 1, 2, 3, 3a}, are closed under initial topologies.18

T4 spaces are not closed under subsets or arbitrary products.19 But T4 (normal)
spaces are closed under closed subsets.20

In general, Ti spaces, i ∈ {1, 2, 3, 3a, 4}, are not closed under final topologies.21

2. Uniform Spaces

2.1. Uniformities. For subsets A,B ⊆ X ×X , let A−1 := {(y, x) | (x, y) ∈
A}. Let BA := {(x, z) | ∃y ∈ C : (y, z) ∈ B, (x, y) ∈ A} In particular, A2 = AA.

Given set X , a uniformity on X is a filter U on X × X with the following
properties:

Reflexivity: ∆ := {(x, x) | x ∈ X} ⊆ U for all U ∈ U .
Symmetry: U−1 ∈ U for all U ∈ U .
Triangle Inequality: There exists V ∈ U with V 2 ⊆ U for all U ∈ U .

The pair (X,U) is called a uniform space. Each set U ∈ U is called a uniform
neighborhood .

A uniformity base onX is a filter base B onX×X with the following properties:

Reflexivity: ∆ := {(x, x) | x ∈ X} ⊆ B for all B ∈ B.
Symmetry: There exists C ∈ B with C ⊆ B−1 for all B ∈ B.
Triangle Inequality: There exists C ∈ B with C2 ⊆ B for all B ∈ B.

Then U := {U | ∃B ∈ B : B ⊆ U} is the unique uniformity defined by the
uniformity base B.22

A uniformity uniquely induces a topology23: Uniformity U on X induces the
neighborhood system Nx := {Ux | U ∈ U}, where Ux := {y ∈ X | (x, y) ∈ U}. A
topological space is uniformizable, if there exists a uniformity on this space inducing
its topology.

A topological space is uniformizable iff it is a T3a space.24 In particular, a T1

space is uniformizable iff it is fully regular.

2.2. Uniform Continuity and Convergence. A map f : X → Y between
uniform spaces X and Y is uniformly continuous, if for each uniform neighborhood
W of Y , there exists a uniform neighborhood V of X such that (f(x), f(y)) ∈ W
for all (x, y) ∈ V .

The identity idX is uniformly continuous, and the composition of uniformly-
continuous maps is uniformly continuous.

2.3. Completeness. Let (X,U) be a uniform space, let A ⊆ X , and let U ∈ U
be a uniform neighborhood. Subset A is small of order U , if A×A ⊆ U . A filter F
on X is called Cauchy filter , if for every uniform neighborhood U ∈ U there exists
a set F ∈ F small of order U .

In a uniform space, every convergent filter is a Cauchy filter.25

For a uniformly-continuous map, the image filter of a Cauchy filter is a Cauchy
filter.26

A uniform space X is complete, if every Cauchy filter is a convergent filter in
X .

18See [vQ01, 6.11] for subsets, and [vQ01, 6.14] for products
19See [vQ01, 6.12] for subsets and [vQ01, 6.15] for products
20[vQ01, 6.13]
21[vQ01, 6.17]
22[vQ01, 11.4]
23[vQ01, 11.5]
24[vQ01, 11.22, 11.30]
25[vQ01, 12.4]
26[vQ01, 12.6]



12 1. SPACES

For every uniform space X , there exists a complete, uniform, and T2 space
X̂ and a uniformly-continuous map i : X → X̂ such that the following universal
property holds: for every complete, uniform, and T2 space Y and every uniformly-
continuous map f : X → Y , there exists a uniquely-defined uniformly-continuous

map f̂ : X̂ → Y with f̂ ◦ i = f .27

In case X is a uniform T2 space, X is isomorphic to a dense subset of X̂.28

2.4. (Para-)Compactness. As the definition of a compact space does not
make explicit reference to uniformities, the reader may wonder, why compact spaces
are introduced here as part of uniform spaces, and not as part of general topological
spaces. But this is correct, see e.g., [Bou98a, II.§4].

Let X be a topological space, A a subset of X , and C a set of subsets of X . Set
C is called a covering of A, if its union contains A. Covering C is open, if it only
contains open subsets of X . A subcovering of covering C is just a subset of C. A
refinement D of covering C is a covering of A such that for each V ∈ D there exists
an U ∈ C with V ⊆ U .

A covering is called finite / countable, if it only contains a finite / countable
number of sets.

A covering C of space X is called locally finite, if for every x ∈ X there exists
a neighborhood V of x such that only finitely-many sets U ∈ C intersect with V ,
i.e., U ∩ V 6= ∅.

Given an open covering C = {Uα | α ∈ A}, a family {fα | α ∈ A} of continuous
functions fα : X → R is called partition of unity subordinate to C, if it has the
following properties:

(i) fα(x) ≥ 0 for all α ∈ A and x ∈ X .
(ii) Uα ⊆ supp(fα) for all α ∈ A.
(iii) Covering {supp(fα) | α ∈ A} is locally finite.
(iv)

∑

α∈A fα(x) = 1 for all x ∈ X .

We say that a topological space X allows for a partition of unity, if for every
open and locally-finite covering of X there exists a partition of unity.

Every normal space allows for a partition of unity.29

A uniform T2 space X is compact , if every open covering of X contains a finite
subcovering of X . A uniform T2 space is called precompact , if its completion is
compact.

For a uniform T2 space X , the following statements are equivalent.

(i) Space X is compact.
(ii) Each family of closed subsets of X has nonempty intersection, if every

finite subfamily has nonempty intersection.
(iii) Every filter has a cluster point.

A compact space is normal.30 Its topology is induced by a unique uniformity.31

Let f : X → Y be a continuous map between a uniform and compact space X
and a uniform space Y . Then f is uniformly continuous.32

27[vQ01, 12.15]
28[vQ01, 12.16]
29 [vQ01, 7.16]
30 [vQ01, 8.9]
31 [vQ01, 11.A6]
32 [vQ01, 11.14]



2. UNIFORM SPACES 13

Let X be a compact space, and let f : X → Y be continuous. Then f(X)
is compact.33 If Y is a T2 space, then f is closed.34 In particular, a continuous
function f : X → R attains its minimum and maximum on compact space X .35

Let X and Y be topological T2 spaces. A map f : X → Y has precompact
image, if f(X) is compact.36

A T2 space is locally compact , if every point has a compact neighborhood. By
definition, every compact space is locally compact.

Every locally compact space is fully regular.37 Hence, it is uniformizable.
A continuous map f : X → Y between topological spaces X and Y is called

proper , if for every compact subset C ⊆ Y , its preimage f−1(C) is compact.
Clearly, the identity idX is proper, and the composition of proper maps is

proper.
Let f : X → Y be a proper map between locally-compact spaces X and Y .

Then f is closed and f(X) is locally compact.38

A T2 space X is paracompact , if every open covering of X possesses a locally-
finite open refinement.

Every paracompact space is normal.39 Hence, it allows for a partition of unity.

2.5. Compactification. Let X be a topological space, let Y be a compact
space, and let f : X → Y be an embedding onto a dense subset of Y . Then
pair (f, Y ) is called a compactification of X . A Stone-Čech compactification is a
compactification (β, βX) such that the following universal property holds: for every
T2 space Y and every continuous map f : X → Y , there exists a uniquely-defined
continuous map βf : βX → Y such that f = βf ◦ β.

Theorem 3. For every fully-regular space X, there exists a uniquely-determined
Stone-Čech compactification (β, βX).40

Hence, βX\β(X) denotes all the “∞”-elements, added to X by the compacti-
fication.41

Let X and Y be fully-regular topological spaces, and let f : X → Y be continu-
ous. Then there exists an extension βf : βX → βY of f such that βf ◦ β = β ◦ f .42

2.6. Permanence Properties. Given a fixed set X , for every family (Uι)ι∈I

of uniformities on X , then there exists a uniquely-determined coarsest uniformity
infι∈I Uι, which is coarser then every Uι. Analogously, there exists a uniquely-
determined finest uniformity supι∈I Uι, which is finer then every Uι. Hence, the set
of uniformities over set X is a complete lattice.

Uniform spaces are closed under initial and final topologies. More precisely,
given a family of uniform spaces, their topologies lead to an initial (respectively,
final) topology, which is induced by a unique uniformity.43

Complete uniform spaces are closed under initial topologies: Given a family of
uniform spaces, these spaces are complete iff the uniformity of the initial topology is

33 [vQ01, 8.10]
34 [vQ01, 8.11]
35 [vQ01, 8.A3]
36 Such maps are also sometimes called compact, e.g., compare [GD03] and [SW99]. This

may lead to serious confusion.
37 [vQ01, 8.15, 8.A20]
38 [vQ01, 8.21]
39 [vQ01, 10.2]
40[vQ01, 12.18]
41This remark has been added after thesis submission.
42 [vQ01, 12.A12]
43 [vQ01, 11.17, 11.18]
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complete.44 In particular, closed subsets and arbitrary products of complete spaces
are complete.45

Every compact subset of a T2 space is closed.46 Every closed subset of a compact
set is compact.47

Precompact spaces are closed under subspaces and arbitary products.

Theorem 4 (Tychonoff). An arbitrary product of compact spaces is compact.48

3. Metric Spaces

3.1. Definition. A pair (M,d) is called a metric space, if M is a set, and if
for d : M ×M → R the following statements hold:

Positive Definite: d(x, y) ≥ 0, and d(x, y) = 0 iff x = y for all x, y ∈M .
Symmetry: d(x, y) = d(y, x) for all x, y ∈M .
Triangle Inequality: d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈M .

Function d is then called a metric on M .
For x ∈ M and r > 0, set B(x, r) := {y ∈ M | d(x, y) < r} is called open ball

around x of radius r. Set S(x, r) := {y ∈ M | d(x, y) = r} is called sphere around
x of radius r.

A metric d on M induces a topology on M with the set T(M,d) := {B(x, r) |
x ∈M, r > 0} of its open balls.49

It even induces a uniformity via its uniformity base B(M,d) := {U(r) | r > 0},
where U(r) := {(x, y) | d(x, y) < r}.50

A uniform space (X,U) is metrizable, if there exists a metric d on M , inducing
the uniformity U .

A topological space X is metrizable, if there exists a metric on X , inducing the
topology on X .

A topological space M is called completely metrizable, if there exists a metric
d, inducing the topology of M , and if (M,d) is complete.

For every metric d we have the reverse triangle inequality, |d(x, y) − d(x, z)| ≤
d(y, z) for all x, y, z ∈ M . Hence, d is continuous as seen as a map between topo-
logical spaces M ×M and R.

Every metrizable space is first countable.51

A metrizable space is T2 and T4.
52 Hence, a metrizable space is normal.

Theorem 5 (M.H. Stone). Every metrizable space is paracompact.

3.2. Isometries. Let (M,d) and (N, e) be two metric spaces. A map f : M →
N is called isometric, if for all x, y ∈ M we have e(f(x), f(y)) = d(x, y). If f is
bijective and isometric, f is called an isometric isomorphism. Then f−1 is also an
isometric isomorphism.

The identity map idM is an isometric isomorphism, and the composition of
isometric isomorphisms is an isometric isomorphism.

44 [vQ01, 12.12]
45 [vQ01, 12.13]
46 [vQ01, 8.6(b)]
47 [vQ01, 8.6(a)]
48 [vQ01, 8.12]
49[vQ01, 1.4]
50[vQ01, 11.6(a)]
51[vQ01, 2.13(a)]
52[vQ01, 1.25]
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3.3. Compactness. Let (M,d) be a metric space, let ε > 0, and let V ⊆ E. A
finite ε-net for V is a finite set {z1, . . . , zn} ⊆M such that V ⊆ ⋃i∈[n] zi +B(0, ε).

For a metrizable space X , the following statements are equivalent:

(i) X is compact.
(ii) X is sequentially compact.
(iii) For every ε > 0, there exists a finite ε-net for X .

3.4. Permanence Properties. In general, metric spaces are not closed under
initial and final topologies.

Countable products of metric spaces are metric spaces.53 Every subset A ⊆M
of a metric space (M,d) is a metric space with the induced metric d|A : A×A→ R.

4. Vector Spaces

4.1. Definition. A group is a tuple (G, ◦, e), consisting of a set G, the neutral
element e ∈ G and the group operation ◦ : G×G→ G, fulfilling the following axioms
for all x, y, z ∈ G:

Associativity: (x ◦ y) ◦ z = x ◦ (y ◦ z),
Neutrality: e ◦ x = x ◦ e = x,
Existence of Inverse: There exists w ∈ G such that x ◦ w = w ◦ x = e.

Group G is commutative, if x ◦ y = y ◦ y for all x, y ∈ G. In such a case, a group is
often written additively, i.e., with notation (G,+, 0).

As usual, let K denote the field R or C, respectively. A vector space is a set E,
together with an addition +: E×E → E and a scalar multiplication· : K×E → E
such that (E,+, 0) is a commutative group and the following axioms hold for all
x, y ∈ E and λ, µ ∈ K:

Distributivity: λ · (x+ y) = λ · x+ λ · y,
Associativity: λ · (µ · x) = (λ · µ) · x,
Neutrality: 1 · x = x.

4.2. Basis. Let E be a vector space. A linear combination is an element
λ1 ·x1 + · · ·+λm ·xm, where λ1, . . . , λm ∈ K and x1, . . . , xm ∈ E. A set I ⊆ E and
its elements are called independent , if for all linear combinations λ1 ·x1+· · ·+λm ·xm

with elements {x1, . . . , xm} ⊆ I we have that λ1 · x1 + · · · + λm · xm = 0 implies
λ1, . . . , λm = 0 for all λ1, . . . , λm ∈ K. Otherwise, the set and its elements are
called dependent .

For I ⊆ E, the span of I, span(I), is the set of all linear combinations of
elements in I. Set I generates E, if E = span(I).

A basis of E is a generating and independent subset of E. By Zorn’s lemma,
every vector space has a basis. In addition, all bases of E have the same cardinality
/ number of elements. Hence, the dimension of E, defined as the cardinality of a
basis of E, is well-defined.

4.3. Linear Operators. A map u : E → F between vector spaces E and F
is called linear (linear operator), if u(x + y) = u(x) + u(y) and u(λ · x) = λ · u(x)
for all x, y ∈ E and λ ∈ K.

The identity idE is linear. The composition of linear operators is linear.
A bijective linear operator is called a linear isomorphism. It has a linear inverse.
Given linear operator u : E → F , the kernel of u, keru, is defined as the set

u−1(0). The sets graph of u, graphu := {(x, u(x)) | x ∈ E} and image of u,
imu := u(E), are defined as for general maps.

53[SV06, 6.3.1]
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Given basis B for vector space E and basis C for vector space F , a linear
operator h : E → F has a representation via a matrix M := (mb,c)b∈B,c∈C , where
mb,c is defined via u(b) =

∑

c∈C mb,c · c.
In case E is finite-dimensional, a linear operator u : E → E is injective iff it is

surjective.
The space of linear operators , L(E,F ), contains all linear operators u : E → F

between vector spaces E and F . It is itself a vector space, with addition and scalar
multiplication defined pointwise.

4.4. Permanence Properties. Given a family E := (Eι)ι∈I of vector spaces
and a vector space E, a family P := (pι)ι∈I of linear operators pι : E → Eι is called
projections for E and E , if for all vector spaces D and linear operators f, g : D → E,
we have that f = g in case that pι ◦ f = pι ◦ g for all ι ∈ I.

Vector space E is called projective for E , if there exists a family P := (pι)ι∈I

of projections pι : E → Eι for E and E such that the following universal property
holds: For every vector space F and family Q := (qι)ι∈I of projections qι : F → Eι

for F and E , there exists a linear operator q : F → E with pι ◦ q = qι for all ι ∈ I.
For every family E := (Eι)ι∈I of vector spaces, there exists a projective vector

space. To see this, take the product E :=
∏

ι∈I Eι, together with the projections
pα : E → Eα, defined by (xι)ι∈I 7→ xα.

A projective vector space is uniquely-determined up to linear isomorphism.
Dually, Given a family E := (Eι)ι∈I of vector spaces and a vector space E, a

family J := (jι)ι∈I of linear operators jι : Eι → E is called inclusions for E and E ,
if for all vector spaces D and linear operators f, g : E → D, we have that f = g in
case that f ◦ jι = g ◦ jι for all ι ∈ I.

Vector space E is called inductive for E , if there exists a family J := (jι)ι∈I

of inclusions jι : Eι → E for E and E such that the following universal property
holds: For every vector space F and family K := (kι)ι∈I of inclusions kι : Eι → F
for F and E , there exists a linear operator k : E → F with k ◦ jι = kι for all ι ∈ I.

For every family E := (Eι)ι∈I of vector spaces, there exists an inductive vector
space. To see this, take the coproduct (algebraic direct sum) E :=

∐

ι∈I Eι, consist-
ing of all elements (xι)ι∈I in

∏

ι∈I Eι with only finitely-many nonzero xι. Take as
inclusions jι : Eι → E, defined by x 7→ (xν)ν∈I with xν := x for ν = ι and xν := 0
otherwise.

An inductive vector space is uniquely-determined up to linear isomorphism.
A subset S ⊆ E of a vector space (E,+, ·, 0) is called subspace of E, if addition

+ and scalar multiplication · are closed under S, i.e., if we have +: S × S → S
and · : K × S → S, respectively. Then S is a vector space. The inclusion operator
iS : S → E, x 7→ x, is injective and linear.

Every subspace S of E can be complemented with a subspace T of E such that
E is inductive for family {S, T } with {iS , iT} taken as inclusions.

Given a vector space E and a subspace S of E, one can define the quotient space
of E and S, denoted by E/S. Here, E/S := {x+ S | x ∈ E}, (x+ S) + (y + S) :=
(x+ y) + S, and λ · (x+ S) := (λ · x) + S for all x, y ∈ E and λ ∈ K. Then E/S is
a vector space. The quotient operator qS : E → E/S, x 7→ x + S, is surjective and
linear.

For every subspace S of vector space E, the exists a surjective and linear
operator pS : E → S such that vector space E is projective for family {S,E/S}
with {pS, qS} taken as projections.

Let u : E → F be a linear operator between vector spaces E and F . Then the
kernel, keru, is a subspace of E, and the image, u(E), is a subspace of F .
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Operator u has a canonical decomposition into u = j ◦ u0 ◦ p, with projec-
tion p : E → E/ keru, linear isomorphism u0 : E/ keru → u(E), and inclusion
j : u(E)→ F .

4.5. Algebraic Dual, Hyperplanes. A linear form is a linear operator
u : E → K between a vector space E and its field of scalars K. The space of
linear forms, L(E,K), is called algebraic dual , and denoted by E∗. It is itself a
vector space, with addition and scalar multiplication defined pointwise.

An affine subspace of vector space E is a set x + S, where x ∈ E and S is
a subspace of E. A hyperplane is an affine subspace x + S of E, where S is a
maximally proper subspace of E.

Every linear form u ∈ E∗ defines a hyperplane H := keru, and for every
hyperplane H of E, there exists a linear form u ∈ E∗ and c ∈ K such that H =
{x ∈ E | u(x) = c}.

4.6. Circledness, Convexity. A subset A of vector space E is circled , if
µ · A ⊆ A for all µ ∈ K, |µ| ≤ 1.

Trivially, ∅ and E are circled. Kernel and image of a linear operator are circled.
Circled sets are closed under arbitrary unions and intersections. If A,B ⊆ E are
circled, then A+B and λ · A are circled, λ ∈ K.

A circled hull of A is defined as a smallest circled set containing A. For ev-
ery subset A, a circled hull exists and is uniquely-determined. It equals ci(A) :=
⋂

λ∈K,|λ|≥1 λ ·A.

A subset A of a vector space E is convex , if for all x, y ∈ A and real λ ∈ [0, 1]
we have λ · x+ (1− λ) · y ∈ A.

Trivially, ∅ and E are convex. Kernel and image of a linear operator are convex.
In general, convex sets are not closed under unions. Convex sets are closed under
arbitrary intersections. If A,B ⊆ E are convex, then A + B and λ · A are convex,
λ ∈ K.

A convex hull of A is defined as a smallest convex set containing A. For every
subset A, a convex hull exists and is uniquely-determined. It is denoted by co(A).
The convex hull of a circled set is circled. The circled hull of a convex set is convex.

A subset A of a vector space E is absolutely convex , if for all x, y ∈ A and
λ ∈ K with |λ| ≤ 1 we have λ · x+ (1− λ) · y ∈ A. Then A is absolutely convex iff
it is circled and convex.

Trivially, ∅ and E are absolutely convex. Kernel and image of a linear operator
are absolutely convex. In general, absolutely-convex sets are not closed under
unions. Absolutely-convex sets are closed under arbitrary intersections. If A,B ⊆ E
are absolutely convex, then A+B and λ · A are absolutely convex, λ ∈ K.

An absolutely-convex hull of A is defined as a smallest absolutely-convex set
containing A. For every subset A, an absolutely-convex hull exists and is uniquely-
determined. It is denoted by aco(A). We have aco(A) = co(ci(A)) = ci(co(A)).

A function f : E → R is called convex , if f(λ·x+(1−λ)·y) ≤ λf(x)+(1−λ)·f(y)
for all x, y ∈ E and λ ∈ [0, 1].

By induction on n, one can prove Jensen’s inequality. We have

(1) f





∑

i∈[n]

λi · xi



 ≤
∑

i∈[n]

λi · f(xi)

for all x1, . . . , xn ∈ E, and λ1, . . . , λn ∈ [0, 1] with
∑

i∈[n] λi = 1.
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5. Topological Vector Spaces

5.1. Definition. A topological vector space (t.v.s.) is a vector space (E,+, ·, 0)
over a field K, together with a topology on E such that addition +: E × E → E
and scalar multiplication · : E × F→ E are continuous.

Let E be a linear space together with a topology, not necessarily a t.v.s.. A
neighborhood-system base B is called locally additive, if for each neighborhood
N ∈ Bx, there exists M ∈ Bx such that M +M ⊆ N , x ∈ E.

Let E be a t.v.s., let λ ∈ K, and let A,B ⊆ E. If A is open, then A + B and
λ ·A are open. If A is closed, then λ ·A is closed. Furthermore, if B is closed, then
A+B is closed.

If E is a t.v.s. that is not T0, then one can use the quotient t.v.s. E/N instead,
where N =

⋂N0 consists of all points being in all neighborhoods of zero. Hence,
in the sequel, we can assume E to be T0.

Every t.v.s. is a uniform space.54 And every T0 t.v.s. is a T1 t.v.s.. Hence, a
T0 t.v.s. is fully regular. In particular, it is T2.

As every T0 t.v.s. E is uniform, there exists a uniquely-defined completion Ẽ
of E, with E dense in Ẽ. The extensions +: Ẽ× Ẽ → Ẽ, · : K× Ẽ → Ẽ of addition
and scalar multiplication make Ẽ a t.v.s..55

5.2. Linear and Continuous Operators. Addition and multiplication are
homeomorphisms. More precisely, for every fixed y ∈ E, map x 7→ x + y is a
homeomorphism, analogously for the second argument of +. For fixed λ 6= 0,
x 7→ λ · x is a homeomorphism.

Not every bijective, linear, and continuous operator has a continuous inverse.
Let u : E → Y be a linear operator between T0 t.v.s.. If u is continuous, then

ker f is closed. If E is finite-dimensional, then u is continuous.

Proposition 6 (Folklore). If a linear operator between T0 t.v.s. is continuous,
then it is graph-closed.

Proof. Let E and F be T0 t.v.s.. Then both are T2. Let u : E → F be
a linear and continuous operator. Define linear operator v : E × F → E × F by
v(e, g) := (e, u(e)). Then v is continuous and v(E × F ) = graphu. Consider an
arbitrary point (e, f) in the closure graphu. Then there exists a filter C containing
graphu and converging to (e, f). By continuity of v, the image filter v(C) converges
to v(e, f) = (e, u(e)). As E × F is in C, we have graphu in v(C). The set of
intersections of sets from C and v(C), i.e., C ∩ v(C) = {A∩B | A ∈ C,B ∈ v(C)},
constitutes a filter base for a finer filter D ⊇ C, v(C). Filter D contains graphu and
converges both to (e, f) and (e, u(e)), respectively. As E×F is T2 as the product of
two T2 spaces, we have the uniqueness of the limit (e, f) = (e, u(e)). Hence, (e, f)
is in graphu, showing closedness of graphu. �

5.3. Circledness, Convexity. If A is circled, then A is circled. If 0 ∈ A◦,
then A◦ is circled, too.56

If A is convex, then A◦ and A are convex.57 Hence, if A is absolutely convex,
then A◦ and A are absolutely convex.58

54 [SW99, I.1.4]
55 [SW99, I.1.5]
56 [SW99, I.1.1]
57 [SW99, II.1.2]
58Here, we do not need the assumption 0 ∈ A◦. Either A◦ is empty and we are done, or

there exists x ∈ E and a circled neighborhood U of 0 such that x + ( 1

2
· U + 1

2
· U) ⊆ A. Then

−x + U = −x + (−U) ⊆ A, because A and U are circled. By convexity of A, we finally obtain

0 + U ⊆ (x + 1

2
· U) + (−x + 1

2
· U) ⊆ A. Hence, 0 ∈ A◦.
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5.4. Topological Dual, Hyperplanes. The set of continuous linear forms
u : E → K is called topological dual of E, and is denoted with E′. It is a vector
subspace of the algebraic dual E∗.

A linear form u defines a hyperplane H and vice versa.59 Hyperplane H is
closed iff u is continuous, and it is dense in E iff u is not continuous.60

The topological dual may be the trivial space. Take E := Lp[0, 1], 0 < p < 1,
as an example.61

Theorem 7 (Hahn-Banach, Geometrical Form). Let E be a t.v.s., let M be a
linear subspace of E, and let C be a nonempty, convex, and open subset of E, not
intersecting M . Then there exists a closed hyperplane H, containing M and not
intersecting C.62

5.5. Projective and Inductive Topologies. Initial and final topologies are
too general in the context of linear spaces. Their counterparts are projective and
inductive topologies. These are just their restrictions to linear operators.

Given a vector space E and a family of linear operators (uα : E → Eα)α∈A into
t.v.s. Eα, the projective topology is defined as the initial topology of this family,
i.e., the coarsest topology on E such that all linear operators uα are continuous.
The projective topology is a translation-invariant topology on E, and E becomes
a t.v.s., equipped with the projective topology.

Analogously to initial topologies, as special cases of projective topologies, we
mention subspaces and products of t.v.s.. A subspace L of a t.v.s. E is given a
topology, the subspace topology, by the projective topology via the linear inclusion
operator i : L→ E. A cartesian product

∏

α∈AEα of t.v.s. Eα is given a topology,
the product topology (t.v.s.), by the projective topology via the linear projection
operators pβ :

∏

α∈AEα → Eβ .
Dually, given a t.v.s. E and a family of linear operators (uα : Eα → E)α∈A,

the inductive topology is defined as the final topology of this family, i.e., the finest
topology such that all linear operators uα are continuous. The inductive topology
is a translation-invariant topology on E, and E becomes a t.v.s., equipped with the
inductive topology.

Again, analogously to final topologies, as special cases of inductive topologies,
we mention quotients and sums. A quotient of a t.v.s. E is a t.v.s. F together with
a linear quotient operator q : E → F such that F is given a topology, the quotient
topology (t.v.s.), by the inductive topology via q.

A cartesian coproduct
∐

α∈AEα of t.v.s. Eα is given a topology, the coprod-
uct topology (t.v.s.), by the inductive topology via the linear inclusion operators
jβ : Eβ →

∐

α∈AEα. The coproduct, equipped with the coproduct topology, is also
called topological direct sum and denoted with

⊕

α∈AEα.

5.6. Projective and Inductive Limits. Projective and inductive limits are
special cases of projective and inductive topologies, respectively. In the sequel, let
A be an index set, directed under a partial order ≤, and let (Eα)α∈A be a family
of t.v.s..

Let linear and continuous operators gα,β : Eβ → Eα be given for all α ≤ β.
The projective limit of (Eα)α∈A and (gα,β)α,β∈A,α≤β, denoted with lim←− gα,βEβ ,

is defined as the subspace of
∏

α∈AEα, whose elements (xα) satisfy the relation
xα = gα,β(xβ), whenever α ≤ β. By construction, the topology of the projective
limit is the subspace topology of the projective topology.

59 [SW99, I.4.1]
60 [SW99, I.4.2]
61 [SW99, I.Ex.6]
62 [SW99, II.3.1]
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Dually, let linear and continuous operators hβ,α : Eα → Eβ be given for all α ≤
β. The inductive limit of (Eα)α∈A and (hβ,α)α,β∈A,α≤β, denoted with lim−→hβ,αEα,

is defined as the quotient space of
∐

α∈AEα with the subspace, generated by the
ranges of all linear and continuous operators jα − jβ ◦ hβ,α for all α, β ∈ A with
α ≤ β. By construction, the topology of the inductive limit is the quotient topology
of the inductive topology.

5.7. Baire Vector Spaces. A subset A of a linear space E is called absorbent
(radial absorbing), if for every x ∈ E, there exists r > 0 such that x ∈ λ · A for all
λ ∈ K with |λ| ≥ r.

Let λ ∈ K. If sets A and B are absorbent, then A + B, λ · A, A, circled hull
ci(A), and convex hull co(A) are also absorbent, respectively.

We call a closed and circled subset disk-like, and an absorbent and disk-like
subset a vessel .63

Theorem 8. A vector space together with a topology is a t.v.s. exactly if it
possesses a locally-additive neighborhood-system base of vessels.64

This motivates the following definition. A t.v.s. is called vesseled , if every vessel
is a neighborhood.

If a closed set is not rare, then it is a neighborhood of some point. Consequently,
if a vessel is not a neighborhood, then it is rare.

If a set V is absorbent, then the whole t.v.s. E is a countable union of translates
of V , i.e., E =

⋃

n≥1 n · V . Hence, if a closed and absorbent set is rare, then the
t.v.s. E is meager. Consequently, if a vessel is not a neighborhood, then the t.v.s.
is meager.

The above considerations give one direction of the theorem below. For the
other direction, see Kunzinger [Kun93, Thm. 4.1.5].

Theorem 9. Baire t.v.s. are exactly the vesseled t.v.s..

5.8. Compactness. For a t.v.s., its compact subspaces are exactly the finite-
dimensional ones.65 A finite-dimensional t.v.s. is topologically isomorphic to a
K

n.66

Let A,B ⊆ E. If A and B are compact subsets, then A + B, λ · A for λ ∈ K,
closure A = A, and circled hull ci(A) are compact sets, respectively.67

A t.v.s. E has the Heine-Borel property, if the compact subsets of E are exactly
the closed and bounded subsets.

The convex hull of a compact set is not necessarily compact.68

5.9. Boundedness. Subset A absorbs B, if there exists a positive real number
λ such that B ⊆ λ ·A. A is bounded , if it is absorbed by every neighborhood.

A set A ⊆ E is totally bounded , if for every neighborhood U in E, there exists
a finite subset A0 ⊆ A such that A ⊆ A0 + U .

Let A,B ⊆ E. If A and B are (totally) bounded sets, then A ∩ B, A ∪ B,
A + B, λ · A for λ ∈ K, interior A◦, closure A, circled hull ci(A), and convex hull
co(A) are (totally-)bounded sets, respectively. More generally, every subset of a
(totally-)bounded set is (totally) bounded.69

63 The terms disk-like and vessel are not standard notions. We introduce them here to make
more explicit the analogy between Baire and barreled spaces.

64 [SW99, I.1.2, I.1.3]
65 [SW99, I.3.6]
66 [SW99, I.3.1, I.3.2]
67 [SW99, I.5.2]
68 [SW99, II.Ex.27]
69 [SW99, I.5.1]



6. LOCALLY-CONVEX SPACES 21

Every totally-bounded set is bounded. Every relatively-compact set is totally
bounded.

A subset A ⊆ E is bounded iff for every sequence (xn)n in A and every zero
sequence (λn)n in K, sequence (λn · xn)n is a zero sequence in E.70

A map f : E → F is called bounded , if it maps bounded sets into bounded sets,
i.e., f(B) is bounded for every bounded set B.

The identity idE is bounded, and the composition of bounded maps is bounded.
Every linear and continuous operator is bounded.71

A map f : E → F is called compact , if it maps bounded sets into relatively-
compact sets, i.e., f(B) is relatively compact for every bounded set B.

The composition of compact maps is compact. The identity idE is compact iff
t.v.s. E is finite-dimensional.

A family F of linear maps between t.v.s. E and F is equibounded , if for all
bounded sets B in E, the set

⋃

u∈F u(B) is bounded in F . Every equicontinuous

family is equibounded.72

5.10. Permanence Properties. A t.v.s. E, equipped with the inductive to-
pology of family (uα : Eα → E)α∈A, is a T0 t.v.s. iff all Eα are T0 t.v.s.. Conse-
quently, this holds for properties T2 and being fully regular.

A t.v.s. E, equipped with the projective topology of family (uα : E → Eα)α∈A,
is a T0 t.v.s. iff all Eα are T0 t.v.s.. Consequently, this holds for properties T2 and
being fully regular.

A subset B of a topological product
∏

α∈AEα is bounded iff pα(B) is bounded

for all projections pα, α ∈ A.73

Projective limits of complete T0 t.v.s. are complete.74

6. Locally-Convex Spaces

6.1. Definition. A t.v.s. has a locally-convex topology, if it possess a neigh-
borhood-system base of convex sets.

A T0 t.v.s. with locally-convex topology is called a locally-convex space (l.c.s.).
A seminorm is a map p : E → K, which is homogeneous, positive-semidefinite,

and satisfies the triangle inequality. Homogeneous means that p(λ·x) = |λ|·p(x) for
all vectors x and scalars λ. Map p is positive semidefinite, if p(x) is real and non-
negative for all vectors x. It satisfies the triangle inequality, if p(x+y) ≤ p(x)+p(y)
for all x, y ∈ E.

A disk is a closed and absolutely-convex subset of E. By definition, a disk is
disk-like. A disk D defines a subspace ED of E by ED := span(D), together with
its gauge functional pD. The latter is defined by pD(x) := inf{λ > 0 | x ∈ λ ·D}.
Here, D absorbs every point in ED, and the gauge functional pD is a seminorm on
space ED.

Hence, a topology on a t.v.s. is locally convex iff it is the initial topology of a
family of seminorms.

70 [SW99, I.5.3]
71 [SW99, I.5.4]
72Let F be an equicontinuous family of linear maps between t.v.s. E and F . Let V be an

arbitrary neighborhood in F , and let B be an arbitrary bounded set in E. Then U =
⋂

u∈F
u−1(V )

is a neighborhood in E. As U absorbs B, there exists a positive real number λ > 0 such that
B ⊆ λ · U , implying u(B) ⊆ λV for all u ∈ F . Hence

⋃

u∈F
u(B) is absorbed by V and thus

bounded, proving F to be equibounded.
73 [SW99, I.5.5]
74 See [SW99, II.5.3] for a proof formulated for l.c.s.. The local convexity of the spaces is

not used in proof.
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6.2. Topological Dual, Hyperplanes.

Theorem 10 (Hahn-Banach, Analytical Form). Let E be a t.v.s., let M be a
subspace of E, and let f : M → K be a linear form on M . If there is a seminorm
p : E → R with |f(x)| ≤ p(x) for all x ∈ M , then there exists a linear form
g : E → K, extending f to all of E with |g(x)| ≤ p(x) for all x ∈ E.75

Theorem 11. Let E be an l.c.s., let M be a subspace of E, and let f : M → K

be a continuous linear form on M . Then there exists a continuous linear form
g : E → K, extending f to all of E.76

Let 〈·, ·〉 denote the duality between E and E′, defined by 〈f, x〉 := f(x) for
x ∈ E and f ∈ E′.

A sequence (xn)n weakly converges to x, denoted by xn ⇀ x in E (n→∞), if
for all f ∈ E′ we have 〈f, xn〉 → 〈f, x〉 (n→∞). A sequence (fn)n in E′ ∗-weakly

converges to f , denoted by fn
∗
⇁ f , if it converges pointwise, i.e., if for all x ∈ E

we have 〈f, xn〉 → 〈f, x〉 (n → ∞). Clearly, convergence xn → x implies weak
convergence xn ⇀ x, because each f ∈ E′ is continuous.

In addition, weak convergence fn ⇀ f in E′ (n → ∞) implies ∗-weak conver-

gence fn
∗
⇁ f in E′ (n → ∞). In case E is reflexive, the opposite is also true,

i.e., weak and ∗-weak convergence are equivalent. This can be seen by applying the
topological isomorphism j : E → (E′

β)′β , 〈j(x), fn〉 = 〈f, x〉.

6.3. Compactness. The convex hull of a compact set is compact.77

6.4. Permanence Properties. The class of l.c.s. is closed under arbitrary
projective topologies.78 In particular, it is closed under arbitrary products79 and
closed subspaces.80 In addition, it is closed under arbitrary projective limits.81

The class of l.c.s. is closed under arbitrary inductive topologies.82 In particular,
it is closed under coproducts (topological direct sums)83 and quotients under closed
subspaces.84

It seems to be an open problem, if the class of l.c.s. is closed under arbitrary
inductive limits.85 For a special case, one can prove more: Given a family (Eα)α∈A

of l.c.s., each Eα a subspace of a vector space E =
⋃

α∈AAα, and directed under
inclusion, i.e., Eα ⊆ Eβ for α ≤ β. Then the inductive limit lim−→Eα exists and is

locally convex.86 It is called strict , if the topology of Eβ induces the topology on
Eα for all α ≤ β.

In particular, let (Em)m be an increasing sequence of l.c.s. with topologies Tm.
If each (Em+1, Tm+1) induces the topology Tm on Em, then the inductive limit
exists on E :=

⋃

mEm and induces the topology Tm on Em.87

75 [SW99, II.3.2]
76 [SW99, II.4.2]
77 [SW99, II.4.3]
78 [SW99, II.5]
79 [SW99, II.5.2]
80 [SW99, I.2.1, II.6.1]
81 [SW99, II.5.2]
82 [SW99, II.6]
83 [SW99, II.6.1]
84 [SW99, I.2.3, II.6.1]
85 [SW99, II.6.3]
86 [SW99, II.6.3]
87 [SW99, II.6.4]
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A subset B of the coproduct
∏

α∈AEα of a family of l.c.s. Eα is bounded iff
there exists a finite subset A0 ⊆ A such that pα(B) = 0 for all α /∈ A0 and pα(B)
is bounded for all α ∈ A0. Again, pα denotes the projection into Eα.88

A subset B of a strict inductive limit E := lim−→(Em, Tm) is bounded in E iff

there exists a natural m such that B ⊆ Em is bounded in (Em, Tm).89

The coproduct of a family of l.c.s. is complete iff each summand is complete.90

The strict inductive limit of a sequence of complete l.c.s. is complete.91 In
particular, LB and LF spaces are complete, respectively.

7. Bornological Spaces

7.1. Definition. An l.c.s. E is bornological , if every absolutely-convex subset
of E, absorbing every bounded subset of E, is a 0-neighborhood.

7.2. Operators. Let E be bornological, let F be an l.c.s., and let u : E → F
be a linear operator. Then the following statements are equivalent:92

(i) Operator u is continuous.
(ii) Operator u is bounded, i.e., u(B) is bounded in F for every bounded set

B of E.
(iii) Operator u maps zero sequences to zero sequences.

7.3. Permanence Properties. Bornological spaces are closed under arbi-
trary inductive topologies.93 In particular, they are closed under T0 quotients,
topological direct sums, and inductive limits.94

In general, bornological spaces are not closed under arbitrary projective topolo-
gies. In particular, there exists a bornological space, which is not closed under closed
subspaces.95

8. Barreled Spaces

In our opinion, the class of barreled spaces is the class of spaces suitable for
Functional Analysis. They define the limits of certain constructions in Functional
Analysis like Banach-Steinhaus, Closed-Graph, Open-Mapping, and Continuous-
Inverse properties. In contrast to the narrow class of Banach spaces, they are also
broad enough to cover all relevant function spaces, including distributions.

For more information on barreledness and related properties, see, e.g., [Ada70,
Val71a, Val71b, Val72a, Val72b, VD72, Val73, Val79, VC81] and also
[Sax74, Hol77, PC87].

8.1. Definition. A barrel is an absorbent disk.

Theorem 12. A vector space, together with a topology stemming from a family
of seminorms, is an l.c.s. exactly if it possesses a locally-additive neighborhood-
system base of barrels.96

88 [SW99, II.6.3]
89 [SW99, II.6.5]
90 [SW99, II.6.2]
91 [SW99, II.6.6]
92 [SW99, II.8.3]
93 [SW99, II.8.2]
94 [SW99, II.8.2, Cor.1]
95 [Kha82, p.104]
96 [SW99, II.4]



24 1. SPACES

This motivates the following definition. An l.c.s. is called barreled , if every
barrel is a neighborhood.

Every Baire l.c.s. is barreled.97

Important classes of l.c.s., analyzed in connection with the closed-graph prop-
erty, were defined by Pták. Recall that an l.c.s. E is a Pták space (B-complete), if
every subspace Q ⊆ E′ is σ(E′, E)-closed iff Q∩C is σ(E′, E)-closed for all equicon-
tinuous subsets C ⊆ E′. Furthermore, E is an infra-Pták space (Br-complete), if
this holds for all dense subspaces Q. For the notions of Pták and infra-Pták space,
see also [SW99, II.4, II.7, IV.8], respectively.

8.2. Reflexive Spaces. The bidual E′′ of l.c.s. E is defined as the vector
space (a priori without a topology) (E′

β)′. The strong bidual is defined as (E′
β)′β ,

i.e., the bidual together with the strong topology.
Linear operator j : E → E′′, defined by 〈jx, f〉 := (jx)(f) := f(x), x ∈ E,

f ∈ E′, is called the (canonical) embedding or evaluation map.
An l.c.s. E is semireflexive iff the (canonical) embedding j is a surjective linear

operator onto the bidual E′′. Space E is called reflexive iff j is a topological
isomorphism onto the strong bidual.

An l.c.s. is reflexive iff it is semireflexive and barreled.98

The strong dual E′
β of a reflexive space E is reflexive.99

A Montel space is a T0, complete, and reflexive l.c.s. with the Heine-Borel
property. Hence, every bounded subset is relatively compact.

8.3. Banach-Steinhaus. We say that l.c.s. E has the Banach-Steinhaus prop-
erty, if for all l.c.s. F and all families F of linear, continuous maps between E
and F holds that if F is pointwise bounded on A, i.e., for all x ∈ E the set
F(x) = {u(x) | u ∈ F} is bounded, family F is equicontinuous. We say that
E has the Banach-Steinhaus property for functionals, if every family F ⊆ E′ of
continuous functionals pointwise-bounded on E is equicontinuous.

Theorem 13. An l.c.s. has the Banach-Steinhaus property iff it is barreled.

Instead of Banach-Steinhaus property, one often uses the term uniform bound-
edness .

8.4. Permanence Properties. In general, barreled spaces are not closed un-
der arbitrary projective topologies. In particular, a closed subspace of a barreled
space does not need to be barreled.100 At least, they are closed under finite prod-
ucts.

Barreled spaces are closed under arbitrary inductive topologies.101 Hence, they
are closed under arbitrary inductive limits, topological direct sums, and quotients
with closed subspaces. In addition, LB and LF spaces are barreled.

8.5. Operators. Theorems on open mappings, continuous inverses, and closed
graphs have a long history, with many applications in different branches of Func-
tional Analysis [Wer00, Mat98, Alt06, AV05]. Initially only formulated for
Banach spaces, one line of research was to extend these theorems to very general
classes of spaces [Ptá58, Ptá59, Ptá60, Ptá62, Ptá65, Ptá66, Ptá69, Ptá74,
HM62, Hus62, Hus64a, Hus64b, Kri71, SW99, Val78, Ada83, Ada86,
SR89, Rod91]. While this research states such theorems for linear mappings

97 [SW99, II.7.1]
98 [SW99, IV.5.5]
99 [SW99, IV.5.6]
100 [SW99, IV.Ex.10]
101 [SW99, I.7.2]
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u : E → F with E taken from one class A of t.v.s. and F taken from a possibly
different class B, we approach the topic differently. We only allow E and F to come
from the very same class of t.v.s. C, and we ask, under which conditions on C the
open-mapping theorem, the continuous-inverse theorem, and the closed-graph the-
orem are actually equivalent and hold. For the equivalence of these theorems for a
class C, the crucial insight is that C needs closure properties weaker than expected.
Besides closure under quotients with closed subspaces, additionally, only closure
under closed graphs is needed, not closure under closed finite products or closed
subspaces. This insight leads to a characterization result, showing that the class of
barreled Pták spaces is a natural habitat of these theorems, and that at least for
locally-convex spaces, the barrier of being barreled and Pták cannot be overcome
without losing important closure properties. As research in the 1960s considered
Pták and barreled spaces already, this may explain, why research on these topics
faded out in the 1970s.

Recall that a map u : E → F is called graph-closed, if the set graphu =
{(e, u(e)) | e ∈ E} is a closed subset of E × F .

We define three properties for a class C of t.v.s..

(O) Open-Mapping Property : For every pair of t.v.s. E and F in C, it
holds that every surjective, linear, continuous map u : E → F is open.

(C) Continuous-Inverse Property : For every pair of t.v.s. E and F in
C, it holds that every bijective, linear map u : E → F is continuous iff its
inverse u−1 is continuous.

(G) Closed-Graph Property : For every pair of t.v.s. E and F in C, it
holds that every linear map u : E → F is graph-closed iff it is continuous.

We say that a class C of t.v.s. is closed under closed graphs , if for every E and
F in C and every linear, graph-closed map u : E → F its graph, graphu, is in C.
A class C of t.v.s. is closed under quotients with closed subspaces , if for every E in
C and S a closed subspace of E, the quotient space E/S is in C. Furthermore, we
say that a class C of t.v.s. has the OCG-equivalence property, if it is closed under
quotients with closed subspaces, and if it is closed under closed graphs.

Theorem 14. Let C be a class of (T0) t.v.s. satisfying the OCG-equivalence
property. Then properties (O), (C), and (G) are equivalent for C.

The following arguments in the proof of the above theorem are well-known and
thus not new. We present them for three reasons: (1) emphasis on where exactly the
closure-properties of the class C are needed, (2) first-time crystal-clear presentation
of these equivalences in this general setting, not found in textbooks in Functional
Analysis, and (3) for the sake of completeness.

Proof. (O) implies (C): Let E and F be t.v.s. in C, and let u : E → F be
bijective, linear, and continuous. By (O), u is open. Hence, u−1 is continuous.
Analogously, argue for u−1.

(C) implies (O): Let E and F be t.v.s. in C, and let u : E → F be surjective,
linear, and continuous. Subspace N := keru is closed by continuity of u. As
C is closed by quotients with closed subspaces, E/N is in C. The induced map
u0 : E/N → F is bijective and continuous. By (C), u−1

0 is continuous. Hence, u0 is
open. Then finally, the map u = p ◦u0 is open as composition of open maps, where
p : E → E/N denotes the linear, continuous, and open projection.

(C) implies (G): Let E and F be t.v.s. in C, and let u : E → F be linear. Define
the bijective, linear map v : E → graphu by v(e) := (e, u(e)). Let pE and pF denote
the linear, continuous projections from E×F , respectively. If u is continuous, then
by Proposition 6, graphu is closed. And if graphu is closed, then it is in C by
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closure under closed graphs. As v−1 = pE : graphu → E is bijective, linear, and
continuous, the map v is continuous by application of (C).

(G) implies (C): Let E and F be t.v.s. in C. Define s : E × F → F × E
by s(x, y) := (y, x). Clearly, s is a topological isomorphism. Let u : E → F be
bijective and linear. By (G), the map u is continuous iff graphu is closed. This
holds iff graphu−1 = s(graphu) is closed. Again by (G), the former holds iff u−1

is continuous. �

Note that a class C of t.v.s. is closed under closed graphs, if it is closed under
finite products , i.e., with E and F in C, we have E×F in C, and closed under closed
subspaces , i.e., with E in C, every closed subspace of E is in C. Main insight of
above theorem is that the weaker property of closure under closed graphs suffices.
Closure under finite products or closure under closed subspaces is not necessary.

It is well-known that the classes of complete T0 l.c.s., Fréchet spaces, and
Banach spaces all satisfy the OCG-equivalence property.

In contrast, it is unclear if subclasses of barreled spaces, Pták spaces, or Baire
spaces satisfy the property of OCG-equivalence, because in general, barreled spaces
and Baire spaces are not closed under closed subspaces, and Pták spaces are not
closed under finite products. At least, barreled spaces are closed under finite prod-
ucts and quotients with closed subspaces, and Pták spaces are closed under closed
subspaces and quotients with closed subspaces, respectively, see [SW99, IV.8.2,
IV.8.3 Cor. 3].

8.6. Characterization. Recall that a linear map u : E → F is called nearly-
open, if for each 0-neighborhood U ⊆ E, u(U) is dense in some 0-neighborhood in
u(E).

We say that a class C of t.v.s. is closed under continuous images , if for every
E in C, every l.c.s. F , and every injective, linear, continuous, and nearly-open map
u : E → F , its image u(E) is in C.

Proposition 15. The classes of Banach spaces, barreled Pták spaces, and
barreled infra-Pták spaces are closed under continuous images.

Proof. Let F be an arbitrary l.c.s., and let u : E → F be an arbitrary injective,
linear, continuous, and nearly-open map. Space u(E) is l.c.s. as a subspace of F .

If E is an (infra-)Pták space, then map u is a topological homomorphism by
[SW99, IV.8.3, Thm.]. Hence, u(E) is isomorphic to E and thus an (infra-)Pták
space.

If E is a Banach space, then it is a Fréchet space, and thus a Pták space by
the theorem of Krein-S̆mulian, see [SW99, IV.6.4, Thm.]. By the above argument,
u(E) is isomorphic to E and thus a Banach space.

We show that u(E) is barreled, if E is a barreled (infra)-Pták space. By [SW99,
IV.8.3, Thm.], map u : E → u(E) is an isomorphism. Let B be an arbitrary Banach
space, and let v : u(E)→ B be an arbitrary linear and graph-closed map. Then the
composition map v ◦ u : E → B is linear and graph-closed, the latter because map
(u, id) : E × B → u(E) ×B is an isomorphism with (u, id) (graph v ◦ u) = graphv.
As E is barreled, B is infra-Pták, and v◦u is graph-closed, map v◦u is continuous by
the Thm. of Robertson-Robertson, [SW99, IV.8.5, Thm.]. Hence, v = (v ◦ u) ◦ u−1

is continuous. Finally, space u(E) is barreled by the Thm. of Mahowald, [SW99,
IV.8.6]. �

Proposition 16. The classes of Banach spaces, barreled Pták spaces, and
barreled infra-Pták spaces are closed under closed graphs.

Proof. The statement holds for Banach spaces, because Banach spaces are
closed under finite products and closed subspaces.
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Let E and F be arbitrary barreled (infra-)Pták spaces, and let u : E → F
be an arbitrary linear and graph-closed map. By the theorem of Robertson-
Robertson, [SW99, IV.8.5, Thm.], u is continuous. Note that the space graphu
is an l.c.s. as a closed subset of l.c.s. E × F . Define the bijective and continuous
map v : E → graphu by v(e) = (e, u(e)). The map v is open and thus nearly-open,
because its inverse v−1 = pE : graphu → E is continuous. Now, graphu is the
continuous image of the barreled (infra-)Pták space E. The statement then follows
from Prop. 15. �

Theorem 17 (Barreled Pták Characterization). The class of barreled Pták
spaces is exactly the largest class of (T0) l.c.s., which contains all Banach spaces,
is closed under quotients with closed subspaces, is closed under closed graphs, is
closed under continuous images, and for which an open-mapping theorem (O), a
continuous-inverse theorem (C), or a closed-graph theorem (G) holds (and thus all
of them).

Proof. The classes of Banach spaces and of barreled Pták spaces both have
the mentioned closure properties: they contain all Banach spaces, are closed under
quotients with closed subspaces, are closed under closed graphs (Prop. 16), and are
closed under continuous images (Prop. 15). It is well-known that property (O) holds
for Banach spaces, and it also holds for barreled Pták spaces by [SW99, IV.8.3,
Cor. 1]. Consequently, for both of these classes, properties (O), (C) and (G) are
equivalent (Thm. 14) and hold.

Let C be a maximal class of l.c.s. satisfying the assumed closure properties of
the theorem. First of all, C satisfies all properties (O), (C), and (G), because it
satisfies OCG-equivalence.

Let E be an arbitrary l.c.s. in C. We want to show that E is barreled. Let B be
an arbitrary Banach space. We have B in C. Let u : E → B be an arbitrary linear,
graph-closed map. By (G), u is continuous. Then by the theorem of Mahowald,
[SW99, IV.8.6], E is barreled.

We want to show that E is a Pták space. Let F be an arbitrary l.c.s., and
let u : E → F be an arbitrary linear, continuous, and nearly-open map. Subspace
N := keru is closed, because u is continuous. Hence, E/N is in C by closure
under quotients with closed subspaces. The map u0 : E/N → F , associated with
u, is injective, linear, continuous, and nearly-open. Thus, image u(E) is in C by
closure under continuous images. Applying (C) to bijective and continuous map
u0 : E/N → u(E) yields that u0 is open. Hence, u0 is an isomorphism and thus u
a topological homomorphism by [SW99, III, 1.2]. By [SW99, IV.8.3, Thm.], E is
a Pták space.

Consequently, every space in C is a barreled Pták space. Finally, C must equal
the class of barreled Pták spaces by maximality. �

Valdivia [Val77] showed that the space of test functions D(Ω) and the space
of distributions D′(Ω) are not even infra-Pták. Hence, they fall out of the above
framework. Nevertheless, for these classes, a closed-graph theorem, open-mapping
theorem, and continuous-inverse theorem hold. Maybe surprisingly, in sharp con-
trast, for the space of Schwartz functions S and the space of tempered distributions
S′ the story is different.

Proposition 18 (Maybe folklore). The Schwartz space S and the space of
tempered distributions S′ are both barreled Pták spaces.

Proof. As space S is a Montel space, [SW99, IV.5.8], the strong dual (S′, β(
S′,S)) is a Montel space, [SW99, IV.5.9]. As the strong topology β(S′,S) coincides
with the topology of compact convergence Tc, S′ is a Montel space. Montel spaces
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are reflexive (by definition) and thus barreled, [SW99, IV.5.6, Thm.]. Hence, S
and S′ are barreled.

Space S is clearly a Fréchet space, [SW99, III.8]. Then by [SW99, IV.8,
Examples], both S and S′ are Pták spaces. �

In the same vein as above, we prove a characterization theorem for barreled
infra-Pták spaces. For more information on infra-Pták spaces, see [Val75]. These
spaces are more general then barreled Pták spaces. The missing closure under
quotients with closed subspaces is exactly the differentiating property.

Theorem 19 (Barreled infra-Pták Characterization). The class of barreled
infra-Pták spaces is exactly the largest class of (T0) l.c.s., which contains all Ba-
nach spaces, is closed under closed graphs, is closed under continuous images, and
for which an open-mapping theorem (O), a continuous-inverse theorem (C), or a
closed-graph theorem (G) holds (and thus all of them).

Proof. The classes of Banach spaces and of barreled infra-Pták spaces both
have the mentioned closure properties: they contain all Banach spaces, are closed
under closed graphs (Prop. 16), and are closed under continuous images (Prop. 15).
It is well-known that properties (O), (C), and (G) hold for Banach spaces. Property
(G) also holds for barreled infra-Pták spaces by [SW99, IV.8.5, Thm.]. Property
(G) implies (C) directly. We need to show (O). For this, let u : E → F be a
surjective, linear, and continuous mapping between two barreled infra-Pták spaces
E and F . As u is a surjective, linear map onto a barreled space, it is nearly open
[SW99, IV.8.2]. As u is continuous and linear, its graph is closed. By Ptak’s
general open mapping theorem [SW99, IV.8.4], u is open. Hence, (O) holds.
Consequently, for both of these classes, all properties (O), (C), and (G) hold (and
thus are equivalent).

Let C be a maximal class of l.c.s. satisfying the assumed closure properties of
the theorem. First of all, C always satisfies property (C), because (O) and (G)
imply (C) directly. As C is closed under closed graphs, (G) always holds for C, too.

Let E be an arbitrary l.c.s. in C. We want to show that E is barreled. Let B be
an arbitrary Banach space. We have B in C. Let u : E → B be an arbitrary linear,
graph-closed map. By (G), u is continuous. Then by the theorem of Mahowald,
[SW99, IV.8.6], E is barreled.

We want to show that E is an infra-Pták space. Let F be an arbitrary l.c.s.,
and let u : E → F be an arbitrary injective, linear, continuous, and nearly-open
map. Then image u(E) is in C by closure under continuous images. Applying
(C) to bijective and continuous map u : E → u(E) yields that u is a topological
homomorphism. By [SW99, IV.8.3, Thm.], E is an infra-Pták space.

Consequently, every space in C is a barreled infra-Pták space. Finally, C must
equal the class of barreled infra-Pták spaces by maximality. �

Valdivia [Val84] was apparently the first, who gave an example of a space,
which is infra-Pták but not Pták. Separating these classes was a long-standing
open problem in the theory of l.c.s.. Unfortunately, it is a priori unclear, if this
example space is barreled or not. We give a much simpler example below, showing
that the above class of barreled infra-Pták spaces is strictly larger than the class
of barreled Pták spaces. Surprisingly, for this we make use of considerations by
Husain [Hus62], published twenty years earlier than Valdivia’s.

Theorem 20. The dual space
(

RN
)′

is barreled infra-Pták but not Pták.

Proof. For Pták space E := RN, its dual (E′, tc) is reflexive and thus barreled.
Here, strong topology β and topology of uniform convergence on compact, convex
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sets tc coincide. It is not Pták [Hus62, Prop. 5]. As E is a complete and metrizable
l.c.s. (i.e., Fréchet), it is an S-space with CP property [Hus62, Remark after Thm. 1
and remark after Def. 2]. Hence, by [Hus62, Thm. 10] its dual (E′, tc) is infra-
Pták. �

9. Metric Vector Spaces

A metric vector space (E, d) is a vector space E and a metric space (E, d),
equipped with a translation-invariant metric d, i.e., d(x, y) = d(x+ z, y+ z) for all
x, y, z ∈ E.

The translation-invariant metric d of a metric vector space (E, d) induces a
uniform topology on E, which makes E a t.v.s.. A t.v.s. E is called metrizable, if
there exists a translation-invariant metric d on E inducing the topology of E.

A T0 t.v.s.is metrizable iff it is first countable.102

A complete and metrizable l.c.s. is called Fréchet space.
The differentiating property between complete and metrizable t.v.s. and l.c.s.

is exactly the following.

Theorem 21 (Characterization Fréchet). Let E be a complete and metrizable
t.v.s.. Then E is a Fréchet space iff there exists a translation-invariant metric d
on E such that for all x, y ∈ E and λ ∈ [0, 1] we have

(2) d(λ · x, λ · y) ≤ λ · d(x, y) .

Proof. We modify the proof in [SW99, I.6.1]. There, a pseudonorm |x| is
constructed by a base of 0-neighborhoods Vn. The metric is then obtained via
d(x, y) = |y − x| and vice versa. As E is an l.c.s., we can assume that these Vn

are not only circled but absolutely-convex, and that 2 · Vn+1 = Vn. We prove
|2−k · x| ≤ 2−k · |x| for arbitrary x ∈ E and k ≥ 1. Then by dyadic expansion
and the triangle inequality, we obtain |λ · x| ≤ λ · |x| for all real λ ∈ [0, 1]. Set
VH :=

∑

n∈H Vn for finite H ⊆ N. Then Vk+H =
∑

n∈H Vk+n =
∑

n∈H 2k · Vn =

2k · (∑n∈H Vn) = 2k · VH . Hence, 2−k · x ∈ VH iff x ∈ 2k · VH iff x ∈ Vk+H . For the

numbers pH :=
∑

n∈H 2−n, we get pk+H = 2−k · pH .

Given arbitrary ε > 0, let H be such that |x| ≤ pH − ε. Then 2−k · x ∈ VH

implies x ∈ Vk+H , and hence |2−k · x| ≤ pk+H = 2−k · pH ≤ 2−k · (|x| − ε). �

The Lp spaces give nice examples to show, when this stronger inequality (2)
holds and when it does not. Let λ ∈ [0, 1]. For 1 ≤ p ≤ ∞, space Lp is a normed
and thus a Fréchet space, and we have d(λ · x, λ · y) := ‖λ · (y − x)‖p = λ · d(x, y).
In contrast, for 0 < p < 1, space Lp is only a complete and metrizable t.v.s., and
not an l.c.s.. Here, we have d(λ · x, λ · y) =

∫

|λ · (y− x)|p = λp · d(x, y) > λ · d(x, y)
for λ ∈]0, 1[.

Define a Limit-Fréchet space (LF space) as the strict inductive limit of Fréchet
spaces.

Every Fréchet space is barreled.103 Hence, Baire’s category theorem holds.
Every LF space is barreled.104

Every Fréchet space is bornological.105 In addition, every LF space is bornolog-
ical.106

102 [SW99, I.6.1]
103 [SW99, II.7.1]
104 [SW99, II.7.2,Cor.2]
105 [SW99, II.8.1]
106 [SW99, II.8.2, Cor.2]
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9.1. Permanence Properties. In general, Fréchet spaces are not closed un-
der inductive and projective topologies. In particular, in general, they are not
closed under uncountable products and topological sums.

Nevertheless, they are closed under finite and countable products107, closed
subspaces108, finite topological sums109, and quotients under closed subspaces110,
respectively.

10. Normed Vector Spaces

10.1. Definition. A normed (vector) space is a vector space E, equipped with
a norm, ‖·‖ : E → K, which is a positive-definite seminorm. Positive definite means
that it is positive semidefinite and ‖x‖ = 0 iff x = 0.

A normed space (E, ‖ ·‖) induces a metric space (E, d) by translation-invariant
metric d(x, y) := ‖y− x‖. Hence, a normed vector space is also an l.c.s.. A t.v.s. E
is normable, if there exists a norm on E inducing its topology. A normable space
is metrizable.

A T0 t.v.s. is normable iff it possesses a convex and bounded zero neighbor-
hood.111

If a metric vector space (E, d) has a homogeneous metric d, i.e., d(λ ·x, λ · y) =
λ ·d(x, y) for all x, y ∈ E and λ ∈ K, then E is actually a normed vector space with
norm ‖x‖ := d(0, x).

A Banach space is a complete and normed vector space.
In addition, define a Limit-Banach space (LB space) as the strict inductive

limit of Banach spaces.
A Banach space is also a Fréchet space. Hence, it is barreled. Every LB space

is barreled.112

A disk D in an l.c.s. E is called a Banach disk , if (ED, | · |D) is a Banach space.
Every complete l.c.s. is topologically isomorphic to a projective limit of a family

of Banach spaces.113

10.2. Operators. Let E and F be normed spaces. A norm homomorphism
is a linear operator u : E → F such that ‖u(x)‖F = ‖x‖E for all x ∈ E. A
norm isomorphism is a bijective norm homomorphism. Its inverse is also a norm
isomorphism.

The identity idE is a norm isomomorphism. The composition of norm homo-
morphisms is a norm homomorphism.

A linear operator u : E → F is bounded iff there exists a constant c > 0 such
that ‖u(x)‖F ≤ c · ‖x‖E for all x ∈ E. For such a bounded operator, define

‖u‖E→F := sup

{‖u(x)‖F
‖x‖E

| x ∈ E
}

.

Then the vector space of bounded operators (B(E,F ), ‖ · ‖E→F ) is a normed space.
It is a Banach space in case F is complete. In particular, the dual E′ is a Banach
space.

Of course, B(E,F ) = C(E,F ), because every Banach space E is bornological.

10.3. Compactness. In a normed space E, a ball is compact iff E is finite-
dimensional. Hence, a Banach space is a Montel space iff it is finite-dimensional.

107 [SW99, I.2, Ex.1(b)], [Bou98a, II, §3.5, §3.9]
108 [SW99, I.2.1], [Bou98a, II, §3.4, §3.9]
109 [SW99, I.Ex.10]
110 [SW99, I.2.3, I.6.3]
111 [SW99, II.2.1]
112 [SW99, II.7.2,Cor.2]
113 [SW99, II.5.4]
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10.4. Permanence Properties. In general, Banach spaces are not closed
under arbitrary projective topologies. They are closed under finite products.114 In
general, they are not closed under countably-infinite products. Banach spaces are
closed under quotients with closed subspaces.115

In general, Banach spaces are not closed under arbitrary inductive topologies.
They are closed under finite sums, which are equivalent to finite products. In
general, they are not closed under countably-infinite sums. Banach spaces are
closed under closed subspaces, by restricting the norm to the subspace.

11. Inner-Product Vector Spaces

An inner-product (vector) space is a linear space E, equipped with an inner
product , 〈·, ·〉 : E × E → K, which is a conjugate-symmetric map, a linear map
in its second argument, and positive definite, respectively. Conjugate symmetry

means 〈x, y〉 = 〈y, x〉 for all vectors x and y. Linear in the second argument means
〈z, αx + βy〉 = α〈z, x〉 + β〈z, y〉 for all vectors x, y, and z, and scalars α and β.
Map 〈·, ·〉 is positive semidefinite, if 〈x, x〉 is real and non-negative for all vectors x.
Finally, it is positive definite, if it is positive semidefinite and if 〈x, x〉 = 0 iff x = 0.

An inner-product space (E, 〈·, ·〉) induces a normed space (E, ‖ · ‖) with the

induced norm ‖x‖ =
√

〈x, x〉.
A Hilbert space is a complete inner-product space.
In addition, define a Limit-Hilbert space (LH space) as the strict inductive limit

of Hilbert spaces.
A set A ⊆ E of elements in E is orthogonal , if for all x, y ∈ A, x 6= y, we have

〈x, y〉 = 0. We write x ⊥ y in case {x, y} is orthogonal. Set A is orthonormal , if
we have 〈x, y〉 = [x = y] for all x, y ∈ A.

In an inner-product space, we have the famous Cauchy-Schwarz inequality,

〈x, y〉 ≤ ‖x‖ · ‖y‖
for all x, y ∈ E. This implies the Theorem of Pythagoras : For x ⊥ y we have

‖x+ y‖2 = ‖x‖2 + ‖y‖2 .

By the Theorem of Jordan-Neumann116, a normed space is an inner-product
space iff the parallelogram law holds:

‖x+ y‖2 + ‖x− y‖2 = 2 · (‖x‖2 + ‖y‖2) .

11.1. Permanence Properties. In general, Hilbert spaces are not closed
under arbitrary projective topologies. Nevertheless, they are closed under finite
products and under closed subspaces.

In general, Hilbert spaces are not closed under arbitrary inductive topologies.
Nevertheless, they are closed under finite sums and under quotients with closed
subspaces.

12. Examples

12.1. Sequence Spaces. In the examples in Chapter 3, we will make use of
sequence spaces. While these spaces are all subspaces of KN algebraically, their
topologies differ due to different norms used in their definitions. We define the
supremum norm ‖(xn)n‖∞ := supn |xn|, and the p-norm ‖(xn)n‖p := p

√
∑

n |xn|p,
1 ≤ p <∞, respectively.

114 [SW99, II.2.2], [Bou98b, IX, §3.4]
115 [SW99, I.2.3, II.2.3], [Bou98b, IX, §3.4]
116 [Fur01, Theorem J-N]
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The space of convergent sequences (c, ‖ · ‖∞) is defined as the set of sequences,
converging to a limit in K. Analogously, the space of zero sequences (c0, ‖ · ‖∞) is
defined as the set of sequences, converging to zero.

The spaces `p, 1 ≤ p ≤ ∞, are defined as the set of sequences bounded by ‖·‖p.
The spaces (c, ‖ · ‖∞), (c0, ‖ · ‖∞), and (`p, ‖ · ‖p) are all Banach spaces.

12.2. Space of Radon Measures. For a nonempty and compact subset G ⊆
Rd, d ≥ 1, denote with C(G) the space of continuous, K-valued functions f : Rd → K

with support in G. It is a Banach space with supremum norm ‖f‖ on C(G).
For a nonempty and open subset Ω ⊆ Rd, let Gm be a sequence of compact

sets such that Gm is in the interior of Gm+1 and Ω =
⋃

mGm. Define C(Ω) as the
strict inductive limit of the spaces C(Gm).

The space of Radon measures is defined as the topological dual C′(Ω).
As Rd is a countable union of compact subspaces, C′(Ω) is an example of an

LB space.117 We will use Radon spaces as an example to justify an extension of a
measure of noncompactness in Chapter 2.

12.3. Lebesgue Spaces. Lebesgue spaces are an important part of the foun-
dations of (Functional) Analysis, see e.g., [Wer00]. Their study is closely related
to (abstract) Measure Theory and Harmonic Analysis, see e.g., [Rou05, Kat04].
In this thesis, Lebesgue spaces will play an important role in Chapter 4, when we
study Nemyckij operators. They are also fundamental to the definition and study
of Sobolev space, see below.

Let (X,σ, µ) be a measure space, where measure µ is a countably-additive and
nonnegative function, defined on the σ-algebra Σ of X . For 0 < p < ∞, denote
with Lp(X) the set of equivalence classes of Σ-measurable, K-valued functions f
such that |f |p is µ-integrable, modulo functions of µ-measure zero. By the Hölder

inequality, see below, Lp(X) is a vector space with p-norm ‖f‖p :=
(∫

X |f |pdµ
)1/p

.
A Σ-measurable, K-valued function f is called essentially µ-bounded, if there

exists a µ-bounded function in the equivalence class of f . The set of equivalence
classes of essentially µ-bounded functions is a vector space. Denote with L∞(X)
the set of equivalence classes of Σ-measurable, K-valued functions, and essentially
µ-bounded functions. Space L∞(X) is a vector space with (essential) supremum
norm ‖f‖∞, defined by

(3) ‖f‖∞ := inf
D⊆X µ-measurable

sup{|f(x)| | x ∈ X\D} .

The Lebesgue spaces Lp(X) are Banach spaces for 1 ≤ p ≤ ∞. Spaces L2(X)
are even Hilbert spaces.

In the context of Lebesgue spaces, we note some integration-theory results,
which can be virtually found in any introductory textbook on Analysis, and in the
references given above.

Theorem 22 (Majorized Convergence). Let (fn)n be a sequence of measurable
functions on a measure space X with Lebesgue measure λ, converging to f pointwise
almost everywhere, i.e., fn(x) → f(x) for almost all x. Let h ∈ L1(X) be a
majorant, i.e., |fn(x)| ≤ h(x) almost everywhere. Then f ∈ L1(X) and

lim
n→∞

∫

fndλ→
∫

f dλ (n→∞) .

A slight generalization is the following theorem.

117 [SW99, II.6.3]
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Theorem 23. Let (fn)n and (hn)n be sequences of measurable functions in
L1(X), defined on a measure space X with Lebesgue measure λ. Let h ∈ L1(X),
and let fn(x)→ f(x) and hn(x)→ h(x) almost everywhere (n→∞). Furthermore,
|fn(x)| ≤ hn(x) almost everywhere, and

lim
n→∞

∫

hn dλ→
∫

h dλ (n→∞) .

Then

lim
n→∞

∫

|fn − f | dλ→ 0 (n→∞) .

We will also need a certain reverse statement.

Theorem 24. Let fn, f ∈ L1(X) such that

lim
n→∞

∫

|fn − f | dλ→ 0 (n→∞) .

Then there exists a subsequence (fnk
)k converging to f almost everywhere.

For 1 ≤ p ≤ ∞, denote with p′ its dual parameter, defined by p′ := 1, if p =∞,
p′ :=∞, if p = 1, and p′ := p/(p− 1), if 1 < p <∞. We note Hölder’s inequality,

(4)

∫

|f · g| dλ ≤ ‖f‖p · ‖g‖p′ ,

as a generalization of the Cauchy-Schwartz inequality in Lp(X) spaces.

12.4. Sobolev Spaces. Sobolev spaces are vector spaces of functions, whose
derivatives satisfy certain integrability conditions. They have been studied exten-
sively since the 1930’s. One reason is that they provide a technical foundation for
spaces of weak solutions of partial differential equations. We can only give a glimpse
of this theory and refer the reader to the now classical book of Adams [Ada03] for
a thorough introduction to this topic.

Sobolev spaces will be needed in Chapter 4, when we study the nonlinear partial
differential equation of the p-Laplacian.

Let Ω ⊆ Rd be a domain, d ≥ 1. Let f, g : Ω → K be locally integrable
functions. Let α = (α1, . . . , αd) be a multiindex. We call g the weak α-partial
derivative of f , denoted by ∂αf := g, if for all smooth functions φ ∈ C∞0 (Ω) with
compact support we have

∫

Ω

f · ∂αφdλ =

∫

Ω

g · φdλ .

As usual, |α| = α1 + · · ·+ αd.
The space of Sobolev functions Wk,p(Ω) is defined as the set of all functions

f ∈ Lp(Ω) such that their weak α-derivatives ∂αf exist up to |α| ≤ k and belong
to Lp(Ω). For such f , we define

‖f‖k,p := ‖f‖Wk,p(Ω) :=





∑

|α|≤k

‖∂αf‖pLp(Ω)





1
p

.

Space (Wk,p(Ω), ‖ · ‖k,p) is a Banach space.118

We denote with Wk,p
0 (Ω) the closure of C∞0 (Ω) in Wk,p(Ω).

Sobolev space Wk,p(Ω) is separable for 1 ≤ p < ∞ and reflexive for 1 < p <

∞.119 The same holds for the closed subspace Wk,p
0 (Ω).

118 [Ada03, 3.3]
119 [Ada03, 3.6]
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If Ω is a bounded domain with Lipschitz-continuous boundary ∂Ω, then the
Poincaré inequality

‖f‖k,p ≤ c · ‖∇f‖Lp(Ω)

holds for all functions f ∈ Wk,p
0 (Ω). Here, for the mentioned constant we have

c = c(p, d,Ω) > 0. This implies that norms ‖f‖k,p and ‖∇f‖Lp(Ω) are equivalent.120

With the same conditions (bounded, Lipschitz boundary) on Ω as above, one
can also prove that the embedding

Wk,p
0 (Ω) ↪→ Lp(Ω)

is compact, to our knowledge this holds only for p ≤ d.121

12.5. Distributions. Generalized functions are an enabler to define solutions
to ordinary or partial differential equations, which in a classical sense would not
be sufficiently differentiable or even not be defined. In some physical models, this
may be necessary. For example, modelling point masses naturally leads to Dirac’s
delta-distribution δp, with properties like δp(x) = 0 for x 6= p, and

∫

δpφ = φ(p),
which cannot be fulfilled by ordinary functions. There exist several approaches to
this topic. Arguably the most important one is Distribution Theory, systematically
developed by Laurent Schwartz in the 1950’s, see [Sch57, Sch58]. In addition, see
Trèves [Trè06] and Friedman [Fri63] for the application of this theory in Partial
Differential Equations. From the many flavors of possible distribution spaces, we
only need D′ and S′ for our purposes.

For a nonempty and compact subsetG ⊆ Rd, denote with D(G) the space of test
functions , consisting of all infinitely-differentiable, K-valued functions f : Rd → K

with support in G. For any multiindex α := (α1, . . . , αd), define

Dαf :=
∂α1

∂x1
◦ · · · ◦ ∂

αd

∂xd
f(x1, . . . , xd) .

Define a countable set of seminorms pα(f) := ‖Dαf‖ on D(G), making it into a
Fréchet space.

For a nonempty and open subset Ω ⊆ Rd, let Gm be a sequence of compact
sets such that Gm is in the interior of Gm+1 and Ω =

⋃

mGm. Define D(Ω) as the
strict inductive limit of the spaces D(Gm). It is an LF space.

The space of distributions is defined as the strong topological dual D′
β(Ω).

The Schwartz space S is defined as the set of smooth and rapidly-decaying
functions. More precisely, a function f : Rd → R is in the Schwartz space iff it
is smooth, i.e., in C∞(Rd), and if f and all its derivatives decay faster than any
polynomial, i.e.,

pα,β(f) := sup
x∈Rd

∣

∣(1 + |x|2)α ·Dβf(x)
∣

∣ = ‖(1 + |x|2)α ·Dβf(x)‖L∞(Rd) <∞

for all numbers α and multiindices β. As the topology of S is generated by a
countable number of seminorms, it is a Fréchet space.

We note that S = S(Rd) ⊆ Lp(Rd) for 1 ≤ p ≤ ∞.
The tempered distributions are defined as the strong topological dual S′β .

Spaces S and S′ are both examples of Montel spaces.122

In Chapter 4 we study the Navier-Stokes equation. We need certain delicate
properties at our disposal of distributions. We derive these properties in this section.

A countably normed space is a t.v.s. E such that there exists a (countable)
sequence (‖ · ‖n)n of norms on E.123

120 [Ada03, 4.31]
121See inside of the proof of the Theorem of Rellich-Kondrachov in [Ada03, 6.3], part I.
122 [SW99, III.8]
123 [Fri63, Chapter I, Section 3]
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For a complete countably normed space E, every weakly bounded set of E′ is
strongly bounded124, the topological dual E′ is complete with respect to the weak
topology125, and a set in E is (strongly) bounded iff it is weakly bounded.126

A perfect space is defined as a complete countably normed space E having the
property that every bounded set of E is relatively sequentially compact.

Perfect spaces are separable.127

In a perfect space, weak convergence implies strong convergence.128 Is E is a
perfect space, then in E′ weak convergence implies strong convergence.129

If E is a perfect space, then bounded sets in E′ are relatively sequentially
compact in both the weak and strong topologies.130

The Schwartz space S is a perfect space. First of all, it is countably normed.
Secondly, every bounded set is relatively compact, because S is a Montel space. And
a relatively-compact set is relatively sequentially compact, because S is a Fréchet
space.

Finite products Sn of Schwartz spaces are also perfect spaces due to the per-
manence properties of countably normed, Fréchet, and Montel spaces.

We introduce the definition of a W space. A T0, complete l.c.s. is a (weak /
strong) W space, if it is reflexive, and if every bounded subset is relatively (weakly
/ strongly) sequentially compact. By definition, every strong W space is a weak
W space. In our opinion, the W spaces draw a fine line along the border of those
spaces, where we can apply the generalized Theory of Monotonic Operators, which
we develop in Chapter 2.

For example, every reflexive Banach space is a weak W space by the Theorem
of Eberlein and Šmuljan.

Theorem 25. 131 Every closed subspace of a finite product of Schwartz spaces,
E ⊆ (S(Rm))

n
, is a strong W space, and the same holds for its strong topological

dual E′
β, the tempered distributions over E. In addition, E is separable.

Proof. Space S is separable. As separable spaces are closed under countable
and thus finite products and under closed subspaces, space E is separable, too.

Space S is reflexive. As reflexive spaces are closed under finite products and
under closed subspaces, space E is reflexive, too. Then its strong dual E′

β is reflex-
ive.

Let B ⊆ E be an abritrary bounded subset. Then B =
∏

i∈[n]Bi ∩ E, where

each Bi is bounded in S. As S is a Montel space, each Bi is relatively compact.
As S is a Fréchet space, then each Bi is relatively sequentially compact. Then
the finite product

∏

i∈[n]Bi is relatively sequentially compact. Finally, then B is

relatively sequentially compact in E. Hence, E is a strong W space.
Space S is a countably normed space. As countable normed spaces are closed

under finite products and under closed subspaces, space E is a countably normed
space, too.

As E is a perfect space, every bounded subset of E′
β is relatively sequentially

compact. Thus, E′
β is a strong W space. �

124 [Fri63, Chapter 1, Theorem 15]
125 [Fri63, Chapter 1, Theorem 16]
126 [Fri63, Chapter 1, Theorem 19]
127 [Fri63, Chapter 1, Theorem 26]
128 [Fri63, Chapter 1, Theorem 21]
129 [Fri63, Chapter 1, Theorem 22]
130 [Fri63, Chapter 1, Theorem 27]
131This theorem has been given a more detailed proof after thesis submission.
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Theorem 26. 132 Let Ω ⊆ Rm be a domain. Every closed subspace of a finite
product of test-function spaces, E ⊆ (D(Ω))n, is a strong W space, and the same
holds for its strong topological dual E′

β, the distributions over E. In addition, E is
separable.

Proof. Space D is the strict inductive limit lim−→Dn of separable, countably

normed spaces Dn = D(Kn), where ∪Kn = Ω are increasing compacta.
As separable spaces are closed under countable and thus finite products and

under closed subspaces, space E is separable, too.
Space S is reflexive. As reflexive spaces are closed under finite products and

under closed subspaces, space E is reflexive, too. Then its strong dual E′
β is reflex-

ive.
Define En := E ∩ Dn. Then either (case 1 ) there exists a strictly increasing

sequence Enk
of spaces, and E is the strict inductive limit lim−→Enk

, or (case 2 )
space E is fully contained in a single Em. Let B be an arbitrary bounded subset
of E, and let B′ be an arbitrary bounded subset of E′

β , respectively.
Case 1: There exists Dnk0

such that B ⊆ Dnk0
. Then B is bounded in Enk0

and is thus relatively sequentially compact. Furthermore, space E′
β is isomorphic to

a closed subspace of
∏

n(Dn)′β , see [SW99, 4.1, and p.173]. Then B′ =
∏

nB
′
n∩E′

with bounded sets B′
n in (Dn)′β . Consequently, as each Dn is perfect, they are all

relatively sequentially compact and thus
∏

nB
′
n as a countable product. Finally,

this holds for B′.
Case 2: Then B is bounded in Em and is thus relatively sequentially compact.

As Dm is perfect, bounded subset B′ is relatively sequentially compact.
In both cases, every bounded subset B of E is relatively sequentially compact,

same for B′ and E′
β . Hence, both E and E′

β are strong W spaces. �

A common definition of the Schwartz space uses a family of norms, defined via a
supremum. The same applies to our definition, where we used the norms pα,β(f) :=
‖(1 + |x|2)α · Dβf(x)‖L∞(Rd). For applications, this is not always favorable. In

Chapter 4, we rather need norms, based on the L1 norm, in order to prove the
coercivity of an operator associated with the Navier-Stokes equations.

Recall that a norm p is weaker than a norm q, if there exists a constant c > 0
such that p(x) ≤ c·q(x) for all points x. An increasing family P = {pk} of norms pk

has the property p0 ≤ p1 ≤ p2 ≤ . . .. Given two countable and increasing families
P = {pk} and Q = {qk} of norms, we say that P is weaker than Q, if for every
norm p in P , there exists a norm q in Q such that p is weaker than q. We say that
P and Q are equivalent iff P is weaker than Q and Q is weaker than P .

We define countable families P := {pα,β}, P̃ := {pk}, Q := {qα,β}, and Q̃ :=
{qk} of norms

pα,β(f) := ‖(1 + |x|2)α ·Dβf(x)‖L∞(Rd) ,(5)

p̃k(f) :=
∑

α,|β|≤k

pα,β(f) ,(6)

qα,β(f) := ‖(1 + |x|2)α ·Dβf(x)‖L1(Rd) ,(7)

q̃k(f) :=
∑

α,|β|≤k

qα,β(f) .(8)

Theorem 27. The norms in Q generate the topology of the Schwartz space S.

132This theorem has been added after thesis submission.
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Proof. First of all, families P and P̃ generate the same topology, because
the norms pα,β and p̃k are sequentially continuous. Just consider an arbitrary

sequence, converging to zero. The same argument applies to Q nd Q̃. We show
that the countable and increasing families P̃ and Q̃ are equivalent. Thus, all families
generate the same topology.

Family Q̃ is weaker than P̃ : For arbitrary qα,β we have

qα,β(f) =

∫

Rd

(1 + |x|2)α ·Dβf(x) dλ

=

∫

Rd

(1 + |x|2)α · (1 + |x|2)1 ·Dβf(x) · 1

1 + |x|2 dλ

≤ ‖(1 + |x|2)α+1 ·Dβf(x)‖L∞(Rd) ·
∫

Rd

1

1 + |x|2 dλ ≤ c · pα+1,β(f) .

Then we can bound

q̃k(f) =
∑

α,|β|≤k

qα,β(f) ≤
∑

α,|β|≤k

c · pα+1,β(f) ≤ c ·
∑

α,|β|≤k+1

pα,β(f) ≤ c · p̃k+1(f) .

Family P̃ is weaker than Q̃: This is the arguably more difficult part. We use
[Esk, Theorem 9.2].133 For arbitrary pα,β with α, |β| ≤ k, we have

pα,β(f) = sup
x∈Rd

∣

∣(1 + |x|2)α ·Dβf(x)
∣

∣ ≤ sup
x∈Rd



(1 + |x|2)α ·
∑

0≤|η|≤k

|Dηf(x)|





≤ c ·
∑

0≤|η|≤k+d

∫

Rd

(1 + |x|2)α · |Dηf(x)| dλ ≤ c ·
∑

0≤|η|≤k+d

qα,η(f) .

Then we can bound

p̃k(f) =
∑

α,|β|≤k

pα,β(f) ≤
∑

α,|β|≤k



c ·
∑

0≤|η|≤k+d

qα,η(f)





≤



c ·
∑

0≤|β|≤k

1



 ·





∑

α,|η|≤k+d

qα,η(f)



 ≤ d · q̃k+d(f) .

�

133 https://math.stackexchange.com/questions/485178/inequality-in-schwartz-space.





CHAPTER 2

Fixed Points

Fixed-point theorems are existence results of equations of the form f(x) = x
for certain classes of operators f . In such a case, point x is called a fixed point of f .
Prominent examples of elementary fixed-point theorems are based on completeness
(Banach), order (Knaster-Tarski), and convexity (Kakutani).

For example, the Banach fixed-point theorem, which can be found in every
Analysis textbook, states the following.

Theorem 28 (Banach). Let (E, d) be a complete metric space, and let f : E →
E be contractive, i.e., there exists a constant c < 1 such that d(f(x), f(y)) ≤
c · d(x, y) for all x, y ∈ E. Then f has a unique fixed-point.

Non-elementary ones are based on the topological KKM principle (Schauder-
Tychonoff), topological transversality (Brouwer, Borsuk), or homology theories
(Lefschetz-Hopf). Historically, these theorems have been formulated for subsets
of Euclidean space. Often, overcoming the difficulties in proving these theorems
in general, infinite-dimensional Banach spaces (compact 6= bounded and closed!)
has later led to versions extending to l.c.s., or even beyond. Fixed-point theorems
play an important role in Analysis in general, and in Nonlinear Spectral Theory in
particular. For our purposes it suffices to prove the fixed-point theorems of Fan-
Browder, Schauder-Tychonoff, Brouwer, and Darbo. In addition, we introduce the
Theory of Monotonic Operators as an application of Fixed-Point Theory.

1. Schauder-Tychonoff

Main result of this section is the proof of the Theorem of Schauder-Tychonoff,
a fixed-point theorem in the setting of a general l.c.s.. Its proof is based on the
geometric KKM principle for KKM maps, and the Theorem of Fan-Browder on set-
valued maps. The Theorem of Schauder-Tychonoff is used in Nonlinear Spectral
Theory on several occasions. First of all, it helps to show that a linear surjective
operator is stably solvable. Secondly, it is a main tool in the proof of the closedness
of the FMV and Feng spectra.

None of the results in this section are new. They can be found e.g., in the
excellent textbooks of Appell and Väth [AV05], Fuč́ık et al. [FNSS73], and of
course in the opus magnum of Fixed-Point Theory [GD03], and the references
therein.

Let X and Y be two subsets of a t.v.s., and let s : X → 2Y be a set-valued
map. The sets s(x) are called its values .

Its inverse s−1 : Y → 2X is defined by s−1(y) := {x ∈ X | y ∈ s(x)}. Each set
s−1(y) is called fiber .

Given s, its dual s∗ : Y → 2X is defined by s∗(y) := X\s−1(y).
We say that s has a fixed point , if there exists an x ∈ C such that x ∈ s(x).
Let E be a vector space, and let X ⊆ E be a subset. A set-valued map

s : X → 2E is called a Knaster-Kuratowski-Mazurkiewicz map (KKM map), if for
all finite subsets A = {x1, . . . xm} ⊆ X we have co(A) ⊆ s(A) :=

⋃

i∈[m] s(xi).

39
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We can only give a glimpse of the theory based on such KKM maps without
deviating too much from our topic of Nonlinear Spectral Theory. We refer the
reader to [GD03] for more information.

Proposition 29. Let E be a vector space, C ⊆ E a nonempty and convex set.
Let s : C → 2C be a set-valued map such that its dual s∗ is not a KKM map. Then
there exists a point x ∈ C such that x ∈ co(s(x)). In particular, if s has convex
values, then s has a fixed point.

Proof. As s∗ is not a KKM map, there exists a finite set A = {x1, . . . xm} ⊆ C
such that co(A) 6⊆ s∗(A). Hence, there exists a point x ∈ C with x ∈ C\s(A) =
C\⋃i∈[m](C\s−1(xi)) =

⋂

i∈[m] s
−1(xi). Consequently, xi ∈ s(x) for each i ∈ [m],

implying x ∈ co(s(x)). In case that s has convex values, we have x ∈ co(s(x)) =
s(x), i.e., a fixed point. �

Let E be a vector space. A flat of E is the translate of a subspace of E. A subset
A ⊆ E is called finitely closed , if its intersection with every finite-dimensional flat
L of E is closed in the euclidean topology of L.

A family {Aι | ι ∈ I} of subsets of some set has the finite-intersection property,
if the intersection

⋂

ι∈I0
Aι of each finite subfamily {Aι | ι ∈ I0}, I0 ⊆ I finite, is

nonempty. We say that a set-valued map s : X → 2Y has the finite-intersection
property, if the family {s(x) | x ∈ X} of its values has this property.

Lemma 30. Let E be a vector space, X ⊆ E a subset, and s : X → 2E a KKM
map with finitely-closed values. Then s has the finite-intersection property.

Proof. We show by induction on the number of elements m that for every
finite subset A = {x1, . . . , xm} ⊆ X we have

(9) co(A) ∩
⋂

i∈[m]

s(xi) 6= ∅ .

For the induction base, we note that x ∈ s(x) for each x ∈ X , because of {x} =
co({x}) ⊆ s(x) by the KKM property of s. Assume that the statement is true for
m elements. For the induction step, choose (m+ 1) elements yi from

(10) co(A\{xi}) ∩
⋂

j∈[m+1],i6=j

s(xj) .

Such elements exist, because these sets are nonempty by induction hypothesis.
Define convex and compact set Y := co({y1, . . . , ym+1}) ⊆ co(A). To establish the
statement, it suffices to show that

⋂

i∈[m+1] s(xi) ∩ Y 6= ∅. For a contradiction,

assume the opposite.
Let L be the finite-dimensional subspace spanned by the elements of A. Denote

with d the Euclidean metric in L. For each i ∈ [m + 1], define distance functions
`i : Y → R by `i(y) := d(y, Y ∩ s(xi)). These functions are convex, because the
metric d is induced by the euclidean norm. Each Y ∩ s(xi) is closed, because the
values of s are finitely-closed. Hence, `i(y) = 0 iff y ∈ Y ∩ s(xi). Furthermore,
define ` : Y → R by `(y) := max{`i(y) | i ∈ [m+ 1]}.

Let ž ∈ Y be a point at which d attains its minimum. Such a point exists,
because d is continuous and Y is compact. By assumption,

⋂

i∈[m+1] s(xi)∩Y = ∅,
implying d(ž) > 0. As s is a KKM map, Y ⊆ co(A) ⊆ s(A) =

⋃

i∈[m+1] s(xi). Thus,

point ž must belong to one of the sets s(xi). W.l.o.g. assume that ž ∈ s(xm+1).
Then `m+1(ž) = 0.

Define points zt := t · ž + (1 − t) · ym+1, t ∈ [0, 1]. First of all, we have

(11) `m+1(zt) ≤ t · `m+1(ž) + (1− t) · `m+1(ym+1) ≤ (1− t) · `m+1(ym+1) .
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Then `m+1(zt) → 0 for t → 1. We find a t0 close to 1 such that `m+1(zt0) < `(ž).
Secondly, for every i ∈ [m], `i(ym+1) = 0 and thus

(12) `i(zt0) ≤ t0 · `i(ž) + (1− t0) · `i(ym+1) ≤ (1− t0) · `i(ym+1) < `(ž) .

Combining above estimates, we obtain `(zt0) < `(ž), a contradiction to the property
of ž being a minimum of `. �

The requirement in [GD03, I. §3. Thms. 1.4 and 1.5] that the values of s be
convex is unnecessary, and it even creates a gap in the proof of the Fan-Browder
Theorem [GD03, II. §7. Thm. 1.2].

Finally, as a consequence of the above theorem, we obtain

Theorem 31 (Geometric KKM Principle). Let E be a t.v.s., X ⊆ E a subset,
and s : X → 2E a KKM map with finitely-closed values such that s(x) is compact
for some x ∈ X. Then the intersection

⋂{s(x) | x ∈ X} is nonempty.

Map s is called Fan map, if s has nonempty and convex values, and if it has
open fibers.

Theorem 32 (Fan-Browder). Let C be a nonempty, convex, and compact subset
of a t.v.s., and let s : C → 2C be a Fan map. Then s has a fixed point.

Proof. Consider the dual map s∗ of s. We show that s∗ is not a KKM map.
First of all, all its values s∗(x) = C\s−1(x) are compact, because C is compact,
each fiber s−1(x) is open, and closed subsets of compact sets are compact. Hence,
the values of s∗ are finitely-closed.

If s∗ were a KKM map, then by Theorem 31 (Geometric KKM Principle), the
intersection

⋂{s∗(x) | x ∈ X} would not be empty. We prove the opposite. First
of all, note that the fibers of s−1 are all nonempty, because (s−1)−1(x) = s(x) and
s(x) 6= ∅ for Fan map s. Secondly, all fibers being nonempty is equivalent to s−1

being surjective, i.e., s−1(C) = C. Hence, we obtain
⋂

{s∗(x) | x ∈ C} =
⋂

{C\s−1(x) | x ∈ C} = C\
⋃

{s−1(x) | x ∈ C}
= C\{y ∈ C | s(y) 6= ∅} = C\C = ∅ .

As s has convex values and s∗ is not a KKM map, map s has a fixed point by
Proposition 29. �

Given a set X , subset U ⊆ X , and map f : X → X , we say that f has a U -fixed
point , if there exists a point x ∈ X with f(x) ∈ x+ U .

Lemma 33. Let E be a t.v.s., C ⊆ E a nonempty and compact subset, U an
open and absolutely-convex neighborhood of 0, and let map f : C → E be continuous
such that f(C) ⊆ C + U . then f has a U -fixed point.

Proof. Define set-valued map s : C → 2C by s(x) := {y ∈ C | y ∈ f(x)+U} =
(f(x)+U)∩C, x ∈ C. Each value s(x) is convex as the intersection of convex sets,
and nonempty, because f(C) ⊆ C + U . In addition, each fiber s−1(y) = {x ∈ C |
f(x) ∈ y−U} = f−1(y−U) is open by continuity of f . Hence, s is a Fan map. By
Theorem 32 (Fan-Browder), s has a fixed point, i.e., x ∈ s(x) ⊆ f(x) +U . Thus, f
has a U -fixed point. �

Lemma 34. Let E be an l.c.s., A ⊆ E be an arbitrary subset, and let f : A→ A
be compact. Let f have a U -fixed point for all absolutely-convex neighborhoods U
of 0, then f has a fixed point.
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Proof. Suppose for a contradiction that f does not have a fixed point. Then
for each x ∈ A we can find open and absolutely-convex neighborhoods Vx,Wx of 0
such that (x+Vx)∩(f(x)+Wx) = ∅ and f((x+Vx)∩A) ⊆ f(x)+Wx, respectively.

As f(A) is compact, there exists a finite open covering {xi + 1
2Vxi}i∈[n]. Define set

U :=
⋂{ 1

2Vxi | i ∈ [n]}. By construction, U is open and absolutely-convex as a finite
intersection of open and absolutely-convex sets. Now, for an arbitrary x ∈ A, there
exists some index i ∈ [n] such that f(x) ⊆ xi + 1

2Vxi . If x ∈ xi + Vxi , then f(x) ∈
f(xi)+Wxi . By definition of Vxi ,Wxi then f(x) /∈ xi +Vxi , a contradiction. Thus,
x /∈ xi +Vxi . As f(x)+ 1

2Vxi = f(x)−xi +xi + 1
2Vxi ⊆ 1

2Vxi +xi +
1
2Vxi ⊆ xi +Vxi ,

we have x /∈ f(x) + 1
2Vxi . This implies f(x) /∈ x+ U for all x ∈ A by definition of

U . Hence, f has no U -fixed point in contradiction to the assumption. �

Now, we have everything prepared to prove the main result.

Theorem 35 (Schauder-Tychonoff). Let E be an l.c.s., C ⊆ E be a nonempty
and convex subset, and let map f : C → C be compact. Then f has a fixed point.

Proof. By Lemma 34, it suffices to show that f has a U -fixed point for every

open and absolutely-convex neighborhood U of 0. As f(C) is compact by assump-

tion on f , there exists a finite open covering {xi + U}i∈[n] of f(C). Define set
K := co({x1, . . . , xn}). Then f(K) ⊆ K + U . Hence, by Lemma 33, f has a
U -fixed point. �

We derive a couple of theorems as consequences of the above result. The
following generalizes the well-known Theorem of Schauder, who proved his fixed-
point theorem for Banach spaces.

Theorem 36 (Tychonoff). Let E be an l.c.s., C ⊆ E a nonempty, convex, and
compact subset, and let map f : C → C be continuous. Then f has a fixed point.

Proof. As f is continuous, f maps compact sets to compact sets. In partic-
ular, image f(C) is compact. Hence, f is compact. Then f has a fixed point by
Theorem 35 (Schauder-Tychonoff). �

As every Banach space is an l.c.s., we have

Theorem 37 (Schauder). Let E be a Banach space, C ⊆ E a nonempty,
convex, and compact subset, and let map f : C → C be continuous. Then f has a
fixed point.

As a closed ball is compact in finite-dimensional spaces, we obtain

Theorem 38 (Brouwer). Every continuous map f : B → B from a closed ball
B ⊆ Rn in itself has a fixed point.

For a purely-analytical proof of Brouwer’s theorem using Lagrange-zero func-
tions, see [Růž04, Thm.2.7]. As an application of Brouwer’s fixed-point theorem,
we obtain

Theorem 39. Given a system of (nonlinear) equations

(13) gi(x) = 0 , x ∈ R
n , i ∈ [n] ,

for continuous functions gi : R
n → R. If there exists a radius R > 0 such that for

all x ∈ Rn of length |x| = R we have

(14)
∑

i∈[n]

gi(x)xi ≥ 0 ,

then (13) has a solution x̂ ∈ Rn of length |x̂| ≤ R.
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Proof. Let g := (g1, . . . , gn), and define f i : ∈ Rn → R by

f i(x) := −R gi(x)

|g(x)| .

Assume that (13) does not have a solution x with |x| ≤ R. Then |g(x)| > 0 for
all such x, and f := (f1, . . . , fn) maps closed ball BR(0) in itself. By Theorem 38

(Brouwer), map f has a fixed point x̂ in BR(0). Then |x̂| = |f(x̂)| =
∣

∣

∣
−R g(x̂)

|g(x̂)|

∣

∣

∣
= R.

By assumption, we have (14), and thus

0 ≤
∑

i∈[n]

gi(x̂)x̂i = −|g(x̂)|
R

∑

i∈[n]

f i(x̂)x̂i = −|g(x̂)|
R

∑

i∈[n]

|x̂i|2 < 0 .

This contradiction shows that (13) must have a solution x with |x| ≤ R. �

2. Monotonic Operators

The Theory of Monotonic Operators is an established theory, which provides
very useful tools to obtain weak solutions to important classes of PDEs. Its develop-
ment roughly begins in the 1960’s, starting with contributions by Brezis, Browder,
and Minty, to name a few of the pioneers. The theory has been mostly developed
in the realm of Banach spaces. In this thesis, without claiming originality, we sys-
tematically lift some of these results to the more general setting of reflexive l.c.s.
and subclasses. In the chapter on applications, the reader will see surprising results
of this generalized theory. While this generalized theory also only yields weak solu-
tions in a first step, the increased freedom, we have in choosing the right underlying
space, namely all smooth functions, is used to even obtain strong(!) solutions.

The remaining part of this section is devoted to the (generalized) Theorems
of Browder & Minty and Brezis, [Růž04, Thms. 1.5, 2.10]. We roughly follow
the reasoning as laid out in [Růž04], with appropriate modifications to obtain the
generalizations, and also with minor modifications and corrections.

In the following, we consider operators A of the form A : E → E′, where E is
an l.c.s. or a Banach space.

Operator A is called strongly (sequentially) continuous iff for every weakly-
convergent series xn ⇀ x we have A(xn) → A(x). It is called (sequentially) demi-
continuous iff xn → x implies A(xn) ⇀ A(x). More general notions are obtained
by replacing in the definitions sequences converging to x with filters converging to
x. Operator A is hemicontinuous iff for all x, y, z ∈ E, the map t 7→ 〈A(x+ t · y), z〉
is continuous in the interval [0, 1].

By the above definitions, operator A being strongly (sequentially) continuous
implies A being (sequentially) continuous, and A being (sequentially) continuous
implies A being (sequentially) demicontinuous, and A being (sequentially) demi-
continuous implies A being hemicontinuous. One step towards the Theorem of
Browder and Minty is a to reverse the latter implication: if f is hemicontinuous
and monotonic, then f is demicontinuous. We need a couple of propositions to
prepare for the proof of this statement.

Operator A : E → E′ is bounded , if A : E → E′
β is bounded, i.e., when consid-

ering the strong dual. It is sequentially bounded , if it maps bounded sequences to
bounded sequences. Operator A is locally (sequentially) bounded , if it maps conver-
gent sequences to bounded sequences, i.e., if for every convergent sequence xn → x
in E (n→∞), sequence (Axn)n is bounded in the strong dual E′

β .
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An operator is bounded iff it is sequentially bounded.1 If an operator is se-
quentially bounded, then it is locally (sequentially) bounded.

Operator A : E → E′ is monotonic iff 〈A(x)−A(y), x− y〉 ≥ 0 for all x, y ∈ E.
It is strictly monotonic iff 〈A(x)−A(y), x−y〉 > 0 for all x, y ∈ E, x 6= y. Operator
A is called maximally monotonic iff for all x ∈ E and b ∈ E′, 〈b−A(y), x− y〉 ≥ 0
for all y ∈ E implies A(x) = b. Operator A : E → E′ is pseudomonotonic, if from
xn ⇀ x in E (n → ∞) and lim supn→∞〈A(xn), xn − x〉 ≤ 0, it follows that for all
y ∈ E we have 〈A(x), x − y〉 ≤ lim infn→∞〈A(xn), xn − y〉. Operator A : E → E′

has property (M), if from xn ⇀ x in E (n → ∞), A(xn) ⇀ b in E′ (n → ∞), and
lim supn→∞〈A(xn), xn〉 ≤ 〈b, x〉, it follows that A(x) = b. In case E is a Banach
space, we call f strongly monotonic iff there exists a constant c > 0 such that
〈A(x) −A(y), x− y〉 ≥ c · ‖x− y‖2E for all x, y ∈ E.

By the above definitions, operator A being strongly monotonic implies A being
strictly monotonic, and A being strictly monotonic implies A being monotonic.

Lemma 40 (Convergence Principles). Let E be a real, (T0), and complete l.c.s..
Then it holds.

(i) In addition, let E be reflexive. Then every weakly-convergent sequence is
bounded.

(ii) In addition, let E be reflexive. From xn ⇀ x in E (n→∞) and fn → f
in E′

β (n→∞) it follows that 〈fn, xn〉 → 〈f, x〉 (n→∞).

(iii) In addition, let E be reflexive. From xn → x in E (n→∞) and fn
∗
⇁ f

in E′
σ (n→∞) it follows that 〈fn, xn〉 → 〈f, x〉 (n→∞).

(iv) In addition, let E be a weak W space. Let (xn)n be a bounded sequence. If
all weakly-convergent subsequences of (xn)n weakly converge to the same
limit x, then the sequence itself weakly converges to x, xn ⇀ x in E
(n→∞).

(v) If every subsequene (xnk
)k of a sequence (xn)n contains a subsequence

(xnkl
)l, converging to the same limit x, then the whole sequence (xn)n

converges to x.
(vi) In addition, let E be a strong W space. Then weak convergence implies

strong convergence.

Proof. Ad (i): Let xn ⇀ x in E (n → ∞) and f ∈ E′ be arbitrary. Then
〈f, xn〉 → 〈f, x〉 (n → ∞). Hence, 〈f, xn〉 is bounded by a constant c(f). This
means that family (j(xn))n is simply bounded in the strong bidual, where j is the
topological isomorphism, existing due to reflexivity of E. As E is barreled due to
reflexivity of E, family (j(xn))n is equicontinuous and thus bounded in the topology
of bounded convergence.2 As j−1 is linear and continuous, it maps bounded sets
to bounded sets. Hence, sequence (xn)n = (j−1(j(xn)))n is bounded.

Ad (ii): The set B := {x, xn | n} is bounded by (i), because the sequence (xn)n

is weakly convergent. We have fn − f → 0 uniformly on bounded sets. Hence,
|〈f − fn, xn〉| ≤ supx̃∈B |〈f − fn, x̃〉| → 0 (n→∞). Furthermore, |〈f, xn − x〉| → 0
(n→∞), because f ∈ E′ and (xn)n is weakly convergent. Combined, we obtain

|〈fn, xn〉 − 〈f, x〉| = |〈fn, xn〉 − 〈f, xn〉+ 〈f, xn〉 − 〈f, x〉|
= |〈f − fn, x̃〉|+ |〈f, xn − x〉| → 0 .

1Proof. Let A : E → F be an operator. ⇒ If sequence (xn) is bounded, then set B :=

{xn | n ∈ N} is bounded. By assumption, A(B) = {A(xn) | n ∈ N}. Hence, sequence (A(xn))
is bounded. ⇐ Assume for a contradiction that operator A is not bounded. Then there exists
a bounded set B such that A(B) is unbounded. Hence, there exist elements yn ∈ A(B)\B(0, n)
with y = A(xn), xn ∈ B. Then bounded sequence (xn) is mapped to the unbounded sequence
(yn), in contradiction to the assumption.

2 [SW99, III.4.2, III.4.1 Cor.]
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Ad (iii): The set C := {x, xn | n} is totally bounded, because the sequence
(xn)n is convergent. 3 As E is barreled, by the principle of uniform boundedness4,
(fn)n does not only converge pointwise to f but also uniformly on precompact
sets. Hence, |〈f − fn, xn〉| ≤ supx̃∈C |〈f − fn, x̃〉| → 0 (n → ∞). Furthermore,
|〈f, xn − x〉| → 0 (n→∞), because f is continuous. Combined, we obtain

|〈fn, xn〉 − 〈f, x〉| = |〈f − fn, x̃〉|+ |〈f, xn − x〉| → 0 .

Ad (iv): Assume for a contradiction that (xn)n does not weakly converge to x.
Then there exist f ∈ E′, ε > 0, and a subsequence (xnk

)k such that for all k we
have

|〈f, x〉 − 〈f, xnk
〉| ≥ ε > 0 .

Subsequence (xnk
)k is bounded, because (xn)n is bounded by assumption. As E

is a weak W space, (xnk
)k is relatively weakly sequentially compact. Hence, there

exists a weakly-convergent subsequence (xnkl
)l, weakly converging to a limit, which

must be x by assumption. But this is impossible by above inequality for f .
Ad (v): Assume the opposite for a contradiction. Then there exists a 0-

neighborhood U , and a subsequence (xnk
)k such that xnk

/∈ x + U for all k. But
this subsequence has a subsequence (xnkl

)l, converging to x, a contradiction.

Ad (vi): Let xn ⇀ x be an arbitrary, weakly-convergent sequence in E (n →
∞). As E is reflexive, by item (i), sequence (xn)n is bounded. Let (xnk

)k be an
arbitrary subsequence, also bounded. As every bounded set in E is sequentially
compact, there exists a subsequence (xnkl

)l, converging to a limit y ∈ E. We must

have x = y, because for arbitrary f ∈ E′, we have liml→∞ f(xnkl
) = f(x) by

assumption, and liml→∞ f(xnkl
) = f(y), implying f(y − x) = 0 for all f ∈ E′. As

every subsequence of (xn)n has a subsequence, converging to the same limit x, the
whole sequence converges to x, by item (v). �

Lemma 41 (Minty Trick). Let E be a real, (T0), complete, and reflexive l.c.s..
Let operator A : E → E′

β be monotonic and hemicontinuous. Then it holds:

(i) Operator A is maximally monotonic.
(ii) If xn ⇀ x (in E), A(xn) ⇀ b (in E′), and 〈A(xn), xn〉 → 〈b, x〉, then

A(x) = b.
(iii) If either xn ⇀ x (in E) and A(xn) → b (in E′), or xn → x (in E) and

A(xn) ⇀ b (in E′), then A(x) = b.

Proof. Ad (i): Let x ∈ E and b ∈ E′ be given such that 〈b−A(y), x− y〉 ≥ 0
for all y ∈ E. Set y := x− t · z, t > 0. Then 〈b−A(x− t · z), z〉 ≥ 0 by assumption
and linearity. As A is hemicontinuous, we can let t→ 0, obtaining 〈b−A(x), z〉 ≥ 0.
Analogously, but replacing z with −z, we obtain 〈b − A(x), z〉 ≤ 0. Consequently,
〈b−A(x), z〉 = 0 for all z ∈ E. As E is an l.c.s., we obtain A(x) = b.

Ad (ii): As A is monotonic, we have 0 ≤ 〈A(xn)− A(y), xn − y〉 for all y ∈ E.
By linearity, we have

〈A(xn), xn〉 − 〈A(y), xn〉 − 〈A(xn), y〉+ 〈A(y), y〉 ≥ 0 .

By assumption, 〈A(xn), xn〉 → 〈b, x〉, 〈A(y), xn〉 → 〈A(y), x〉, and 〈A(xn), y〉 →
〈b, y〉, respectively. Hence, for all y ∈ E we have

〈b−A(y), x− y〉 = 〈b, x〉 − 〈A(y), x〉 − 〈b, y〉+ 〈A(y), y〉 ≥ 0 .

By (i), operator A is maximally monotonic. Hence, A(x) = b.

3 For every 0-neighborhood U , there exists n0 such that xn ∈ x + U for all n ≥ n0. Set
B := {x, x1, . . . , xn0−1}. Then C ⊆ B + U , showing that C is totally bounded.

4 [SW99, III.4.6]
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Ad (iii): We have 〈A(xn), xn〉 → 〈b, x〉, in the first case by Lemma 40, item
(ii), in the second case by the same Proposition, item (iii). By (ii), we obtain
A(x) = b. �

For the following two properties it is not totally clear, how they can be lifted
to general l.c.s.. Hence, we state them for the Banach space setting only. We con-
jecture that these statements hold in a much more general situation, e.g., barreled
l.c.s..

Lemma 42. Let E be a Banach space, and let A : E → E′
β be an operator. Then

it holds:

(i) If A is strongly (sequentially) continuous, then A is compact.
(ii) If A is monotonic, then A is locally (sequentially) bounded.

Proof. Ad (i): Let B be an arbitrary bounded set. We have to show that
A(B) is relatively compact. As compactness and sequential compactness coincide
in Banach spaces (actually, in all Fréchet spaces), it suffices to show that every
sequence (A(xn))n in A(B) contains a convergent subsequence, where xn ∈ B. As
B is bounded, there exists a weakly-convergent subsequence xnk

⇀ x. As A is
strongly (sequentially) continuous, then A(xnk

)→ A(x) in E′ (k →∞).
Ad (ii): Assume for a contradiction that A is not locally bounded. Then there

exists a convergent sequence xn → x with ‖A(xn)‖E′ →∞ for n→∞.
As A is monotonic, for all y ∈ E we have

0 ≤ 〈A(xn)−A(y), xn − y〉 = 〈A(xn)−A(y), (xn − x) + (x − y)〉 .

By linearity, we have

0 ≤ 〈A(xn), xn − x〉+ 〈A(xn), x− y〉+ 〈−A(y), xn − x〉+ 〈−A(y), xn − y〉 .

Rearranging yields

〈A(xn), y − x〉 ≤ 〈A(xn), xn − x〉 − 〈A(y), xn − y〉 .

Set cn := (1 + ‖A(xn)‖E′ · ‖xn − x‖E)
−1

. Define

c(x, y) := sup
n

‖A(y)‖E′ · (‖xn‖E + ‖y‖E)

1 + ‖A(xn)‖E′ · ‖xn − x‖E
<∞ .

Then

cn · 〈A(xn), y − x〉 ≤ cn · (‖A(xn)‖E′ · ‖xn − x‖E + ‖A(y)‖E′ · (‖xn‖E + ‖y‖E))

≤ 1 + c(x, y) .

Again, as A is monotonic, for all y ∈ E we have

0 ≤ 〈A(y)−A(xn), y − xn〉 = 〈A(y)− A(xn), (y − x) + (x− xn)〉 .

By linearity, we have

0 ≤ 〈A(y), y − x〉 + 〈−A(xn), y − x〉+ 〈A(y), x − xn〉+ 〈−A(xn), x− xn〉 .

Rearranging yields

−〈A(xn), y − x〉 ≤ 〈−A(xn), x− xn〉+ 〈A(y), y − xn〉 .

Hence, we also have

−cn · 〈A(xn), y − x〉 ≤ cn · (‖A(xn)‖E′ · ‖xn − x‖E + ‖A(y)‖E′ · (‖xn‖E + ‖y‖E))

≤ 1 + c(x, y) .

As z = y − x is arbitrary, supn |〈cn · A(xn), z〉| ≤ c̃(x, z) <∞. We have shown
that the family of linear forms (cn ·A(xn)) is pointwise bounded. By the principle of
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uniform boundedness, we obtain ‖cn ·A(xn)‖E′ ≤ c(x) <∞. Set dn := ‖f(xn)‖E′ .
Then

dn ≤
c(x)

cn
= c(x) · (1 + dn · ‖xn − x‖E) .

Rearranging yields

dn ≤
c(x)

1 + c(x) · ‖xn − x‖E
.

Let ‖xn − x‖E → 0. Then there exists n0 such that for all n ≥ n0 we have
‖A(xn)‖E′ = dn ≤ 2 · c(x). But this is a contradiction to the assumption that
‖A(xn)‖E′ is unbounded. �

We remark that the argument in the proof of [Růž04, p.62, Lemma 1.4] to
repeat the reasoning, by replacing variable v with 2u − v, seems to be flawed.
Note that operator A is not linear. The above proof corrects this, making use of
monotonicity again.

Lemma 43. Let E be a real, (T0), complete, and reflexive l.c.s.. Let A : E → E′
β

be an operator. Then it holds:

(i) If A is (sequentially) demicontinuous, then A is locally (sequentially)
bounded.

(ii) In addition, let E′
β be a weak W space. If A is locally (sequentially)

bounded, hemicontinuous, and monotonic, then A is (sequentially) demi-
continuous.

Proof. Ad (i): Assume for a contradiction that A is not locally (sequentially)
bounded. Then there exists a convergent sequence xn → x (n → ∞) such that
(A(xn))n is unbounded. As A is demicontinuous, A(xn) ⇀ A(x) in E′

β (n → ∞).

But then by Lemma 40 (i), (A(xn))n is bounded, a contradiction.
Ad (ii): Let xn → x a convergent sequence in E. As A is locally (sequentially)

bounded by assumption, (A(xn))n is bounded in the strong dual E′
β . By assump-

tion, E′
β is a weak W space. Hence, (A(xn))n is relatively sequentially compact.

Thus, there exists a convergent subsequence A(xnk
) → b (k → ∞) for a b ∈ E′.

As E is reflexive and A is monotonic and hemicontinuous, by Lemma 41 (iii), we
have A(x) = b. In addition, all weakly-convergent subsequences of (A(xn))n weakly
converge to b. Otherwise, again by Lemma 41 (iii), we would have A(x) = c for a
c 6= b. Then, by Lemma 40 (iv), the whole sequence (A(xn))n weakly converges to
b = A(x). This shows that A is (sequentially) demicontinuous. �

Lemma 44. Let E be a real, (T0), and complete l.c.s., and let A, g : E → E′ be
operators. Then it holds:

(i) If A is monotonic and hemicontinuous, then A is pseudomonotonic.
(ii) In addition, let E be reflexive. If A is strongly (sequentially) continuous,

then A is pseudomonotonic.
(iii) If A and B are pseudomonotonic, then A+B is pseudomonotonic.
(iv) If A is pseudomonotonic, then A has property (M).
(v) In addition, let E be reflexive and E′

β be a weak W space. If A is pseu-

domonotonic and locally (sequentially) bounded, then A is demicontinu-
ous.

Proof. Ad (i): Let xn ⇀ x be an arbitrary sequence in E (n → ∞) with
lim supn→∞〈A(xn), xn − x〉 ≤ 0. We have 〈A(xn) − A(x), xn − x〉 ≥ 0, because
A is monotonic. Hence, lim infn→∞〈A(xn), xn − x〉 ≥ 〈A(x), xn − x〉 = 0. Here,
we used weak convergence of xn ⇀ x. Combined with the assumption, we obtain
limn→∞〈A(xn), xn − x〉 = 0.
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Let y ∈ E and t > 0 be arbitrary. Set z := x + t · (y − x). By monotonicity of
A, 〈A(xn)−A(z), xn − (x+ t · (y − x))〉 ≥ 0, implying

t · 〈A(xn), x− y〉 ≥ −〈A(xn), xn − x〉+ 〈A(z), xn − x〉+ t · 〈A(z), x− y〉 .

Hence, lim infn→∞〈A(xn), x − y〉 ≥ 〈A(z), x− y〉, where we have used t > 0, weak
convergence of xn ⇀ x, and limn→∞〈A(xn), xn−x〉 = 0. Using the latter limit again
and the hemicontinuity of A for t → 0+, we obtain lim infn→∞〈A(xn), xn − y〉 ≥
〈A(u), x− y〉. This shows A to be pseudomonotonic.

Ad (ii): Let xn ⇀ x be a weakly-convergent sequence in E (n → ∞). By
assumption, A is strongly (sequentially) continuous. Hence, A(xn) → A(x) in
E′

β (n → ∞). As E is reflexive, by Lemma 40 (iii), for all y ∈ E we obtain

〈A(x), x − y〉 = limn→∞〈A(xn), xn − y〉. This shows A to be pseudomonotonic.
Ad (iii): Let xn ⇀ x be a sequence in E (n → ∞) with lim supn→∞〈A(xn) +

B(xn), xn − x〉 ≤ 0. We claim that we have both lim supn→∞〈A(xn), xn − x〉 ≤ 0
and lim supn→∞〈B(xn), xn − x〉 ≤ 0, respectively. Assume for a contradiction that
a := lim supn→∞〈A(xn), xn−x〉 > 0 and thus lim supn→∞〈B(xn), xn−x〉 ≤ −a. As
operator B is pseudomonotonic, we have 〈B(x), x−y〉 ≤ lim infn→∞〈B(xn), xn−y〉
for all y ∈ E. For y := x we obtain the contradiction 0 = 〈g(x), x − x〉 ≤
lim infn→∞〈B(xn), xn − x〉 ≤ −a < 0. Pseudomonotonicity of A and B now
yields inequalities 〈A(x), x − y〉 ≤ lim infn→∞〈A(xn), xn − y〉 and 〈B(x), x − y〉 ≤
lim infn→∞〈B(xn), xn − y〉 for all y ∈ E, respectively. Combining these two in-
equalities shows that A+B is pseudomonotonic.

Ad (iv): Let xn ⇀ x be a sequence in E (n→∞) such that A(xn) ⇀ b in E′
β

(n→∞) and lim supn→∞〈A(xn), xn〉 ≤ 〈b, x〉. As weak convergence implies ∗-weak
convergence (via j : E → E′′, 〈jx,A〉 = 〈A, x〉), we have limn→∞〈A(xn), x〉 = 〈b, x〉.
Hence, lim supn→∞〈A(xn), xn − x〉 ≤ 0. As by assumption A is pseudomonotonic,
for all y ∈ E, it holds

〈A(x), x − y〉 ≤ lim inf
n→∞

〈A(xn), xn − y〉 ≤ 〈b, x〉 − 〈b, y〉 = 〈b, x− y〉 .

Replacing y by 2x − y, for all y ∈ E, we have 〈A(x), x − y〉 = 〈b, x − y〉. Hence,
A(x) = b. This shows that A has property (M).

Ad (v): Let xn → x be an arbitrary convergent sequence in E (n → ∞). As
A is locally (sequentially) bounded, (A(xn))n is bounded. Let (A(xnk

))k be an
arbitrary (bounded) subsequence. As E′

β is a weak W space, there exists relatively

weakly convergent subsequence A(xnkl
) ⇀ b in E′ (l → ∞), for a b ∈ E′. As E

is reflexive, A is monotonic and hemicontinuous, xnkl
→ x, by Lemma 41 (iii), it

follows that b = A(x). As every subsequence of (Axn)n contains a sub-subsequence,
weakly converging to the same limit A(x), this holds for the whole sequence, i.e.,
A(xn) ⇀ A(x). Hence, operator A is demicontinuous.

�

We now introduce a very general notion of coerciveness for continuous functions
between t.v.s.. Let E and F be t.v.s., and let f : E → F be a continuous map. As
E and F are fully regular, their Stone-Čech compactifications exist, and we get the
extension βf : βE → βF . We call f coercive, if βf maps βE\β(E) to βF\β(F ).

Let A : E → E′ be an operator from E in its dual E′. We call A coercive, if
map

x 7→ 〈A(x), x〉 : E → R

is coercive.5 Note that this map must then be continuous.6

5In the submitted thesis, we defined coerciveness on a closed subspace D. This more fine-
granular notion is not needed in the sequel.

6This remark has been added after thesis submission.
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In caseE is a Banach space, operatorA : E → E′ is traditionally called coercive,
if for any b ∈ E′ we have

lim
‖x‖E→∞

〈A(x) − b, x〉
‖x‖E

=∞ .

Proposition 45. 7 Let E be a reflexive Banach space. If an operator A : E →
E′ is (sequentially) demicontinuous and coercive in the Banach sense, then it is
also coercive in the general sense.

Proof. It suffices to show that the map x 7→ g(x) := 〈A(x), x〉 is (sequentially)
continuous, if A is (sequentially) demicontinuous. Let xn → x be an arbitrary,
convergent sequence in E (n → ∞). We have to show that g(xn) → g(x) in
R (n → ∞). As A is (sequentially) demicontinuous, it is locally (sequentially)
bounded, by Lemma 43 (i). We have

|g(xn)− g(x)| = |〈A(x), x〉 − 〈A(xn), xn − x〉 − 〈A(xn), x〉|
≤ |〈A(x) −A(xn), x〉|+ |〈A(xn), xn − x〉| .

Then |〈A(x) − A(xn), x〉| → 0, because A(xn) ⇀ A(x) implies A(xn)
∗
⇁ A(x) by

reflexivity of E. Furthermore, |〈A(xn), xn− x〉| ≤ ‖A(xn)‖ · ‖xn− x‖ → 0, because
supn ‖A(xn)‖ is bounded. �

Proposition 46. If E is an infinite-dimensional and separable t.v.s., then
there exists a countable independent set {y1, y2, . . .} such that

E =
⋃

n

En , where En := span{y1, . . . , yn} .

Proof. There exists a countable and dense set X = {x1, x2, . . .}, E = X ,
because E is separable by assumption. We define index kn, element yn, and set En

inductively. For the induction base, set k1 := 2, y1 := x1, and thus E1 := span{y1}.
For the induction step, kn, yn, and En are given. There is a smallest index k > kn

such that xk /∈ En. This exists, because E is infinite-dimensional. Set kn+1 := k+1,
yn+1 := xk, and En+1 := span{y1, . . . , yn+1}. We have X ⊆ ⋃nEn, from which
the statement follows. �

Theorem 47 (Galerkin Method). 8 Let E be a T0, complete, separable, weak W
space, let E′

β be a weak W space. Let A : E → E′ be a bounded and demicontinuous

operator, and let b ∈ E′. Furthermore, let map x 7→ A(x) − b be coercive. Then
there exists x ∈ E with A(x) = b.

Proof. We can write E as E =
⋃

nEn, where En := span{y1, . . . , yn}, by
Proposition 46. We search for approximative solutions xn ∈ En of the form xn =
∑

k∈n c
n
k · yk, solving the Galerkin system

(15) 〈A(xn)− b, yk〉 = 0 , k ∈ [n] .

Define a nonlinear system of equations, gn(cn) = 0, where gn := (gn
1 , . . . , g

n
n),

gn
k : Rn → R, and

cn 7→ gn
k (cn) := 〈A(xn)− b, yk〉 .

As weak and strong convergence coincide on finite-dimensional spaces En, and as
A is demicontinuous, each gn is continuous. By assumption, map x 7→ 〈A(x)− b, x〉

7This proposition has been added after thesis submission for further clarification of the rela-
tionship between the notions of coerciveness.

8This Theorem and its proof has been corrected, compared to the submitted thesis. The
original formulation required operator A to be coercive only on a subspace. Unfortunately, the
argument fails in such a situation. Operator A has to be coercive on the whole space.
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is coercive. Hence, there exists a nonempty, absolutely-convex, open, and bounded
set B ⊆ E such that 〈A(x) − b, x〉 > 0 for all x ∈ E\B. Define Bn := B ∩ En.
Then Bn ⊆ {x ∈ En | |x|En < rn} for an rn > 0. Here, | · |En denotes the euclidean
norm on En. Hence, for all x ∈ En with |x|En ≥ rn, we have 〈A(x) − b, x〉 ≥ 0,
because x /∈ Bn.9 By an application of Brouwer’s fixed-point theorem [Růž04,
Lemma 2.26, p.17], there exists solution xn ∈ En with |xn|En ≤ rn to system (15).

As E is a weak W space, bounded sequence (xn)n contains a weakly-convergent
subsequence, converging to a limit x. In the sequel, for notational simplicity, we
denote this subsequence again with (xn)n.

For all w ∈ ⋃nEn there exists n0 such that for all n ≥ n0 we have 〈A(xn), w〉 =
〈b, w〉. Hence,

lim
n→∞

〈A(xn), w〉 = 〈b, w〉
for all w ∈ ⋃nEn.

As A is bounded, sequence (A(xn)) is bounded. Let (A(xnk
))k be an arbitrary

subsequence of (A(xn))n. As E′
β is a weak W space, there exists weakly-convergent

sub-subsequence (A(xnkl
))l, converging to a limit c ∈ E′. As weak convergence

implies ∗-weak convergence (via j : E → E′′),

〈A(xnkl
), w〉 = 〈j(w), A(xnkl

)〉 → 〈j(w), c〉 = 〈c, w〉
for all w ∈ ⋃nEn. Hence, 〈b, w〉 = 〈c, w〉. As

⋃

nEn is dense in E and b, c are
continuous, we obtain b = c.

We showed that every subsequence of (A(xn))n has a sub-subsequence, weakly
converging to the same limit b. Thus, A(xn) ⇀ b in E′ (n→∞) due to Lemma 40
(v).

We have xn ∈ En. Hence, 〈A(xn), xn〉 = 〈b, xn〉. Then

lim
n→∞

〈A(xn), xn〉 = lim
n→∞

〈b, xn〉 = 〈b, x〉 ,

because xn ⇀ x.
As E is reflexive, A is monotonic and hemicontinuous, xn ⇀ x, A(xn) ⇀ b, and

limn→∞〈A(xn), xn〉 = 〈b, x〉, we can apply Lemma 41 (iii) to obtain A(x) = b. �

We recover the original theorems, when we restrict the theory to Banach spaces.

Theorem 48 (Browder & Minty, 1963). Let E be a separable and reflexive
Banach space. Let A : E → E′ be a (sequentially) hemicontinuous, monotonic, and
coercive operator. Then A is surjective. The solution set is convex, closed, and
bounded. In case that A is strictly monotonic, then the solution is unique.

Proof. 10 As A is monotonic, it is locally (sequentially) bounded, by Lemma
42 (ii). As A is (sequentially) hemicontinuous, monotonic, and locally (sequen-
tially) bounded, it is (sequentially) demicontinuous, by Lemma 43 (ii). As A is
(sequentially) demicontinuous and coercive in the Banach sense, for every b ∈ E′,
map x 7→ A(x) − b is coercive in the general sense. Hence, by Theorem 47, there
exists a solution x ∈ E with A(x) = b. As b was arbitrary, A is surjective.

Define the set of solutions S := {x ∈ E | A(x) = b}. We thus proved that S is
nonempty.

Set S is closed : Let xn → x be a convergent sequence with xn ∈ S. We want
to show that x ∈ S. For all y ∈ E, we have

〈b−A(y), x − y〉 = lim
n→∞

〈A(xn)−A(y), xn − y〉 ≥ 0 ,

9This would not hold, if the operator were coercive only on a subspace of E.
10The proof has been slightly changed, compared to the submitted thesis, to align with the

correction of Theorem 47.
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because A is monotonic. As A is monotonic and hemicontinuous, it is maximally
monotonic by Lemma 41 (i). Hence, it follows that A(x) = b, i.e., x ∈ S.

Set S is bounded : Assume for a contradiction that S is unbounded. Then for
every R > 0, there exists x ∈ S with ‖x‖E ≥ R. As A is coercive by assumption,
there exists R0 > 0 such that 〈A(x), x〉 ≥ (1 + ‖b‖E′) · ‖x‖E for all ‖x‖E ≥ R0 > 0.
Hence, for x ∈ S with ‖x‖E ≥ R0, we obtain the contradiction

0 = 〈A(x), x〉 − 〈b, x〉 ≥ (1 + ‖b‖E′) · ‖x‖E − ‖b‖E′ · ‖x‖E > 0 .

Thus, S is bounded.
Set S is convex : Let x0, x1 ∈ S, and let 0 ≤ λ ≤ 1. We want to show that the

convex combination z := λ · x0 + (1 − λ) · x1 ∈ S. For all y ∈ E we have

〈b−A(y), z − y〉 = 〈b −A(y), λ · (x0 − y) + (1 − λ) · (x1 − y)〉
= λ · 〈A(x0)−A(y), x0 − y〉+ (1− λ) · 〈A(x1)−A(y), x1 − y〉
≥ 0 ,

because A is monotonic. As A is maximally monotonic, A(z) = b, i.e., z ∈ S.
If A is strictly monotonic, there is at most one solution: Assume for a con-

tradiction that there exist two different solutions x, y ∈ S, x 6= y. Then by strict
monotonicity,

0 < 〈A(x) −A(y), x − y〉 = 〈b − b, x− y〉 = 0 ,

a contradiction. �

Theorem 49 (Brezis, 1968). Let E be a separable and reflexive Banach space.
Let A : E → E′ be a pseudomonotonic, locally (sequentially) bounded, and coercive
operator. Then A is surjective.

Proof. 11 As A is pseudomonotonic and locally (sequentially) bounded, it is
(sequentially) demicontinuous, by Lemma 44 (v). As A is (sequentially) demicon-
tinuous and coercive in the Banach sense, for every b ∈ E′, map x 7→ A(x) − b is
coercive in the general sense. Hence, by Theorem 47, there exists a solution x ∈ D
with A(x) = b. As b was arbitrary, A is surjective. �

3. Dugundji and Quasi-Extensions

Recall the Theorem of Tietze-Urysohn, which states that one can extend real-
valued functions, defined on a closed subset of a normal space, to the whole space.
Dugundji’s Extension Theorem is a strict generalization of this, and is a fundamen-
tal tool in the theory of absolute neighborhood retracts (ANRs), see e.g., [GD03].

Theorem 50 (Dugundji’s Extension). For every metrizable space E the fol-
lowing holds. For every l.c.s. F , every nonempty and closed subset A ⊆ E, and
every continuous map f : A→ F , there exists a continuous extension g : E → C of
f with g(E) ⊆ co(f(A)).

Proof. Let d be a metric for E. Note that d(x,A) > 0 for every x ∈ E\A,
because A is closed. Then the family of balls {B(x, 1

2d(x,A)) | x ∈ E\A} is an open
covering of E\A. By the Theorem of Stone, this covering has a neighborhood-finite
open refinement {Uι | ι ∈ I} and a partition of unity {χι | ι ∈ I}, subordinate to this
refinement. For each Uι, there exists a point xι ∈ E\A with Uι ⊆ B(xι,

1
2d(xι, A)).

For every xι, there exists a point aι ∈ A with d(xι, aι) ≤ 2d(xι, A).

11The proof has been slightly changed, compared to the submitted thesis, to align with the
correction of Theorem 47.
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Define the extension g by

g(x) :=

{

f(x) , x ∈ A ,
∑

ι∈I χι(x)f(aι) , x ∈ E\A .
We have g(E) ⊆ co(f(A)), because the sum in the definition of g is always

finite due to the neighborhood-finiteness of the refinement. Hence, g(x) is always
a convex combination of values of f(A).

We need to show the continuity of g. The following calculations will be used.
First of all, for every x ∈ Uι, we have d(xι, A) ≤ 2d(x,A), because

d(xι, A) ≤ d(xι, x) + d(x,A) ≤ 1

2
d(xι, A) + d(x,A) ≤ 2d(x,A) .

Furthermore, for every x ∈ Uι and a ∈ A, we have d(a, aι) ≤ 6d(a, x), because

d(a, aι) ≤ d(a, x) + d(x, xι) + d(xι, aι) ≤ d(a, x) +
1

2
d(xι, A) + 2d(xι, A)

≤ d(a, x) + d(x,A) + 4d(x,A) ≤ 6d(a, x) .

For x ∈ E\A, f is continuous as a finite sum of continuous functions χι. For
x ∈ A, we prove the continuity in the following steps. As F is an l.c.s., there exists
a convex and open neighborhood C of f(x). As f is continuous on A, there exists a
δ > 0 such that f(B(x, δ) ∩A) ⊆ C. We prove that g(B(x, δ/6)) ⊆ C, showing the
continuity of g in x. Let z be any point in B(x, δ/6)\A. There are finitely many sets
{Uι | ι ∈ I0} containing z. Then d(x, aι) < δ for all ι ∈ I0, because of d(z, x) < δ/6
and the above calculation. Then all aι, ι ∈ I0, are contained in B(a, δ) ∩ A,
implying f(aι) ∈ C, ι ∈ I0. By definition of g, g(x) =

∑

ι∈I0
χι(x)f(aι) is a convex

combination of these points and thus contained in C, proving the continuity of G
in point x ∈ A. �

As the values of the extension are in the convex hull of the image values of the
original function, an immediate consequence is the following theorem. A metrizable
t.v.s. E with such a property is called an absolute retract .

Theorem 51 (Retraction). For every metrizable t.v.s. E the following holds.
For every l.c.s. F , every nonempty and convex subset C ⊆ F , every nonempty
and closed subset A ⊆ E, and every continuous map f : A → C, there exists a
continuous extension g : E → C of f .

In particular, for every metrizable t.v.s. E, and every nonempty and convex
subset C ⊆ E, there exists a retraction from E onto C.

While extension theorems are available in the setting of metrizable spaces, no
such results of the type of Dugundji are known for general l.c.s.. However, one
can prove such results for quasi-extensions, where the new map coincides with the
original one only approximately.

Let E and F be l.c.s., let C ⊆ E be a compact subset, let f : C → F be a
continuous map, let p be a continuous seminorm on F , and let ε > 0. A map
g : E → F is a (p, ε) quasi-extension of f , if p(f(x)− g(x)) < ε for all x ∈ C, and if
g(E) ⊆ co(f(C)). The following result is taken from [AKP+92, 3.6.1], and slightly
extended.

Theorem 52. Let E and F be l.c.s., let C ⊆ E be a compact subset, let
f : C → F be a continuous map, let p be a continuous seminorm on F , and let
ε > 0. Then there exists a (p, ε) quasi-extension of f .

Proof. It suffices to prove the statement for ε = 1, because p/ε is a continuous
seminorm for every ε > 0. As f is uniformly-continuous on compact set C, we can
find a continuous seminorm p0 on E with p(f(x) − f(y)) ≤ 1/2 for every x, y ∈ C
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with p0(x − y) ≤ 1. Let Q be a finite (1/2)-net for C with respect to seminorm
p0. Fix δ > 0 to be defined later. For each y ∈ Q define the continuous positive
function µy : E → R by µy(x) := δ+1− p0(x− y), if p0(x− y) ≤ 1, and µy(x) := δ,
if p0(x− y) ≥ 1. Define map g : E → F by

g(x) :=





∑

y∈Q

µy(x)





−1
∑

y∈Q

µy(x)f(y) .

By construction, g is continuous (as a finite sum of continuous functions), finite-
dimensional (the vectors {f(y) | y ∈ Q} span a finite-dimensional space), and it
maps E into co(f(Q)) ⊆ co(f(C)).

Let x ∈ C be arbitrary. We want to bound p(f(x) − g(x)). For this, define
Q1 := {y ∈ Q | p0(x− y) ≤ 1} and Q2 := Q\Q1, respectively.

For the sum with Q1 we have




∑

y∈Q

µy(x)





−1
∑

y∈Q1

µy(x)p(f(x) − f(y))

≤





∑

y∈Q

µy(x)





−1
∑

y∈Q1

µy(x) · 1
2
≤ 1

2
·





∑

y∈Q

µy(x)





−1
∑

y∈Q

µy(x) =
1

2
.

Choose δ := 1/(4dn), where n denotes the number of elements in Q, and
where d denotes the diameter of f(C) with respect to p. For x there is a y ∈ Q
with p0(x − y) ≤ 1/2, because Q is a (1/2)-net. Hence, µy(x) ≥ 1/2 + δ and
(

∑

y∈Q µy(x)
)−1

≤ 2. In addition, µy(x) = δ for all y ∈ Q2. Then for the sum

with Q2 we have




∑

y∈Q

µy(x)





−1
∑

y∈Q2

µy(x)p(f(x) − f(y)) ≤ 2dnδ ≤ 1

2
.

Combining the above two sums, we obtain

p(f(x)− g(x)) ≤





∑

y∈Q

µy(x)





−1
∑

y∈Q

µy(x)p(f(x) − f(y))

=





∑

y∈Q

µy(x)





−1



∑

y∈Q1

µy(x)p(f(x) − f(y)) +
∑

y∈Q2

µy(x)p(f(x) − f(y))





≤ 1

2
+

1

2
= 1 .

�

4. Measures of Noncompactness

An important part of Functional Analysis is concerned with measures of non-
compactness and condensing operators. See [AKP+92, 3.6.1] for a systematic
exposition of this topic. A measure of noncompactness quantifies the deviation of a
bounded subset of a space from being compact. Hence, this notion does not make
sense in Montel spaces.

The most general definition is as follows: Let E be a l.c.s., and let (Q,≤) be
a partially-ordered set. A map χ : 2E → Q is called a measure of noncompactness
(NMC), if for all subsets A ⊆ E we have χ(A) = χ(co(A)). See also [AKP+92,
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1.2.1]. We note that going beyond l.c.s. to general t.v.s. does not make sense,
because only for l.c.s. it is ensured that the convex hull of a compact set stays
compact.

We will introduce the Hausdorff NMC α as a typical example. Another ex-
ample, not treated here, is the Kuratowksi NMC, which is actually equivalent to
the Hausdorff NMC, see [AKP+92, 1.1.1, 1.1.7]. A condensing operator is a map
under which the image of any set is more compact than the set itself. Via α, we will
define a characteristic [f ]A, quantifying this condensation property. Such operators
will play a distinguished role in the design of the FMV and Feng spectra, defined
in the next chapter.

Let E be a Fréchet space, and let M ⊆ E. The (Hausdorff) measure of non-
compactness of M is defined by

(16) α(M) := inf {ε > 0 |M has a finite ε-net in E} .

For some function spaces, explicit formulas are known to compute the Hausdorff
NMC, see e.g., [AKP+92, 1.1.9–1.1.13] or [AV05, 3.6–3.9].

As a short digression, we show how one could lift the definition of MNC to
limit spaces: Let E := lim−→ι

Eι be the strict inductive limit of a directed family of

Banach spaces Eι, which are not Montel spaces. An example is the space of Radon
measures. On each Eι, the Hausdorff MNC αι is defined. We have the relationship
αι(M) = ακ(M ∩ Eι) for all Eι ⊆ Eκ and bounded subsets M ⊆ Eι. Hence, on
E we can define a limit NMC α : E → R by α(M) := supι αι(M) for all bounded
subsets M ⊆ E.

The measure of noncompactness has the following properties.

Proposition 53. For sets M,N ⊆ E, z ∈ E, and λ ∈ K we have

(i) α(M) ≤ α(N) for M ⊆ N .
(ii) α(M ) = α(M).
(iii) α(z +M) = α(M), i.e., α is translation-invariant.
(iv) α(λ ·M) = |λ| · α(M), i.e., α is homogeneuous.
(v) α(M) = 0 iff M is precompact.
(vi) |α(M) − α(N)| ≤ α(M +N) ≤ α(M) + α(N). The first inequality only

holds in case both subsets are nonempty.
(vii) α(M ∪N) = max{α(M), α(N)}.
(viii) α(co(M)) = α(M).
(ix) α(B(z, 1)) = 1, if E is infinite-dimensional, and zero otherwise.
(x) If M1 ⊇ M2 ⊇ . . . is a decreasing sequence of closed sets in E with

α(Mn)→ 0 for n→∞, then the intersection M∞ :=
⋂

nMn is nonempty
and compact.

Proof. We give the straight-forward proof for the sake of completeness.

(i) Every finite ε-net for N is one for M .
(ii) Inclusion α(M) ≤ α(M ) follows from (i). For the other direction, note

that every finite (ε+ δ)-net for M is a finite ε-net for M for all δ > 0.
(iii) If {x1, . . . , xs} is a finite ε-net for M , then {z+ x1, . . . , z+ xs} is a finite

ε-net for z +M .
(iv) If {x1, . . . , xs} is a finite ε-net for M , then {λ · x1, . . . , λ · xs} is a finite

(|λ|ε)-net for λ ·M .
(v) We have M precompact iff M compact iff α(M) = 0 iff α(M) = 0. If

α(M ) = 0, then M is totally bounded and complete. Hence, by [SV06,
5.1.17], M is compact, and vice versa.

(vi) For the first inequality, α(M) ≤ α(M +N) by items (i) and (iii). Then
α(M) ≤ α(M + N) + α(N). For the second inequality, note that if
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{x1, . . . , xs} is a finite ε-net for M and {y1, . . . , yt} is a finite δ-net for
N , then {x1 + y1, . . . , xs + yt} is a finite (ε+ δ)-net for M +N .

(vii) The inclusion max{α(M), α(N)} ≤ α(M ∪N) follows from item (i). For
the other direction, note that the union of a finite ε-net for M with a
finite δ-net for N gives a finite max(ε, δ)-net for M ∪N .

(viii) As M ⊆ co(M), then α(M) ≤ α(co(M)) by item (i). For the other
direction, let N be a finite η-net for M , η > 0. Define C := co(N). We
have d(x, z) ≤ η for all x ∈ co(M) and z ∈ C. This can be seen as follows.
Point z is a convex combination z =

∑

i λi · zi with zi ∈ N , λi ∈ [0, 1],
and

∑

i λi = 1. Now, the subtle issue comes: Making use of Theorem 21
in the third inequality, we have

d(x, z) = d

(

(
∑

i

λi) · x,
∑

i

λi · zi

)

≤
∑

i

d (λi · x, λi · zi)

≤
∑

i

λi · d(x, zi) ≤
∑

i

λi · η = (
∑

i

λi) · η = 1 · η = η .

In addition, set C is compact, because it is a closed and bounded set in
a finite-dimensional space span(N). As C is compact, for every ε > 0,
there exists a finite ε-net K for C. Then K is a finite (η + ε)-net for
co(M).

(ix) It suffices to prove the statement for the unit ball B := B(0, 1). In case
dimE < ∞, ball B is compact. Hence, α(B) = 0 by item (v). Let us
assume dimE = ∞. The trivial estimate is α(B) ≤ 1 by taking B itself
as a covering. Assume for a contradiction that α(B) ≤ ε < 1. Then there
exists a finite ε-net of closed balls of radius ε. Each of these balls in turn
can be covered by finitely-many balls of radius ε2, which gives a finite
ε2-net for B. We can cover the balls of radius ε2 by finitely-many balls
of radius ε3, and so on. Hence, for every n ≥ 1, there is a finite εn-net
for B, showing α(B) ≤ εn → 0 for n → ∞. By item (v), B would be
compact, a contradiction to the fact that the unit ball is not compact in
infinite-dimensional spaces.

(x) As M∞ ⊆ Mn, by item (i) we have α(M∞) ≤ α(Mn) → 0 for n → ∞.
Hence, α(M∞) = 0, and M∞ is precompact by item (v). It is closed as
an arbitrary intersection of closed sets and thus compact. We need to
show that M∞ is nonempty. Choose an element xn from each set Mn.
Build sets Nm := {xn | n ≥ m}. Then Nm ⊆ Mn and precompactness
of each Nn follows from (i) and (v). Hence, there exists a converging
subsequence with limit x∞. This limit belongs to M∞.

�

From item (v) it follows that the measure of noncompactness only makes sense
in infinite-dimensional spaces. Otherwise, it is zero.

For metrizable t.v.s., we will define two characteristics [·]a and [·]A, respectively,
based on the measure of noncompactness. Let f : E → F be a bounded operator
between metrizable t.v.s. E and F , respectively. We define the lower and upper
characteristics of noncompactness by

[f ]a := sup {γ > 0 | α(f(M)) ≥ γ · α(M),M bounded} ,(17)

[f ]A := inf {γ > 0 | α(f(M)) ≤ γ · α(M),M bounded} .(18)
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For infinite-dimensional and metrizable t.v.s., there exist bounded sets M with
positive measure of noncompactness. Hence, we can rewrite above equations to

[f ]a := inf
α(M)>0

α(f(M))

α(M)
,(19)

[f ]A := sup
α(M)>0

α(f(M))

α(M)
.(20)

By the properties of α, we obtain

Proposition 54. For all bounded operators f, g : E → F between infinite-
dimensional, metrizable t.v.s. E and F , and all λ ∈ K, the following properties
hold.

(i) [λ · f ]a = |λ| · [f ]a, i.e., [·]a is homogeneous.
(ii) [f + g]A ≤ [f ]A + [g]A and [λ · f ]A = |λ| · [f ]A, i.e., [·]A is a seminorm.
(iii) [f ]a − [g]A ≤ [f + g]a ≤ [f ]a + [g]A.
(iv) |[f ]a − [g]a| ≤ [f − g]A. In particular, [f − g]A = 0 implies [f ]a = [g]a.
(v) [f−1]A = [f ]−1

a for f a homeomorphism.
(vi) [f ]a ≤ [f ]A.
(vii) [f ]A ≤ ‖f‖ in case E and F are Banach spaces and f is linear.

Proof. We give a proof for the sake of completeness.

(i) We have

[λ · f ]a = inf
α(M)>0

α((λ · f)(M))

α(M)
= inf

α(M)>0

|λ| · α(f(M))

α(M)
= |λ| · [f ]a .

(ii) The proof of [λ · f ]A = |λ| · [f ]A is analogous to the one for [·]a.

[f + g]A = sup
α(M)>0

α((f + g)(M))

α(M)
≤ sup

α(M)>0

α(f(M)) + α(g(M))

α(M)

≤ sup
α(M)>0

α(f(M))

α(M)
+ sup

α(M)>0

α(g(M))

α(M)
= [f ]A + [g]A .

(iii) The second inequality is proved by

[f + g]a = inf
α(M)>0

α((f + g)(M))

α(M)
≤ inf

α(M)>0

α(f(M)) + α(g(M))

α(M)

≤ inf
α(M)>0

α(f(M))

α(M)
+ sup

α(M)>0

α(g(M))

α(M)
= [f ]a + [g]A .

The first inequality is a consequence of the second with

[f ]a = [(f + g)− g]a ≤ [f + g]a + [−g]A = [f + g]a + [g]A .

(iv) We have [f ]a − [g − f ]A ≤ [f + (g − f)]a = [g]a. Hence, [f ]a − [g]a ≤
[g − f ]a = [f − g]A. We then also have [g]a − [f ]a ≤ [g − f ]a = [f − g]A.

(v) As f is a homeomorphism, we have α(M) > 0 iff α(f(M)) > 0. Hence,
we can argue

[f−1]A = sup
α(N)>0

α(f−1(N))

α(N)
= sup

α(f(M))>0

α(f−1(f(M)))

α(f(M))

= sup
α(M)>0

α(M)

α(f(M))
=

(

inf
α(M)>0

α(f(M))

α(M)

)−1

= [f ]−1
a .

(vi) By definition, we have

[f ]a = inf
α(M)>0

α(f(M))

α(M)
≤ sup

α(M)>0

α(f(M))

α(M)
= [f ]A .
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(vii) If {z1, . . . , zn} is a finite ε-net for M , then {f(z1), . . . , f(zn)} is a finite
‖f‖ · ε-net for f(M). Then α(f(M)) ≤ ‖f‖ · α(M).

�

An operator f is condensing, if [f ]A ≤ 1. It is α-contractive, if [f ]A < 1.

Theorem 55 (Darbo). Let E be an infinite-dimensional Banach or Fréchet
space, let C ⊆ E be a nonempty, convex, closed, and bounded subset, and let f : C →
C be α-contractive. Then f has a fixed point.

Proof. We inductively define a sequence of sets by C0 := C, and Cm+1 :=
co(f(Cm)). By construction, each set Cm is nonempty, convex, and closed. Define
set C∞ :=

⋂

m Cm. It is convex, closed, and bounded as the intersection of such
sets. In addition, it is f -invariant, f(C∞) ⊆ C∞. We need to show that C∞
is nonempty. For this, fix γ ∈ ([f ]A, 1). The sequence (Cm)m is monotonically
decreasing with respect to inclusion. We have α(Cm) ≤ γmα(C) < ∞. Hence,
α(Cm)→ 0 for m→∞. This implies that C∞ is nonempty and compact. Now, by
Theorem 36 (Tychonoff) applied to f : C∞ → C∞, f has a fixed point. �

We close this section with the following insight. The characteristics of non-
compactness help to find an invariant compact set, given an invariant bounded set.
This is exploited in the construction of the FMV and Feng spectra.

Lemma 56. Let E and F be infinite-dimensional Banach (or Fréchet) spaces,
let Ω ⊆ E be a nonempty subset, and let f, g : Ω→ F be continuous operators with
[g]A < [f ]a. Then for every nonempty, convex, closed, and bounded subset B ⊆ Ω
with

(21) f−1(co(g(B) ∪ {0})) ⊆ B ,

there exists a nonempty, convex, (closed,) and compact subset C ⊆ B, also fulfilling
above relation (21).

Proof. By Lemma 57, there exists a set C such that f−1(co(g(C)∪{0})) = C.
We have α(C) <∞, because C ⊆ B and B is bounded. Furthermore, we have

[f ]a · α(C) ≤ α(f(C)) ≤ α(co(g(C) ∪ {0})) = α(co(g(C) ∪ {0}))
= α(g(C) ∪ {0}) = α(g(C)) ≤ [g]A · α(C) .

By assumption [g]A < [f ]a, this can only happen with α(C) = 0. Thus, C is
compact. �

Lemma 57. Let E and F be t.v.s., let Ω ⊆ E be a nonempty, convex, and closed
subset with 0 ∈ Ω. Let f, g : Ω → F be two operators, with f continuous. Then
there exists a smallest (in the order of inclusion), nonempty, convex, and closed set
U ⊆ Ω with

(22) f−1(co(g(U) ∪ {0})) ⊆ U .

For this smallest U0, above relation (22) holds with equality.

Proof. Define set U as the set of all nonempty, convex, and closed sets U ⊆ Ω
with 0 ∈ U , fulfilling the relation in (22). The set U is not empty, because Ω ∈ U .
Define U0 :=

⋂U . By construction, U0 is nonempty (0 ∈ U0). It is convex as the
intersection of convex sets.

Let U ∈ U be arbitrary. Define U1 := f−1(co(g(U0) ∪ {0})). Then U1 ⊆
f−1(co(g(U) ∪ {0})) ⊆ U . As U was arbitrary, U1 ⊆ U0. Hence, f−1(co(g(U1) ∪
{0})) ⊆ f−1(co(g(U0) ∪ {0})) = U1. Thus, U1 ∈ U , implying U0 = U1. Conse-
quently, the relation in (22) holds for U0 with equality.

Finally, as V0 := co(g(U0) ∪ {0}) is closed and f is continuous, U0 = f−1(V0)
is closed, too. �
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Interestingly, in the above lemma, no assumption is made on the continuity of
the map g.

5. Michael Selection

Given a set-valued map t : X → 2Y , a selection is defined as a map s : X → Y
such that s(x) ∈ t(x) for all x ∈ X . In the setting of Banach spaces, the existence of
selections was proved first by Michael [Mic56], starting a new branch in topology.

Theorem 58 (Michael Selection). Let X be a paracompact space, and let E
be a Banach space. Let t : X → 2E be a lower-semicontinuous, set-valued map
with nonempty, convex, and closed values. Then there exists a continuous selection
s : X → E for t.

The same phenomenon as for Dugundji’s extension theorem occurs when trying
to lift the selection theorem to general l.c.s.. One then has to accept approximate
instead of exact solutions. Such an approximate selection theorem was established
by Xu [Xu01].

Let X be a subset of a T2 topological space E, let Y be an l.c.s. with ori-
gin 0. Denote with OY (y) the collection of all neighborhoods of y in space Y . Let
t : X → 2E be a set-valued map with nonempty values. Map t is almost lower semi-
continuous (a.l.s.c.), at point x ∈ X , if for each V ∈ OE(0) there exists U ∈ OX(x)
such that

⋂{t(x) + V | x ∈ U} 6= ∅. We say that t has continuous, approximate
selections , if for each V ∈ OE(0), there exists a continuous map s : X → E such
that s(x) ∈ t(x) + V for all x ∈ X .

Theorem 59 (Xu). Let X be paracompact, E an l.c.s., and let s : X → 2E

be a set-valued map with nonempty and convex values. Then s is a.l.s.c. iff s has
continuous, approximate selections.



CHAPTER 3

Existing Spectra

This chapter contains the main theme of this work. It introduces several im-
portant existing nonlinear spectra and analyzes their properties. The selection of
properties is based on the known properties of the linear spectrum, which we recap
in the first section. The nonlinear spectra under consideration are the Rhodius,
Dörfner, Neuberger, Kačurovskĭı, Furi-Martelli-Vignoli (FMV), and Feng spectra,
respectively. The analyzed properties are nonemptiness, closedness, boundednes,
and semicontinuity. The material has been mainly taken from [ADPV04]. Hence,
nothing presented here is new. Nevertheless, the presentation differs in two aspects.
First of all, the material is structured according to the properties, not the spectra.
Secondly, we claim that the main results, namely the closed- and boundedness of
FMV and Feng spectra, are presented in a more structured, simple, and elegant
way.

1. Linear Spectrum and Properties

1.1. Definitions. Given a t.v.s. E and a linear operator u ∈ L(E), its linear
resolvent set is defined as

(23) ρ(u) = {λ ∈ K | (λ · idE − u) is bijective} .

For λ ∈ ρ(u) the linear resolvent operator of u at λ is denoted by r(u, λ) :=
(λ · idE − u)−1. It is a linear operator. In case of E being a barreled space and u
being linear and continuous, then r(u, λ) is also continuous for all λ ∈ ρ(u).

The linear spectrum of u is defined as the complement of the linear resolvent
set, i.e.,

(24) σ(u) = {λ ∈ K | (λ · idE − u) is not bijective} .

Furthermore, the linear spectral radius of u is the number

(25) r(u) := sup {|λ| | λ ∈ σ(u)} .

We list several important subspectra of the linear spectrum. Value λ belongs to
the (linear) point spectrum, σp(u), if ker(λ · idE − u) is nontrivial. Value λ belongs
to the (linear) continuous spectrum, σc(u), if resolvent operator r(u, λ) is defined
on a dense subspace of E and is not continuous. Value λ belongs to the (linear)
residual spectrum, σr(u), if r(u, λ) exists on a domain of definition, which is not
dense in E.

In addition, the (linear) defect spectrum, σδ(u), is defined as the set of λ such
that operator (λ · idE − u) is not surjective. The (linear) compression spectrum,

σco(u), is defined as the set of λ such that (λ · idE − u)(E) 6= E.

1.2. Properties in t.v.s. Let E be a t.v.s.. By definition, we have the inclu-
sion

(26) σp(u) ] σc(u) ]r (u) ⊆ σ(u) .

Proposition 60. Let u, v : E → E be linear and continuous operators, and let
λ, µ ∈ K. Then we have

59
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(i) The linear resolvent is continuous in the first parameter and satisfies

(27) r(u, λ) − r(v, λ) = r(u, λ) ◦ (u− v) ◦ r(v, λ) .

(ii) The linear resolvent is also continuous in the second parameter and sat-
isfies

(28) r(u, λ)− r(u, µ) = −(λ− µ) · r(u, λ) ◦ r(u, µ) .

Proof. The proofs are by simple expansion of identity and distributivity of
composition of operators.

(i) We have

r(u, λ) − r(v, λ)
= r(u, λ) ◦ idE − idE ◦ r(v, λ)
= r(u, λ) ◦ (λ · idE − v) ◦ r(v, λ) − r(u, λ) ◦ (λ · idE − u) ◦ r(v, λ)
= r(u, λ) ◦ [(λ · idE − v)− (λ · idE − u)] ◦ r(v, λ)
= r(u, λ) ◦ (u− v) ◦ r(v, λ) .

(ii) We have

r(u, λ) − r(u, µ)

= r(u, λ) ◦ idE − idE ◦ r(u, µ)

= r(u, λ) ◦ (µ · idE − u) ◦ r(u, µ)− r(u, λ) ◦ (λ · idE − u) ◦ r(u, µ)

= r(u, λ) ◦ [(µ · idE − u)− (λ · idE − u)] ◦ r(u, µ)

= −(λ− µ) · r(u, λ) ◦ r(u, µ) .

�

Let p : K→ K be a polynomial

p(z) :=

n
∑

m=0

am · zm = c ·
n
∏

m=0

(λm − z) .

For u ∈ L(E), we define p(u) :=
∑n

m=0 am · um, where um denotes m-fold com-
position of u with itself. As each am is the m-th symmetric polynomial sm in
the roots λi, i.e., am = sm(λ1, . . . , λn), the factorization of p(z) carries over to
p(u) = c ·∏n

m=0(λm · idE − u).
Above argument yields that linear operators (λ · idE − u) and (µ · idE − u)

commute. Of course, this can also be seen by noting that the coefficients in the
computed expression of their product are symmetric in λ and µ.

(λ · idE − u) ◦ (µ · idE − u) = (λ · µ) · idE − (λ+ µ) · u+ u ◦ u .

Consequently, p(u) is invertible iff each factor (λm · idE − u) is invertible. This
can be seen as follows. Clearly, p(u) is invertible, if it is a composition of invertible
factors. For the other direction, assume there is a factor (λk · idE − u), which
is not invertible. If this factor is not injective, then p(u) = c · ∏n

m=0, 6=k(λm ·
idE − u) ◦ (λk · idE − u) is not injective. If this factor is not surjective, then
p(u) = c · (λk · idE − u) ◦

∏n
m=0, 6=k(λm · idE − u) is not surjective.

Theorem 61 (Spectral Mapping). Let u ∈ L(E). Then for every polynomial
p : K→ K we have

(29) σ(p(u)) = p(σ(u)) .
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Proof. First of all, for all polynomials p, we have the following equivalences:
0 ∈ ρ(p(u)). ⇐⇒ Operator p(u) is invertible. ⇐⇒ Operator (λm · idE − u) is
invertible for all m. ⇐⇒ λm ∈ ρ(u) for all m. ⇐⇒ 0 ∈ λm − ρ(u) for all m.
Hence, 0 ∈ σ(p(u)). ⇐⇒ There exists m with 0 /∈ λm − ρ(u). ⇐⇒ There exists
m with 0 ∈ λm − σ(u). ⇐⇒ 0 ∈ p(σ(u)).

Secondly, we have the following equivalences: λ ∈ σ(p(u)). ⇐⇒ Operator
(λ · idE − p(u)) is not invertible. ⇐⇒ Operator p̃(u) is not invertible, where
p̃(z) := λ− p(z). ⇐⇒ 0 ∈ σ(p̃(u)). ⇐⇒ 0 ∈ p̃(σ(u)). ⇐⇒ −0 ∈ −λ+ p(σ(u)).
⇐⇒ λ ∈ λ− λ+ p(σ(u)). ⇐⇒ λ ∈ p(σ(u)). �

By above theorem, in this very general setting, we obtain r(uk) = (r(u))
k
,

because of sup
{

|λ| | λ ∈ σ(uk)
}

= sup
{

|λ| | λ ∈ (σ(u))k
}

. Analogously, one can
prove r(α · u) = |α| · r(u).

1.3. Properties in l.c.s. For barreled l.c.s., we obtain the following partition
of the linear spectrum:

(30) σ(u) = σp(u) ] σc(u) ]r (u) .

The case that r(u, λ) exists and is unbounded cannot occur due the the closed-graph
theorem.

Let E be an l.c.s., and let G be a nonempty open subset of C. An E-valued
map f : G → E is called holomorphic at point ζ0 ∈ G, if there exists an open
neighborhood Z of ζ0 such that for all x′ ∈ E′, function ζ 7→ x′(f(ζ)) is holomorphic
in Z, and if for each ζ ∈ Z, the linear form x′ 7→ ∂ζx

′(f(ζ)) is ∗-weak continuous.
One can show that an E-valued map f , holomorphic and uniformly bounded

on the entire complex plane, is constant by the Theorem of Liouville.1 As map
λ 7→ r(u, λ) is holomorphic on each point, where it is defined, the linear spectrum
is nonempty.

1.4. Properties in Banach Spaces. Let (E, ‖ · ‖E) be a Banach space, and
let u : E → E be a linear and continuous operator.

We call a sequence (xn)n in E a Weyl sequence for u, if ‖xn‖E = 1 and
‖u(xn)‖E → 0 for n → ∞. The (linear) approximate point spectrum, σq(u), is
defined as the set of all λ such that there exists a Weyl sequence for operator
(λ · idE − u).

We obtain the following (not necessarily disjoint) subdivisions:

(31) σ(u) = σq(u) ∪ σδ(u) = σq(u) ∪ σco(u) .

Proposition 62. For every compact set Σ ⊆ K, there exists a linear and
continuous operator u = u(Σ) such that σ(u) = Σ.

Proof. There exists a countable and dense subset {sm | m ≥ 1} of compact
set Σ. Let E := `2, and define linear operator u : E → E by

u(x1, x2, x3, . . .) := (s1 · x1, s2 · x2, s3 · x3, . . .) .

Operator u is continuous, because it is bounded.

‖u(x)‖2 =

√

∑

m≥1

|sm|2 · |xm|2 ≤
√

sup{|sm|2 | m ≥ 1} ·
√

∑

m≥1

|xm|2

≤ (sup |Σ|)2 · ‖x‖2 .

On the one hand, by definition, operator (sm · idE − u) is not invertible. Hence, we

have {sm | m ≥ 1} ⊆ σ(u). Then Σ = {sm | m ≥ 1} ⊆ σ(u) by closedness of σ(u).

1 [SW99, IV.Ex.39]
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On the other hand, every λ /∈ Σ has positive distance to closed set Σ. Con-
sequently, there exists a δ > 0 with |λ − sm| ≥ δ > 0 for all m. Hence, operator
(λ · idE − u) is invertible with inverse

r(u, λ)(x1, x2, x3, . . .) =
(

(λ− s1)−1 · x1, (λ− s2)−1 · x2, (λ− s3)−1 · x3, . . .
)

.

�

Proposition 63 (Resolvent Bound). The linear resolvent operator r(u, λ) is
continuous and hence bounded. For |λ| > ρ(u), it is bounded explicitly by

(32) ‖r(u, λ)‖E→E ≤
1

|λ| − ‖u‖E→E
.

Proof. For |λ| > r(u), operator r(u, λ) can be expanded in a convergent von-
Neumann series.

r(u, λ) =
1

λ
·
(

idE −
1

λ
· u
)−1

=
1

λ
·
∑

k≥0

1

λk
· uk .

Hence, it follows that

‖r(u, λ)‖E→E ≤
1

|λ| ·
∑

k≥0

1

|λ|k · ‖u‖
k
E→E ≤

1

|λ| ·
1

1−
(

‖u‖E→E

|λ|

) .

�

Theorem 64 (Gelfand Formula). 2 The linear spectral radius is bounded by the
classical Gel’fand formula

(33) r(u) = lim
m→∞

m
√

‖um‖E→E = inf
m

m
√

‖um‖E→E .

In particular, we have r(u) ≤ ‖u‖E→E.

Theorem 65. The spectrum σ(u) is closed and bounded, and thus compact.3

Let (M, p) be a vector space with a seminorm. We call a set-valued map
σ : M → 2K upper semicontinuous , if for all f ∈ M and all open V ⊆ K, there
exists δ > 0 such that for all g ∈ M with p(y − x) < δ, we have σ(g) ⊆ V .

The term lower semicontinuous is defined analogously.

Theorem 66 (Semicontinuity). The set-valued map u 7→ σ(u) is upper semi-
continuous. In general, it is not lower semicontinuous.4

Theorem 67 (Spectrum of Compact Linear Operator). Let u : E → E be a
linear, continuous, and compact operator. Then we have5

(i) Set σ(u)\{0} is discrete and bounded.
(ii) σp(u) ⊆ σ(u) ⊆ σp(u) ∪ {0}.
(iii) If E is infinite-dimensional, then 0 ∈ σ(u). Hence, σ(u) = σp(u) ∪ {0}.

Linear Spectral Theory is mostly developed in the setting of Hilbert and Banach
spaces. For example, the question of how to extend the Gelfand formula (Theorem
64) beyond Banach spaces, was a research topic in the 2000’s, see e.g., [BM98,
Tro01].

2 [Wer00, VI.1.6]
3 [ADPV04, Chapter 1, Theorem 1.1 (f)]
4 [ADPV04, Chapter 1, Theorem 1.1 (i), Example 1.1]
5 [ADPV04, Chapter 1, Theorem 1.3]
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2. Spectra Under Consideration

2.1. Classical, Rhodius, and Linear Spectrum. Let us bring to mind
parts of classical physics, for example, Newton’s Mechanics. Such classical physical
theories provide deterministic, reversible, and continuous models of the world, see
e.g., [SH13, p.2–3]. Consequently, their equations of motion (dynamics) need to
be uniquely solvable to fulfill reversibility, and continuity demands that the better
one can approximatively measure the initial conditions of such a modelled system,
the better one can predict its future. These classical requirements are reflected in
the definition of the spectrum, defined below.

Let f· = {fλ : E → F}λ∈Λ be a family of operators (operator pencil) between
topological spaces X and Y over a parameter space Λ, which is an open subset
Λ ⊆ K. We call family f· continuously resolvable for parameter λ, if the following
two conditions hold:

Existence and uniqueness of solutions: For every y ∈ Y , there exists
exactly one x ∈ X with fλ(x) = y.

Continuity of solutions: For every x ∈ X and y ∈ Y with fλ(x) = y,
there exist open neighborhoods U of x and V of y, and a continuous
operator rλ : V → U such that fλ ◦ rλ equals idY on V .

Operator rλ is called (local) resolvent operator for parameter λ. The resolvent set
is defined as the set of parameters

(34) ρ (f·) := {λ ∈ K | fλ is continuously resolvable} .

Its complement

(35) σ (f·) := K \ ρ (f·)

is called the (classical) spectrum of f·. Furthermore, the (classical) spectral radius
of f· is the number

(36) r (f·) := sup {|λ| | λ ∈ σ (f·)} .

Given a single operator f : E → E on a t.v.s. E, we always consider the associated
family f· := {λ · idE − f} over Λ = K. In this case, the resolvent set, ρ(f) := ρ(f·),
equals

ρ(f) = {λ ∈ K | (λ · idE − f) is bijective and (λ · idE − f)−1 is continuous} .

Hence, for the (classical) spectrum, σ(u) := σ(u·), we have σ(f) = {λ ∈ K |
(λ · idE − f) is not bijective, or it is bijective but operator (λ · idE − f)−1 is not
continuous }.

For λ ∈ ρ(f) the (global) resolvent operator of f at λ is denoted by r(f, λ) :=
(λ · idE − f)−1.

For continuous operators u ∈ C(E) over a Banach space E, such a classical
spectrum was defined by Rhodius [Rho84] in 1984. Clearly, this is a straightforward
generalization of the classical linear spectrum.

In case of E being a barreled space and u being linear and continuous, also
r(u, λ) is linear and continuous for all λ ∈ ρ(u). Then the resolvent set and spectrum
even further simplify to the linear resolvent set and linear spectrum, respectively.
The above argument sheds light on the reason, why the linear spectrum is often
defined as the simplification stated above.

2.2. Mapping Spectrum. Conversely to the preceding line of thought, one
can generalize the linear spectrum with focus on the mapping properties of the
operator. Given an operator f : E → E defined on a t.v.s. E, the mapping spectrum
is defined as

(37) Σ(f) := {λ ∈ K | (λ · idE − f) is not bijective} .
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Analogously, the injectivity spectrum Σi(f) and the surjectivity spectrum Σs(f) are
defined as

Σi(f) := {λ ∈ K | (λ · idE − f) is not injective} ,(38)

Σs(f) := {λ ∈ K | (λ · idE − f) is not surjective} ,(39)

respectively. Clearly, Σ(f) = Σi(f) ∪Σs(f).
The mapping spectral radius is the number

(40) rΣ(f) := sup {|λ| | λ ∈ Σ(f)} .

2.3. Point Spectrum. Given an operator f : E → E defined on a t.v.s. E,
the point spectrum is defined as

(41) σp(f) := {λ ∈ K | ∃x 6= 0: f(x) = λ · x} .

Such a point x 6= 0 is called an eigenvector of f for eigenvalue λ.
The point spectral radius is the number

(42) rp(f) := sup {|λ| | λ ∈ σp(f)} .

It goes without saying that the point spectrum is one of the most important
spectra concerning applications of linear spectral theory.

We give a generalization, which is more tailored to the nonlinear case: Given
two operators j, f : E → F , we call number λ a (generalized) eigenvalue of (j, f),
if equation f(x) = λ · j(x) has a nontrivial solution. We define

(43) σp(j, f) := {λ ∈ K | λ is an eigenvalue for (j, f)} .

By definition, σp(idE , f) = σp(f) for all f : E → E.

2.4. Spectra Defined Via Seminorms.
2.4.1. A General Method. Besides mapping properties or existence of non-

trivial solutions, seminorms also give rise to spectra. In the sequel, let E and
F be t.v.s., and let p and q be fixed seminorms on E and F , respectively. Ev-
ery such pair (p, q) of seminorms gives rise to ten characteristics of an operator
f : E → F . These are categorized in five lower and five upper ones, denoted by
lower- and uppercase letters, respectively.

[f ]s := inf {q(f(x)) | x ∈ E, p(x) = 1} ,(44)

[f ]S := sup {q(f(x)) | x ∈ E, p(x) = 1} ,(45)

[f ]d := inf {q(f(x)) | x ∈ E, 0 < p(x) ≤ 1} ,(46)

[f ]D := sup {q(f(x)) | x ∈ E, 0 < p(x) ≤ 1} ,(47)

[f ]db := inf {q(f(x))/p(x) | x ∈ E, 0 < p(x) ≤ 1} ,(48)

[f ]DB := sup {q(f(x))/p(x) | x ∈ E, 0 < p(x) ≤ 1} ,(49)

[f ]b := inf {q(f(x))/p(x) | x ∈ E, 0 < p(x) <∞} ,(50)

[f ]B := sup {q(f(x))/p(x) | x ∈ E, 0 < p(x) <∞} ,(51)

[f ]lip := inf {q(f(x)− f(y))/p(x− y) | x, y ∈ E, 0 < p(x− y) <∞} ,(52)

[f ]Lip := sup {q(f(x)− f(y))/p(x− y) | x, y ∈ E, 0 < p(x− y) <∞} .(53)
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We also give a generalization, which is more tailored to homogeneous operators.
For this, recall that an operator f : E → F is called τ-homogeneous (τ > 0), if
f(t · x) = t · f(x) for all x ∈ E and t > 0.

[f ]τs := inf {q(f(x)) | x ∈ E, p(x)τ = 1} ,(54)

[f ]τS := sup {q(f(x)) | x ∈ E, p(x)τ = 1} ,(55)

[f ]τd := inf {q(f(x)) | x ∈ E, 0 < p(x)τ ≤ 1} ,(56)

[f ]τD := sup {q(f(x)) | x ∈ E, 0 < p(x)τ ≤ 1} ,(57)

[f ]τdb := inf {q(f(x))/p(x)τ | x ∈ E, 0 < p(x)τ ≤ 1} ,(58)

[f ]τDB := sup {q(f(x))/p(x)τ | x ∈ E, 0 < p(x)τ ≤ 1} ,(59)

[f ]τb := inf {q(f(x))/p(x)τ | x ∈ E, 0 < p(x)τ <∞} ,(60)

[f ]τB := sup {q(f(x))/p(x)τ | x ∈ E, 0 < p(x)τ <∞} ,(61)

[f ]τlip := inf {q(f(x) − f(y))/p(x− y)τ | x, y ∈ E, 0 < p(x− y)τ <∞} ,(62)

[f ]τLip := sup {q(f(x) − f(y))/p(x− y)τ | x, y ∈ E, 0 < p(x− y)τ <∞} .(63)

By definition, for τ = 1, these notions coincide with the usual ones.
The defined characteristics form a hierarchy.

Proposition 68. For every operator f : E → F we have

(64) [f ]b ≤ [f ]db ≤ [f ]d ≤ [f ]s ≤ [f ]S ≤ [f ]D ≤ [f ]DB ≤ [f ]B .

Trivially, [f ]lip ≤ [f ]Lip. In addition, in case f(0) = 0 we have

(65) [f ]lip ≤ [f ]b ≤ · · · ≤ [f ]B ≤ [f ]Lip .

Proof. We prove the inequalities for the ones defined by suprema. The rea-
soning is analogous for the ones defined by infima. Inequalities [f ]S ≤ [f ]D and
[f ]DB ≤ [f ]B follow from the simple observation that the supremum is taken over
increasing sets, respectively. Inequality [f ]D ≤ [f ]DB is a consequence of q(f(x)) ≤
q(f(x))/p(x) for every x with 0 < p(x) ≤ 1. Inequality [f ]B ≤ [f ]Lip follows from
q(f(x))/p(x) = q(f(x) − f(0))/p(x− 0) ≤ supx 6=y {q(f(x) − f(y))/p(x− y)}. �

An analogous statement holds for homogeneous operators.

Proposition 69. For every τ-homogeneous operator f : E → F we have

(66) [f ]τb ≤ [f ]τdb ≤ [f ]τd ≤ [f ]τs ≤ [f ]S ≤ [f ]τD ≤ [f ]τDB ≤ [f ]τB .

Trivially, [f ]τlip ≤ [f ]τLip. In addition, in case f(0) = 0 we have

(67) [f ]τlip ≤ [f ]τb ≤ · · · ≤ [f ]τB ≤ [f ]τLip .

Proposition 70. The characteristics coincide on additive and 1-homogeneous
operators u : E → F .

(68) [u]lip = [u]b = [u]db = [u]d = [u]s ≤ [u]S = [u]D = [u]DB = [u]B = [u]Lip .

In particular, this holds for linear operators.



66 3. EXISTING SPECTRA

Proof. We prove the inequalities for the ones defined by suprema. The rea-
soning is analogous for the ones defined by infima. We have

[u]Lip = sup {q(u(x) − u(y))/p(x− y) | x, y ∈ E, 0 < p(x− y) <∞}
= sup {q(u((x − y)/p(x− y))) | x, y ∈ E, 0 < p(x− y) <∞}
= sup {q(u(z/p(z))) | z ∈ E, 0 < p(z) <∞}
= sup {q(u(x)) | x ∈ E, p(x) = 1} = [u]S .

�

In particular, we have [idE ]Z = [idE ]z = 1 for all lower and upper characteris-
tics.

Proposition 71. Let [·]z be a lower and [·]Z be the corresponding upper char-
acteristic. Then we have the following properties for all operators f, g : E → F and
λ ∈ K.

(i) [λ · f ]z = |λ| · [f ]z, i.e., [·]z is homogeneous.
(ii) [f + g]Z ≤ [f ]Z + [g]Z and [λ · f ]Z = |λ| · [f ]Z , i.e., [·]Z is a seminorm.
(iii) [f ]z − [g]Z ≤ [f + g]z ≤ [f ]z + [g]Z .
(iv) |[f ]z − [g]z| ≤ [f − g]Z . In particular, [f − g]Z = 0 implies [f ]z = [g]z.
(v) [f ]Lip = [f−1]−1

lip for f a bijection between Banach spaces E and F , re-

spectively, with f(0) = 0.

Proof. Item (i) follows from q(λ · f(x)) = |λ| · q(f(x) and inf(|λ| · a) = |λ| ·
(inf a). Item (ii) follows from q(f(x) + g(x)) ≤ q(f(x)) + q(g(x)), and sup(a+ b) ≤
(sup a) + (sup b) and sup(|λ| · a) = |λ| · (sup a). Item (iii) follows from (inf a) −
(sup b) ≤ (inf a)+ (inf b) ≤ inf(a+ b) ≤ (inf a)+ (sup b). Item (iv) is a consequence
of (iii) due to [f ]z − [f − g]Z ≤ [f − (f − g)]z = [g]z and [g]z − [f − g]Z =
[g]z − | − 1| · [g − f ]Z ≤ [g − (g − f)]z = [f ]z, respectively. Item (v) is proved
by noting that in Banach spaces q(f(x) − f(y)) > 0 iff f(x) 6= f(y) iff x 6= y iff
p(x− y) > 0. Furthermore, supa = (inf a−1)−1. �

An analogous statement holds for homogeneous operators.

Proposition 72. Let [·]τz be a lower and [·]τZ be the corresponding upper char-
acteristic. Then we have the following properties for all τ-homogeneous operators
f, g : E → F and λ ∈ K.

(i) [λ · f ]τz = |λ| · [f ]τz , i.e., [·]τz is homogeneous.
(ii) [f + g]τZ ≤ [f ]τZ + [g]τZ and [λ · f ]τZ = |λ| · [f ]τZ , i.e., [·]τZ is a seminorm.
(iii) [f ]τz − [g]τZ ≤ [f + g]τz ≤ [f ]τz + [g]τZ .
(iv) |[f ]τz − [g]τz | ≤ [f − g]τZ . In particular, [f − g]τZ = 0 implies [f ]τz = [g]τz .

(v) [f ]τLip =

(

1

[f−1]
1/τ
lip

)τ

for f a bijection between Banach spaces E and F ,

respectively, with f(0) = 0.

Given a lower characteristic [·]z , based on a fixed pair of seminorms over a t.v.s.,
one can define a corresponding spectrum σz(f) := {λ ∈ K | [λ · idE − f ]z = 0}.
This gives five spectra for each of the lower characteristics.

σs(f) := {λ ∈ K | [λ · idE − f ]s = 0} ,

σd(f) := {λ ∈ K | [λ · idE − f ]d = 0} ,

σdb(f) := {λ ∈ K | [λ · idE − f ]db = 0} ,

σb(f) := {λ ∈ K | [λ · idE − f ]b = 0} ,

σlip(f) := {λ ∈ K | [λ · idE − f ]lip = 0} .



2. SPECTRA UNDER CONSIDERATION 67

Analogous spectra στ
z (j, f) := {λ ∈ K | [λ · j − f ]τz = 0} can be defined for

τ -homogeneous operators j, f : E → F .

στ
s (j, f) := {λ ∈ K | [λ · j − f ]τs = 0} ,

στ
d (j, f) := {λ ∈ K | [λ · j − f ]τd = 0} ,

στ
db(j, f) := {λ ∈ K | [λ · j − f ]τdb = 0} ,

στ
b (j, f) := {λ ∈ K | [λ · j − f ]τb = 0} ,

στ
lip(j, f) :=

{

λ ∈ K | [λ · j − f ]τlip = 0
}

.

By definition, σz(f) = σ1
z(idE , f).

2.4.2. Noncompactness. We define the spectrum of noncompactness by

(69) σa(f) := {λ ∈ K | [λ · idE − f ]a = 0} .

Completely similar to the other characteristics, we have

(70) σa(f) ⊆ {λ ∈ K | [f ]a ≤ |λ| ≤ [f ]A} .

The noncompactness spectral radius is the number

(71) ra(f) := sup {|λ| | λ ∈ σa(f)} .

We obtain an analogous spectrum for τ -homogeneous operators j, f : E → F .

(72) στ
a(j, f) := {λ ∈ K | [λ · j − f ]τa = 0} .

By definition, σa(f) = σ1
a(idE , f).

2.4.3. Quasi-Boundedness. Let E and F be Banach spaces, and let f ∈ C(E,F )
be a continuous operator. We consider the following characteristics

[f ]q := lim inf
‖x‖E→∞

‖f(x)‖F
‖x‖E

,(73)

[f ]Q := lim sup
‖x‖E→∞

‖f(x)‖F
‖x‖E

.(74)

This means that for every sequence (xn)n in E with ‖xn‖E → ∞ (n → ∞), the
corresponding sequence yn := ‖f(xn)‖F /‖xn‖E has existing limes inferior or limes
superior respectively, all equal to [f ]q = lim infn→∞ yn or [f ]Q = lim supn→∞ yn

respectively.
We call f quasi-bounded , if [f ]Q <∞.
From [f ]q > 0 it follows that there exists γ > 0 such that ‖f(x)‖ ≥ γ · ‖x‖ for

‖x‖ sufficiently large. Hence [f ]q > 0 implies f being coercive.
Analogous characteristics can be defined for τ -homogeneous operators f : E →

F .

[f ]τq := lim inf
‖x‖E→∞

‖f(x)‖F
‖x‖τE

,(75)

[f ]τQ := lim sup
‖x‖E→∞

‖f(x)‖F
‖x‖τE

.(76)

By definition, for τ = 1, these notions coincide with the usual ones.

Proposition 73. For all continuous operators f, g : E → F between Banach
spaces E and F , respectively, and all λ ∈ K the following properties hold.

(i) [λ · f ]q = |λ| · [f ]q, i.e., [·]q is homogeneous.
(ii) [f + g]Q ≤ [f ]Q + [g]Q and [λ · f ]Q = |λ| · [f ]Q, i.e., [·]Q is a seminorm.
(iii) [f ]q − [g]Q ≤ [f + g]q ≤ [f ]q + [g]Q.
(iv) |[f ]q − [g]q| ≤ [f − g]Q. In particular, [f − g]Q = 0 implies [f ]q = [g]q.
(v) [f ]Q = [f−1]−1

q for f a homeomorphism.
(vi) [f ]b ≤ [f ]q ≤ [f ]Q ≤ [f ]B.
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Proof. We give a proof for the sake of completeness.

(i) We have

[λ · f ]q = lim inf
‖x‖E→∞

‖λ · f(x)‖F
‖x‖E

= lim inf
‖x‖E→∞

|λ| · ‖f(x)‖F
‖x‖E

= |λ| · lim inf
‖x‖E→∞

‖f(x)‖F
‖x‖E

= |λ| · [f ]q .

(ii) The proof of [λ · f ]Q = |λ| · [f ]Q is analogous to the one for [·]q.

[f + g]Q = lim sup
‖x‖E→∞

‖(f + g)(x)‖F
‖x‖E

≤ lim sup
‖x‖E→∞

‖f(x)‖F + ‖g(x)‖F
‖x‖E

≤ lim sup
‖x‖E→∞

(‖f(x)‖F
‖x‖E

+
‖g(x)‖F
‖x‖E

)

≤ lim sup
‖x‖E→∞

‖f(x)‖F
‖x‖E

+ lim sup
‖x‖E→∞

‖g(x)‖F
‖x‖E

= [f ]Q + [g]Q .

(iii) The second inequality is proved by

[f + g]q = lim inf
‖x‖E→∞

‖(f + g)(x)‖F
‖x‖E

≤ lim inf
‖x‖E→∞

(‖f(x)‖F
‖x‖E

+
‖g(x)‖F
‖x‖E

)

≤ lim inf
‖x‖E→∞

‖f(x)‖F
‖x‖E

+ lim sup
‖x‖E→∞

‖g(x)‖F
‖x‖E

= [f ]q + [g]Q .

The first inequality is a consequence of the second with

[f ]q = [(f + g)− g]q ≤ [f + g]q + [−g]Q = [f + g]q + [g]Q .

(iv) We have [f ]q − [g − f ]Q ≤ [f + (g − f)]q = [g]q. Hence, [f ]q − [g]q ≤
[g − f ]q = [f − g]Q. We then also have [g]q − [f ]q ≤ [g − f ]q = [f − g]Q.

(v) As f is a homeomorphism, we have ‖x‖E → ∞ iff ‖f(x)‖F → ∞.
Otherwise, there would exist a bounded sequence such that f−1 is un-
bounded on this sequence. But by assumption, f−1 is continuous and
hence bounded. Thus, we can argue

[f−1]Q = lim sup
‖y‖F →∞

‖f−1(y)‖E
‖y‖F

= lim sup
‖f(x)‖F →∞

‖f−1(f(x))‖E
‖f(x)‖F

= lim sup
‖x‖E→∞

‖x‖E
‖f(x)‖F

=

(

lim inf
‖x‖E→∞

‖f(x)‖F
‖x‖E

)−1

= [f ]−1
q .

(vi) This just follows from inf ≤ lim inf ≤ lim sup ≤ sup.

�

An analogous statement holds for τ -homogeneous operators.

Proposition 74. For all continuous operators f, g : E → F between Banach
spaces E and F , respectively, and all λ ∈ K, the following properties hold.

(i) [λ · f ]τq = |λ| · [f ]τq , i.e., [·]τq is homogeneous.
(ii) [f + g]τQ ≤ [f ]τQ + [g]τQ and [λ · f ]τQ = |λ| · [f ]τQ, i.e., [·]τQ is a seminorm.

(iii) [f ]τq − [g]τQ ≤ [f + g]τq ≤ [f ]τq + [g]τQ.

(iv)
∣

∣[f ]τq − [g]τq
∣

∣ ≤ [f − g]τQ. In particular, [f − g]τQ = 0 implies [f ]τq = [g]q.

(v) [f ]τQ =

(

1

[f−1]
1/τ
q

)τ

for f a homeomorphism.

(vi) [f ]τb ≤ [f ]τq ≤ [f ]τQ ≤ [f ]τB.
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We define the spectrum of quasi-boundedness by

(77) σq(f) := {λ ∈ K | [λ · idE − f ]q = 0} .

Completely similar to the other characteristics, we have

(78) σq(f) ⊆ {λ ∈ K | [f ]q ≤ |λ| ≤ [f ]Q} .

The quasi-boundedness spectral radius is the number

(79) rq(f) := sup {|λ| | λ ∈ σq(f)} .

An analogous spectrum can be defined for τ -homogeneous operators j, f : E →
F by

(80) στ
q (j, f) := {λ ∈ K | [λ · j − f ]q = 0} .

By definition, σq(f) = σ1
q (idE , f).

The Q-, B-, and Lip-characteristics can be used to implement a very simple
idea. Combining operators with different growth-rates yields the existence of an
invariant and bounded set. This idea is formalized in the following lemma.

Lemma 75. Let E and F be Banach (or Fréchet) spaces, and let f, g : E → F be
continuous operators. If [f ]q > [g]Q, then there exists a nonempty, convex, closed,
and bounded set B ⊆ E such that

(81) f−1(co(g(B) ∪ {0})) ⊆ B .

Proof. Let b and c be real numbers such that [g]Q < b < c < [f ]q. Hence,
‖g(x)‖F ≤ b · ‖x‖E and ‖f(x)‖F ≥ c · ‖x‖E for all x ∈ E with ‖x‖E ≥ r for
a suitable r > 0. Set g(Br(E)) is bounded, because Br(E) is bounded and g is
continuous. Thus, there exists R > 0 such that g(Br(E)) ⊆ BR(F ). Combined,
we obtain ‖g(x)‖F ≤ R + b · ‖x‖E for all x ∈ E. Set ρ := R/(c − b). Then
g(Bρ(E)) ⊆ BR+b·ρ(F ). Let x ∈ E with f(x) ∈ BR+b·ρ(F ). If ‖x‖E > ρ, then
R + b · ρ ≥ ‖f(x)‖F ≥ c · ‖x‖E > c · ρ, in contradiction to our choice of ρ. Hence,
for B := Bρ(E) we have

f−1(co(g(B) ∪ {0})) ⊆ f−1(co(BR+b·ρ(F ))) = f−1(BR+b·ρ(F )) ⊆ Bρ(E) = B .

Clearly, ball B is nonempty, convex, closed, and bounded. �

We only proved the lemma for the Q-characteristic. The proof is completely
analogous for the B- and Lip-characteristics.

2.5. Dörfner Spectrum. In his Ph.D. thesis [D9̈7], Dörfner introduced and
studied a spectrum for linearly-bounded operators.

Given two Banach spaces E and F , an operator f : E → F is linearly bounded, if
[f ]B <∞. Denote with Blin(E,F ) the class of linearly-bounded operators between
E and F , and define Blin(E) := Blin(E,E).

Given f ∈ Blin(E), the Dörfner resolvent set is defined as

(82) ρD(f) := {λ ∈ K | (λ · idE − f) is invertible and r(f, λ) ∈ B(E)} .

The Dörfner spectrum is defined as

(83) σD(f) := K\ρD(f) .

We note that σD(f) = Σ(f) ∪ σB(f) for f ∈ Blin(E), because [r(f, λ)]B < ∞
iff [λ · idE − f ]b = 1/[r(f, λ)]B > 0.

The Dörfner spectral radius is the number

(84) rD(f) := sup {|λ| | λ ∈ σD(f)} .

The original Dörfner spectrum is only defined for Banach spaces. We give
one possible extension to arbitrary t.v.s. E. Define an operator f : E → E to be
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linearly bounded , if for all zero neighborhoods U there exists a t > 0 such that for
all bounded sets B and r > 0 with B ⊆ t · U , we have f(B) ⊆ t · r · B. Clearly,
such f is bounded, because an arbitrary neighborhood U absorbs f(B) for every
given bounded set B. For E a Banach space, the two notions of linear boundedness
coincide: f is linearly bounded in this sense iff [f ]B < ∞. We define Blin(E) as
the class of linearly-bounded operators, defined on an arbitrary t.v.s. E. Now, the
notions of Dörfner resolvent set, spectrum, and spectral radius extend by using our
newly-defined class Blin(E).

2.6. Kačurovskĭı Spectrum. Let E and F be Banach spaces, and let f : E →
F be a continuous operator, i.e., f ∈ C(E,F ). We call f Lipschitz-continuous , if
[f ]Lip < ∞. We denote the class of Lipschitz-continuous operators by CLip(E,F ),
and define CLip(E) := CLip(E,E) for short.

Kačurovskĭı [Kač69] introduced his spectrum for Lipschitz-continuous opera-
tors f ∈ CLip(E) over Banach spaces E in 1969. The Kačurovskĭı resolvent set is
defined by

(85) ρK(f) := {λ ∈ K | (λ · idE − f) is bijective and r(f, λ) ∈ CLip(E)} .

Its complement

(86) σK(f) := K\ρK(f)

is called Kačurovskĭı spectrum.
The Kačurovskĭı spectral radius is the number

(87) rK(f) := sup {|λ| | λ ∈ σK(f)} .

2.7. Neuberger Spectrum. Let E and F be Banach spaces, and let f : E →
F be an operator. Recall that f is differentiable at x0 ∈ E, if there exists a linear
and continuous operator g : E → F such that

(88) lim
‖∆‖E→0

‖f(x0 + ∆)− f(x0)− g(∆)‖F
‖∆‖E

= 0 .

As g is uniquely defined by above equation, we denote it with f ′|x0
. If f is dif-

ferentiable at every point x ∈ E, and if the map x 7→ f ′|x : E → C(E,F ) is
continuous, then we say that f is continuously differentiable. We denote the class
of continuously-differentiable operators by C1(E,F ), and C1(E) := C1(E,E) for
short.

For continuously-differentiable operators f ∈ C1(E) over Banach spaces E,
Neuberger [Neu69] introduced his spectrum in 1969. The Neuberger resolvent set
is defined by

(89) ρN (f) :=
{

λ ∈ K | (λ · idE − f) is bijective and r(f, λ) ∈ C1(E)
}

.

Its complement

(90) σN (f) := K\ρN(f)

is called Neuberger spectrum.
The Neuberger spectral radius is the number

(91) rN (f) := sup {|λ| | λ ∈ σN (f)} .

2.8. FMV Spectrum. A well-known spectrum in Nonlinear Spectral The-
ory is the one introduced by Furi, Martelli, and Vignoli (FMV for short) in 1978
[FMV78]. Before we give its definition and prove basic properties, we consider
proper and stably-solvable operators.
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2.8.1. Proper Operators. Recall that f : E → F is proper , if the pre-image
f−1(M) of each compact set M in F is compact in E. Operator F is called proper
on bounded and closed sets , if the pre-image f−1(M) of each closed and bounded
set M in F is compact in E. Furthermore, f is called ray-proper , if the pre-
image f−1([0, y]) of each segment [0, y] := {ty | t ∈ [0, 1]} ⊆ F is compact in E.
Operator f is called ray-invertible, if for each y ∈ F there exists a continuous path
γ : [0, 1]→ E such that f(γ(t)) = ty for t ∈ [0, 1].

The proofs of the following statements can be found in [ADPV04, Chapter 3,
Thms. 3.1, 3.2 and Prop. 3.1].

Proposition 76. An operator is proper iff it is closed and ray-proper. In
particular, every proper operator is ray-proper.

Proposition 77. Let f : E → F be an operator with f(0) = 0. Then the
following statements are equivalent.

(i) f is a global homeomorphism.
(ii) f is a local homeomorphism and proper.
(iii) f is a local homeomorphism and ray-proper.
(iv) f is a local homeomorphism and closed.
(v) f is a local homeomorphism and ray-invertible.

Proposition 78. For a continuous operator f : E → F between Banach spaces
E and F , respectively, we have

(i) If [f ]a > 0, then f is proper on closed and bounded sets.
(ii) If [f ]a > 0 and [f ]q > 0, then f is proper.

2.8.2. AQ-Stably-Solvable Operators. The characteristics [·]a and [·]A have al-
ready been defined in Chapter 2, Eq. (19) and (20), respectively. Analogous notions
can be defined for τ -homogeneous operators f : E → F .

[f ]τa := sup {γ > 0 | α(f(M)) ≥ γ · α(M)τ ,M bounded} ,(92)

[f ]τA := inf {γ > 0 | α(f(M)) ≤ γ · α(M)τ ,M bounded} .(93)

By definition, [f ]1a = [f ]a and [f ]1A = [f ]A, respectively.
Their properties are similar to the usual ones.

Proposition 79. For all bounded, τ-homogeneous operators f, g : E → F be-
tween infinite-dimensional, metrizable t.v.s. E and F , and all λ ∈ K, the following
properties hold.

(i) [λ · f ]τa = |λ| · [f ]τa, i.e., [·]τa is homogeneous.
(ii) [f + g]τA ≤ [f ]τA + [g]τA and [λ · f ]τA = |λ| · [f ]τA, i.e., [·]τA is a seminorm.
(iii) [f ]τa − [g]τA ≤ [f + g]τa ≤ [f ]τa + [g]τA.
(iv) |[f ]τa − [g]τa| ≤ [f − g]τA. In particular, [f − g]τA = 0 implies [f ]τa = [g]τa.

(v) [f ]τA =
(

[f−1]
1/τ
a

)τ

for f a homeomorphism.

(vi) [f ]τa ≤ [f ]τA.

Let us combine the A- and Q-characteristics. Define [f ]AQ := max{[f ]A, [f ]Q},
and [f ]aq := max{[f ]a, [f ]q}, respectively. These will be nice shorthands in the
following definitions.

The notion of stably-solvable operator was introduced by FMV [FMV76] in
1976. Let E and F be two Banach spaces. We call an operator f : E → F k-
AQ stably solvable, if f is continuous, and if for every operator g : E → F with
[g]AQ ≤ k, the equation f(x) = g(x) has a solution x ∈ E. In particular, for k = 0,
g is compact, and we say that f is AQ stably solvable.

Define a measure of solvability of f by

(94) µ(f) := inf{k ≥ 0 | f is not k-AQ stably solvable } .
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The corresponding spectrum of AQ stable solvability is defined as

σδ(f) := {λ ∈ K | µ(λ · idE − f) = 0}(95)

= {λ ∈ K | (λ · idE − f) is not AQ stably solvable } .

Analogous notions can be defined for τ -homogeneous operators f : E → F .
First of all, define [f ]τAQ := max{[f ]τA, [f ]τQ}, and [f ]τaq := max{[f ]τa, [f ]τq}, respec-

tively. Secondly, f is called (k, τ)-AQ stably solvable, if f is continuous, and if for
every operator g : E → F with [g]τAQ ≤ k, the equation f(x) = g(x) has a solution

x ∈ E. Again, for k = 0, g is compact, and we say that f is (τ)-AQ stably solvable.
The corresponding (τ)-measure of solvability of f is defined by

(96) µτ (f) := inf{k ≥ 0 | f is not (k, τ)-AQ stably solvable } .

By definition, µ(f) = µ1(f).
For τ -homogeneous operators j, f : E → F , the corresponding spectrum of (τ)-

AQ-stable solvability is defined as

στ
δ (j, f) := {λ ∈ K | µτ (λ · j − f) = 0}(97)

= {λ ∈ K | (λ · j − f) is not (τ)-AQ stably solvable } .

By definition, σδ(f) = σ1
δ (idE , f).

2.8.3. FMV-Regular Operators. Based on their prior work on stably-solvable
operators, FMV introduced FMV-regular operators and a corresponding spectrum
in [FMV78]. An operator f : E → F between Banach spaces E and F , respectively,
is called FMV-regular , if f is AQ-stably solvable and if [f ]aq > 0.

The FMV resolvent set is defined by

(98) ρFMV (f) := {λ ∈ K | (λ · idE − f) is FMV regular } .

Its complement

(99) σFMV (f) := K\ρFMV (f)

is called FMV spectrum.
The FMV spectral radius is the number

(100) rFMV (f) := sup {|λ| | λ ∈ σFMV (f)} .

By definition, we have the following subdivision of the FMV spectrum.

(101) σFMV (f) = σa(f) ∪ σq(f) ∪ σδ(f)

An analogous spectrum can be defined for τ -homogeneous operators j, f : E →
F . Operator f is called (τ)-FMV-regular , if f is (τ)-AQ-stably solvable and if
[f ]τaq > 0. Then define the (τ)-FMV spectrum

(102) στ
FMV (j, f) := {λ ∈ K | (λ · j − f) is not (τ)-FMV regular } .

By definition, σFMV (f) = σ1
FMV (idE , f).

As above, we have the following subdivision of the (τ)-FMV spectrum:

στ
FMV (j, f) = στ

a(j, f) ∪ στ
q (j, f) ∪ στ

δ (j, f) .

2.9. Feng Spectrum. Instead of taking the Q-characteristic as in the FMV
spectrum, one can also use the B-one to control growth. Both characteristics are
used in order to obtain invariant, bounded sets. The construction with the B-
characteristic gives another spectrum, similarly-defined as the FMV spectrum, but
containing the eigenvalues of the operator. There is only one complication regarding
the B-characteristic one has to cope with, when defining stably solvability, namely
the case that [g]B = 0 means g ≡ 0, which is not very useful. The definition due
to Feng overcomes this hurdle by localization. Unfortunately, this introduces a
complication via a boundary-value condition.
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2.9.1. Epi Operators. Let us combine the A- and B-characteristics this time.
Define [f ]AB := max{[f ]A, [f ]B}, and [f ]ab := max{[f ]a, [f ]b}, respectively. Again,
these will be nice shorthands in the following definitions.

Analogously to AQ stably solvability, one could define: Let E and F be two
Banach spaces. We call an operator f : E → F k-AB stably solvable, if f is contin-
uous, and if for every operator g : E → F with [g]AB ≤ k, the equation f(x) = g(x)
has a solution x ∈ E. In particular, for k = 0, g is compact.

Unfortunately, this definition has a problem: g ≡ 0 in case [g]AB = 0. Hence,
a different – local – approach is needed, see below.

For a Banach space E denote with O(E) the family of all nonempty, open,
bounded, and connected subsets of E. Given U ∈ O(E), we call an operator
f : U → F k-epi on U , if f is continuous, f(x) 6= 0 on ∂U , and if for every operator
g : U → F with g(x) = 0 on ∂U and [g]A ≤ k, the equation f(x) = g(x) has a
solution x ∈ U . In particular, for k = 0, g is compact, and we say that f is epi on
U .

Define a measure of solvability of f by

ν(f) := inf
U∈O(E)

νU (f) , where(103)

νU (f) := inf{k ≥ 0 | f is not k-epi on U} .(104)

Proposition 80. For all continuous operators f : E → F , we have

(105) µ(f) ≤ ν(f) .

Proof. In case ν(f) = ∞, there is nothing to prove. Let k be arbitrary with
ν(f) < k. Let U ∈ O(E) and operator g : U → F be arbitrary such that [g]A ≤ k,
g(x) = 0 on ∂U , and f(x) 6= g(x) for all x ∈ U . Define the extension g̃ : E → F

by g̃(x) := g(x) on U and g̃(x) := 0 on E\U . It satisfies [g̃]A ≤ k, [g̃]Q = 0, and
f(x) 6= g̃(x) for all x ∈ E, because f(x) 6= 0 for x 6= 0. This gives µ(f) ≤ k. �

This defines a spectrum, given by

(106) σν(f) := {λ ∈ K | ν(λ · idE − f) = 0} .

Analogous notions can be defined for τ -homogeneous operators j, f : E → F .
Given U ∈ O(E), we call an operator f : U → F (k, τ)-epi on U , if f is continuous,
f(x) 6= 0 on ∂U , and if for every operator g : U → F with g(x) = 0 on ∂U and
[g]τA ≤ k, the equation f(x) = g(x) has a solution x ∈ U . In particular, for k = 0,

g is compact, and we say that f is (τ)-epi on U .
The corresponding (τ)-measure of solvability of f is defined by

ντ (f) := inf
U∈O(E)

ντ
U (f) , where(107)

ντ
U (f) := inf{k ≥ 0 | f is not (k, τ)-epi on U} .(108)

By definition, ν(f) = ν1(f).

Proposition 81. For all continuous and τ-homogeneous operators f : E → F ,
we have

(109) µτ (f) ≤ ντ (f) .

This also defines a spectrum, given by

(110) στ
ν (j, f) := {λ ∈ K | ντ (λ · j − f) = 0} .

By definition, σν(f) = σ1
ν(idE , f).
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2.9.2. Feng-Regular Operators. An operator f : E → F between Banach spaces
E and F , respectively, is called Feng-regular , if [f ]ab > 0 and if f : U → F is epi
on all U for all U ∈ O(E).

The Feng resolvent set is defined by

(111) ρF (f) := {λ ∈ K | (λ · idE − f) is Feng-regular } .

Its complement

(112) σF (f) := K\ρF (f)

is called Feng spectrum.
The Feng spectral radius is the number

(113) rF (f) := sup {|λ| | λ ∈ σF (f)} .

By definition, we have the following subdivision of the Feng spectrum.

(114) σF (f) = σa(f) ∪ σb(f) ∪ σν(f) .

As σq(f) ⊆ σb(f) and σδ(f) ⊆ σν(f), we have

(115) σFMV (f) ⊆ σF (f) .

Analogous notions can be defined for τ -homogeneous operators j, f : E → F .
Operator f is called (τ)-Feng-regular , if [f ]τab > 0 and if f : U → F is (τ)-epi on all

U for all U ∈ O(E).
The (τ)-Feng spectrum is defined as

(116) στ (j, f) := {λ ∈ K | (λ · j − f) is not (τ)-Feng-regular } .

By definition, σF (f) = σ1
F (idE , f).

As above, we have the following subdivision of the (τ)-Feng spectrum.

(117) στ
F (j, f) = στ

a(j, f) ∪ στ
b (j, f) ∪ στ

ν (j, f) .

As στ
q (j, f) ⊆ στ

b (j, f) and στ
δ (j, f) ⊆ στ

ν (j, f), we have

(118) στ
FMV (j, f) ⊆ στ

F (j, f) .

The following proposition eases a proof that an operator is epi.

Proposition 82. For a τ-homogeneous operator f : E → F , we have that f is
epi on every U ∈ O(E) iff f is epi on some U ∈ O(E).

Proof. Assume that f is epi on some V , V ∈ O(E). By definition, f(x) 6= 0
on ∂V , and for all compact operators g : V → F with g(x) = 0 on ∂V , the equation
f(x) = g(x) has a solution in V . Choose r > 0 with B(0, r) ⊆ V . This is possible,

because V is open. Then f is also epi on B(0, r) (one just uses trivial extensions
in the argument). Let U ∈ O(E) be arbitrary. Now choose R > 0 such that
U ⊆ B(0, R). This is possible, because every U is bounded. We show that f is

epi on B(0, R). Then it is also epi on subset U . For this, let h : B(0, R) → F be
an arbitrary compact operator with h(x) = 0 on the sphere ∂B(0, R) = S(0, R).

Define operator g : B(0, r)→ F by

g(x) :=
( r

R

)τ

· h
(

R

r
· x
)

.

Then g is compact as h is compact, and g(x) = 0 on S(0, r). Hence, equation
f(x) = g(x) has a solution x̃ in B(0, r). Then r

R · x̃ is a solution to f(x) = h(x) in
B(0, R), because f is τ -homogeneous. �

For τ -homogeneous operators, we can say much more on the relationship of the
different spectra.
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Theorem 83. Given τ-homogeneous operators j, f : E → F , we have

(119) σp(j, f) ⊆ στ
FMV (j, f) = στ

F (j, f) .

Proof. We already know that στ
FMV (j, f) ⊆ στ

F (j, f). As operators j and
f are τ -homogeneous operators, we also obtain the inclusion σp(j, f) ⊆ στ

q (j, f):
given nontrivial solution x0 for λ · j(x) − f(x) = 0, consider the sequence (n · x0).
This shows that [λ · j − f ]q = 0. The inclusion implies σp(j, f) ⊆ στ

FMV (j, f).
The proof of στ

F (j, f) ⊆ στ
FMV (j, f) is done in two steps. We use the help of

the large τ phantom Θτ (j, f). We do not deep-dive into Väth’s phantom theory.
For more information, see e.g., [ADPV04, Ch. 8]. We only prove that στ

F (j, f) ⊆
Θτ (j, f) and Θτ (j, f) ⊆ στ

FMV (j, f)
It holds στ

F (j, f) ⊆ Θτ (j, f): Suppose that λ /∈ Θτ (j, f). Then there exists U ∈
O(E) such that operator (λ·j−f) is (τ)-epi and thus epi on U and [(λ·j−f)|U ]τa > 0.
By Proposition 82, we conclude that (λ · j − f) is also epi on the open unit ball
B(0, 1) and [(λ · j − f)|B(0,1)]

τ
a > 0. The statement is proved if we show that

λ /∈ στ
b (j, f).

Assume for a contradiction that λ ∈ στ
b (j, f). Then there exists a sequence

(xn)n in E\{0} such that ‖(λ·j−f)(xn)‖F ≤ ‖xn‖τE/n. Normalizing this sequence,
i.e., defining en := xn/‖xn‖E , we obtain

‖(λ · j − f)(en)‖F =
‖(λ · j − f)(xn)‖F

‖xn‖τE
≤ 1

n
→ 0 ,

because operator (λ · j − f) is τ -homogeneous. Define set M := {e1, e2, . . .}. Then
[(λ · j− f)|B(0,1)]

τ
a ·α(M)τ ≤ α((λ · j− f)(M)) = 0, also implying α(M) = 0. As M

is precompact and E is a Banach space, M is sequentially compact. Hence, there
exists a strongly-convergent subsequence enk

→ e in the sphere S(0, 1) (k → ∞).
But then (λ · j − f)(e) = 0 by continuity, a contradiction that (λ · j − f) is epi on
B(0, 1).

It holds Θτ (j, f) ⊆ στ
FMV (j, f): If (λ · j − f) is (τ)-FMV regular, then [λ · j −

f ]a > 0 and [λ · j − f ]q > 0, and (λ · j − f) is (τ)-AQ stably solvable. We need to

show that it is (τ)-epi on U for all U ∈ O(E). By Proposition 82, it suffices to show
this for an open ball U = B(0, r) for some r > 0. As [λ · j − f ]q > 0, there exists

an r > 0 with (λ · j − f)(x) 6= 0 for all ‖x‖τ ≥ r. Let g : U → F be compact with
g(x) = 0 on S(0, r) = ∂U . Let g̃ be the trivial extension of g to E. As (λ · j − f) is
(τ)-AQ stably solvable, there exists a solution x to equation (λ · j − f)(x) = g̃(x).
We must have ‖x‖τ < r because of (λ · j − f)(x) 6= 0 for ‖x‖τ ≥ r. Hence, x ∈ U
and x is even a solution of (λ · j − f)(x) = g(x). As g was arbitrary, operator
(λ · j − f) is (τ)-epi on U . �

Recall that an odd operator f is one which satisfies f(−x) = −f(x) for all x.

Theorem 84. Given odd and τ-homogeneous operators j, f : E → F such that
j is a homeomorphism with [j]a > 0 and f is compact, then we even have

(120) σp(j, f)\{0} = στ
FMV (j, f)\{0} = στ

F (j, f)\{0} .

Proof. By the preceding Theorem 83, if suffices to prove that στ
F (j, f)\{0} ⊆

σp(j, f)\{0}.
Let λ 6= 0 be in the complement of σp(j, f). As f is compact and [j]τa > 0, we

have [λ · j − f ]τa = |λ| · [j]τa > 0. The same argument as in the preceding theorem
shows that [λ · j − f ]τb > 0. We need to show that that operator (λ · j − f) is epi

on U for every U ∈ O(E). By Proposition 82, it suffices to show this for a specific
U , we choose open unit ball U := B(0, 1) in E. Let h : U → Y be an arbitrary
compact operator with h(x) = 0 on the unit sphere ∂U = S(0, 1). Define operators
g0, g1 : U → Y by g0 := j−1((1/λ) · f) and g1 := j−1((1/λ) · (f + h)), respectively.
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Both operators are compact, because f and f +h are compact. Operator g0 is odd
as a composition of odd operators. In addition, g0(x) 6= x and g0(x) = g1(x) for
all x ∈ ∂U = S(0, 1). By the Antipodal Theorem of Borsuk and the homotopy
property of the Leray-Schauder degree6, we have

(121) deg(idE − g1, U, 0) = deg(idE − g0, U, 0) ≡ 1 (mod 2) .

Hence, there exists x ∈ U with (idE − g1)(x) = 0, i.e., λ · j(x) = f(x) + h(x). But
this means that equation (λ · j− f)(x) = h(x) has a solution for arbitrary compact
h. Hence, operator (λ · j − f) is epi on U . �

Reformulating above theorem, we obtain a nonlinear Fredholm alternative.

Theorem 85 (Nonlinear Fredholm Alternative). Let E and F be infinite-
dimensional Banach spaces, let j, f : E → F be odd, τ-homogeneous operators
(τ > 0) such that j is a homeomorphism and f is compact. Then the following
statements are equivalent.

(i) The eigenvalue problem f(x) = λ · j(x) has only the trivial solution.
(ii) Operator (λ · j − f) is (τ)-FMV-regular, i.e., it is (τ)-AQ stably solvable,

and [λ · j − f ]τaq > 0.

(iii) Operator (λ · j − f) is (τ)-Feng-regular, i.e., it is epi on U for all U ∈
O(E), and [λ · j − f ]τaq > 0.

3. Restriction to Linear Operators

3.1. Rhodius Spectrum. The Rhodius spectrum equals the classical spec-
trum for linear operators: Let u : E → E be linear and continuous. On the one
hand, if λ ∈ ρR(u), then r(u, λ) exists. Hence, λ ∈ ρ(u). On the other hand, if
λ ∈ ρ(u), then r(u, λ) exists. As (λ · idE − u) is bijective and continuous, r(u, λ) is
continuous by the Continuous-Inverse property of Banach / barreled spaces (Def.
8.5). Hence, λ ∈ ρR(u).

3.2. Dörfner Spectrum. The Dörfner spectrum equals the classical spec-
trum for linear operators: Let u : E → E be linear and linearly bounded. On
the one hand, if λ ∈ ρD(u), then r(u, λ) exists. Hence, λ ∈ ρ(u). On the other
hand, if λ ∈ ρ(u), then r(u, λ) exists. Linear operator (λ · idE − u) is bijective and
continuous, because E is bornological as a Banach space, and u is continuous as
a linearly-bounded operator in a bornological space E. Then r(u, λ) is continuous
by the Continuous-Inverse property of Banach / barreled spaces (Def. 8.5). Thus,
r(u, λ) is linearly-bounded, showing λ ∈ ρR(u).

3.3. Kačurovskĭı Spectrum. The Kačurovskĭı spectrum equals the classical
spectrum for linear operators: Let u : E → E be linear and Lipschitz continuous.
On the one hand, if λ ∈ ρK(u), then r(u, λ) exists. Hence, λ ∈ ρ(u). On the other
hand, if λ ∈ ρ(u), then r(u, λ) exists. Linear operator (λ · idE − u) is bijective
and continuous, because u is continuous as a Lipschitz-continuous linear operator.
Then r(u, λ) is continuous by the Continuous-Inverse property of Banach / bar-
reled spaces (Def. 8.5). Operator r(u, λ) is linearly-bounded and thus Lipschitz
continuous, showing λ ∈ ρK(u).

6We did not present the Leray-Schauder degree deg in this thesis, because this would have
led us too far astray. The tedious and lengthy construction of these degrees, up to l.c.s. and even
abstract neighborhood retracts, can be found in [GD03, §8–§17]. A quick overview is presented
in [ADPV04, Sec. 3.5]. These degrees generalize the Schauder-Tychonoff fixed-point theorem in
the sense of quantifying the number of solutions.
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3.4. Neuberger Spectrum. The Neuberger spectrum equals the classical
spectrum for linear operators: Let u : E → E be linear and continuously differ-
entiable. On the one hand, if λ ∈ ρN (u), then r(u, λ) exists. Hence, λ ∈ ρ(u).
On the other hand, if λ ∈ ρ(u), then r(u, λ) exists. As (λ · idE − u) is bijective
and continuously differentiable, r(u, λ) is continuously differentiable by the Inverse
Function Theorem in Banach spaces.7 Hence, λ ∈ ρN (u).

3.5. FMV Spectrum. The FMV spectrum equals the classical spectrum for
linear operators: If u is linear and AQ stably solvable, then u is surjective. This
follows easily from the fact that all constant maps g : x 7→ y obey [g]AQ = 0, and
thus u = g has a solution.

Let u : E → F be linear and surjective. By Theorem 58 (Michael Selection),
there exists a continuous selection s : F → E such that u ◦ s = idF . Let g : E → F
be compact. Then g ◦ s is compact, too. By Theorem 35 (Schauder-Tychonoff),
map g◦s : F → F has a fixed point y ∈ F . Define x := s(y). Then u(x) = u(s(y)) =
y = (g ◦ s)(y) = g(x). Hence, u is AQ stably solvable.

3.6. Feng Spectrum. The Feng spectrum equals the classical spectrum for
linear operators. If u is linear, then it is 1-homogeneous. Hence, by Theorem 83,
σF (u) = σ1

F (idE , u) = σ1
FMV (idE , u) = σFMV (u) = σ(u).

4. Nonemptyness

4.1. Mapping Spectrum. The mapping spectrum may be empty. To see
this, let E := C2, and consider the following (nonlinear but additive) operator
f : E → E, f(z, w) := (w, iz). For every λ ∈ C, map (λ · idE − f)(z, w) = (λz −
w, λw − z) is a bijection on E with inverse

(122) (λ · idE − f)−1(ζ, ω) :=

(

λζ + ω

i + |λ|2 ,
λω + iζ

i− |λ|2
)

.

This follows from the simple calculation

(λ · idE − f)−1 ((λ · idE − f)(z, w)) = (λ · idE − f)−1 (λz − w, λw − z)

=

(

λ(λz − w) + (λw − z)
i + |λ|2 ,

λ(λw − z) + i(λz − w)

i− |λ|2

)

=

( |λ|2z − λw + λw + iz

i + |λ|2 ,
|λ|2w − λiz + λiz − iw

i− |λ|2
)

= idE(z, w)

The other identity (λ · idE − f)
(

(λ · idE − f)−1(ζ, ω)
)

= idE(ζ, ω) is computed
analogously. Hence, ρΣ(f) = C, and finally Σ(f) = ∅.

4.2. Point Spectrum. The point spectrum may be empty. For operator f ,
defined as above, with f(0) = 0, we have σp(f) ⊆ Σi(f) ⊆ Σ(f) = ∅.

4.3. Spectra Defined Via Seminorms. Operator f , defined above, is ad-
ditive and 1-homogeneous. Hence, all the spectra coincide by Proposition 70. As
[f ]b > 0, we obtain σz(f) = ∅ for z ∈ {s, d, db, b, lip}.

4.4. Rhodius Spectrum. The Rhodius spectrum may be empty. To see
this, again consider operator f : E → E, f(z, w) := (w, iz). Then (λ · idE − f) is
invertible, and r(f, λ) is continuous, because it equals (122). Hence ρR(f) = C,
and finally σR(f) = ∅.

7 [Růž04, Chapter 2, Theorems 2.17, 2.22]
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4.5. Dörfner Spectrum. The Dörfner spectrum may be empty. To see this,
again consider operator f : E → E, f(z, w) := (w, iz). We have σD(f) = Σ(f) ∪
σb(f) = ∅ ∪ ∅ = ∅ by the results above.

4.6. Kačurovskĭı Spectrum. The Kačurovskĭı spectrum may be empty. To
see this, again (and again) consider operator f : E → E, f(z, w) := (w, iz). We
have σK(f) = Σ(f) ∪ σlip(f) = ∅ ∪ ∅ = ∅ by the results above.

4.7. Neuberger Spectrum. In contrast to many of the other spectra, the
Neuberger spectrum is always nonempty in case K = C. Let π(f) := {λ ∈ K |
(λ · idE − f) is not proper }. Then for f ∈ C1(E), we have

(123) σN (f) = π(f) ∪
⋃

x∈E

σ (f ′|x) .

For the proof, consider an arbitrary λ. For the one direction, let λ be in the
complement of the set of the right side. Then f is proper. Consequently, operator
(λ · idE − f) is proper. As each (λ · idE − f)′|x, x ∈ E, is continuously invertible,
(λ·idE−f) is a homeomorphism. Combined, (λ·idE−f) is a global homeomorphism.
By assumption (λ · idE − f) is differentiable. In addition, r(f, λ) = (λ · idE − f)−1

is differentiable. Hence, λ is not in σN (f). For the other direction, let λ be in the
complement of the left side. Then (λ · idE − f) is a diffeomorphism. Consequently,
it is proper (its inverse map is continuous, and thus maps compact sets on compact
sets), and all its derivatives are invertible.

From the above, we deduce that the Neuberger spectrum is not empty, because
the usual spectrum for linear operators is not empty.

4.8. FMV Spectrum. The FMV spectrum may be empty. As operator
f(z, w) := (w, iz), is defined over a finite-dimensional space, it cannot be used
directly to show that the FMV spectrum is empty. But just use a countably-finite
number of copies, i.e.,

(124) f∞ ((z1, w1), (z2, w2), . . .) := ((w1, iz1), (w2, iz2), . . .)

As [f∞]b > 0, we have [f∞]a ≥ [f∞]lip ≥ [f∞]b > 0 and [f∞]q ≥ [f∞]b > 0. As f is
surjective, it is stably solvable. Thus, σFMV (f∞) = σa(f∞)∪σq(f∞)∪σµ(f∞) = ∅.

4.9. Feng Spectrum. The Feng spectrum may be empty. Operator f∞, de-
fined above, is also additive and 1-homogeneous. Hence, by Theorem 83, σF (f∞) =
σ1

F (idE , f∞) = σ1
FMV (idE , f∞) = σFMV (f∞) = ∅.

5. Closedness

5.1. Mapping Spectrum. The mapping spectrum may not be closed. This
can be seen by the following example. Let E := R, and consider operator f(x) :=
x3. Clearly, f is a bijection. Hence, 0 /∈ Σ(f). For λ > 0, operator (λ · idE − f) is

not injective, take e.g., x1 = 0, x2 =
√
λ. Thus, Σ(f) ⊇ (0,∞).

5.2. Rhodius Spectrum. The Rhodius spectrum may not be closed. Let
E := R, and again consider operator f(x) := x3. Clearly, f is even a homeomor-
phism. Hence, 0 /∈ σR(f). Again, for λ > 0, (λ · idE − f) is not injective. Thus,
σR(f) ⊇ (0,∞).
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5.3. Dörfner Spectrum. The Dörfner spectrum may not be closed. This can
be seen by the following example. Let E := R, and let (αn)n be a strictly-increasing

sequence in [0, 1] with α0 = 0 and limn→∞ αn = 1. Define cn :=
∑n

k=1
αk−αk−1

k .
Then (cn)n is a Cauchy sequence, because (αn)n is one, as can be seen by

cn+p − cn =

n+p
∑

k=n+1

αk − αk−1

k
≤ 1

n+ 1

n+p
∑

k=n+1

αk − αk−1 =
1

n+ 1
(αn+p − αn) .

Hence, c :=
∑∞

k=1
αk−αk−1

k = limn→∞ cn <∞.
We build a piecewise-linear operator f : E → E by

f(x) :=

{

cn + x−αn

n+1 , x ≤ 1, x ∈ [αn, αn+1] ,

c · x , x ≥ 1 .

As f is strictly increasing, it is bijective. Its inverse is

f−1(y) =

{

αk + (k + 1)(y − ck) , y ∈ [ck, ck +
αk+1−αk

k+1 ] ,
y
c , y ∈ [c,∞] .

We have [f−1]B ≤ sup{ 1
c ,

αk+(k+1)(y−ck)
y | y ∈ [ck, ck + αk+1−αk

k+1 ]} <∞ as

αk + (k + 1)(y − ck)

y
≤
αk + (k + 1)(

αk+1−αk

k+1 )

cn
≤ αk + 1

cn
≤ 2

α1
.

Hence, on the one hand, 0 /∈ σD(f). On the other hand, the sequence ( 1
k )k is in

σD(f), because ( 1
k · idE − f) is constant on interval [αk, αk+1].

5.4. Kačurovskĭı Spectrum. The closedness of the Kačurovskĭı spectrum is
a consequence of the Banach fixed-point theorem.

Proposition 86. Let E be a Banach (or Fréchet) space, and let f : E → E be
Lipschitz-continuous. If [f ]Lip < 1, then idE − f is a lipeomorphism with

(125)
[

(idE − f)−1
]

Lip
≤ 1

1− [f ]Lip
.

Proof. First of all, (CLip(E), [·]Lip) is a complete metric space. Secondly, for
fz(x) := f(x) + z, we have [fz]Lip = [f ]Lip < 1, because the Lip-characteristic is
translation-invariant. Hence, by Theorem 28 (Banach Fixed-Point), fz has a fixed
point. Thus, the equation (idE−fz)(x) = 0 has a unique solution and (idE−fz)

−1

exists. We have

(idE ◦ (idE − f)−1)(x) − (f ◦ (idE − f)−1)(x) = idE(x) = x .

Consequently, for all y, z ∈ E we obtain

‖(idE − f)−1(z)− (idE − f)−1(y)‖E
≤ ‖f((idE − f)−1(z))− f((idE − f)−1(y))‖E + ‖z − y‖E
≤ [f ]Lip · ‖(idE − f)−1(z)− (idE − f)−1(y)‖E + ‖z − y‖E ,

implying
‖(idE − f)−1(z)− (idE − f)−1(y)‖E

‖z − y‖E
≤ 1

1− [f ]Lip
.

�

Theorem 87. Let E be a Banach (or Fréchet) space, and let f, g : E → E be
Lipschitz-continuous. If f is a lipeomorphism and [g]Lip < [f ]lip, then f + g is a
lipeomorphism with

[(f + g)−1]Lip ≤
1

[f ]lip − [g]Lip
.
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Proof. First of all, f + g = (idE − (−g ◦ f−1)) ◦ f . Secondly, we have

[−g ◦ f−1]Lip ≤ [g]lip · [f−1]Lip ≤ [g]Lip · [f−1]Lip < 1 .

Hence, by Proposition 86, (idE + (g ◦ f−1))−1 exists, and we have

[(idE + (g ◦ f−1))−1]Lip ≤
1

1− [g]Lip · [f−1]Lip
.

Finally, (f + g)−1 = f−1 ◦ (idE + (g ◦ f−1))−1, and

[(f + g)−1]Lip ≤ [f−1]lip · [(idE + (g ◦ f−1))−1]Lip

≤ [f−1]Lip ·
1

1− [g]Lip · [f−1]Lip

=
1

[f−1]−1
Lip − [g]Lip

=
1

[f ]lip − [g]Lip
.

�

Corollary 88. Let E be a Banach (or Fréchet) space, and let f ∈ CLip(E) be
Lipschitz-continuous. Then the Kačurovskĭı spectrum σK(f) is closed.

Proof. Let λ ∈ ρK(f) be arbitrary. Then (λ · idE − f) is a lipeomorphism
with [λ · idE − f ]lip = [(λ · idE − f)−1]−1

Lip = [r(f, λ)]−1
Lip > 0. Let µ ∈ K be

arbitrary with |µ − λ| < [r(f, λ)]−1
Lip. Then (µ − λ) · idE is Lipschitz-continuous

with [(µ − λ) · idE ]Lip < [λ · idE − f ]lip. By Theorem 87 applied to (λ · idE − f)
and (µ − λ) · idE , operator r(f, µ) = ((λ · idE − f) + (µ − λ) · idE)−1 exists and is
Lipschitz-continuous. Hence, µ ∈ ρK(f), proving that ρK(f) is open. �

5.5. Neuberger Spectrum. The Neuberger spectrum may not be closed.
This can be seen by the following example. Let E = R. Define operator f : E → E
as follows, distinguishing between even and odd intervals (k ∈ N).

f(x) :=



















x , x ∈ [0, 1] ,

4k2 − 1 + 1
2k · x , x ∈ [2k, 2k + 1] ,

f2k+1(x) , x ∈ [2k + 1, 2(k + 1)] ,

−f(−x) , x ≤ 0 .

Here, f2k+1 is a C1 operator, strictly increasing, with strictly positive derivative,
extending f smoothly to odd intervals. As f is strictly increasing, f is a bijection.
It is C1 by construction. Its inverse is C1, too, because f has strictly positive
derivative. Hence, on the one hand, 0 /∈ σN (f). On the other hand, the zero
sequence ( 1

2k )k is in σN (f), because 1
2k · idE − f is constant on interval [2k, 2k+1].

5.6. FMV Spectrum. Showing the closedness of the FMV spectrum is based
on a perturbation result. We sketch the proof on a high level first: From different
growth-rates (Q-characteristic) of operators f and g, we obtain an invariant and
bounded set. This set contains an invariant and compact subset, which we find with
the help of the noncompactness measure (A-characteristic). Stability of f is now
obtained via the Theorem of Dugundji and the existence of retractions, enforcing
the solution of f = g to lie in this compact set.

Theorem 89. Let E, F be infinite-dimensional Banach (or Fréchet) spaces,
k ≥ 0, and let f : E → F be continuous. If f is 0-AQ stably solvable and [f ]aq > 0,
then f is ([f ]aq − ε)-AQ stably solvable for every ε > 0.
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Proof. Let g : E → F be continuous with [g]AQ ≤ [f ]aq − ε < [f ]aq. We have
to show that f = g has a solution. As [f ]q > [g]Q, by Lemma 75 applied to f and
g, there exists a nonempty, convex, closed, and bounded subset B ⊆ E such that
f−1(co(g(B) ∪ {0})) ⊆ B. As [f ]a > [g]A, by Lemma 56, there exists a nonempty,
convex, and compact subset C ⊆ B such that f−1(co(g(C) ∪ {0})) ⊆ C.

Define D := co(g(C) ∪ {0}). Then D ⊆ F is nonempty, convex, and compact.
By Theorem 51 (Dugundji’s Extension Theorem), there exists a retraction r : F →
D of F onto D. Define g0 : E → F by g0(x) := r(g(x)). Then g0 is compact
by construction and bounded in growth, [g0]AQ = 0. Operators f and g0 have a
common solution x̂ by 0-AQ stably solvability of f . As f(x̂) ∈ g0(E) ⊆ D, we
have x̂ ∈ f−1(D) ⊆ C. Then g(x̂) ∈ D, implying g(x̂) = r(g(x̂)) = g0(x̂) = f(x̂).
Hence, x̂ is also a solution for f = g. This shows that f is ([f ]aq − ε)-AQ stably
solvable. �

Corollary 90. We have µ(f) ≥ [f ]ab.

Proposition 91. Let E, F be infinite-dimensional Banach (or Fréchet) spaces,
and let f, g : E → F be continuous operators.

(i) If f is k-AQ stably solvable for k ≥ [g]AQ, then f + g is k′-AQ stably
solvable for k′ ≤ k − [g]AQ.

(ii) If f is FMV-regular with [g]AQ < [f ]aq, then f + g is FMV-regular.

Proof. For item (i), let h : E → F be continuous with [h]AQ ≤ k′. We want to
show that equation f + g = h has a solution. We have [h− g]AQ ≤ [h]AQ + [g]AQ ≤
(k − [g]AQ) + [g]AQ = k. As f is k-AQ stably solvable, f = g − h has a solution.

In case, f is FMV-regular, we have [f + g]aq ≥ [f ]aq − [g]AQ > 0. Furthermore,
as f is 0-AQ stably solvable, f is even ([f ]aq−ε)-AQ stably solvable for every ε > 0.
Choose ε such that k′ := [f ]aq − [g]AQ− ε > 0. Then f + g is k′-AQ stably solvable
and thus FMV-regular, proving item (ii). �

Theorem 92. Let E be an infinite-dimensional Banach (or Fréchet) space,
and let f : E → E be continuous. Then the FMV spectrum σFMV (f) is closed.

Proof. We show that ρFMV (f) is open. Let λ ∈ ρFMV (f). Define δ :=
1
2 [f ]aq > 0. Let µ ∈ K with |λ − µ| < δ. We show that µ ∈ ρFMV (f). By
choice of λ, operator (λ · idE − f) is FMV-regular with [λ · idE − f ]aq > 0. As
[µ · idE ]AQ = |µ| = δ < [f ]aq, operator (µ · idE − f) = (µ− λ) · idE + (λ · idE − f)
is FMV-regular. Hence, µ ∈ ρFMV (f). �

An alternative proof goes as follows.

Proof. We show that ρFMV (f) is open. Let λ ∈ ρFMV (f). Then (λ · idE−f)
is FMV-regular. Hence, [λ · idE − f ]aq > 0 and µ(λ · idE − f) > 0. Choose
δ(λ) := 1

2 · [λ · idE − f ]aq > 0. Then for all η with |η − λ| < δ(λ), we have

[η · idE − f ]aq ≥ [λ · idE − f ]aq − |η − λ| ≥ [λ · idE − f ]aq − δ(λ) > 0 .

Furthermore, we have

µ(η · idE − f) ≥ [η · idE − f ]aq > 0 .

Hence, operator (η · idE − f) is FMV-regular, i.e., µ ∈ ρFMV (f). �

5.7. Feng spectrum. We prove the boundedness of the Feng spectrum via
the properties of µ and ν.

Theorem 93. Let E be an infinite-dimensional Banach (or Fréchet) space,
and let f : E → E be continuous. Then the Feng spectrum σF (f) is closed.
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Proof. We show that ρF (f) is open. Let λ ∈ ρF (f). Then (λ · idE − f) is
Feng-regular. Hence, [λ · idE − f ]ab > 0 and ν(λ · idE − f) > 0. Choose δ(λ) :=
1
2 · [λ · idE − f ]ab > 0. Then for all η with |η − λ| < δ(λ), we have

[η · idE − f ]ab ≥ [λ · idE − f ]ab − |η − λ| ≥ [λ · idE − f ]ab − δ(λ) > 0 .

Furthermore, we have

ν(η · idE − f) ≥ µ(η · idE − f) ≥ [η · idE − f ]aq ≥ [η · idE − f ]ab > 0 .

Hence, operator (η · idE − f) is Feng-regular, i.e., µ ∈ ρF (f). �

6. Boundedness

6.1. Mapping Spectrum. The mapping spectrum may be unbounded. This
can be seen by the following example. Let E = R, and define f(x) := x2. Then
(λ · idE − f) is not injective for all λ. For λ = 0, take x1 = 1, x2 = −1. For λ 6= 0,
take x1 = 0, x2 = λ. Hence, R = Σi(f) = Σ(f).

6.2. Point Spectrum. The point spectrum may be unbounded. Take the
same example as above for the mapping spectrum.

6.3. Spectra Defined Via Seminorms. Based on the spectra defined for
the lower characteristics, one can also define corresponding spectral radii for the
lower characteristics :

rs(f) := sup {|λ| | λ ∈ σs(f)} ,

rd(f) := sup {|λ| | λ ∈ σd(f)} ,

rdb(f) := sup {|λ| | λ ∈ σdb(f)} ,

rb(f) := sup {|λ| | λ ∈ σb(f)} ,

rlip(f) := sup {|λ| | λ ∈ σlip(f)} .

We have the following inclusions in case of identical seminorms p = q, because
[λ · idE − f ]z = 0 implies both [f ]z − [λ · idE ]Z ≤ 0 and [λ · idE ]z − [f ]Z ≤ 0.
Consequently, [f ]z ≤ [λ · idE ]z = |λ| = [λ · idE ]Z ≤ [f ]Z . This gives

(126) σz(f) ⊆ {λ ∈ K | [f ]z ≤ |λ| ≤ [f ]Z} .

Hence, for f ∈ C(E) with [f ]Z < ∞, the spectra for the lower characteristics [·]z
are bounded, and for each z/Z we have

(127) rz(f) ≤ [f ]Z .

6.4. Rhodius Spectrum. The Rhodius spectrum may be unbounded. Again,
let E = R, and consider f(x) := x2. We have f ∈ C(E). Then R = Σ(f) ⊆ σR(f).

6.5. Dörfner Spectrum. The Dörfner spectrum may be unbounded. This
can be seen by the following example. Consider operator f : E → E defined on
E := R by f(x) := 0, if x ≤ 1, and f(x) :=

√
x− 1, if x ≥ 1.

First of all, we show f ∈ Blin(E). We have

[f ]B = sup {|f(x)|/|x| | 0 < x <∞} = sup
{√

x/(x+ 1) | 0 < x <∞
}

.

Its extremum is at x = 1, computed by

0 =

( √
x

x+ 1

)′
=

(
√
x)′(x+ 1)− (

√
x)(x+ 1)′

(x+ 1)2
⇔ 1

2
√
x

(x+ 1) =
√
x .

Thus, [f ]B = 1
2 <∞.

Secondly, we prove that σD(f) is unbounded. Consider fλ = λ · idE − f .
We distinguish three cases on λ. If λ = 0, then 0 ∈ σD(f), because f0 ≤ 0 is
not surjective. For λ < 0, operator fλ is strictly monotonically decreasing with
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fλ(x) → ±∞ for x → ∓∞. Hence, fλ is bijective in this case. Furthermore,
[f−1

λ ]B = [fλ]b ≤ λ · 1 + [f ]B = λ + 1/2 < ∞. Thus, (−∞, 0) ⊆ ρB(f). For λ > 0,
operator fλ has a local minimum at x0 = 1 + 1/4λ2, computed by 0 = f ′

λ(x) =
λ − 1

2
√

x−1
. We have fλ(1) > fλ(x0) and fλ(x0) < fλ(1 + 1/2λ2). Hence, fλ is

strictly monotonically decreasing in [1, x0) and strictly monotonically increasing in
(x0,∞). Finally, combining all three cases, we obtain σD(f) = [0,∞).

6.6. Kačurovskĭı Spectrum.

Proposition 94. Let E be a Banach (or Fréchet) space, and let f : E → E be
Lipschitz-continuous. Then the Kačurovskĭı spectrum σK(f) is bounded.

Proof. Let λ ∈ ρK(f) be arbitrary with |λ| > [f ]Lip. Operator (λ · idE) is a
lipeomorphism. As [−f ]Lip = [f ]Lip < |λ| = [λ · idE ]lip, by Theorem 87, operator
(λ · idE − f) is a lipeomorphism. Hence, λ /∈ σK(f). �

As a consequence, we obtain that the Kačurovskĭı spectral radius is bounded
by

(128) rK(f) ≤ [f ]Lip .

6.7. Neuberger Spectrum. The Neuberger spectrum may be unbounded.
Again, let E = R, and consider f(x) := x2. We have f ∈ C1(E). Then R = Σ(f) ⊆
σN (f).

6.8. FMV Spectrum. The boundedness of the FMV spectrum follows from
the following perturbation result, which itself relies on the Darbo fixed-point theo-
rem.

Proposition 95. Let E be an infinite-dimensional Banach (or Fréchet) space,
and let h : E → E be continuous with [h]AQ < 1. Then operator (idE − h) is
surjective. In particular, h has a fixed point.

Proof. Let y ∈ E be arbitrary. Define the translate hy(x) := h(x) + y.
Then [hy]AQ = [h]AQ < 1, because both A- and Q-characteristic are translation-
invariant. Fix q ∈ ([h]Q, 1). Then for a suitable b > 0, ‖hy(x)‖E ≤ q · ‖x‖E + b
for all x ∈ E. For R ≥ 1/(1− q), hy maps ball B(0, R) into itself. By Theorem 55
(Darbo Fixed-Point), hy has a fixed point. �

Theorem 96. Let E be an infinite-dimensional Banach (or Fréchet) space, and
let f : E → E be continuous with [f ]AQ < ∞. Then the FMV spectrum σFMV (f)
is bounded.

Proof. For λ ∈ K with |λ| > [f ]AQ we have [λ · idE − f ]aq ≥ |λ| − [f ]AQ > 0.
We show that (λ · idE − f) is 0-AQ stably solvable. Let g : E → E be continuous
with [g]AQ = 0. Then h := (f + g)/λ satisfies [h]AQ < 1. Hence, by Proposition
95, there exists z ∈ E with (idE − h)(z) = 0. Thus, (λ · idE − f)(z) = g(z). �

An alternative proof goes as follows.

Proof. For λ ∈ K with |λ| > [f ]AQ, we have [λ · idE − f ]aq ≥ |λ| − [f ]AQ > 0.
We have

µ(λ · idE − f) ≥ [λ · idE − f ]aq > 0 .

Hence, operator (λ · idE − f) is FMV-regular. �

As a consequence, we obtain that the FMV spectral radius is bounded by

(129) rFMV (f) ≤ [f ]AQ .
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6.9. Feng Spectrum. We prove the boundedness of the Feng spectrum via
the properties of µ and ν.

Theorem 97. Let E be an infinite-dimensional Banach (or Fréchet) space,
and let f : E → E be continuous with [f ]AB < ∞. Then the Feng spectrum σF (f)
is bounded.

Proof. For λ ∈ K with |λ| > [f ]AB, we have [λ · idE − f ]ab ≥ |λ| − [f ]AB > 0.
We have

ν(λ · idE − f) ≥ µ(λ · idE − f) ≥ [λ · idE − f ]aq ≥ [λ · idE − f ]ab > 0 .

Hence, operator (λ · idE − f) is Feng-regular. �

As a consequence, we obtain that the Feng spectral radius is bounded by

(130) rF (f) ≤ [f ]AB .

7. Upper Semicontinuity

Upper-semicontinuity seems to be a delicate issue. We will show that it holds
for the Kačurovskĭı, FMV, and Feng spectra under suitable conditions. For the
Rhodius and Neuberger spectra, it seems to be an open question, [ADPV04, Table
7.1, p.178].

In addition, it is claimed in [ADPV04, Chapter 5, Example 5.9] that the
Dörfner spectrum is not upper semicontinuous. It is shown that σD is not graph-
closed. Probably, the argument then implicitly uses the fact that semicontinuity
implies a closed graph. But such an argument only holds in case that the set-valued
map has closed values. This is not the case here, σD(f) may be open, see Subsection
5.3.

Theorem 98. Let (M, p) be a seminormed space, and let σ : M → 2K be a
set-valued map, which has closed graph and bounded values such that

(131) sup
λ∈σ(f)

|λ| ≤ p(f) f ∈ M .

Then σ is upper semicontinuous.

Proof. Let f ∈ M, and let V ⊆ K with σ(f) ⊆ V . Define ε > 0 such
that σ(B(f, ε))\V 6= ∅. Here, B(f, ε) := {g ∈ M | (f − g) < ε}. Hence, for

g ∈ B(f, ε), we have supλ∈σ(g) |λ| ≤ p(g) ≤ p(f) + ε. Define set C := σ(B(f, ε))\V .

As σ(B(f, ε)) is bounded, C is compact.
For every λ ∈ C, there exists an open set Vλ ⊆ K with λ ∈ Vλ and δ(λ) > 0 such

that σ(B(f, δ(λ)))∩Vλ = ∅, because map σ is graph-closed. Family {Vλ | λ ∈ C} is
an open covering of C. Hence, there exist finitely-many λ1, . . . , λm ∈ C such that
C ⊆ Vλ1

∪ · · · ∪ Vλm . Define δ := min{ε, δ(λ1), . . . , δ(λm)}. Then σ(B(f, δ)) ⊆ V ,
showing σ to be upper semicontinuous. �

7.1. Kačurovskĭı Spectrum. The Kačurovskĭı spectrum σK : CLip(E)→ 2K,
f 7→ σK(f), is upper semicontinuous. This follows from Theorem 98 and Proposi-
tion 99.

Proposition 99. The Kačurovskĭı spectrum is graph-closed and has bounded
values.

Proof. As rK(f) ≤ [f ]Lip, σK has bounded values. We show that σK is
graph-closed. Let (fn)n and (λn)n be sequences with λn ∈ σK(fn) such that
[fn − f ]Lip → 0 and λn → λ for n→∞. Then we have

[(λn · idE − fn)− (λ · idE − f)]Lip ≤ |λn − λ|+ [fn − f ]Lip → 0 (n→∞)
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We have to show that λ ∈ σK(f). Assume the opposite for a contradiction, i.e.,
λ ∈ ρK(f). Then [λ · idE − f ]lip > 0. Due to convergence, one can choose n0 such
that for all n ≥ n0 we have

max{[fn − f ]Lip, |λn − λ|} <
1

2
· [λ · idE − f ]lip .

Hence, for operator gn := (λn − λ) · idE + f − fn, we get

[gn]Lip ≤ [fn − f ]Lip + |λn − λ| < [λ · idE − f ]lip .

Then (λn · idE − fn) = (λ · idE − f) + gn is also a lipeomorphism, contradicting
λn ∈ σK(fn). �

We note that [·]Lip and [·]lip have been mixed up in the proof in [ADPV04,
Theorem 5.3].

7.2. FMV Spectrum. Denote with A(E) and Q(E) the spaces of operators
f : E → E such that [f ]A <∞ and [f ]Q <∞, respectively.

We consider spaceA(E)∩Q(E) with seminorm pAQ(f) := [f ]AQ. The topology,
induced by pAQ, is often called FMV topology.

The FMV spectrum σFMV : A(E) ∩ Q(E) → 2K, f 7→ σFMV (f) is upper
semicontinuous. This follows from Theorem 98 and Proposition 100.

Proposition 100. The FMV spectrum is graph-closed and has bounded values.

Proof. As rFMV (f) ≤ [f ]AQ, σF has bounded values. We show that σFMV

is graph-closed by looking at its complement.
Fix λ ∈ ρFMV (f). Then [λ · idE − f ]aq > 0 and µ(λ · idE − f) > 0. As

ρFMV (f) is open by Theorem 92, we have δ(λ) := 1
4 · [λ · idE − f ]aq > 0. Choose

g ∈ A(E) ∩ Q(E) with [g − f ]AQ < δ(λ). Then for all η with |η − λ| < δ(λ), we
have

[η · idE − g]aq ≥ [η · idE − f ]aq − [f − g]AQ

≥ [λ · idE − f ]aq − |η − λ| − [f − g]AQ

≥ [λ · idE − f ]aq − 2 · δ(λ) > 0 .

Furthermore, we obtain

µ(η · idE − g) ≥ [η · idE − g]aq > 0 .

Thus, the complement of the graph of σFMV (f) is open. �

7.3. Feng Spectrum. We consider the space A(E) ∩ B(E) of operators, to-
gether with seminorm pAB(f) := [f ]AB. The topology, induced by pAB, is some-
times called Feng topology.

The Feng spectrum σF : A(E) ∩ B(E)→ 2K, f 7→ σF (f), is upper semicontin-
uous. This follows from Theorem 98 and Proposition 101.

Proposition 101. The Feng spectrum is graph-closed and has bounded values.

Proof. As rF (f) ≤ [f ]AB, σF has bounded values. We show that σF is graph-
closed by looking at its complement.

Fix λ ∈ ρF (f). Then [λ · idE−f ]ab > 0 and ν(λ · idE−f) > 0. As ρF (f) is open
by Theorem 93, we have δ(λ) := 1

4 · [λ · idE − f ]ab > 0. Choose g ∈ A(E) ∩ B(E)
with [g − f ]AB < δ(λ). Then for all η with |η − λ| < δ(λ), we have

[η · idE − g]ab ≥ [η · idE − f ]ab − [f − g]AB

≥ [λ · idE − f ]ab − |η − λ| − [f − g]AB

≥ [λ · idE − f ]ab − 2 · δ(λ) > 0 .



86 3. EXISTING SPECTRA

Furthermore, we obtain

ν(η · idE − g) ≥ µ(η · idE − g) ≥ [η · idE − g]aq ≥ [η · idE − g]ab > 0 .

Thus, the complement of the graph of σF (f) is open. �



CHAPTER 4

Applications

1. Nemyckii Operator

This section is just a preparation for the analysis of the p-Laplace operator,
introduced in the next section. We show properties of so-called Nemyckii operators
F , defined as follows.

(Fu)(x) := f(x, u(x)) ,

where u := (u1, . . . , ud′

) : Ω→ Rd′

, Ω ⊆ Rd is a domain, and function f : Ω×Rd →
R satisfies the following conditions:

(i) Carathéodory Condition: Function f is measurable in the first and con-

tinuous in the second argument, i.e., for each y ∈ Rd′

, x 7→ f(x, y) is
measurable, and for each x ∈ Ω, y 7→ f(x, y) is continuous.

(ii) Growth Condition: There exist constants b > 0, 1 ≤ q, pi < ∞, i ∈ [d′],
and a ∈ Lq(Ω) such that

|f(x, y)| ≤ |a(x)|+ b ·
∑

i∈[d′]

|yi|pi/q .

Theorem 102. Under the above assumptions, the (nonlinear) Nemyckii oper-
ator is defined between F :

∏

i∈[d′] Lpi(Ω) → Lq(Ω), is bounded, and continuous.

For all u in the domain of F it holds

‖Fu‖qLq(Ω) ≤ (d′ + 1)q−1 ·



‖a‖qLq(Ω) + bq ·
∑

i∈[d′]

‖ui‖pi

Lpi (Ω)



 .1

The proof of above theorem, given in [Růž04, Section 3.1.2, Lemma 1.19], is
problematic in several aspects. First of all, it suggests that the above statement
also holds in case q = 1 or one of the pi = 1, which is actually true. But L1(Ω) is
not reflexive in case of a bounded domain Ω. Hence, the arguments, using [Růž04,
Chapter 3, Lemma (0.3) (iv)], in the proof fail in such a non-reflexive case. The
cited lemma demands reflexivity. Secondly, mentioned Lemma (0.3) (iv) only gives
a weakly-convergent sequence. In contrast, here we need a strongly-convergent
sequence.

Proof. Each Fu is measurable: As u ∈ Lp(Ω), it is Lebesgue-measurable,
implying that there exists a sequence of step functions (un)n, un =

∑

i∈[mn] cn,i ·
χGn,i , converging to u pointwise almost everywhere, i.e., un(x) → u(x) almost
everywhere (n → ∞). As f is continuous in the second argument, we obtain
Fu(x) = f(x, u(x)) = limn→∞ f(x, un(x)) almost everywhere. Each

f(x, un(x)) =
∑

i∈[mn]

f(x, cn,i) · χGn,i(x)

1The exponents q have been corrected, compared to the submitted version of this thesis.

87



88 4. APPLICATIONS

is measurable as a sum-product of measurable functions. Note that each f(x, cn,i)
is measurable by the Carathéodory condition. Finally, Fu is measurable as the
limit of measurable functions.

Operator F is bounded: First note that (a1+· · ·+ad′)r ≤ (d′)r−1 ·(ar
1+· · ·+ar

d′)
for r > 1.2 We have

‖Fu‖qLq(Ω) =

∫

|f(x, u(x))|q dλ ≤
∫



|a(x)|+ b ·
∑

i∈[d′]

|ui|pi/q





q

dλ

≤ (d′ + 1)q−1





∫

|a(x)|q dλ+ bq ·
∑

i∈[d′]

∫

|ui|pi dλ





≤ (d′ + 1)q−1 ·



‖a‖qLq(Ω) + bq ·
∑

i∈[d′]

‖ui‖pi

Lpi (Ω)



 .

Operator F is continuous: For notational simplicity, we prove the statement for
d′ = 1, p = p1. Let un → u in Lp be an arbitrary convergent sequence. We consider
an arbitrary subsequence (Funk

)k. For convergent sequence (unk
)k, there exists a

subsequence (unkl
)l, converging pointwise almost everywhere to x, by Theorem 24.

Hence, subsequence (Funkl
)l also converges pointwise almost everywhere to Fu,

because f is continuous in the second argument by the Carathéodory condition.
We then have (Funkl

− Fu)(x)→ 0 pointwise almost everywhere.
Define measurable functions

hl(x) := C · (|a(x)|q + bq · |unkl
(x)|p + |f(x, u(x))|q) ,

h(x) := C · (|a(x)|q + bq · |u(x)|p + |f(x, u(x))|q) .

Then hl(x)→ h(x) pointwise almost everyhere (l →∞). In addition, as unkl
→ u

in Lp(Ω), we have
∫

hl dλ→
∫

h dλ (l→∞) .

These functions serve as majorants, because
∣

∣

∣Funkl
− Fu

∣

∣

∣ ≤ hl by construction.

Hence, we have everything to apply Theorem 23 (generalized Majorized Conver-
gence), obtaining

‖Funk
− Fu‖qLq(Ω) → 0 (k →∞) .

Hence, every subsequence of (Fun)n contains a subsequence, converging (in norm)
to the same limit Fu. By Lemma 40 (v), then the whole sequence (Fun)n converges
(in norm) to Fu. This shows that F is sequentially continuous. As sequential
continuity is equivalent to continuity in Banach spaces, F is continuous. �

2. p-Laplace Operator

The literature on the p-Laplace operator is vast. We refer the reader to the
interesting notes of Lindqvist [Lin17] and also to [ADPV04, Sections 12.5 and
12.6] and the references mentioned therein. As the p-Laplacian is a nonlinear gen-
eralization of the linear, ordinary Laplacian, it is a beautiful object of study to
develop and sharpen the tools in (Nonlinear) Functional Analysis. Arguably even
more than the original Laplacian (p = 2), it brings together different fields of
mathematics like Calculus of Variations, Partial Differential Equations, Potential
Theory, Function Theory, Mathematical Physics, and even Statistics and Game

2Use convexity (r > 1) of x 7→ xr. Then e.g., the point (a+b
2

)r on the curve is below the point
ar

+br

2
on the secant between ar and br . The general case is an instance of Jensen’s inequality.
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Theory. The p-Laplace operator is formally defined as ∆pu := − div(|∇u|p−2∇u)
for functions u = u(x1, . . . , xd). For fixed real s, 2 ≤ p <∞, and a bounded domain
Ω ⊆ Rd with Lipschitz-continuous boundary ∂Ω, we consider equations of the form

∆pu = s · |u|p−2u , in Ω ,(132)

u = 0 , in ∂Ω .(133)

As usual, divergence and gradient are defined by div(v1, . . . , vd) := ∂1v1+ · · ·+∂dvd

and ∇u := (∂1u, . . . , ∂du), respectively.
According to above equation, a strong solution u would need to be in class

C1, compactly supported in Ω, and with partial derivatives ∂iu bounded in Lp(Ω).

Hence, for a weak solution u, it suffices to take E := W1,p
0 (Ω) as the underlying

space. Note that E and E′ are separable and reflexive Banach spaces. Due to the
Lipschitz conditions on the boundary of Ω, the norms ‖u‖E and ‖∇u‖Lp(Ω) are
equivalent by Poincare’s inequality.

The weak formulation of (132) reads as
∫

Ω

− div(|∇u|p−2∇u)φdλ = s ·
∫

Ω

|u|p−2uφdλ

for all φ ∈ E. By Green’s first identity, the first integral changes to
∫

Ω

|∇u|p−2〈∇u,∇φ〉Rd dλ = s ·
∫

Ω

|u|p−2uφdλ .

For u, φ ∈ E, define operators Ju,Bu ∈ E′ by

〈Ju, φ〉 := (Ju)(φ) :=

∫

Ω

|∇u|p−2〈∇u,∇φ〉Rd dλ ,(134)

〈Bu, φ〉 := (Bu)(φ) :=

∫

Ω

|u|p−2uφdλ .(135)

Before we proceed to prove certain properties of these operators using the
Theory of Monotonic Operators, we need a small preparation via the following
inequality.

Proposition 103. There is a constant c > 0 such that for all s, t ∈ R and
p ≥ 2 we have

(136) (|s|p−2s− |t|p−2t)(s− t) ≥ c|s− t|p .

Proof. The cases p = 2, s = 0, t = 0, or s = t are clear. In case one of the
arguments is negative, e.g., s, consider s̃ = −s. If s < t, switch roles. Hence, we
can assume that s > t > 0 and p > 2. Define m := s+t

2 . Then s > m > t > 0. We
have

|s|p−2 ·
(

s

s− t

)

+ |t|p−2 ·
( −t
s− t

)

= |s|p−2 ·
(

s−m
s− t

)

+ |s|p−2 ·m− |t|p−2 ·m+ |t|p−2 ·
(

m− t
s− t

)

≥ |s|p−2 ·
(

s−m
s− t

)

+ |t|p−2 ·
(

m− t
s− t

)

≥
∣

∣

∣

∣

s ·
(

s−m
s− t

)

+ t ·
(

m− t
s− t

)∣

∣

∣

∣

p−2

=
1

2
· |s− t|p−2 .

Here, we used the convexity of x 7→ |x|p−2. �
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Lemma 104. Operator J : E → E′ is odd, (p− 1)-homogeneous, bounded, con-
tinuous, and coercive. If p ≥ 2, J is strictly monotonic and a topological isomor-
phism.

The proof of strict monotonicity of operator J , given in [Růž04, Chapter 3,
Lemma 1.28], is wrong. It suggests that this property even holds for the range ]1, 2[.
But the restriction to p ≥ 2 seems to be necessary, see e.g., [ADPV04, Section
12.5, p.368]. The calculation presented is wrong, e.g., the differentiation should
yield |ζ|p−3 and not |ζ|p−4 as stated. Hence, one does not get the lower bound
min(1, p− 1) · |ζ|p−2 · |η|2. Rather one only gets

d
∑

i,j=1

∂gi

∂ζj
(ζ)ηiηj = |ζ|2

(

|η|2 + (p− 2) · (ζ · η)
2

|ζ|

)

,

which can become negative for p < 2. For example, set ζ = η with |ζ| < 2− p. We
correct these flaws in the proof below.

Proof. Operator J is odd and (p − 1)-homogeneous by definition. For every
u, φ ∈ E, we have

|〈Ju, φ〉| ≤
∫

Ω

|∇u|p−1 · |∇φ| dλ

≤
(∫

Ω

|∇u|(p−1)p′

dλ

)
1

p′

·
(∫

Ω

|∇φ|p dλ

)
1
p

= ‖∇u|p−1
Lp(Ω) · ‖∇φ‖Lp(Ω) ,

using Hölder’s inequality and the dual parameter p′ := p/(p− 1). Then for every
u ∈ E, ‖Ju‖E′ ≤ c · ‖u‖E. Hence, Ju ∈ E′ and J is bounded.

Operator J is continuous: Let un → u (n→∞) be arbitrary. Then ∇un → ∇u
in Lp(Ω). Set F as ζ 7→ |ζ|p−1ζ. Then F is a vector-valued Nemyckii operator. By

Theorem 102, operator F : (Lp(Ω))d → (Lp′

(Ω))d is continuous. Hence, F (∇un)→
F (∇u) in (Lp′

(Ω))d. We obtain

〈Jun − Ju, φ〉 =

∫

Ω

〈F (∇un)− F (∇u),∇φ〉Rd dλ

≤ ‖F (∇un)− F (∇u)‖Lp′(Ω) · ‖∇φ‖Lp(Ω)

≤ c · ‖F (∇un)− F (∇u)‖Lp′(Ω) · ‖φ‖E .

This shows that Jun → Ju in E′ (n → ∞). Hence, J is sequentially continuous.
As sequential and general continuity are equivalent in Banach spaces, J is also
continuous.

Operator J is coercive: For all u ∈ E, we have

〈Ju, u〉 =
∫

Ω

|∇u|p dλ = ‖∇u‖pLp(Ω) ≥ c · ‖u‖
p
E .

For all p > 1, it follows

〈Ju, u〉
‖u‖E

≥ ‖u‖p−1
E →∞ (|u|E →∞) .

Operator J is a topological isomorphism: As J is (sequentially) demicontinous
and coercive, it is surjective by Theorem 48 (Browder-Minty). It is injective and
thus bijective by strict monotonicity. It is continuous, and its inverse is continuous.

�

Lemma 105. Operator B : E → E′ is odd, (p− 1)-homogeneous, and bounded.
For p < d, it is strongly (sequentially) continuous, and thus compact.



2. p-LAPLACE OPERATOR 91

The proof in [Růž04, Section 3.2.2, Lemma 2.17] of the strong (sequential)
continuity is not correct, because it applies [Růž04, Chapter 3, Lemma (0.3)],
written is item (iii) but meant is item (iv), which only yields a weakly- and not a
strongly-convergent sequence. In addition, the condition p < d, needed for the used
embedding E → Lp(Ω) to be compact, was overlooked in [ADPV04, Section 12.5,
Lemma 12.3]. It is unclear, if this condition is really necessary in the statement,
or if it is only a limitation of the proof method. In this context, we note that the
Sobolev embedding theorems are formulated in a way such that they are provably
best-possible.

Proof. Operator B is odd and (p− 1)-homogeneous by definition. For every
u, φ ∈ E we have

|〈Bu, φ〉| ≤
∫

Ω

|u|p−1 · |φ| dλ ≤
(∫

Ω

|u|(p−1)p′

dλ

)
1

p′

·
(∫

Ω

|φ|p dλ

)
1
p

= ‖u|p−1
Lp(Ω) · ‖φ‖Lp(Ω) ,

using Hölder’s inequality and the dual parameter p′ := p/(p− 1). Then for every
u ∈ E, ‖Bu‖E′ ≤ c · ‖u‖E. Hence, Bu ∈ E′ and B is bounded.

Operator B is strongly (sequentially) continuous: Let un ⇀ u be a weakly-
convergent sequence in E (n → ∞). We have to show that Bun → Bu in E′

(n→∞). Let (Bunk
)k be an arbitrary subsequence.

As unk
⇀ u in E (k →∞), (unk

)k is bounded by Lemma 40 (i). As the embed-

ding E → Lr(Ω) is compact for all r < dp
d−p , in particular for r = p − 1, sequence

(unk
)k is relatively compact. As compactness and sequential compactness coincide

in Banach spaces, sequence (unk
)k is relatively sequentially compact. Hence, there

exists a subsequence (unkl
)l, strongly converging to a limit, which must be u. Now,

Nemyckij operator Fu := |u|p−2u is sequentially continuous. Thus, Funkl
→ Fu

in E′ (l →∞). From

sup
φ∈E,‖φ‖E≤1

|〈Bunkl
−Bu, φ〉|

≤ sup
φ∈E,‖φ‖E≤1

∫

Ω

|Funkl
− Fu| · |φ| dλ

≤ sup
φ∈E,‖φ‖E≤1

∫

Ω

‖Funkl
− Fu‖Lp′(Ω) · ‖φ‖Lp(Ω) dλ

≤ c · ‖Funkl
− Fu‖Lp′(Ω) → 0 (l →∞) ,

we obtain Bunkl
→ Bu in E′ (l → ∞). Hence, every subsequence of (Bun)n

contains a strongly-convergent subsequence. By Lemma 40 (v), we have Bun → Bu
in E′ (n→∞), showing that B is strongly (sequentially) continuous.

As sequential compactness implies compactness for Banach space E′ by Lemma
42 (i), we are done. �

Combining Theorem 85 with Lemmas 104 and 105, we obtain the following
results.

Theorem 106 (Discreteness for ∆p). Let p < d, s 6= 0, and λ := 1/s. The
(p−1)-FMV and (p−1)-Feng spectrum of the associated operator (B−λ·J) coincide
with the classical point spectrum of problem (132).

Theorem 107 (Fredholm Alternative for ∆p). Let p < d, s 6= 0, and λ := 1/s.
If s is not a classical eigenvalue of problem (132), then there exists k > 0 such
that the associated operator (B − λ · J) is both (k, p − 1)-AQ stably solvable and

(k, p− 1)-epi on U for all U ∈ O(W1,p
0 (Ω)).
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3. Navier-Stokes Equations

3 The equations, named after Claude Louis Marie Henri Navier and George
Gabriel Stokes, are fundamental equations of Hydrodynamics. They represent
a mathematical model for the velocity of a viscous fluid (liquid, gas). We refer
the reader to the comprehensive book of Lemarié-Rieusset [Lem16] and the refer-
ences therein. We first consider the stationary version, defined over a smooth and
bounded domain Ω ⊆ Rd, d ≥ 1.

−∆u+ [∇u].u+∇p = f , in Ω ,(137)

div u = 0 , in Ω .(138)

Here, for d ≥ 1, u := (u1, . . . , ud) : Ω → R
d denotes the velocity of a viscous

fluid, p : Ω → R denotes the pressure, and f : Ω → Rd is an external force. In
addition, we have the (vector-valued) Laplace operator, ∆u := (

∑

j∈[d] ∂
2
j u

i)i∈[d],

the nonlinear (vector-valued) turbulence term, [∇u].u := (
∑

j∈[d] u
j∂ju

i)i∈[d], the

(vector-valued) divergence, div u := (
∑

j∈[d] ∂ju
i)i∈[d], and the gradient ∇p :=

(∂1p, . . . , ∂dp). For (vector-valued) operators u, we have their gradient defined as
∇u := (∂iu

j)i,j∈[d] = (∇uj)j∈[d].
As div u = 0 implies div(−∆u+[∇u].u) = 0, a necessary condition for a solution

to exist is that div(f −∇p) = 0.
We seek strong solutions of above equation, which are smooth and compactly

supported in Ω. Hence, we define

E := ker div := {u ∈ (D(Ω))d | div u = 0}(139)

as underlying space. We have a look at the weak formulation of (137). For u, φ ∈ E,
we define operators

〈A1u, φ〉 := (A1u)(φ) :=

∫

Rd

〈−∆u, φ〉Rd dλ(140)

=

∫

Rd

〈∇u,∇φ〉Rd×d dλ ,

〈A2u, φ〉 := (A2u)(φ) :=

∫

Rd

〈[∇u].u, φ〉Rd dλ ,(141)

A := A1 +A2 ,(142)

〈b, φ〉 := b(φ) :=

∫

Rd

〈f −∇p, φ〉Rd dλ .(143)

Lemma 108. We have A1, A2, A : E → E′ and b ∈ E′.

(i) Operator A1 is linear, and (sequentially) continuous, hemicontinuous,
(sequentially) demicontinuous, bounded, strictly monotonic, and pseu-
domonotonic.

(ii) Operator A2 is strongly (sequentially) continuous, hemicontinuous, (se-
quentially) demicontinuous, bounded, and pseudomonotonic.

(iii) Operator A is (sequentially) continuous, hemicontinuous, (sequentially)
demicontinuous, bounded, and pseudomonotonic.

Proof. For fixed u ∈ E, all operators A1u, A2u, Au, and b are in E∗, be-
cause 〈·, ·〉Rd is linear in the second argument. To show continuity, it suffices to

3This section has been changed, compared to the submitted thesis. Reason is the correction
of Theorem 47. In the original version, the stationary Navier-Stokes equations were solved for
smooth, fast-decaying right-hand sides. The correction of the error made it necessary to restrict
the class of functions further to bounded domains and to use an inequality from Brezis-Marcus.
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show boundedness. We demonstrate this only for A1u, because the other cases are
completely analogous.

|〈A1u, φ〉| ≤
∫

Ω

|〈∇u,∇φ〉Rd×d | dλ ≤
√

∫

Ω

|∇u|2 dλ ·
√

∫

Ω

|∇φ|2 dλ

≤ cu · ‖|∇φ|‖L2(Ω) .

Note that |∇u|2 = 〈∇u,∇u〉Rd×d =
∑

i,j∈[d](∂iu
j)2 ∈ E, same for |∇φ|2. Hence,

both integrals are bounded.
Ad (i): By definition, A1 is linear, because 〈·, ·〉Rd is linear in the first argument,

and the Laplace operator ∆ is linear. It suffices to show sequential continuity.
Let un → u be a convergent sequence in E (n → ∞). We need to show that
A1un → A1u in E′

β (n → ∞). It suffices to show this convergence pointwise in

distribution space E′. For arbitrary φ ∈ E, we have

|〈A1un, φ〉 − 〈A1u, φ〉|

= |〈A1(un − u), φ〉| ≤
∫

Ω

|〈∇(un − u),∇φ〉Rd×d | dλ

≤
√

∫

Ω

|∇(un − u)|2 dλ ·
√

∫

Ω

|∇φ|2 dλ

≤ cφ · ‖|∇(un − u)|‖L2(Ω) −→ 0 (n→∞) .

Hence, A1 is (sequentially) continuous, and thus hemicontinuous and (sequentially)
demicontinuous. It is bounded as a linear and continuous operator.

For arbitrary u ∈ E, we have

〈A1u, u〉 =
∫

Ω

〈∇u,∇u〉Rd×d dλ =

∫

Ω

|∇u|2 dλ ≥ 0 ,

with |〈A1u, u〉| = 0 iff u = 0. Hence, A1 is strictly monotonic. As operator A1 is
monotonic and hemicontinuous, it is pseudomonotonic by Lemma 44 (i).

Ad (ii): Let un ⇀ u be a weakly-convergent sequence in E. As E is a strong W
space, we even have un → u, by Lemma 40 (vi). It suffices to show the pointwise
convergence of A2un → A2u in E′

β (n→∞). For arbitrary φ ∈ E, we have

|〈A2un, φ〉 − 〈A2u, φ〉|

=

∣

∣

∣

∣

∫

Ω

〈[∇un].un, φ〉Rd − 〈[∇u].u, φ〉Rd dλ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ω

〈[∇un].(un − u), φ〉Rd + 〈[∇(un − u)].u, φ〉Rd dλ

∣

∣

∣

∣

≤ ‖un − u‖L4(Ω) · ‖|∇un|‖L2(Ω) · ‖φ‖L4(Ω)

+

∣

∣

∣

∣

∫

Ω

〈[∇(un − u)].u, φ〉Rd dλ

∣

∣

∣

∣

−→ ∞ (n→∞) .

Note that sequence (∇un)n is bounded. This shows A2 to be strongly (sequentially)
continuous. Thus, A2 is also hemicontinuous and (sequentially) demicontinuous.
As every bounded subset B of E is compact, A2(C) is also compact by continuity.
Hence, A2 is bounded.

As operator A2 is strongly (sequentially) continuous, it is pseudomonotonic by
Lemma 44 (ii).

Ad (iii): Operator A = A1 + A2 is (sequentially) continuous, hemicontinuous,
(sequentially) demicontinuous, and bounded, because A1 and A2 are (sequentially)
continuous, hemicontinuous, (sequentially) demicontinuous, and bounded.
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In addition, operator A is pseudomonotonic by Lemma 44 (iii), because A1

and A2 are pseudomonotonic. From this, we again obtain that A is (sequentially)
demicontinuous, by Lemma 44 (v). �

We will use the famous inequality of Brezis and Marcus, see [BM97, Eq.
(0.10)].

Theorem 109 (Brezis & Marcus, 1997). Let Ω ⊆ Rd, d ≥ 1, be a bounded
domain of class C2. For every λ ≤ λ∗(Ω) and every u ∈ C∞0 , we have

(144)

∫

Ω

|∇u|2 dλ− (1/4) ·
∫

Ω

|u/δ|2 dλ ≥ λ ·
∫

Ω

|u|2 dλ .

The best-possible constant λ∗(Ω) can be lower-bounded by

(145) λ∗(Ω) ≥ 1/(4 diam2(Ω)) > 0 .

Answering a question of Brezis and Marcus in the affirmative, the following
bound has been achieved for best-possible λ∗(Ω) in [HOHOL02, Theorem 3.2].

Theorem 110 (M. and Th. Hoffmann-Ostenhof & Laptev). Denote with Sd−1

the (d − 1)-dimensional unit sphere. For a convex and bounded domain Ω ⊆ Rd,
d ≥ 1, in class C2, in (144), the best-possible constant λ∗(Ω) can be lower-bounded
by

(146) λ∗(Ω) ≥ d(d−2)/d · (volSd−1)2/d

4 · (volΩ)2/d
.

The reader may be irritated by the formulation of the theorem below. In the
past, one first obtained a weak solution u for the velocity, and then the pressure
p was obtained by results, based on a theorem of De Rham, see e.g., [Růž04,
Theorem 2.35, p.85]. But this is a very fancy way of showing that p = 0 does the
job. For incompressible flows, there is no a priori relation between the velocity u
and the pressure p. These are independent variables of the motion. This is pointed
out several times in the book [Ari89, p.129]. Hence, the pressure p is just an input
parameter like the external force, and the velocity u is computed according to this
exterted sum force.

Theorem 111. For every external force f ∈ (D(Ω))d and pressure p ∈ D(Ω)
such that div(f − ∇p) = 0, there exists a globally-defined, strong, smooth, and
compactly-supported solution u ∈ E for the stationary Navier-Stokes equations
(137) in the smooth and bounded domain Ω ⊆ R

d, d ≥ 1.

Proof. Space E is a strong W space, space E′
β is also a strong W space, by

Theorem 26. Thus, they are also weak W spaces. In addition, E is separable.
By Lemma 108 (iii), operator A is bounded and (sequentially) demicontinuous.

We have to show that map u 7→ 〈Au − b, u〉 is coercive. Let P be a family of
seminorms, generating the topology of l.c.s. E. A sequence un converges to ∞ in
the compactification βE iff for all seminorms p ∈ P of l.c.s. E, for all r > 0, there
exists n0 = n0(r) such that p(un) > r for all n ≥ n0. We choose the kinetic energy
as norm K(u) :=

∫

Ω
|u|2 dλ =

∫

Ω

∑

i∈[d](u
i)2 dλ. Then K(un)→∞ for this specific

sequence.
For map u 7→ 〈A1u, u〉 = (A1u)(u) and arbitrary u ∈ E, we have

〈A1u, u〉 =
∫

Ω

|∇u|2 dλ ≥ λ ·
∫

Ω

|u|2 dλ = λ ·K(u) ,

by the Brezis-Marcus inequality 109.
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For map u 7→ 〈A2u, u〉 = (A2u)(u) and arbitrary u ∈ E, we have

〈A2u, u〉 =
∫

Ω

〈[∇u].u, u〉Rd dλ =

∫

Ω

d
∑

i,j=1

uj∂xju
i · ui dλ

=

∫

Ω

d
∑

j=1

uj∂xj

( |u|2
2

)

dλ = −
∫

Ω

(div u)
|u|2
2

dλ = 0 .

For map u 7→ 〈b, u〉 = b(u), by Cauchy-Schwartz, we have

〈b, u〉 ≤
√

∫

Ω

|f −∇p|2 dλ ·
√

∫

Ω

|u|2 dλ = cb ·K(u) .

Combined, we obtain that map u 7→ 〈Au − b, u〉 is coercive.

〈Aun − b, un〉 = 〈A1un, un〉+ 〈A2un, un〉 − 〈b, un〉
≥ λ ·K(un) + 0− cb ·

√

K(un) −→∞ (n→∞) .

Hence, by Theorem 47, applied to A and b, there exists an u ∈ E such that
Au = b in E′. For all φ ∈ E, this means

(147)

∫

Rd

〈−∆u+ [∇u].u+∇p− f, φ〉Rd dλ = 0

Successively, set φ = (ψ1, 0, . . . , 0), (0, ψ2, 0, . . . , 0), . . . (0, . . . , 0, ψd) for arbitrary
functions ψi ∈ D(Ω), divψi = 0. In particular, as for Tu := (−∆u+[∇u].u+∇p−f)
we have div Tu = 0, we can take the i-th component ψi := (Tu)i. Then one obtains

(148) −∆u + [∇u].u+∇p− f = 0 ,

i.e., u is even a strong solution for the original equation (148), not only for the
averaged one (147)! �

Imagine, we would have chosen a Sobolev space for E. Where does the argu-
ment break down in this case? First of all, the methods of the Theory of Monotonic
Operators would yield an u ∈ E =W1,2 such that (147) holds in a weak sense. The
notation hides that we do not have ∂αu as ordinary derivatives of u. Hence, even
plugging in bump functions φ, we can never come to (148), because the derivatives
of u are just not defined. We only get a relation between the weak derivatives of u.

Finally, we mention the Clay Millenium Prize Problem of the Navier-Stokes equa-
tions. We refer the reader to [Lem16, Chapter 1] for a detailed description of the
problem. The non-stationary version of the equations is given by

∂tu− ν ·∆u+ [∇u].u+∇p = f , in R+ × R
d ,(149)

div u = 0 , in R+ × R
d .(150)

Here, this time all time-dependent, u(x, t) := (u1(x, t), . . . , ud(x, t)) : R+ × Rd →
Rd denotes the velocity of a viscous fluid, p : R+ × Rd → R the pressure, and
f : R≥0 ×Rd → Rd is an external force, d ≥ 1. In addition, constant ν > 0 denotes
the viscosity of the fluid.

Basically, we conjecture that the Theory of Maximally Monotonic Operators,
mainly developed in the setting of Banach spaces, may help in the solution of
this problem, when lifted to more general l.c.s., e.g., weak W spaces. Next steps
could be: Generalize the Theorem of Browder to weak W spaces, see [Růž04,
Chapter 3, Theorem 3.43]. Use the result of Rockafellar [Roc66] on the maximal
monotonicity of the subdifferential, already partially formulated for general t.v.s..
Look specifically at the subdifferential of a generalization of the duality map. Define
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a generalized time derivative du
dt in space E′ = L1

(

Rd
≥0, (Sd)′

)

, and prove that there
exists h : E → R≥0 such that

∫ t

s

〈

du(τ)

dt
, u(τ)

〉

dλ = h(u(t))− h(u(s)) .
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l’Institut Fourier 7 (1957), 1–141.
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