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Abstract. The task of recovering the three-dimensional structuresaesme by images of that scene
alone is known as the reconstruction problem. To solve thiblpm it is crucial to understand
the geometry of multiple views and to implement the relatigd@hms. In the past years, many
advanced algorithms were developed and published by thpa@mvision community. As a result,
understanding the whole topic well enough to implement theeulying algorithms may mean a
prohibitive, time consuming task. This is relevant esdfcfar computer vision students, whose
primary research interedt@seon projective or metric reconstruction. Those may want sthem
as mere utilities. So, as always in such a situation, it iettoprovide a library, easy to use for
the beginner, but flexible enough for the expert. Moreowszhsa library would provide a gentle
introduction to the computational aspects of the topicsTgaper presents the design of such a
library, that mainly uses one central data structure andleatmn of operators affecting it.
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1. INTRODUCTION

Papers covering fully automated processes of object récmti®n from images [2, 5,
11] and comprehensive books such as [7] show, that this@mohks been solved in the
pastyears. The presented library implements the buildickis of such a reconstruction
process, allowing to combine them easily. Because the tsmédhis process are
manifold, a very brief introduction to the most importanesns given. These aspects
are named and put in the correct context, and then the readeferred to the literature.

The usual and widely used techniques to reconstruct obfjextstheir images, base
on the use of the fundamental matfxand the trifocal tensof. These two geometric
entities encode the epipolar geometry of the scene, basadwo-view relation in the
case ofF, on a three-view relation in the caseTaf The computation of these two multi-
view tensors is based on interest points or lines matchedigfnout a series of images.
Once these feature correspondences are known, it is ppssibbmputd- andT using
these equations (given in tensor notation):

XXIF; = 0
XXX *ejqse T = 0 (points)
lplgl/ eP" T = 0% (lines)

wherex, X', andx” are interest points, ardl’, andl” lines in the first, second, and third
image, respectively. The indicesj, k, p, g, r, s, t, andw all range from 1 to 3, because



we deal with homogeneous 2D entities (ed)is a 3-vector, § is a 3x3 array of zeros,
and the tensof,™' can be seen as a 3x3x3-array).

It can be seen, th& relates only points, whil@ can also make use of lines (in fact,
there are mixed equations of points and linesTothat are omitted for brevity). Once
computedF andT allow the extraction of generic cameras. After trianguiath projec-
tive reconstruction [7] is achieved. Because these reamigins cover only image pairs
or triplets, a subsequent merging step combines them irgerlaequences|[5]. Then, the
projective reconstruction can be improved to be oriente@(B 7] (basically meaning
all points are in front of all cameras) and metric [18, 12,. Pdter that it resembles the
structure of the observed object up to a similarity (trati@hg rotation, and scale).

So, the computation of the structure is based on featureshmidmatches. Thus,
to get a successful reconstruction, a great effort has taubsomputing these initial
feature correspondences. While small baseline featwkitrg.can be considered solved
(e.g., using the common Kanade-Lucas tracker, as deschibgkb]), wide baseline
matching is still a little fiddling. This is because it is nasdy possible to limit the
search region, unless a good motion estimation has beeevachiAs a consequence, a
large search region gives rise to potentially many falsehest and increases the running
time.

The search region problem is often addressed by compariag pdints only, mostly
strong corners. Often a good matching is achieved by usingeahvariant descriptors
and trying to make them as distinctive as possible [1, 9, A@pther approach is to
use a modified Kanade-Lucas tracker [21] and initialize thvgood initial guesses of
the affine distortion using local Hough transform [15]. Thire features can be used to
vote for the most probable geometry using for example Hotmysform [9], RANSAC
[7], or tensor voting [17]. This information is then used tiorgnate most false matches.
At the end, a hopefully good estimation Bf or T is found and can be used in the
reconstruction process.

2. COVERED TERRAIN

The library addresses the hole process outlined in the ¢é&sios. Most of the referred
papers where implemented and obvious weaknesses weralrédine of these obvious
weaknesses is the usage of gray-value image gradientswéienprocessing multi-
channel images. Therefore, the note of Silvano Di Zenzo {28 used in algorithms
using gradients such as Canny edge detection [3], Hartigrisa[6], and SIFT [9]. This
gradient sure has an orientation, but lacks a directiontéfbee, the direction was added
by a simple convention: The direction is defined by the firstretel for which holds true
that the two pixels closest to the edge have different valliee direction points then
from low to high.

However, while designing the library we focus on the recartdion part. Therefore,
the feature matching is currently not quite sophisticaitedhct, only SIFT and a simple
cross-correlation tracker initialized with Harris corsare used. The voting for the most
probable geometry is carried out using RANSAC, improveddiggia check on oriented
geometry [4].

The reconstruction part features robust computation ofldnmental matrices and



trifocal tensors [7], polar rectification [13], a highly ¢amizable version of Pollefeys’
auto-calibration [12], and a flexible implementation of blenadjustment [19]. The
merging algorithm follows [5] and provides every option riened there (i.e. using
cameras, points or a combination of both to estimate the imgdgomography and
optionally improving the result non-linearly).

3. DESIGN

During reconstruction a very limited number of entitiesigpbrtant, namely

views These contain the images as received from the camera(shaimutérest points.

correspondencesThese are one to one mappings from views to features. If agoon-
dence maps a view tail, that view doesn’t contribute a feature.

cameras They are associated with views. More than one camera carsbeiated with
a view because a view can be part of multiple reconstructions

3D points Cameras and correspondences can be used to triangulatargb. po

tensors These encode the epipolar geometry of a given subset of viewsently only
the fundamental matrix and the trifocal tensor are supdorte

One central data structure, calld®¥iew manages the correspondences, cameras, 3D
points, and the tensor of a subset of views. Because onlynh#est building blocks of
the reconstruction contain one, a tensor is unique to artiaddi specialization called
NViewSe{from NViewand subSet). This data structure can be used to performegueri
such as: “What is the current camera matrix of the third viéthe particular subset of
views that share a particular tensor?”

To address aNViewby the subset of views whose scene it represents, a classlprov
ing the mappind view,, view,,, ..., view;, } — NViewy, with i; members of some index
set, is provided. This class is call®liewMapand can be used to manage the views
as well. TheNViewis designed to support a hierarchical approach to the récmtion
problem as stated in [5]. Therefod/iewscan be organized as a tree andfhgewMap
provides additional queries such as “find all roots/leaf$iere are no more classes that
manage or reference the geometric data.

Beside theNView the most important and largest group of classes consist® of
called Operators These are used to modify afView hence their common method
isnmodi fy(NVi ew &nvi ew) . Currently, the followingOperatorsare available:

Autocalibrator Upgrades from projective to metric reconstruction

BundleAdjusterMetric Performs bundle adjustment using a metric parameterizatio
of the cameras.

BundleAdjusterProjective Performs bundle adjustment taking cameras as matrices.
CameraCalculator Calculates cameras from tensors or via resectioning.
Point2DCorrector Recalculates the 2D points from cameras and 3D points.
Point3DCalculator Calculates the 3D Points via triangulation.

Quasiaffinator Upgrades from projective to quasi-affine reconstruction.
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FIGURE 1. The main building blocks of the library. These classes céectfViews The Operators
feature a thick border.

TensorUpdater Calculates the tensor of ddViewSetfrom interest point correspon-
dences.

The relation of these operators to the reconstruction pipe$ visualized in Fig. 1.
So, in most cases it is sufficient to choose a type of recoctsbrny parameterize the
appropriate Operators and call them in the correct ordgr, e.

mat cher . mat ch(vi ews, nvi ew); (initialization by a matcher)
t ensor Cal cul at or. nodi fy(nvi ew) ;

pr oj Reconstructor. nodi fy(nvi ew);

nmet ri cReconstructor. nodi fy(nview);

To useOperatorson multipleNViewsthere is a class callddodifier that will do this
for you. There are other classes that takeNaiewas an argument and are r@pera-
tors. The most notable may be those for generating a synthetmsgiwiction problem
(NViewCreator), loading and saving th/iewas an XML file (NViewPersistence), and
visualizing it via OpenGL (GLVisualizer). The latter clagses an OpenGL context as
provided by many GUI toolkits such as QT or WxWidgets, butaesd not manage a
window itself (which would make it much less flexible).



1.6

14+
12

0.8+
0.6

04 ¢ 2 views —— |

3 views -
02 2 view optimum = 1
3 view optimum =

RMS-Average of Reprojection Error

0 0.5 1 1.5 2 25
Noise

FIGURE 2. Re-projection error after the calculation of a projecti@eanstruction. The standard devia-
tion of the noise is given in pixels. The image size is 500x30& result is nearly indistinguishable from
the theoretical optimum.

4. EVALUATION

After the 3D points and cameras are computed, the 2D poimdbeae-estimated by
projection. The distance between the original 2D poixtsi(id the re-projected oneg (~
is known as the re-projection error:

vV P
Erepro = % Z diSt(X\p/w)A(\p/))
v=0p=0

whereV denotes the total number of viewR the number of interest point correspon-
dences and diét -) the (usually euclidean) distance.

This error is used to assess the quality of the implememtafibe algorithms are
tested on synthetic data with Gaussian noise added to #regtipoint correspondences.
This allows us to compare the result to the theoretical aptithat can be computed
from

Eopt = 0 -SOr((1— %))1

whereo denotes the standard deviation of the added Gaussian ddise,number of
degrees of freedom, amdithe number of measurements. In the case of two views, using
the fundamental matrix (which has seven degrees of freedeenhave:

d = 7+2-number of correspondences
N = 4.number of correspondences

In the case of three views, using the trifocal tensor (whiak b8 degrees of freedom),
we have:

d = 18+ 3-number of correspondences
N = 6-number of correspondences

Figure 2 shows the RMS-average of the re-projection errar gitven noise level for
a two and three view reconstruction problem. The averagiag earried out over 100



runs. A comparison of the result to the theoretical optimuehdg almost no difference
between them.

5. CONCLUSION

The design of a library addressing multiple view geometrg weesented. It includes
state of the art algorithms that solve the reconstructioblem arising from images of
unknown cameras. Figure 3 shows the result of actually apgplhe library to images
taken of two objects. The 3D points computed from the foundespondences were
triangulated and the triangles were textured using partse@images. The points are
superimposed as white dots.

So, once the interest point calculation was successfuliitfay can easily be used as
a black box. Further improvements will mainly address tlafee matching and outlier
rejection, because the current tracker needs many RANSA&tibns or finds only a few
correspondences when using SIFT. The approaches preseffi2gdg 17] are promising
enough to evaluate them. The goal is to establish a collecfialgorithms that allow a
fully automated reconstruction based on a set of images.

FIGURE 3. Corresponding features and their reconstruction



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

REFERENCES

Adam Baumberg. Reliable feature matching across widsasated viewscvpr, 01:1774, 2000.
Paul A. Beardsley, Philip H. S. Torr, and Andrew Zissermad model acquisition from extended
image sequences. EICCV '96: Proceedings of the 4th European Conference on Cagnjyision-
Volume I} pages 683-695, London, UK, 1996. Springer.

J Canny. A computational approach to edge detecti®kEE Trans. Pattern Anal. Mach. Intell.
8(6):679—698, 1986.

Ondrej Chum, Tomas Werner, and Jiri Matas. Epipolar gégnestimation via ransac benefits from
the oriented epipolar constraint. IBPR (1) pages 112-115, 2004.

A. W. Fitzgibbon and A. Zisserman. Automatic camera recgfor closed or open image sequences.
In Proceedings of the European Conference on Computer Vipages 311-326, June 1998.

C. Harris and M. Stephens. A Combined Corner and Edge @etda4th ALVEY Vision Conference
pages 147-151, 1988.

R. I. Hartley and A. Zissermamultiple View Geometry in Computer VisioBambridge University
Press, ISBN: 0521540518, second edition, 2004.

Stéphane Laveau and Olivier D. Faugeras. Oriented pinggegeometry for computer vision. In
ECCV '96: Proceedings of the 4th European Conference on @oenyision-Volume,lpages 147—
156, London, UK, 1996. Springer.

David G. Lowe. Distinctive image features from scaleai&nt keypoints.Int. J. Comput. Vision
60(2):91-110, 2004.

Krystian Mikolajczyk and Cordelia Schmid. Scale andnaffinvariant interest point detectors.
International Journal of Computer VisioB0(1):63—-86, 2004.

Marc Pollefeys, Luc Van Gool, Maarten Vergauwen, Fraekbiést, Kurt Cornelis, Jan Tops, and
Reinhard Koch. Visual modeling with a hand-held caménrd. J. Comput. Vision59(3):207-232,
2004.

Marc Pollefeys, Reinhard Koch, and Luc J. Van Gool. 8alibration and metric reconstruction in
spite of varying and unknown internal camera parameterkC@QV, pages 90-95, 1998.

Marc Pollefeys, Reinhard Koch, and Luc J. Van Gool. A d$axgnd efficient rectification method
for general motion. INCCV, pages 496-501, 1999.

Jean Ponce, Theo Papadopoulo, Monique Teillaud, ah@irgjgs. On the absolute quadric complex
and its application to autocalibration. IEEE Conference on Computer Vision & Pattern Recogni-
tion, pages | 780-787, June 2005.

F. Shen and H. Wang. A local edge detector used for finddingees.Proc. ICICS 2001.

Jianbo Shi and Carlo Tomasi. Good features to trackElHE Conference on Computer Vision and
Pattern Recognition (CVPR’'94%eattle, June 1994,

Chi-Keung Tang, Gérard Medioni, and Mi-Suen Lee. N-digienal tensor voting and application
to epipolar geometry estimatiotEEE Trans. Pattern Anal. Mach. IntelR3(8):829-844, 2001.

Bill Triggs. Autocalibration and the absolute quadrim Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Puerto RicoAUsges 609-614. IEEE Computer
Society Press, June 1997.

Bill Triggs, Philip F. McLauchlan, Richard I. Hartleyn@ Andrew W. Fitzgibbon. Bundle adjustment
- amodern synthesis. ICCV '99: Proceedings of the International Workshop on&fishlgorithms
pages 298-372, London, UK, 2000. Springer.

Tomas Werner, Tomas Pajdla, and Vaclav Htav@riented projective reconstruction. In M. Gen-
gler, M. Prinz, and E. Schuster, editoPattern Recognition and Medical Computer Vision: 22-nd
Workshop of the Austrian Association for Pattern RecognifOAGM/IAPR)pages 245-254, Wien,
Austria, May 14-15 1998. Osterreichische Computer Gessals

Jiangjian Xiao and Mubarak Shah. Two-frame wide basetiatching. INCCV, pages 603-609,
2003.

Silvano Di Zenzo. A note on the gradient of a multi-imaGemput. Vision Graph. Image Process.
33(1):116-125, 1986.



