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Abstract. In the field of computer vision feature matching in high di-
mensional feature spaces is a commonly used technique for object recog-
nition. One major problem is to find an adequate similarity measure
for the particular feature space, as there is usually only little knowledge
about the structure of that space. As a possible solution to this problem
this paper presents a method to obtain a similarity measure suitable for
the task of feature matching without the need for structural information
of the particular feature space. As the described similarity measure is
based on the topology of the feature space and the topology is generated
by a growing neural gas, no knowledge about the particular structure of
the feature space is needed. In addition, the used neural gas quantizes
the feature vectors and thus reduces the amount of data which has to be
stored and retrieved for the purpose of object recognition.

1 Introduction

In the field of computer vision objects are often represented by feature vectors
describing local areas of them (e.g., [1,2,3]). These local descriptors often are vec-
tors of high-dimensional feature spaces. To identify equal or similar objects, for
example for the purpose of object recognition, feature matching techniques are
common, and for these matching techniques similarity measures for the feature
vectors are needed. One major problem when choosing the similarity measure
is often the lack of knowledge about the structure of the feature space. For ex-
ample the features in the SIFT feature space as described by Lowe [1] are not
uniformly distributed. Using the Euclidean distance – as Lowe does – leads to
the problem, that the direct distance between two features cannot be used as
an absolute measure of their similarity. Accordingly, Lowe uses a workaround
for this problem with the drawback that it requires each object to have at least
one unique (i.e., identifying) feature. This is a general problem of non-uniform
feature spaces. Wrongly presumed uniformity can result in a classification of
unsimilar features as similar and vice versa. Some approaches try to improve
the matching of features in the non-uniform feature space by using dimension-
ality reduction techniques such as Principal Component Analyses (PCA) [4].
For example Ke and Sukthankar showed in [5] that using PCA can improve
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the matching of features in SIFT space. But they still rely on the Euclidian
distance and the proposed workaround of Lowe. This paper describes how to
obtain a similarity measure which is suitable for the task of feature matching
without knowledge of the particular structure of the high-dimensional feature
space. Using a growing neural gas as described by Fritzke in [6], the topology of
the feature space is first learned and then used as a basis for the similarity mea-
sure. The similarity between two feature vectors will incorporate the length of
the shortest path between those two nodes of the neural gas the feature vectors
are mapped on. Besides the ability to adapt to non-uniformly distributed feature
spaces the neural gas also quantizes the feature vectors. On the one hand, this
can be accompanied by a possible loss of information. But on the other hand, it
also vastly reduces the amount of data which has to be stored and retrieved for
feature matching purposes. In section 2 we recall the functionality of growing
neural gas on which our similarity measure will be based. The proposed measure
is derived in section 3, after which the description of the experiments (section 4),
the summary of the results (section 5), and a conclusion (section 6) follow.

2 Growing Neural Gas Revisited

The growing neural gas (GNG) used for the similarity measure is described
in detail by Fritzke in [6]. The GNG is similar to the self organizing maps of
Kohonen [7]. In contrast to the self organizing maps the GNG does not have a
fixed number of nodes (often also called “neurons” or “units”). It is subject to a
data driven growing process which ends when a halting criterion (e.g., a minimal
quantization error or a maximum number of nodes) is complied with. Figure 1
depicts the growing process of a GNG on a non-uniformly distributed, two-
dimensional feature space Ω. The set S of nodes of the GNG is initialized with
two nodes. Both nodes are associated with different random vectors w ∈ Ω, called
reference vectors. That are random positions in the high-dimensional feature
space Ω. In addition, every node s ∈ S has an accumulated error Es initialized
with 0. The edges of the GNG, which connect the nodes, have an attribute
“age”. During the growing process this attribute makes it possible to detect
edges which are not needed any more and thus to delete them. At first, the set
of edges C, C ⊆ S × S, between the nodes is empty. A new feature vector ξ ∈ Ω
is processed as follows: Those two nodes s1 and s2 the reference vectors ws1 and
ws2 of which are closest (in terms of Euclidean distance) to the feature vector
ξ are selected. If there is no connecting edge between s1 and s2 in C, an edge
between s1 and s2 is added to C. By setting the age of the edge to 0 the edge
(if it already existed) is refreshed. The accumulated error Es1 of the nearest
node s1 is increased by the square of the distance between the feature vector ξ
and the reference vector ws1 . Next, the reference vector of s1 and all reference
vectors of the direct neighbors of s1 are adapted. The age is increased by one
for those edges the endpoints of which have been moved in the previous step.
If the age of an edge reaches a threshold amax, the edge will be removed. When
this leads to an isolated node it is also removed. The value of amax defines the
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Fig. 1. A growing neural gas at different points in time. The dark shaded areas repre-
sent the values of a non-uniformly distributed, two-dimensional feature space Ω which
should be characterized by the GNG.

stiffness of the generated topology. A small value leads to an unstable topology, a
very high value leads to an only slow detachment of isolated areas in the feature
space. A value of 100 for amax turned out to be a good medium choice. After a
number λ of input feature vectors (e.g., λ = 300) a new node r is added to the
GNG if the halting criterion is not met yet. For this purpose two nodes of S are
selected: first, the node q with the highest accumulated error Eq and secondly,
that node f of all nodes adjacent to q that has the highest accumulated error
Ef . The new node r is added to S and obtains a reference vector wr which is
the average between wq and wf . The accumulated error Er of r is interpolated
between the accumulated errors Eq and Ef , which were reduced by a fraction
in a preceding step. Next, the set of edges C is extended by an edge between
r and q and an edge between r and f . The edge between q and f is removed
from C. In a last step the accumulated errors of all nodes are reduced by a
fraction β. This last step simulates a kind of aging on the accumulated errors,
thus giving newer errors more weight and avoiding a build-up of small errors
over time. With respect to the behaviour of the neural gas the parameter β
influences how good the neural gas can adapt to fine structures in the feature
space. Summarizing, the algorithm produces a graph with nodes explicitly linked
to their closest neighbors. The graph is a subset of the Delaunay triangulation,
a property we refer to later in subsection 3.3 as Delaunay property. Using the
GNG to quantize vectors of high-dimensional feature spaces, the return value
for an input feature vector ξ ∈ Ω could be the reference vector or just the the
nearest node (which is the definition we will apply in subsection 3.3).



334 J. Kerdels and G. Peters

3 Defining a Similarity Measure on a Feature Space

The neural gas described in the previous section generates a topology of the
feature space which can be used for a similarity measure. The generated topology
is represented by a graph the nodes of which are the nodes of the GNG and the
edges of which connect neighboring and thus similar nodes. Accordingly, we can
describe the distance between two nodes (and later between two feature vectors
of the high-dimensional space) by the number of edges on the shortest path
between them. By doing so we utilize the ability of the neural gas to reflect
the structure of the feature space. To develop our similarity measure we need
a distance matrix for the GNG graph. This distance matrix is derived by the
calculation of paths of length n, where n is the number of edges connecting
two nodes. How to determine nodes that are reachable on paths with a distinct
length is described in subsection 3.1. The derivation of the distance matrix is
then described in subsection 3.2, after which we are able to define our topology-
independent similarity measure in subsection 3.3.

3.1 Paths of Distinct Length

Once the growing neural gas has learned the topology of the feature space using
N nodes, an N × N distance matrix D can be generated that contains for every
node the shortest distance to all other nodes. The distance matrix D can be
calculated using the fact that the adjacency matrix of a graph to the power
of n codes for every node the subsequent nodes which are n edges away. This is
explained in the following. First we give an example of a simple graph:

The adjacency matrix A of this graph describes in every column ai the direct
neighbors of node i, i = 1, . . .N :

A =

⎛

⎜⎜⎜⎜⎝

0 1 1 0 0
1 0 0 0 1
1 0 0 0 1
0 0 0 0 1
0 1 1 1 0

⎞

⎟⎟⎟⎟⎠

The multiplication of a column vector b := (b1, b2, . . . , bN)T and an N × N ma-
trix M can be seen as a linear combination of the columns mi of M :
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Mb = b1m1 + b2m2 + . . . + bNmN . The multiplication of two N × N ma-
trices G and H can be done column by column as multiplication of columns hi

of H and matrix G:

GH =

⎛

⎝Gh1 Gh2 . . . GhN

⎞

⎠ .

Thus, the square A′ = AA of adjacency matrix A contains in every column a′
i

a linear combination of the columns aj of A:

A′ =

⎛

⎝a′
1 a′

2 . . . a′
N

⎞

⎠ =

⎛

⎝Aa1 Aa2 . . . AaN

⎞

⎠ .

As every column ai of adjacency matrix A describes the adjacent nodes of node i,
every column a′

i of A′ describes all adjacent nodes of the adjacent nodes of
node i or in other words, it describes those nodes which are reachable from
node i on paths of length 2. The values of the entries a′

ij of matrix A′ describe,
how many paths of length 2 between node i and node j exist. Accordingly,
another multiplication of A′ with A results in a matrix A′′ = A′A = AAA the
columns a′′

i of which describe the nodes that are reachable from node i on paths
of length 3. In general, the adjacency matrix of a graph to the power of n codes
the nodes that are connected via paths of length n.

3.2 Distance Matrix D

For the task of calculating the distance matrix D, i.e., the matrix that contains
for every node the shortest distance to all other nodes, the precise values of the
exponentiated adjacency matrix are not needed. The information whether or not
there is a path of length n between two nodes is satisfactory. Thus it is sufficient
to use boolean values 0 and 1 and to replace the addition by the disjunction
and the multiplication by the conjunction when exponentiating the adjacency
matrix. Then the distance matrix D is calculated as follows:

D = D0 −
N−1∑

i=0

i∨

j=0

Aj with

D0 =

⎛

⎜⎝
N · · · N
...

. . .
...

N · · · N

⎞

⎟⎠ , A0 =

⎛

⎜⎝
1 0

. . .
0 1

⎞

⎟⎠ ,

and A1 = A the adjacency matrix, A2 = A′, A3 = A′′, etc. D is symmetric and
its entries are either positive or zero, zero if and only if they are elements of
the diagonal. The complete computation of distance matrix D requires N ma-
trix multiplications. For each matrix multiplication N2 matrix elements have to
be computed, which requires N conjunctions and N − 1 disjunctions for every
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element. Therefore the distance matrix D can be calculated in O
(
N4

)
. But the

computing time can be further reduced to O
(
kN3

)
if a maximum depth k for

a path between two nodes is used instead of a complete computation of the dis-
tance matrix with depth N . As normally one is not interested in the similarity
of features beyond a certain threshold, the exact distance between those very
unsimilar features can be disregarded without posing too many restrictions to
possible applications. Thus, for most applications at stake the computational
complexity of O

(
N3

)
of the proposed similarity measure compares to other

all-pairs shortest path algorithms such as Floyd-Warshall [8].

3.3 Topology-Independent Similarity Measure d

Having defined the distance matrix D for the nodes of the GNG, we will now
derive our topology-independent similarity measure d. (As we will define d as
a pseudometric, we should properly speak about a dissimilarity measure rather
than a similarity measure, but we will adhere to the more colloquial term.)

Let Ω be the high-dimensional feature space. Features ξ are represented as
points in this metric space: ξ ∈ Ω. Furthermore, let S := {s1, s2, . . . , sN} be the
set of nodes of the GNG as introduced in section 2. The quantization operation
induced by the growing neural gas is a mapping Q : Ω → S, Q(ξ) = s, with s

the node ξ is assigned to by the GNG. Now we first can define a metric d̃ on S:

d̃ : S × S → IR, d̃(si, sj) := dij

with dij the entries of the distance matrix D: D = (dij)i,j=1,...,N . The met-
ric axioms (i) non-negativity, (ii) identity of indiscernibles, (iii) symmetry, and
(iv) triangle inequality obviously hold true for d̃ because of the properties of D

mentioned in subsection 3.2. Given d̃, we can define a topology independent
pseudometric d on Ω now:

d : Ω × Ω → IR, d(ξ, η) := d̃ (Q(ξ), Q(η)) .

As different feature vectors can be mapped on the same node of the GNG the
second metric axiom is not necessarily fulfilled. This means d is a pseudometric
only, i.e., only the following axioms hold true:

(i) d(ξ, η) ≥ 0,
(iii) d(ξ, η) = d(η, ξ),
(iv) d(ξ, η) ≤ d(ξ, ρ) + d(ρ, η).

Properties (i) and (iii) are induced by the corresponding properties of d̃. Prop-
erty (iv) holds true because of the Delaunay property of the growing neural gas
mentioned in section 2. The concrete values of d depend on the granularity of
the similarity measure. This granularity is determined by the halting criterion
of the GNG. Thus, the precision of the similarity measure can be controlled
by adjusting the halting criterion. Figure 2 shows an example of our similarity
measure in a schematical way.
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Fig. 2. Topology-independent similarity measure. The gray areas represent the feature
vectors ξ of the high-dimensional space Ω. Some nodes of the growing neural gas, i.e.,
some elements of set S , are depicted by red and green dots. The numbers they are
labeled with are those values of the metric d̃ which express the distance between the
red node and each of the green nodes. For example, the shortest distance between the
red node and the upper green node labeled with “2” is a path of 2 edges.

4 Experiments

We carried out our experiments on a database of 798 gray value images, a few of
which are shown in figure 3. As features we consider patches of 18×18 pixels, thus
our high-dimensional feature space Ω has 324 dimensions. These features are not
optimal descriptors for the purpose of object recognition. Nevertheless, we chose
them for the evaluation of the similarity measure because they can be evaluated
more easily by visual inspection than more advanced feature descriptors such
as the SIFT vectors, for which a visual interpretation is much harder. Per sam-
ple image we extracted about 250 feature vectors, the positions of which have

Fig. 3. Database. A selection of 798 sample images on which we carried out our exper-
iments.
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Fig. 4. Quantization of feature vectors by the growing neural gas. Each column stands
for one node of the GNG, e.g., the first column represents s1 ∈ S , the second col-
umn s2 ∈ S , etc. Each entry (i.e., row) of a column shows one feature vector ξ ∈ Ω
in form of a 18 × 18 gray value patch, which has been assigned to this node. In each
case a column shows the last 10 feature vectors which have been mapped onto it. The
features marked by a green frame are those which are the last assigned.

been determined with a KLT detector [9], resulting in a total of about 200,000
features. We ran the growing neural gas algorithm as described in section 2.
After the processing of λ = 300 feature vectors we added one node to the GNG
and stopped the growing procedure after it consisted of 300 neurons. (All of the
200,000 features have been used for the generation of the GNG according to
the algorithm described in section 2. After 300 nodes have been incorporated
into the gas not many changes of the topolopy of the GNG were caused by
the remaining features. Thus, those remaining features contributed to the sta-
bilization of the GNG only, rather than to its overall topoloy.) Figure 4 shows
exemplarily how some feature vectors have been quantized.

5 Results

The final purpose of defining feature vectors and endowing their space with a
suitable similarity measure, is the adequate encoding of the characteristics we
intend to measure. In this case the application is an encoding of the visual char-
acteristics of objects for purposes such as storage, classification, or recognition.
Therefore, we have to analyze whether the features classified as being (math-
ematically) similar are also assessed by humans as being (visually) similar. In
other words, the similarity (or difference) we determine by the proposed method
must bear some correlation with the perceptual similarity (or difference) of two
feature vectors. As Santini and Jain point out in [10], if our systems have to
respond in an “intelligent” manner, they must use a similarity model resembling
the perceptual similarity model of humans. Having these considerations in mind,
we decided to assess the quality of the similarity measure d by a visual inspection
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Fig. 5. Classification of feature vectors into 8 neighboring nodes of the growing neural
gas. The columns represent the nodes. The entries of the columns are the last 10 feature
vectors which were mapped onto them. The distance between the nodes is equivalent
to the number of columns between them.

of the feature classification. Figure 5 shows again nodes of the growing neural
gas, represented by 8 columns of the 10 last assigned feature vectors each. This
time neighboring columns show adjacent nodes of the GNG, thus the number
of columns between two nodes in the diagram is proportional to the distance
between the nodes in the GNG. For example, the node represented by the first
column and the node represented by the last column have a distance of 7 edges.
We can summarize the results of the visual inspection as follows: Firstly, the
similarity between features belonging to one node (i.e., features within one col-
umn) is, in general, larger than between features of different nodes. Secondly,
one can observe a gradual decrease in similarity from the left to the right node
for most of their assigned features. For example, the second column displays a
larger overall similarity to the first column than the last column. Summarizing,
one can say that the classification of features emerged from the proposed sim-
ilarity measure corresponds to the assessment of the perceptual similarity by
humans. Object recognition experiments remain to be done.

6 Conclusion

We considered the problem of endowing a feature space with an adequate similar-
ity measure. Often researchers make unwarranted assumptions about the metric
of the space. Usually it is assumed to be Euclidean. In this paper we presented
a similarity measure for high-dimensional feature vectors which is independent
from the actual structure of the feature space in the sense that no a priori know-
ledge on the topology of the feature space is necessary. The similarity measure



340 J. Kerdels and G. Peters

is based on the advantageous distribution of the nodes in a growing neual gas.
In addition, the use of a growing neural gas provides a quantization of the high-
dimensional feature vectors. Despite a possible loss of information, this reduces
the amount of data which has to be stored and searched for in further process-
ing. The described similarity measure is particularly useful for object recognition
tasks where an object is represented by a set of feature vectors, as it seems to
correspond to human perceptual similarity assessment.
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