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Abstract

Computer vision can highly benefit from modern learning methods. In the
context of an active vision environment we introduce a machine learning ap-
proach which is able to learn strategies of object acquisition. We propose a
hybrid learning method, called Sphinx, that combines two approaches origi-
nating from seperate disciplines of computer science, namely reinforcement
learning on the one hand and belief revision on the other. Theformer rep-
resents knowledge in a numerical way, while the latter is based on symbolic
logic and allows reasoning. Sphinx is designed according tohuman cogni-
tion and interacts with its environment by rotating objectsdepending on past
perceptions to acquire those views which are advantageous for recognition.
Our method was successfully applied in simulations of object categorization
tasks.

1 Introduction

One of the most challenging tasks of computer vision systemsis the recognition of known
and unknown objects. An elegant way to achieve this is to showthe system some samples
of each object class and thereby train the system, so that it can recognize objects that it
has not seen before, but which look similar to some objects ofthe training phase (due to
some defined features). For this purpose several methods have been successfully used and
analyzed. One of them is to set up a rule-based system and haveit reason, another one
is to use numerical learning methods such as reinforcement learning. Both of them have
advantages, but also disadvantages. Reinforcement learning yields good results in differ-
ent kinds of environments, but its training is time consuming, since it is a trial-and-error
method and the agent has to learn from scratch. The possibilities to introduce background
knowledge (e.g., by the choice of the initial values of the Q-table) are more limited as
for example with knowledge representation techniques. Another disadvantage consists in
a limited possibility to generalize experiences and thus tobe able to act appropriately in
unfamiliar situations. Though some generalization can be obtained by the application of
function approximization techniques, the possibilities to generalize from learned rules to
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unfamiliar situations are more diverse again with knowledge representation techniques.
Knowledge representation and belief revision techniques have the advantage that the be-
lief of the agent is represented quite clearly and allows reasoning about actions. The belief
can be extended by new information, but needs to be revised when the new information
contradicts the current belief. One drawback is that it is difficult to decide which parts
of the belief should be given up, so that the new belief state is consistent, i.e., without
inherent contradictions.

In this paper we will present our hybrid learning model Sphinx, named after the Egyp-
tian statue of a hybrid between a human and a lion. It combinesthe advantages of both
approaches and diminishes the disadvantages, thus synergyeffect can emerge. Summariz-
ing, the problem we address is not object recognition, rather we propose a machine learn-
ing system which interacts with its environment and is able to learn autonomously strate-
gies to explore the environment, i.e., to learn object acquisition strategies. To demonstrate
the capabilities of Sphinx we test it - in a coarse manner - in afirst object classification
task. Section 2 summarizes related work. In section 3 we describe our method in detail.
Section 4 summarizes results from experiments carried out in object recognition environ-
ments. Finally, in section 5, we draw our conclusions.

2 Related Work

Psychological findings propose a two-level learning model for human learning [2], [8],
[4], [11]. On the so called bottom level, humans learnimplicitly and acquireprocedural
knowledge. They arenot awareof the relations they have learned and can hardly put it
into words. On the other level, the top level, humans learnexplicitlyand acquiredecalara-
tiveknowledge. They areawareof the relations they have learned and can express it, e.g.,
in form of if-then rules. A special form of declarative knowledge isepisodicknowledge.
This kind of knowledge is not of general nature, but refers tospecificevents, situations
or objects. Episodic knowledge facilitates to remember specific situations where gen-
eral rules do not apply. These two levels do not work separately. Depending on what is
learned, humans learn top-down or bottom-up [12]. It has been found [9] that in com-
pletely unfamiliar situations mainly implicit learning occurs and procedural knowledge
is acquired. The declarative knowledge is formed afterwards. This indicates that the
bottom-up direction plays an important role. It is also advantageous to continually ver-
balize what has been learned and thus speed up the acquisition of declarative knowledge.
Sun, Merrill and Peterson developed the learning model CLARION [10]. It is a two-level,
bottom-up learning model which uses Q-learning for the bottom level and a set of rules
for the top level. The rules have the form ’Premise⇒ Action’, where the premise can
be met by the current state signal of the environment. For themaintainance of the set
of rules (i.e., adding, changing and deleting rules) the authors have developed a certain
technique. They have proven their model, which works similar to human learning, to be
successful in a mine field navigation task. Ye et al. [13] propose a neural fuzzy system.
Like CLARION, this is a two-level learning model, combiningreinforcement learning
and fuzzy logic. The system has successfully been applied toa mobile robot navigation
task.



3 The Sphinx Learning Approach

Like the CLARION system, our learning approach consists of two levels. For the bottom
level we useQ(λ )-Learning. For the top level we utilize belief revision techniques and an
ordinal conditional function (OCF) to represent the epistemic state of an agent. Ordinal
conditional functions are also called ranking functions, as they assign a degree of disbelief
or surprise to each model. In this way we obtain a framework that has a well analysed,
theoretical background.

First, we briefly describe how belief revision with OCFs works. Let v1, . . . ,vn be
boolean variables. Literals ofvi arevi andv̄i . A model is a conjunction of literals of all
variables, representing possible states of the world. An OCF κ maps each model toN =
{0;1;2;. . .}. A modelω is the more plausible for smaller values ofκ (ω). Models that are
mapped to 0 are believed, i.e., the agent considers them to bemost plausible to represent
the true current state of the world. It might be uncertain about this current state, though,
so more than one model may be mapped to 0 by the OCFκ . Moreover,κ-values can be
calculated for any propositional formulaA by settingκ (A) = min{κ (ω) |ω |= A}. This
means that a formula is considered as plausible as its most plausible models. A formula
A is believed iffκ (A) = 0 andκ

(
A
)

> 0. In particular, each literalvi corresponding to
one of the characterizing features is believed iffκ (vi) = 0 andκ (vi) > 0. OCFs also
cover the plausibility of if-then rules. An if-then rule (inthis context called ’conditional’)
has the form(B |A) and is similar to the classical ruleA⇒ B but is interpreted in a three-
valued context here.(B |A) is plausible, ifκ (A∧B)< κ

(
A∧B

)
[5]. OCFs can be revised

with new (propositional or conditional) information, i.e., the models are assigned newκ-
values, so that certain conditions are met ([1], [3]).

In the following we will briefly decribe Q-learning. The setting consists of an envi-
ronment and one or more agents. An agent can interact with theenvironment. Usually, the
environment starts in a state and ends, when one terminal state is reached. This timespan
is called an episode. For each action, the agent is rewarded and it aims at collecting high
rewards during an episode. Episodes consist of steps. A stepis the following: The agent
perceives the current state of the environment via a (numerical) state signal, e.g., an ID.
It looks up that action in its memory (for Q-Learning this is expressed be the Q-Table),
which seems to be the best in this situation and performs it. The environment reacts on
this action by changing its state. After this change, the agent is rewarded for its action
and updates its Q-table.

To combine belief revision and reinforcement learning, we added a symbolic (i.e., a
conjunction of literals) representation of the states of the environment, thus states s have
a dual representations= (snum;ssym) : a numerical one for the reinforcement learning part
and a symbolic one for the belief revision part. The Sphinx system is displayed in figure 1
and works as follows:

Algorithm ’Sphinx-Learning’:
1. The Sphinx agent perceives the signal of the dually represented states coming from
the environment.
2. The agent queries its OCFκ about which actionsAκ (s) = {a1, . . . ,ak} are most plau-
sible in s.
3. The agent looks up the Q-values of these actions and determines the setAbest(s)⊆Aκ(s)
of those actions inAκ(s) that have the greatest Q-value. (An ordinary Q-agent determines



Figure 1: Sphinx Learning Approach

the set of best actions from the set of all possible actions.)
4. The agent chooses a random action a fromAbest(s) and performs it.
5. The environment changes to the successor state.
6. The agent receives the rewardr.
7. The agent updates the Q-table.
8. The new Q-values for actions insare being read.
9. The agent revisesκ . (This revision usually makes those actions most plausiblein s that
have the greatest Q-value ins. In addition, the agent tries to find patterns in the state sig-
nals for which certain actions are generally better than others. If such a relation between a
pattern and a set of actions is found, a revision with a generalized rule is performed which
is described below.) If the current state is not a terminal state, go to 1.

For the symbolic representation of the states, i.e., the description of the states of
the environment in words, suitable (finite) domainsdi = {vi.1; . . . ;vi.mi} and analo-
gously called variablesdi = vi. j are defined. The symbolic representation of a spe-
cific state is the conjunction of the corresponding literalsof all of these variables:
ssym=

(
d1 = v1.k1 ∧ . . .∧dn = vn.kn

)
.

Furthermore, we define a domain ’Action’ containing the set of possible actions. The
models forκ have the formd1 = v1.k1 ∧ . . .∧dn = vn.kn

︸ ︷︷ ︸

ssym

∧ Action= ai , where the first part

is a symbolic representation of a states and the second part is a symbolic representaion
of an actiona with the meaning, that if such a model is plausible due toκ , thena is plau-
sible ins. The set of all models forκ is created by combining each possible state of the
environment with each possible action. When a states= (snum;ssym) is perceived (step 1
in algorithm ’Sphinx-Learning’), thenκ is searched for the most plausible models con-
tainingssym, i.e., for those models (containingssym) with the smallest value ofκ . These
models also contain an action.Aκ (s) (step 2) is created by these actions. Then the actions
in Aκ (s) are filtered by their Q-values (step 3) and one of the remaining actions is carried
out (step 4). Steps 5 to 7 are pure Q-learning. In step 8 the best actions fors due to the
new Q-values are determined. The revision ofκ with this information is a little complex



and described in the following. We reviseκ with up to four different kinds of information
after each step:
1. Revision with information on a poor action in a specific state (episodic knowledge).
2. Revision with information on a poor action in several, similar states (generalization).
3. Revision with information on best actions in a specific state (episodic knowledge).
4. Revision with information on best actions in several, similar states (generalization).

A ’poor’ action in a specific state or in several, similar states was defined as an action
that yields a reward less than -1. The conditionals used to reviseκ are as follows:

1.
(
Action= a|ssym

)
, wheressym is the symbolic representation of a certain states in

whicha is poor.

2.
(
Action= a|p

)
, wherep is a pattern, i.e., a conjunction ofsomeof the variables

describing the state of the environment.p represents a set of states, which are
similar, because they share a common pattern.

3.

(
∨

i
Action= ai |ssym

)

, where allai are best actions (due to their Q-values) ins.

4.

(
∨

i
Action= ai |p

)

, where eachai is a best action in at leastoneof the states cov-

ered by the patternp. ai needs not to be a best action inall states covered byp.

The last form of revision has the purpose to prevent that actions, which are not best ac-
tions, are classified plausible whenp is perceived. So the agent has to find the best action
for a specific state covered byp only among the actionsai . Since revisions and especially
revisions with generalized rules have a strong influence on the choice of actions, they have
to be handled carefully, i.e., the agent should be quite sureabout the correctness of a rule
before adding it to its belief. Therefore, the agent uses several counters counting, how
’often’ an action has been poor, not poor, a best or not a best one under certain circum-
stances. With these counters probabilities can be calculated which can be used to evaluate
the certainty about the correctness of a specific rule. Our learning model also supports
background knowledge. If the user knows some rules that might be helpful for the agent
and its task, she can formulate them as conditionals and let the agent reviseκ with them
before starting to learn.

4 Results

We tested the Sphinx approach in a navigation environment and in two different simula-
tions in a viewpoint planning context. In this paper, we present the results of the latter.

4.1 Recognition of Geometric Objects

In this test environment, the agent has to learn to recognizethe following objects: sphere,
ellipsoid, cylinder, cone, tetrahedron, pyramid, prism, cube, and cuboid. By interacting
with the environment the agent can look at the object from thefront, from the side or from
the top or it can choose to try to name the current object.



Number of Recognition Recognition Recognition
Appearances Rate (in %) Rate (in %) Rate (in %)

per Object (Q(λ )) for (Sphinx (Sphinx
λ = 0.5 without with

background background
knowledge) knowledge)

10 27.5 29.7 35.4
20 47.9 55.9 66.0
30 66.0 76.5 84.3
40 78.6 88.5 92.1
50 85.4 93.8 95.6
60 90.3 96.4 97.4
70 92.5 97.7 98.5
80 94.4 98.5 99.2
90 95.5 98.9 99.4

100 96.4 99.4 99.5

Table 1: Recognition Rates for Geometric Objects

The possible front, side, and top views are represented by five elementary shapes,
namely: circle, ellipse, triangle, square, and rectangle.For example, the cone has the
front view ’triangle’, the side view ’triangle’, and the topview ’circle’. This leads to the
following domains for this environment:

• FrontView= {Unknown,Circle,Ellipse,Triangle,Square,Rectangle}

• SideView= {Unknown,Circle,Ellipse,Triangle,Square,Rectangle}

• TopView= {Unknown,Circle,Ellipse,Triangle,Square,Rectangle}

• Action= {LookAtFront,LookAtSide,LookAtTop,RecognizeUnknown,
RecognizeSphere,RecognizeEllipsoid,RecognizeCylinder,RecognizeCone,
RecognizeTetrahedron,RecognizePyramid,RecognizePrism,RecognizeCube,
RecognizeCuboid}

At the beginning of each episode, the environment chooses one of the nine geometric
objects and generates the state signal ’FrontView= Unknown∧SideView= Unknown∧
TopView= Unknown’. If the agent’s action isLookAtFront, LookAtSide, or LookAtTop,
then theFrontView, SideView, or TopView, respectively, is revealed in the new state sig-
nal following the agent’s action. If the agent’s action is anaction of type ’Recognize...’
action, the episode ends. The reward function returns -1, ifone of the ’Look...’ actions
has been performed. Otherwise, the agent is rewarded with 10, if it has recognized the
objects correctly, and with -10, if not. After ten steps the current episode is forced to end.
Table 1 shows the recognition rates after each training phase. In each training phase, each
object is shown ten times to the current agent. The values areaveraged from 1000 inde-
pendent agents. If the agent is provided with the backgroundknowledge ”If no view has
been perceived yet, then look at the front, the side, or the top of the object” via the condi-
tional(Action= LookAtFront∨Action= LookAtSide∨Action= LookAtTop|FrontView=



Unknown∧SideView= Unknown∧TopView= Unknown), the recognition rates presented
in the last column of 1 are obtained. Some of the learned rulesare:

• If FrontView= Circle, thenAction= RecognizeSphere

• If FrontView= Unknown∧SideView= Triangle, thenAction= LookAtFront

• If FrontView= Triangle∧SideView= Unknown, thenAction= RecognizePrism.

4.2 Recognition of Simulated Real Objects

To analyse Sphinx under more realistic conditions, we set upanother environment. We
defined shape attributes that are suitable for representingobjects in a simple object recog-
nition task and then chose arbitrary objects and described them with these previously de-
fined attributes. These attributes are the input to Sphinx. (What remains to be done at this
point to apply our approach in a real active vision environment, is the extraction of these
shape attributes from the images. This can be done by existing segmentation methods. Of
course, this can be difficult in some cases, but it is not the subject of this contribution.)
Again, there are three possible perspectives: the front view, the side view, and a view
from a position between these two views. The decision for these persepectives, especially
for the intermediate view, was made based on the results found by [7] who revealed that
the intermediate view plays a special role in human object recognition. The front and the
side view are described by three attributes each: approximate (idealized) shape, size (i.e.,
proportion) of the shape, and deviation from the idealized shape. The approximate shape
can take the valuesunknown, circle, square, triangle up, andtriangle down. The size can
beunknown, flat, regular, or tall. The deviation can besmall, medium, or large. Besides
these attributes the object is described by the complexity of its texture. This attribute can
take the valuessimple, medium, andcomplex. We set the attributes for each object man-
ually. In a real viewpoint planning task they can be determined easily by a simple image
processing module which merely has to quantize the shape andtexture of an object. If
the agent looks at the object from the front or the side, it perceives the matching idealized
shape, its size, its deviation, and the complexity of the texture. From the intermediate
view the agent can only perceive the idealized shapes of the front and the side view and
the complexity of the texture, but not the size and deviations. Formally the domains are:

• FrontViewShape= {Unknown,Circle,Square,TriangleUp,TriangleDown}

• FrontViewSize= {Unknown,Flat,Regular,Tall}

• FrontViewDeviation= {Unknown,Small,Medium,Large}

• SideViewShape= {Unknown,Circle,Square,TriangleUp,TriangleDown}

• SideViewSize= {Unknown,Flat,Regular,Tall}

• SideViewDeviation= {Unknown,Small,Medium,Large}

• Texture= {Simple,Medium,Complex}

• Action= {RotateLeft,RotateRight,RecognizeUnkown}∪R, whereR is the set of
’Recognize...’ actions.



Figure 2: Two Examples from the Object Classes Bottle and House. The two left hand
images show the front and side view of a bottle with medium texture. Shape, size, and
deviation for both views are triangle up, tall, and medium, respectively. These attributes
are the input for ’Sphinx’. The two right hand images show thefront and side view of
a house with medium texture, as well. Shape, size, and deviation of the front view are
square, regular, and little, of the side view triangle up, regular, and medium.

At the beginning of each episode, the agent looks at the current object from a random
perspective and the variables are set according to this perspective. Now the agent can
rotate the object clockwise or counter-clockwise or name it. If the agent’s action is a
’Recognize...’ action, the episode ends. After ten steps the running episode is forced to
end. The reward function is the same as in the previous test environment. We have chosen
15 different objects from nine different object classes such as bottle, tree, and house for
which we provide the three attributes mentioned (shape, size, and deviation) (figure 2).
Table 2 shows the results averaged from 100 independed agents.

In a second step we added background knowledge that enables the agent to recognize
all objects correctly, if it has perceived all of the three views. Furthermore, we added rules
to the background knowledge that told the agent to look at theobject from all perspectives
first. With these rules the agent has a complete, but not optimal, solution for the task. We
wanted to find out how fast the agent learns that it does not need all views to classify
the current object. To protect the background knowledge from being overwritten by the
agent’s own rules too early, some parameters were changed, so that the agent had to be
more sure about the correctness of a rule before adding it to its belief. This setup resulted
in a constantly high recognition rate from 99.3% to 99.8%. The number of perceived
views decreased over time from 3.28 to 1.99. (The value of 3.28 perceived view vs. 3
possible views results from the fact, that the intermediateview has to be perceived twice
if the environment starts in this view. Then, the agent perceives this view at the beginning,
then rotates the object to the front and then back to the intermediate view so it can rotate
the object to the side view in the next step, or vice versa.)

Here are some of the rules the agent learned and assimilated during its training:

• If FrontViewShape= TriangleUp∧ FrontViewSize= Tall, then Action =
RecognizeBottle

• If FrontViewShape= Circle∧SideViewShape= Unknown∧Texture= Simple, then
Action= RotateLeft

• If Texture= Complex, thenAction= RecognizeBottle



Number of Recognition Recognition Recognition
Appearances Rate (in %) Rate (in %) Rate (in %)

per Object (Q(λ )) for (Sphinx (Sphinx
λ = 0.5 without with

background background
knowledge) knowledge)

10 40.1 46.3 99.6
20 63.1 70.7 99.3
30 78.2 86.0 99.4
40 86.3 91.6 99.5
50 89.6 94.7 99.4
60 91.1 95.7 99.7
70 92.2 97.3 99.7
80 93.0 98.0 99.7
90 93.8 98.4 99.7

100 94.5 98.8 99.8

Table 2: Recognition Rates for Simulated Real Objects

These rules can be comprehended best with the complete set ofused objects at hand. They
are depicted in [6].

5 Conclusion

We have proposed a new machine learning approach for active vision that is able to learn
object acquisition strategies autonomously. To evaluate the system we applied it in a
simulated object recognition task. This simulation is not based on real images, rather
we provide the system with simple shape descriptors which are the input to our learning
system. These shape attributes can be determined from real images by standard image
processing techniques, which is not subject of this contribution. Of course, in future
research we will test our system also in real world object recognition tasks. In more detail,
the contributions of this paper are as follows. We have proposed the hybrid learning
method Sphinx and applied it in a simulation of an interactive object recognition task.
Sphinx has an advantage over classic reinforcement learning in terms of learning speed by
combining two cognitive levels of learning - similar to human learning. This advantage
remains even if Sphinx is not provided with background knowledge., i.e., when both
learning methods are started equivalently.

Nevertheless, background knowledge can support the process of learning, so that even
at the beginning high success rates can be achieved. It can bedescribed in a manner
comprehensible for humans in the form of conditionals. Thisis not feasible in classical
reinforcement learning. Moreover, learned information can be output easily comprehen-
sible for humans in the form of rules; there is no need to interprete numerical data. By
providing Sphinx with background knowledge in the form of obvious (but not necessarily
optimal) rules permanently high learning rates can be obtained, while the amount of re-
quired information to choose a proper action decreases. These characteristics qualify our



hybrid learning method especially to be applied in active vision environments.

Acknowledgments.
This research was funded by the German Research Association(DFG) under Grant PE 887/3-2.

References

[1] Alchourrón, C. and Gärdenfors, P. and Makinson, D. On the logic of theory
change: Partial meet contraction and revision functions.Journal of Symbolic Logic,
50(2):510–530, 1985.

[2] Anderson, J. R.The architecture of cognition. Hardvard University Press, Cam-
bridge, MA, 1983.

[3] Darwiche, A. and Pearl, J. On the logic of iterated beliefrevision.Artificial Intelli-
gence, 89(1-2):1–29, 1997.

[4] Gombert, J.-E. Implicit and explicit learning to read: Implication as for subtypes of
dyslexia.Current Psychology Letters, 10(1), 2003.

[5] G. Kern-Isberner. Conditionals in nonmonotonic reasoning and belief revision.
Springer, Lecture Notes in Artificial Intelligence LNAI 2087, 2001.

[6] Leopold, Thomas. Reinforcement Learning unter Benutzung von Hintergrundwis-
sen und Revisionstechniken mit Anwendung auf interaktive Objekterkennung, 2007.

[7] Pereira, A. and James, K. H. and Jones, S. S., and Smith, L.B. Preferred views in
children’s active exploration of objects, 2006.

[8] Reber, A. S. Implicit learning and tacit knowledge.Journal of Experimental Psy-
chology: General, 118(3):219–235, 1989.

[9] Stanley, W. B. and Mathews, R. C. and , Buss, R. R. and Kotler-Cope, S. Insight
without awareness: On the interaction of verbalization, instruction and practice in a
simulated process control task.The Quarterly Journal of Experimental Psychology
Section A, 41(3):553–577, 1989.

[10] Sun, R. and Merrill, E. and Peterson, T. From implicit skills to explicit knowledge:
a bottom-up model of skill learning.Cognitive Science, 25(2):203–244, 2001.

[11] Sun, R. and Slusarz, P. and Terry, C. The interaction of the explicit and the implicit
in skill learning: A dual-process approach.Psychological Review, 112(1):159–192,
2005.

[12] Sun, R. and Zhang, X. and Slusarz, P. and Mathews, R. The interaction of implicit
learning, explicit hypothesis testing learning and implicit-to-explicit knowledge ex-
traction.Neural Networks, 20(1):34–47, 2007.

[13] Ye, C. and Yung, N. H. C. and Wang, D. A fuzzy controller with supervised learning
assisted reinforcement learning algorithm for obstacle avoidance. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B, 33(1):17–27, 2003.


