Combining Reinforcement L earning and
Belief Revision - A Learning System
for ActiveVision

Thomas Leopoll  Gabriele Kern-Isbernér ~ Gabriele Petefs

1. University of Technology Dortmund, Germany
2. University of Applied Sciences and Arts Dortmund, Gergnan
t hl eopol d@wot mai | . com gabri el e. kern-i sberner @s. uni - dort nund. de,
gabri el e. pet ers@ h- dor t nund. de

Abstract

Computer vision can highly benefit from modern learning rodth In the

context of an active vision environment we introduce a maekhéarning ap-
proach which is able to learn strategies of object acquisitWe propose a
hybrid learning method, called Sphinx, that combines tworapches origi-
nating from seperate disciplines of computer science, haresforcement

learning on the one hand and belief revision on the other. fohmer rep-

resents knowledge in a numerical way, while the latter igam symbolic

logic and allows reasoning. Sphinx is designed accordirfgutnan cogni-

tion and interacts with its environment by rotating objed#pending on past
perceptions to acquire those views which are advantageousdognition.

Our method was successfully applied in simulations of dijategorization

tasks.

1 Introduction

One of the most challenging tasks of computer vision systeti® recognition of known
and unknown objects. An elegant way to achieve this is to shevsystem some samples
of each object class and thereby train the system, so thahitecognize objects that it
has not seen before, but which look similar to some objectsefraining phase (due to
some defined features). For this purpose several methoddlean successfully used and
analyzed. One of them is to set up a rule-based system andthaason, another one
is to use numerical learning methods such as reinforceraantihg. Both of them have
advantages, but also disadvantages. Reinforcementigayrigilds good results in differ-
ent kinds of environments, but its training is time consugngince it is a trial-and-error
method and the agent has to learn from scratch. The posisibtid introduce background
knowledge (e.g., by the choice of the initial values of th¢a@le) are more limited as
for example with knowledge representation techniques.theralisadvantage consists in
a limited possibility to generalize experiences and thuset@ble to act appropriately in
unfamiliar situations. Though some generalization canliiained by the application of
function approximization techniques, the possibilitegeneralize from learned rules to
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unfamiliar situations are more diverse again with knowkdgpresentation techniques.
Knowledge representation and belief revision techniq@e® lthe advantage that the be-
lief of the agent is represented quite clearly and allowsarang about actions. The belief
can be extended by new information, but needs to be revised wte new information
contradicts the current belief. One drawback is that it ffiadilt to decide which parts
of the belief should be given up, so that the new belief sitnsistent, i.e., without
inherent contradictions.

In this paper we will present our hybrid learning model Sphiramed after the Egyp-
tian statue of a hybrid between a human and a lion. It comlimegadvantages of both
approaches and diminishes the disadvantages, thus syafeagican emerge. Summariz-
ing, the problem we address is not object recognition, ratleepropose a machine learn-
ing system which interacts with its environment and is abliearn autonomously strate-
gies to explore the environment, i.e., to learn object asition strategies. To demonstrate
the capabilities of Sphinx we test it - in a coarse manner -finshobject classification
task. Section 2 summarizes related work. In section 3 werithesour method in detail.
Section 4 summarizes results from experiments carriechaahjiect recognition environ-
ments. Finally, in section 5, we draw our conclusions.

2 Reated Work

Psychological findings propose a two-level learning modehiuman learning [2], [8],
[4], [11]. On the so called bottom level, humans leanplicitly and acquirgprocedural
knowledge. They araot awareof the relations they have learned and can hardly put it
into words. On the other level, the top level, humans leapiicitlyand acquirelecalara-
tive knowledge. They arawareof the relations they have learned and can expressiit, e.g.,
in form of if-then rules. A special form of declarative knaslge isepisodicknowledge.
This kind of knowledge is not of general nature, but refersgecificevents, situations
or objects. Episodic knowledge facilitates to remembec#igesituations where gen-
eral rules do not apply. These two levels do not work seplgrabepending on what is
learned, humans learn top-down or bottom-up [12]. It hasiBeand [9] that in com-
pletely unfamiliar situations mainly implicit learning cers and procedural knowledge
is acquired. The declarative knowledge is formed after@ar@his indicates that the
bottom-up direction plays an important role. It is also adageous to continually ver-
balize what has been learned and thus speed up the acquditieclarative knowledge.
Sun, Merrill and Peterson developed the learning model CIONR[10]. Itis a two-level,
bottom-up learning model which uses Q-learning for thediottevel and a set of rules
for the top level. The rules have the form 'PremiseAction’, where the premise can
be met by the current state signal of the environment. Fonthmtainance of the set
of rules (i.e., adding, changing and deleting rules) théa@nsthave developed a certain
technique. They have proven their model, which works sintdehuman learning, to be
successful in a mine field navigation task. Ye et al. [13] papa neural fuzzy system.
Like CLARION, this is a two-level learning model, combinimginforcement learning
and fuzzy logic. The system has successfully been appliadtobile robot navigation
task.



3 The Sphinx Learning Approach

Like the CLARION system, our learning approach consistsvof levels. For the bottom
level we useéQ(A )-Learning. For the top level we utilize belief revision te@jues and an
ordinal conditional function (OCF) to represent the epistestate of an agent. Ordinal
conditional functions are also called ranking functiorsstheey assign a degree of disbelief
or surprise to each model. In this way we obtain a framewoek llas a well analysed,
theoretical background.

First, we briefly describe how belief revision with OCFs warkLetvs,...,v, be
boolean variables. Literals @f arev; andv; . A model is a conjunction of literals of all
variables, representing possible states of the world. A ®@aps each model &y =
{0;1;2;...}. Amodelw is the more plausible for smaller valuesofw). Models that are
mapped to O are believed, i.e., the agent considers themrntwbeplausible to represent
the true current state of the world. It might be uncertainulois current state, though,
so more than one model may be mapped to 0 by the @CHoreoverk-values can be
calculated for any propositional formufaby settingk (A) = min{k ()| w |= A}. This
means that a formula is considered as plausible as its massiple models. A formula
A'is believed iffk (A) = 0 andk (K) > 0. In particular, each literal corresponding to
one of the characterizing features is believedkiffv;) = 0 andk (%) > 0. OCFs also
cover the plausibility of if-then rules. An if-then rule (ihis context called 'conditional’)
has the form(B| A) and is similar to the classical rufe=- B but is interpreted in a three-
valued context herdB | A) is plausible, if (AAB) < k (AAB) [5]. OCFs can be revised
with new (propositional or conditional) information, i.¢he models are assigned new
values, so that certain conditions are met ([1], [3]).

In the following we will briefly decribe Q-learning. The sety consists of an envi-
ronment and one or more agents. An agent can interact wignfisonment. Usually, the
environment starts in a state and ends, when one terminalisteached. This timespan
is called an episode. For each action, the agent is rewardkd aims at collecting high
rewards during an episode. Episodes consist of steps. Assthp following: The agent
perceives the current state of the environment via a (nwagstate signal, e.g., an ID.
It looks up that action in its memory (for Q-Learning this igeessed be the Q-Table),
which seems to be the best in this situation and performshe @nhvironment reacts on
this action by changing its state. After this change, thenagerewarded for its action
and updates its Q-table.

To combine belief revision and reinforcement learning, wdesl a symbolic (i.e., a
conjunction of literals) representation of the states eféhvironment, thus states s have
a dual representatia= (Snum; Ssym) : @ humerical one for the reinforcement learning part
and a symbolic one for the belief revision part. The Sphirstay is displayed in figure 1
and works as follows:

Algorithm ' Sphinx-Learning’:

1. The Sphinx agent perceives the signal of the dually reprtesl states coming from
the environment.

2. The agent queries its OGFabout which actiond\ (s) = {ay, ..., a} are most plau-
siblein s.

3. The agentlooks up the Q-values of these actions and deesthe sef,es(S) C A« (S)
of those actions i (s) that have the greatest Q-value. (An ordinary Q-agent détesnm
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Figure 1: Sphinx Learning Approach

the set of best actions from the set of all possible actions.)

4. The agent chooses a random action a fAgga{(s) and performs it.

5. The environment changes to the successor state.

6. The agent receives the reward

7. The agent updates the Q-table.

8. The new Q-values for actions grare being read.

9. The agent revisas. (This revision usually makes those actions most plaugidéhat
have the greatest Q-valuesnin addition, the agent tries to find patterns in the state sig
nals for which certain actions are generally better tharisthf such a relation between a
pattern and a set of actions is found, a revision with a géimechrule is performed which
is described below.) If the current state is not a termiregtkstgo to 1.

For the symbolic representation of the states, i.e., thergd®n of the states of
the environment in words, suitable (finite) domaidis= {vi1;...;vim} and analo-
gously called variables; = vij are defined. The symbolic representation of a spe-
cific state is the conjunction of the corresponding literafsall of these variables:
Ssym= (dl =V A A dn = Vn.kn)-

Furthermore, we define a domain 'Action’ containing the dgtassible actions. The
models fork have the formd; = vy, A... Adn = vy, A Action= a;, where the first part

Ssym
is a symbolic representation of a staténd the second part is a symbolic representaion
of an actiona with the meaning, that if such a model is plausible dug tthena s plau-
sible ins. The set of all models fox is created by combining each possible state of the
environment with each possible action. When a statg(Shum; Ssym) is perceived (step 1
in algorithm 'Sphinx-Learning’), ther is searched for the most plausible models con-
taining ssym i.€., for those models (containirsg,,) with the smallest value of. These
models also contain an actiof (S) (step 2) is created by these actions. Then the actions
in A (s) are filtered by their Q-values (step 3) and one of the remgiaations is carried
out (step 4). Steps 5 to 7 are pure Q-learning. In step 8 thealséiens fors due to the
new Q-values are determined. The revisioxafith this information is a little complex



and described in the following. We revigewith up to four different kinds of information
after each step:

1. Revision with information on a poor action in a specifidesi@pisodic knowledge).
2. Revision with information on a poor action in several,iamstates (generalization).
3. Revision with information on best actions in a specifitestapisodic knowledge).

4. Revision with information on best actions in several,ikinstates (generalization).

A ’poor’ action in a specific state or in several, similar statvas defined as an action
that yields a reward less than -1. The conditionals usedvieg& are as follows:

1. (Action: a|ssym), wheressym is the symbolic representation of a certain staite
whichais poor.

2. (Action: al p), wherep is a pattern, i.e., a conjunction ebmeof the variables
describing the state of the environment.represents a set of states, which are
similar, because they share a common pattern.

3. (\/Action_ a; |ssym>, where allg; are best actions (due to their Q-values}in
i

4. | VAction= g |p |, where eacls; is a best action in at leasheof the states cov-

|
ered by the patterp. a needs not to be a best actionalh states covered bg.

The last form of revision has the purpose to prevent thabastiwhich are not best ac-
tions, are classified plausible wheris perceived. So the agent has to find the best action
for a specific state covered Iponly among the actiors. Since revisions and especially
revisions with generalized rules have a strong influenc@erchoice of actions, they have
to be handled carefully, i.e., the agent should be quite @boait the correctness of a rule
before adding it to its belief. Therefore, the agent usesrsd\counters counting, how
'often’ an action has been poor, not poor, a best or not a besuader certain circum-
stances. With these counters probabilities can be cadmnahich can be used to evaluate
the certainty about the correctness of a specific rule. Garnleg model also supports
background knowledge. If the user knows some rules thatthigthelpful for the agent
and its task, she can formulate them as conditionals andeddent revise with them
before starting to learn.

4 Results

We tested the Sphinx approach in a navigation environmehtratwo different simula-
tions in a viewpoint planning context. In this paper, we praghe results of the latter.

4.1 Recognition of Geometric Objects

In this test environment, the agent has to learn to recogh&éollowing objects: sphere,
ellipsoid, cylinder, cone, tetrahedron, pyramid, prismbe, and cuboid. By interacting
with the environment the agent can look at the object frondritrat, from the side or from
the top or it can choose to try to name the current object.



Number of | Recognition| Recognition| Recognition
Appearances Rate (in %)| Rate (in %)| Rate (in %)
per Object| (Q(A)) for (Sphinx (Sphinx
A=05 without with

background| background

knowledge)| knowledge)

10 27.5 29.7 35.4

20 47.9 55.9 66.0

30 66.0 76.5 84.3

40 78.6 88.5 92.1

50 85.4 93.8 95.6

60 90.3 96.4 97.4

70 92.5 97.7 98.5

80 94.4 98.5 99.2

90 95.5 98.9 99.4

100 96.4 99.4 99.5

Table 1: Recognition Rates for Geometric Objects

The possible front, side, and top views are represented byefementary shapes,
namely: circle, ellipse, triangle, square, and rectanger example, the cone has the
front view 'triangle’, the side view 'triangle’, and the togew 'circle’. This leads to the
following domains for this environment:

e FrontView= {UnknownCircle, Ellipse Triangle SquareRectanglé
¢ SideView= {UnknownCircle, Ellipse Triangle SquareRectanglé
e TopView= {UnknownCircle, Ellipse Triangle SquareRectanglé

e Action= {LookAtFrontLookAtSidel ookAtTopRecognizeUnknown
RecognizeSphefRecognizeEllipsoidRecognizeCylindeRecognizeCone
RecognizeTetrahedroRecognizePyramj@&ecognizePrisnRecognizeCube
RecognizeCubold

At the beginning of each episode, the environment choosesbihe nine geometric
objects and generates the state sigfadntView= Unknown SideView= Unknowm\
TopView= Unknown. If the agent’s action id. 0ookAtFront LookAtSideor LookAtTop
then theFrontView SideView or TopView respectively, is revealed in the new state sig-
nal following the agent’s action. If the agent’s action isamtion of type Recognize.’
action, the episode ends. The reward function returns -dnéf of the Look.." actions
has been performed. Otherwise, the agent is rewarded wijth thas recognized the
objects correctly, and with -10, if not. After ten steps tierent episode is forced to end.
Table 1 shows the recognition rates after each traininggoHagach training phase, each
object is shown ten times to the current agent. The valueavam@ged from 1000 inde-
pendent agents. If the agent is provided with the backgréumog/ledge "If no view has
been perceived yet, then look at the front, the side, or thetohe object” via the condi-
tional (Action= LookAtFronty Action= LookAtSide/ Action= LookAtTog FrontView=



Unknowm SideView= Unknowm TopView= Unknowr), the recognition rates presented
in the last column of 1 are obtained. Some of the learned arles

o If FrontView= Circle, thenAction= RecognizeSphere

e If FrontView= Unknowm SideView= Triangle, thenAction= LookAtFront

¢ If FrontView= TriangleA SideView= Unknown thenAction= RecognizePrism

4.2 Recognition of Simulated Real Objects

To analyse Sphinx under more realistic conditions, we setngiher environment. We
defined shape attributes that are suitable for represeoitijegts in a simple object recog-
nition task and then chose arbitrary objects and descrhmed tith these previously de-
fined attributes. These attributes are the input to Sphivhat remains to be done at this
point to apply our approach in a real active vision environtnis the extraction of these
shape attributes from the images. This can be done by existigmentation methods. Of
course, this can be difficult in some cases, but it is not thgesti of this contribution.)
Again, there are three possible perspectives: the fromt,ige side view, and a view
from a position between these two views. The decision fadhpersepectives, especially
for the intermediate view, was made based on the resultglfbyii7] who revealed that
the intermediate view plays a special role in human objexdgeition. The front and the
side view are described by three attributes each: appraegi(idealized) shape, size (i.e.,
proportion) of the shape, and deviation from the idealizeapg. The approximate shape
can take the valuasknown, circle, square, triangle ypndtriangle down The size can
beunknown, flat, regularor tall. The deviation can bsmall, mediumor large. Besides
these attributes the object is described by the complekitg texture. This attribute can
take the valuesimple, mediumnandcomplex We set the attributes for each object man-
ually. In a real viewpoint planning task they can be detesdieasily by a simple image
processing module which merely has to quantize the shap¢eahde of an object. If
the agent looks at the object from the front or the side, itg®es the matching idealized
shape, its size, its deviation, and the complexity of theéutex From the intermediate
view the agent can only perceive the idealized shapes oftm &nd the side view and
the complexity of the texture, but not the size and deviatidiormally the domains are:

e FrontViewShape- {UnknownCircle, SquareTriangleUp TriangleDowr}
e FrontViewSize= {UnknownFlat, Regular Tall}

e FrontViewDeviation= {UnknownSmall MediumLarge}

¢ SideViewShape {UnknownCircle, SquareTriangleUp TriangleDowr}
e SideViewSize: {UnknownFlat, Regular Tall}

¢ SideViewDeviatioa- {UnknownSmall Medium Large}

e Texture= {SimpleMedium Comple}

¢ Action= {RotateLeftRotateRightRecognizeUnkowrJ R, whereR is the set of
"Recognize.’ actions.



Figure 2: Two Examples from the Object Classes Bottle andseoThe two left hand
images show the front and side view of a bottle with mediuntuex Shape, size, and
deviation for both views are triangle up, tall, and mediuespectively. These attributes
are the input for 'Sphinx’. The two right hand images show fitoat and side view of
a house with medium texture, as well. Shape, size, and daviaf the front view are
square, regular, and little, of the side view triangle uguter, and medium.

At the beginning of each episode, the agent looks at the muotgect from a random
perspective and the variables are set according to thipgetiise. Now the agent can
rotate the object clockwise or counter-clockwise or namdfithe agent’s action is a
"Recognize.’ action, the episode ends. After ten steps the running dpis®forced to
end. The reward function is the same as in the previous tesbament. We have chosen
15 different objects from nine different object classeshsas bottle, tree, and house for
which we provide the three attributes mentioned (shape, siad deviation) (figure 2).
Table 2 shows the results averaged from 100 independedsagent

In a second step we added background knowledge that enhblagént to recognize
all objects correctly, if it has perceived all of the threews. Furthermore, we added rules
to the background knowledge that told the agent to look abtject from all perspectives
first. With these rules the agent has a complete, but not aptsolution for the task. We
wanted to find out how fast the agent learns that it does nad ateviews to classify
the current object. To protect the background knowledge foeing overwritten by the
agent's own rules too early, some parameters were changelatsthe agent had to be
more sure about the correctness of a rule before addingt# belief. This setup resulted
in a constantly high recognition rate from 99.3% to 99.8%.e Humber of perceived
views decreased over time from 3.28 to 1.99. (The value & pexceived view vs. 3
possible views results from the fact, that the intermediage has to be perceived twice
if the environment starts in this view. Then, the agent peesghis view at the beginning,
then rotates the object to the front and then back to thenredrate view so it can rotate
the object to the side view in the next step, or vice versa.)

Here are some of the rules the agent learned and assimilatiddts training:

e If FrontViewShape= TriangleUp A FrontViewSize= Tall, then Action =
RecognizeBottle

¢ If FrontViewShape- Circle A SideViewShape Unknowm Texture= Simple then
Action= RotateLeft

o If Texture= ComplexthenAction= RecognizeBottle



Number of | Recognition| Recognition| Recognition
Appearances Rate (in %)| Rate (in %)| Rate (in %)
per Object| (Q(A)) for (Sphinx (Sphinx
A=05 without with

background| background

knowledge)| knowledge)

10 40.1 46.3 99.6

20 63.1 70.7 99.3

30 78.2 86.0 99.4

40 86.3 91.6 99.5

50 89.6 94.7 99.4

60 91.1 95.7 99.7

70 92.2 97.3 99.7

80 93.0 98.0 99.7

90 93.8 98.4 99.7

100 94.5 98.8 99.8

Table 2: Recognition Rates for Simulated Real Objects

These rules can be comprehended best with the completetssabbjects at hand. They
are depicted in [6].

5 Conclusion

We have proposed a new machine learning approach for aésiathat is able to learn
object acquisition strategies autonomously. To evaluagesiystem we applied it in a
simulated object recognition task. This simulation is nasdd on real images, rather
we provide the system with simple shape descriptors whietirer input to our learning
system. These shape attributes can be determined fronmmages by standard image
processing techniques, which is not subject of this coutidn. Of course, in future
research we will test our system also in real world objeatgedtion tasks. In more detail,
the contributions of this paper are as follows. We have psedahe hybrid learning
method Sphinx and applied it in a simulation of an interactject recognition task.
Sphinx has an advantage over classic reinforcement legimterms of learning speed by
combining two cognitive levels of learning - similar to humigarning. This advantage
remains even if Sphinx is not provided with background kremge., i.e., when both
learning methods are started equivalently.

Nevertheless, background knowledge can support the goéésarning, so that even
at the beginning high success rates can be achieved. It cdedmeibed in a manner
comprehensible for humans in the form of conditionals. Tisot feasible in classical
reinforcement learning. Moreover, learned information ba output easily comprehen-
sible for humans in the form of rules; there is no need to prite numerical data. By
providing Sphinx with background knowledge in the form ofmus (but not necessarily
optimal) rules permanently high learning rates can be nbthiwhile the amount of re-
quired information to choose a proper action decreaseseltiearacteristics qualify our



hybrid learning method especially to be applied in actison environments.
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