On a class of exotic cubic polynomial laws

Holger P. Petersson
Fakultät für Mathematik und Informatik
FernUniversität in Hagen
D-58084 Hagen, Germany
Email: holger.petersson@fernuni-hagen.de

In this short note we will be concerned with non-zero cubic polynomial laws $g: V \rightarrow W$ between vector spaces V, W over a field k such that the set maps $g_{k}: V \rightarrow W$ are (identically) zero. A complete characterization of these objects may be found in Thm. 7 below. Along the way towards proving this result, a few standard properties of cubic polynomial laws over arbitrary commutative rings will be derived in an ad-hoc manner.

1. Expansion formulas for cubic maps. Let k be a commutative ring and $f: M \rightarrow N$ with k-modules M, N a cubic polynomial law over k, so f is a polynomial law in the sense of Roby [2] (or Petersson-Racine [1, 3.1]) and homogeneous of degree 3 at the same time. For $R \in k$-alg and $x, y \in M_{R}$ we put

$$
\begin{equation*}
f(x, y)=(D f)(x, y) \tag{1}
\end{equation*}
$$

which is bi-homogeneous of degree $(2,1)$ since $D f=\Pi^{(2,1)} f$ (by [1, 3.1.9]) has this property in view of $[1,3.1 .5]$. Moreover, $[1,(3.1 .13)]$ yields

$$
\begin{equation*}
\left(D^{2} f\right)(x, y)=f(y, x) \tag{2}
\end{equation*}
$$

and, with a variable \mathbf{t}, the Taylor expansion $[1,(3.1 .10)]$ attains the form

$$
\begin{equation*}
f(x+\mathbf{t} y)=f(x)+\mathbf{t} f(x, y)+\mathbf{t}^{2} f(y, x)+\mathbf{t}^{3} f(y) \tag{3}
\end{equation*}
$$

Finally, the evaluation of the total linearization of f at x, y, z will be abbreviated as

$$
\begin{equation*}
f(x, y, z)=\left(\Pi^{(1,1,1)} f\right)(x, y, z) \tag{4}
\end{equation*}
$$

which is trilinear and totally symmetric in its arguments.
2. Lemma. With the assumptions and notations of 1., we have

$$
\begin{equation*}
f(x+y, z)=f(x, z)+f(x, y, z)+f(y, z) \tag{5}
\end{equation*}
$$

for all $x, y, z \in M_{R}, R \in k$-alg.
Proof. Combining [1, Lemma 3.1.2] for $n=2, p=1$ under the specialization $\mathbf{t}_{j} \mapsto 1(1 \leq j \leq n)$ with [1, 3.1.6] and (1), we obtain

$$
\begin{aligned}
f(x+y, z) & =(D f)(x+y, z)=\sum_{\nu \in \mathbb{N}_{0}^{2}}\left(\Pi^{(\nu, 1)} f\right)(x, y, z)=\sum_{\nu \in \mathbb{N}_{0}^{2},|\nu|=2}\left(\Pi^{(\nu, 1)} f\right)(x, y, z) \\
& =\left(\Pi^{(2,0,1)} f\right)(x, y, z)+\left(\Pi^{(1,1,1)} f\right)(x, y, z)+\left(\Pi^{(0,2,1)} f\right)(x, y, z)
\end{aligned}
$$

Here $\left(\Pi^{(1,1,1)} f\right)(x, y, z)=f(x, y, z)$ by (4) gives the middle term on the right-hand side of (5). On the other hand, $[1,(3.1 .5)]$ for $n=3$ under the specialization $\mathbf{t}_{1} \mapsto \mathbf{s}, \mathbf{t}_{2} \mapsto 0, \mathbf{t}_{3} \mapsto \mathbf{t}$ shows that $\left(\Pi^{(2,0,1)} f\right)(x, y, z)$ is the coefficient of $\mathbf{s}^{2} \mathbf{t}$ in the expansion of $f(\mathbf{s} x+\mathbf{t} z)$, hence by (3) agrees with $f(x, z)$. Similarly, specializing $\mathbf{t}_{1} \mapsto 0, \mathbf{t}_{2} \mapsto \mathbf{s}, \mathbf{t}_{3} \mapsto \mathbf{t}$ in [1, (3.1.5)] for $n=3$ identifies $\left(\Pi^{(0,2,1)} f\right)(x, y, z)$ with the coefficient of $\mathbf{s}^{2} \mathbf{t}$ in the expansion of $f(\mathbf{s} y+\mathbf{t} z)$, hence with $f(y, z)$. The lemma follows.
3. Corollary. For $n \in \mathbb{N}, v_{1}, \ldots, v_{n}, v \in M_{R}, R \in k$-alg, we have

$$
f\left(\sum_{i=1}^{n} v_{i}, v\right)=\sum_{i=1}^{n} f\left(v_{i}, v\right)+\sum_{1 \leq i<j \leq n} f\left(v_{i}, v_{j}, v\right)
$$

Proof. By induction on n. For $n=1$, there is nothing to prove. For $n>1$, Lemma 2 and the induction hypothesis yield

$$
\begin{aligned}
f\left(\sum_{i=1}^{n} v_{i}, v\right) & =f\left(\sum_{i=1}^{n-1} v_{i}+v_{n}, v\right)=f\left(\sum_{i=1}^{n-1} v_{i}, v\right)+f\left(\sum_{i=1}^{n-1} v_{i}, v_{n}, v\right)+f\left(v_{n}, v\right) \\
& =\sum_{i=1}^{n-1} f\left(v_{i}, v\right)+f\left(v_{n}, v\right)+\sum_{1 \leq i<j<n} f\left(v_{i}, v_{j}, v\right)+\sum_{i=1}^{n-1} f\left(v_{i}, v_{n}, v\right) \\
& =\sum_{i=1}^{n} f\left(v_{i}, v\right)+\sum_{1 \leq i<j \leq n} f\left(v_{i}, v_{j}, v\right)
\end{aligned}
$$

as claimed
4. Corollary. For all $x, y, z \in M_{R}, R \in k$-alg, we have

$$
f(x, y, z)=f(x+y+z)-f(x+y)-f(y+z)-f(z+x)+f(x)+f(y)+f(z) .
$$

Proof. Expanding the right-hand side by using (3) and Lemma 2, we obtain

$$
\begin{gathered}
f(x+y)+f(x+y, z)+f(z, x+y)+f(z)-f(x+y)-f(y)-f(y, z)- \\
f(z, y)-f(z)-f(z)-f(z, x)-f(x, z)-f(x)+f(x)+f(y)+f(z)= \\
f(x, z)+f(x, y, z)+f(y, z)+f(z, x)+f(z, y)- \\
f(y, z)-f(z, y)-f(z, x)-f(x, z)=f(x, y, z) .
\end{gathered}
$$

5. Proposition. With the assumptions and notations of 1., we have

$$
f\left(\sum_{i=1}^{n} r_{i} v_{i}\right)=\sum_{i=1}^{n} r_{i}^{3} f\left(v_{i}\right)+\sum_{1 \leq i, j \leq n, i \neq j} r_{i}^{2} r_{j} f\left(v_{i}, v_{j}\right)+\sum_{1 \leq i<j<l \leq n} r_{i} r_{j} r_{l} f\left(v_{i}, v_{j}, v_{l}\right)
$$

for all $n \in \mathbb{N}, r_{1}, \ldots, r_{n} \in R, v_{1}, \ldots, v_{n} \in M_{R}, R \in k$-alg.
Proof. Again by induction on n, the case $n=1$ again being obvious. For $n>1$, we combine the induction hypothesis with the Taylor expansion (3) and Cor. 3 to obtain

$$
\begin{aligned}
f\left(\sum_{i=1}^{n} r_{i} v_{i}\right)= & f\left(\sum_{i=1}^{n-1} r_{i} v_{i}+r_{n} v_{n}\right)=f\left(\sum_{i=1}^{n-1} r_{i} v_{i}\right)+r_{n} f\left(\sum_{i=1}^{n-1} r_{i} v_{i}, v_{n}\right)+r_{n}^{2} f\left(v_{n}, \sum_{i=1}^{n-1} r_{i} v_{i}\right)+r_{n}^{3} f\left(v_{n}\right) \\
= & \sum_{i=1}^{n-1} r_{i}^{3} f\left(v_{i}\right)+r_{n}^{3} f\left(v_{n}\right)+\sum_{1 \leq i, j<n, i \neq j} r_{i}^{2} r_{j} f\left(v_{i}, v_{j}\right)+\sum_{1 \leq i<j<l<n} r_{i} r_{j} r_{l} f\left(v_{i}, v_{j}, v_{l}\right) \\
& +\sum_{i=1}^{n-1} r_{i}^{2} r_{n} f\left(v_{i}, v_{n}\right)+\sum_{1 \leq i<j<n} r_{i} r_{j} r_{n} f\left(v_{i}, v_{j}, v_{n}\right)+\sum_{i=1}^{n-1} r_{i} r_{n}^{2} f\left(v_{n}, v_{i}\right) \\
= & \sum_{i=1}^{n} r_{i}^{3} f\left(v_{i}\right)+\sum_{1 \leq i, j \leq n, i \neq j} r_{i}^{2} r_{j} f\left(v_{i}, v_{j}\right)+\sum_{1 \leq i<j<l \leq n} r_{i} r_{j} r_{l} f\left(v_{i}, v_{j}, v_{l}\right),
\end{aligned}
$$

again as claimed.
6. Notations and conventions. We now assume that we are given a free k-module V of finite rank $n>0$, with basis $\left(e_{i}\right)_{1 \leq i \leq n}$. We use this basis to identify V with n-dimensional column space k^{n}, which in turn will be viewed as the split étale k-algebra of rank n under the componentwise multiplication. Given another k-module W and a matrix $S=\left(s_{i j}\right) \in \operatorname{Mat}_{n}(W)$, we obtain an induced bilinear map

$$
\langle S\rangle: V \times V \longrightarrow W, \quad(x, y) \longmapsto\langle S\rangle(x, y):=x^{t} S y,
$$

where in explicit "co-ordinate" terms

$$
x^{t} S y=\sum_{i, j=1}^{n} \alpha_{i} s_{i j} \beta_{j}=\sum_{i, j=1}^{n} \alpha_{i} \beta_{j} s_{i j} \in W \quad\left(x=\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right), y=\left(\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{n}
\end{array}\right) \in V=k^{n}\right) .
$$

The usual formalism of matrix multiplication obviously prevails also in this more general set-up. In particular, the matrix S is alternating, i.e., skew-symmetric with zeroes down the diagonal, if and only if $\langle S\rangle: V \times V \rightarrow W$ is an alternating bilinear map.

In dealing with polynomial laws $f: M \rightarrow N$ over k, we have allowed ourselves so far the notational laxity of writing the induced set maps $M_{R} \rightarrow N_{R}, R \in k$-alg, simply as f. For greater clarity, this laxity will not be tolerated anymore, so from now on we will consistently use the elaborate notation $f_{R}: M_{R} \rightarrow N_{R}$.
7. Theorem. With the notations and conventions of 6., assume k is a field and let $g: V \rightarrow W$ be a cubic polynomial law over k. Then the following conditions are equivalent.
(i) The set map $g_{k}: V \rightarrow W$ is zero, but g itself is not.
(ii) We have $k=\mathbb{F}_{2}$,

$$
\begin{equation*}
g_{k}\left(e_{i}\right)=0, \quad g_{k}(x, x)=0, \quad g_{k}(x, y, z)=0 \quad(1 \leq i \leq n, x, y, z \in V) \tag{6}
\end{equation*}
$$

and there are $x_{0}, y_{0} \in V$ such that $g_{k}\left(x_{0}, y_{0}\right) \neq 0$.
(iii) We have $k=\mathbb{F}_{2}$ and the exists a non-zero alternating matrix $S \in \operatorname{Mat}_{n}(W)$ such that

$$
\begin{equation*}
g_{R}(x)=x^{t} S_{R} x^{2} \tag{7}
\end{equation*}
$$

for all $x \in R^{n}=\mathbb{F}_{2}^{n} \otimes R=V_{R}, R \in \mathbb{F}_{2}$-alg.
Proof. (i) \Rightarrow (ii). The first relation in (6) is obvious, as is the last one, by Cor. 4. For the middle one, we use Euler's differential equation and obtain $g(x, x)=(D g)(x, x)=3 g(x)=0$ for all $x \in V$, as claimed. It remains to show $k=\mathbb{F}_{2}$ and the final statement of (ii). Given $x, y, z \in V$, we obtain $g_{k}(x)=g_{k}(y)=g_{k}(x+y)=0$ by (i), and (3) for $\mathbf{t} \mapsto \alpha \in k^{\times}$yields

$$
\begin{equation*}
g_{k}(x, y)+\alpha g_{k}(y, x)=0 \quad\left(\alpha \in k^{\times}\right) \tag{8}
\end{equation*}
$$

Assuming k contains more than two elements, (8) implies $\left.g_{(} x, y\right)=0$ for all $x, y \in V$, which in turn implies $g_{R}\left(\sum r_{i} e_{i}\right)=0$ for all $r_{1}, \ldots, r_{n} \in R, R \in k$-alg by Prop. 5, and we conclude that the cubic polynomial law g is zero. This contradiction shows not only $k=\mathbb{F}_{2}$ but also $g_{k}\left(x_{0}, y_{0}\right) \neq 0$ for some $x_{0}, y_{0} \in V$.
(ii) \Rightarrow (iii). By (6) and Lemma 2, the map $V \times V \rightarrow W,(x, y) \mapsto g(x, y)$, is \mathbb{F}_{2}-bilinear and alternating, so we obtain in

$$
S:=\left(g\left(e_{i}, e_{j}\right)\right)_{1 \leq i, j \leq n} \in \operatorname{Mat}_{n}(W)
$$

an alternating matrix, which by (ii) is non-zero. Combining Prop. 5 with (6), we therefore conclude, for

$$
x=\left(\begin{array}{c}
r_{1} \\
\vdots \\
r_{n}
\end{array}\right)=\sum_{i=1}^{n} r_{i} e_{i} \in R^{n}=\mathbb{F}_{2}^{n} \otimes R=V_{R}, \quad\left(r_{1}, \ldots, r_{n} \in R\right)
$$

that

$$
\begin{aligned}
g_{R}(x) & =g_{R}\left(\sum_{i=1}^{n} r_{i} e_{i}\right)=\sum_{i=1}^{n} r_{i}^{2} g\left(e_{i}\right)_{R}+\sum_{1 \leq i, j \leq n, i \neq j} r_{i}^{2} r_{j} g\left(e_{i}, e_{j}\right)_{R}+\sum_{1 \leq i<j<l \leq n} r_{i} r_{j} r_{l} g\left(e_{i}, e_{j}, e_{l}\right)_{R} \\
& =\sum_{1 \leq i, j \leq n} r_{i} g\left(e_{i}, e_{j}\right)_{R} r_{j}^{2}=x^{t} S_{R} x^{2},
\end{aligned}
$$

as desired.
(iii) \Rightarrow (i). The elements of the \mathbb{F}_{2}-algebra \mathbb{F}_{2}^{n} are idempotents, which implies $g_{k}(x)=g_{\mathbb{F}_{2}}(x)=$ $x^{t} S x=0$ for all $x \in V$ since S is alternating. Thus the set map $g_{k}: V \rightarrow W$ is zero. On the other hand, there are $x_{0}, y_{0} \in V$ such that $x_{0}^{t} S y_{0} \neq 0$, and passing from $k=\mathbb{F}_{2}$ to $K=\mathbb{F}_{4}=\mathbb{F}_{2}(\theta)$, $\theta^{2}=\theta+1$, we deduce

$$
\begin{aligned}
g_{K}\left(x_{0}+\theta y_{0}\right) & =\left(x_{0}+\theta y_{0}\right)^{t} S\left(x_{0}+\theta y_{0}\right)^{2}=\left(x_{0}+\theta y_{0}\right)^{t} S\left(x_{0}^{2}+\theta^{2} y_{0}^{2}\right)=\left(x_{0}+\theta y_{0}\right)^{t} S\left(x_{0}+\theta^{2} y_{0}\right) \\
& =\left(x_{0}+\theta y_{0}\right)^{t} S\left(x_{0}+\theta y_{0}\right)+\left(x_{0}+\theta y_{0}\right)^{t} S y_{0} \\
& =x_{0}^{t} S y_{0} \neq 0
\end{aligned}
$$

Thus the set map $g_{K}: V_{K} \rightarrow W_{K}$ is not zero, forcing g to be non-zero as well, and we have (i).
8. Remark. In the course of establishing the implication (iii) \Rightarrow (i) above, we have shown that a polynomial law g satisfying the conditions of the theorem does not vanish as a set map from V_{K} to $W_{K}, K=\mathbb{F}_{4}$. Actually, this is part of the result: for any proper extension field L of $k=\mathbb{F}_{2}$, the extension $g \otimes L: V_{L} \rightarrow W_{L}$ is a non-zero cubic polynomial law over L which, thanks to Thm. 7, cannot induce the zero set map from V_{L} to W_{L} since the base field L is not \mathbb{F}_{2}.

References

[1] H.P. Petersson and M.L. Racine, Albert algebras-version 09, Springer-Verlag, In preparation.
[2] N. Roby, Lois polynomes et lois formelles en théorie des modules, Ann. Sci. École Norm. Sup. (3) 80 (1963), 213-348. MR MR0161887 (28 \#5091)

