Intervall decompositions on vector spaces over arbitrary fields

Holger P. Petersson
Fakultät für Mathematik und Informatik
FernUniversität in Hagen
D-58084 Hagen, Germany
Email: holger.petersson@FernUni-Hagen.de

1. Introduction. Given a vector space X over a field, Hitzemann and Hochstättler [1] have recently set up a(n almost) bijective correspondence between interval decompositions of the subspace lattice of X on the one hand and what they call families of point-wise reflexive and anti-symmetric linear forms on the other. In an effort to gain a better understanding of this correspondence, it will be recast here in a slightly different form. Examples of interval decompositions that seem to be new will also be presented.
2. The subspace lattice of X. Let X be a vector space, possibly infinite-dimensional, over an arbitrary field k. We denote by $\mathcal{L}(X)$ the lattice of all sub-vector spaces of X. Given $U, V \in \mathcal{L}(X)$, we denote by

$$
[U, V]:=\{W \in \mathcal{L}(X) \mid U \subseteq W \subseteq V\}
$$

the (closed) interval determined by U, V in the lattice $\mathcal{L}(X)$. If V is finite-dimensional, we call

$$
l([U, V]):=\operatorname{dim}_{k}(V)-\operatorname{dim}_{k}(U)
$$

the length of $[U, V]$. Clearly, $[U, V]$ is not empty iff $U \subseteq V$ iff $U \in[U, V]$ iff $V \in[U, V]$. Moreover, for another pair of subspaces $U^{\prime}, V^{\prime} \in \mathcal{L}(X)$,

$$
[U, V] \cap\left[U^{\prime}, V^{\prime}\right]=\left[U+U^{\prime}, V \cap V^{\prime}\right],
$$

and we conclude that that the intervals $[U, V],\left[U^{\prime}, V^{\prime}\right]$ have a non-empty intersection iff $U+U^{\prime} \subseteq V \cap V^{\prime}$ iff U and U^{\prime} are both subspaces of V and of V^{\prime}.
3. Interval decompositions. By an interval decomposition of $\mathcal{L}(X)$ we mean a triple

$$
\mathcal{Z}:=\left(U_{0}, H_{0}, m\right)
$$

satisfying the following conditions.
(i) $U_{0} \in \mathcal{L}(X)$ has dimension 1 .
(ii) $H_{0} \in \mathcal{L}(X)$ is a hyperplane, i.e., a subspace of co-dimension 1 in X.
(iii) $m: \mathcal{P}\left(U_{0}, H_{0}\right) \rightarrow \mathcal{P}^{*}\left(U_{0}, H_{0}\right)$, where

$$
\begin{aligned}
\mathcal{P}\left(U_{0}, H_{0}\right) & :=\left\{U \in \mathcal{L}(X) \mid \operatorname{dim}(U)=1, U_{0} \neq U \nsubseteq H_{0}\right\} \\
\mathcal{P}^{*}\left(U_{0}, H_{0}\right) & :=\left\{H \in \mathcal{L}(X) \mid \operatorname{codim}_{X}(H)=1, U_{0} \nsubseteq H \neq H_{0}\right\}
\end{aligned}
$$

is a map satisfying the following conditions:
(a) $U \subseteq m(U)$ for all $U \in \mathcal{P}\left(U_{0}, H_{0}\right)$.
(b) The intervals $[U, m(U)] \subseteq \mathcal{L}(X), U \in \mathcal{P}\left(U_{0}, H_{0}\right)$, are mutually disjoint.

Here the map m is necessarily injective. Indeed, suppose $U, U^{\prime} \in \mathcal{P}\left(U_{0}, H_{0}\right)$ satisfy $m(U)=m\left(U^{\prime}\right)$. Then (iii)(a) implies

$$
m(U)=m\left(U^{\prime}\right) \in[U, m(U)] \cap\left[U^{\prime}, m\left(U^{\prime}\right]\right.
$$

forcing $U=U^{\prime}$ by (iii)(b).
It follows from 2. that, in the presence of conditions (i)-(iii)(a), condition (iii)(b) is equivalent to the following
($\left.\mathrm{b}^{\prime}\right)$ If $U, U^{\prime} \in \mathcal{P}\left(U_{0}, H_{0}\right)$ are distinct, then $U \nsubseteq m\left(U^{\prime}\right)$ or $U^{\prime} \nsubseteq m(U)$.
We speak of a proper interval decomposition if the injective map m is surjective as well, hence bijective. This means that the intervals $[U, m(U)], U \in \mathcal{P}\left(U_{0}, H_{0}\right)$, together with $\left[U_{0}, X\right]$ and $\left[\{0\}, H_{0}\right]$ form an interval partition of $\mathcal{L}(X)$.
4. Base points of interval decompositions. Let $\mathcal{Z}:=\left(U_{0}, H_{0}, m\right)$ be an interval decomposition of $\mathcal{L}(X)$. Then that we have the splitting

$$
\begin{equation*}
X=U_{0} \oplus H_{0} . \tag{1}
\end{equation*}
$$

By a base point of \mathcal{Z}, we mean a non-zero element of U_{0}, i.e., a basis of the onedimensional vector space U_{0}. A base point of \mathcal{Z} is unique up to a non-zero scalar factor. By a pointed interval decomposition of $\mathcal{L}(X)$ we mean a pair $\left(\mathcal{Z}, p_{0}\right)$, where \mathcal{Z} is an interval decomposition of $\mathcal{L}(X)$ as above and p_{0} is a base point for \mathcal{Z}. We then claim that the assignment

$$
\begin{equation*}
p \longmapsto U_{p}:=k\left(p_{0}+p\right) \tag{2}
\end{equation*}
$$

gives a bijection from $H_{0} \backslash\{0\}$ onto $\mathcal{P}\left(U_{0}, H_{0}\right)$. Indeed, for $0 \neq p \in H_{0}$, the onedimensional space U_{p} is clearly distinct from $U_{0}=k p_{0}$ and not contained in H_{0}, hence belongs to $\mathcal{P}\left(U_{0}, H_{0}\right)$. The map in question is clearly injective and, given any $U \in$ $\mathcal{P}\left(U_{0}, H_{0}\right)$, we may combine the definition of $\mathcal{P}\left(U_{0}, H_{0}\right)$ with (1) to find a scalar $\alpha \in k^{\times}$ and a vector $p^{\prime} \in H_{0}$ such that $U_{0} \neq U=k\left(\alpha p_{0}+p^{\prime}\right) \nsubseteq H_{0}$. But then $U=U_{p}$ with $p=\alpha^{-1} p^{\prime} \in H_{0} \backslash\{0\}$, and the assertion follows.

Remark.. The preceding observation matches canonically with the the standard fact that the k-rational points of \mathbb{P}_{k}^{n} whose ($n+1$)-th co-ordinate (say) is not zero are basically the same as the k-rational points of \mathbb{A}_{k}^{n}.
5. Irreflexive and anti-symmetric linear forms. A triple

$$
\Sigma:=\left(p_{0}, H_{0},\left(\sigma_{p}\right)_{p \in H_{0} \backslash\{0\}}\right)
$$

is said to be a point-wise irreflexive and anti-symmetric family of linear forms on X if it satisfies the following conditions:
(i) $p_{0} \in X$ is not zero.
(ii) $H_{0} \in \mathcal{L}(X)$ is a hyperplane in X not containing p_{0}.
(iii) $\left(\sigma_{p}\right)_{p \in H_{0} \backslash\{0\}}$ is a family of linear forms on X such that the following conditions are fulfilled, for all $p, q \in H_{0} \backslash\{0\}$.
(a) $\sigma_{p}\left(p_{0}\right)=-1$.
(b) $\sigma_{p}(p)=1$.
(c) If $p \neq q$ and $\sigma_{p}(q)=1$, then $\sigma_{q}(p) \neq 1$.

From now on, the term "point-wise" will always be suppressed in the preceding definition. Note that, thanks to conditions (i),(ii) above, we have the analogue of decomposition (1), i.e.,

$$
\begin{equation*}
X=U_{0} \oplus H_{0}, \quad U_{0}:=k p_{0} \tag{3}
\end{equation*}
$$

Remark. By (iii)(a) and (3), the linear forms $\sigma_{p}, p \in H_{0} \backslash\{0\}$, on X are completely determined by their action on H_{0}. Thus an irreflexive and anti-symmetric family of linear forms may be defined intrinsically on an arbitrary non-zero vector space Y over k as a family $\left(\sigma_{y}\right)_{y \in Y \backslash\{0\}}$ of linear forms on Y satisfying the condition

$$
\forall y, z \in Y \backslash\{0\}: \sigma_{y}(z)=\sigma_{z}(y)=1 \Longleftrightarrow y=z .
$$

6. From interval decompositions to linear forms. Let $\left(\mathcal{Z}, p_{0}\right)$ with

$$
\mathcal{Z}=\left(U_{0}, H_{0}, m\right)
$$

be a pointed interval decomposition of $\mathcal{L}(X)$. For $0 \neq p \in H_{0}, U_{0}=k p_{0}$ is not contained in $m\left(U_{p}\right)$, so we have the decomposition

$$
\begin{equation*}
X=U_{0} \oplus m\left(U_{p}\right) \tag{4}
\end{equation*}
$$

and find a unique linear form $\sigma_{p}: X \rightarrow k$ such that

$$
\begin{equation*}
\sigma_{p}\left(p_{0}\right)=-1, \quad \operatorname{Ker}\left(\sigma_{p}\right)=m\left(U_{p}\right) \tag{5}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\boldsymbol{\Sigma}\left(\mathcal{Z}, p_{0}\right):=\left(p_{0}, H_{0},\left(\sigma_{p}\right)_{p \in H_{0} \backslash\{0\}}\right) \tag{6}
\end{equation*}
$$

is an irreflexive and anti-symmetric family of linear forms on X. Indeed, conditions (i),(ii) in 5. are clearly equivalent to the corresponding ones in 3., so we only have to worry about conditions (iii)(a)-(c). Here (a) is the first relation of (5). For (b),(c), let $p, q \in H_{0} \backslash\{0\}$. Again by (5),

$$
\sigma_{p}(q)=1 \Longleftrightarrow \sigma_{p}\left(p_{0}+q\right)=0 \Longleftrightarrow p_{0}+q \in \operatorname{Ker}\left(\sigma_{p}\right) \Longleftrightarrow U_{q} \subseteq m\left(U_{p}\right)
$$

Therefore (iii)(b) (resp. (iii)(c)) follows from condition (iii)(a) (resp. (iii)(b')) in 3..
What happens if we change the base point? To see this, let $\alpha \in k^{\times}$and put

$$
p_{0}^{\prime}:=\alpha^{-1} p_{0}, \quad \boldsymbol{\Sigma}\left(\mathcal{Z}, p_{0}^{\prime}\right)=:\left(U_{0}, H_{0},\left(\sigma_{p}^{\prime}\right)_{p \in H_{0} \backslash\{0\}}\right)
$$

For $0 \neq p \in H_{0}$, we consult (2) and obtain

$$
U_{p}^{\prime}:=k\left(p_{0}^{\prime}+p\right)=k\left(p_{0}+\alpha p\right)=U_{\alpha p}
$$

Combining this with (5), we obtain $\sigma_{p}^{\prime}=\alpha \sigma_{\alpha p}$ for $p \in H_{0} \backslash\{0\}$. Summing up we conclude

$$
\begin{equation*}
\boldsymbol{\Sigma}\left(\mathcal{Z}, \alpha^{-1} p_{0}\right)=\left(\alpha^{-1} p_{0}, H_{0},\left(\alpha \sigma_{\alpha p}\right)_{p \in H_{0} \backslash\{0\}}\right) \tag{7}
\end{equation*}
$$

7. From linear forms to interval decompositions. It is easy to reverse the preceding construction. Let $\Sigma=\left(p_{0}, H_{0},\left(\sigma_{p}\right)_{p \in H_{0} \backslash\{0\}}\right)$ be an irreflexive and anti-symmetric family of linear forms on X. We put

$$
\begin{equation*}
\mathbf{Z}(\Sigma):=\left(\mathcal{Z}, p_{0}\right), \quad \mathcal{Z}:=\left(U_{0}, H_{0}, m\right), \quad U_{0}:=k p_{0} \tag{8}
\end{equation*}
$$

where we observe 4., particularly (2), to define

$$
\begin{equation*}
m: \mathcal{P}\left(U_{0}, H_{0}\right) \longrightarrow \mathcal{P}^{*}\left(U_{0}, H_{0}\right), \quad m\left(U_{p}\right):=\operatorname{Ker}\left(\sigma_{p}\right) \quad\left(p \in H_{0} \backslash\{0\}\right) \tag{9}
\end{equation*}
$$

We claim that \mathcal{Z} is an interval decomposition of $\mathcal{L}(X)$. While conditions (i),(ii) of 3. are obvious, condition (iii) follows from (iii) in 5. and the following chain of equivalent conditions, for all $p, q \in H_{0} \backslash\{0\}$.

$$
U_{q} \subseteq m\left(U_{p}\right) \Longleftrightarrow p_{0}+q \in \operatorname{Ker}\left(\sigma_{p}\right) \Longleftrightarrow \sigma_{p}\left(p_{0}+q\right)=0 \Longleftrightarrow \sigma_{p}(q)=1
$$

Combining the two preceding constructions, we arrive at the following theorem.

8. Theorem. The assignments

$$
\left(\mathcal{Z}, p_{0}\right) \longmapsto \mathbf{\Sigma}\left(\mathcal{Z}, p_{0}\right), \quad \Sigma \longmapsto \mathbf{Z}(\Sigma)
$$

define inverse bijections between the set of pointed interval decompositions of $\mathcal{L}(X)$ and the set of irreflexive anti-symmetric families of linear forms on X.

We now turn to examples of irreflexive anti-symmetric families of linear forms. In agreement with the remark of $\mathbf{5}$., we will construct such families on appropriate vector spaces Y over k. If Y has finite dimension n, this construction will give rise, via Thm. 8., to an interval decomposition in dimension $n+1$.

We begin by generalizing [1, Example 2].
9. Example: Anisotropic bilinear forms. Let Y be a vector space over k and

$$
\delta: Y \times Y \longrightarrow k
$$

be a (possibly non-symmetric) bilinear form that is anisotropic in the sense that $\delta(y, y) \neq$ 0 for all non-zero elements $y \in Y$. For $y \in Y \backslash\{0\}$ we define

$$
\begin{equation*}
\sigma_{y}: Y \longrightarrow Y, \quad z \longmapsto \sigma_{y}(z):=\delta(y, y)^{-1} \delta(y, z) . \tag{10}
\end{equation*}
$$

Clearly, σ_{y} is a linear form satisfying $\sigma_{y}(y)=1$. Now suppose $y, z \in Y \backslash\{0\}$ are distinct with $\sigma_{y}(z)=\sigma_{z}(y)=1$. Then y and z are linearly independent since, otherwise, $z=\alpha y$ for some $\alpha \in k$, forcing $\alpha=\sigma_{y}(\alpha y)=\sigma_{y}(z)=1$, a contradiction. Now (10) gives $\delta(y, z)=\delta(y, y), \delta(z, y)=\delta(z, z)$, hence

$$
\operatorname{det}\left(\begin{array}{ll}
\delta(y, y) & \delta(y, z) \\
\delta(z, y) & \delta(z, z)
\end{array}\right)=\delta(y, y) \delta(z, z)-\delta(y, z) \delta(z, y)=0
$$

Writing $Y^{\prime}=k y+k z$ for the subspace of Y spanned by y, z, we conclude that there exists a non-zero vector $w \in Y^{\prime}$ satisfying $\delta\left(Y^{\prime}, w\right)=\{0\}$. On the other hand, δ being anisotropic implies $\delta(w, w) \neq 0$, a contradiction. Thus $\left(\sigma_{y}\right)_{y \in Y \backslash\{0\}}$ is an irreflexive antisymmetric family of linear forms on Y.

Remark. 1. It is a standard fact from the algebraic theory of quadratic forms that every quadratic form $q: Y \rightarrow k$ allows a bilinear form $\delta: Y \times Y \rightarrow k$, in general not symmetric, such that $q(y)=\delta(y, y)$ for all $y \in Y$. In particular, if q is anisotropic, so is δ, and conversely.

Remark. 2. Replacing δ by $\delta+\alpha$ for some alternating bilinear form α : $Y \times Y \rightarrow k$ does not change the quadratic form corresponding to δ. Hence we obtain a whole family of irreflexive anti-symmetric families of linear forms on Y, parametrized by the alternating bilinear forms on Y.

Remark. 3. Let k be finite. Anisotropic quadratic forms of dimension n over k exist iff $n \leq 2$. We thus obtain examples of interval decompositions of $\mathcal{L}(X)$ if X has dimension ≤ 3 over k, in agreement with the first row the final table in [1].
10. Example: Anisotropic cubic forms. Again we let Y be a vector space over k but now assume

$$
N: Y \longrightarrow k
$$

is an anisotropic cubic form, so N is a polynomial law in the sense of Roby [3], homogeneous of degree 3 , and representing zero only trivially: $N(y)=0, y \in Y$, implies $y=0$. We denote by

$$
D N: Y \times Y \longrightarrow k, \quad(y, z) \longmapsto(D N)(y, z)
$$

the total differential of N, which is quadratic in the first variable, linear in the second, and matches with N itself through the expansion

$$
\begin{equation*}
N(y+z)=N(y)+(D N)(y, z)+(D N)(z, y)+N(z) \tag{11}
\end{equation*}
$$

valid in all scalar extensions. For $y \in Y \backslash\{0\}$, we define

$$
\begin{equation*}
\sigma_{y}: Y \longrightarrow Y, \quad z \longmapsto \sigma_{y}(z):=N(y)^{-1}(D N)(y, z) \tag{12}
\end{equation*}
$$

and claim: If k has characteristic 2, then $\left(\sigma_{y}\right)_{y \in Y \backslash\{0\}}$ is an irreflexive anti-symmetric family of linear forms on Y. Since we are in characteristic 2, the relations $\sigma_{y}(y)=1$ for $0 \neq y \in Y$ follow immediately from Euler's differential equation:

$$
\sigma_{y}(y)=N(y)^{-1}(D N)(y, y)=3 N(y)^{-1} N(y)=1
$$

Hence it remains to show for $y, z \in Y \backslash\{0\}$ distinct that the relations $\sigma_{y}(z)=\sigma_{z}(y)=1$ lead to a contradiction. From (12) we conclude $(D N)(y, z)=N(y),(D N)(z, y)=N(z)$, and (11) implies

$$
N(y+z)=N(y)+N(y)+N(z)+N(z)=0
$$

a contradiction since N was assumed to be anisotropic.
Remark. Let k be finite of characteristic 2 , hence of the form $\mathbb{F}_{2^{r}}$ for some integer $r>0$. By Chevalley's theorem [2, Chap. IV, Ex. 7], anisotropic cubic forms of dimension n over k exist iff $n \leq 3$. Thus we find interval decompositions over k in all dimensions ≤ 4, allowing us to replace the question mark in the second row of the final table in [1] by a "yes" provided q is a power of 2 .

References

[1] S. Hitzemann and W. Hochstättler, On the combinatorics of Galois numbers, Discrete Math. 310 (2010), 3551-3557.
[2] Serge Lang, Algebra, third ed., Graduate Texts in Mathematics, vol. 211, SpringerVerlag, New York, 2002. MR 2003e:00003
[3] Norbert Roby, Lois polynomes et lois formelles en théorie des modules, Ann. Sci. École Norm. Sup. (3) 80 (1963), 213-348. MR MR0161887 (28 \#5091)

