
 

1 INTRODUCTION 

The performance requirements of modern micro-
processors have increased proportionally to their 
growing number of applications. This led to an 
increase of clock frequencies up to 4.7 GHz (2007) 
and to an integration density of less than 45 nm 
(2007). The Semiconductor Industry Association 
roadmap forecasts a minimum feature size of 
14 nm [6] until 2020. Below 90 nm a serious issue 
occurs at sea level, before only known from aero-
space applications [1]: the increasing probability 
that neutrons cause Single-Event Upsets in memo-
ry elements [1][3]. The measurable radiation on 
sea level consists of up to 92 % neutrons from out-
er space [2]. The peak value is 14400 neu-
trons/cm2/h [4]. Figure 1 shows the number of neu-

tron impacts per hour per square centimeter for 
Kiel, Germany (data from [5]). 

 

Figure 1: Number of neutron impacts per hour for Kiel, Ger-

many (2007) 
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ABSTRACT:  

In this paper, we introduce a novel and simple fault rate classification scheme in hardware. It is based on the 
well-known threshold scheme, counting ticks between faults. The innovation is to introduce variable thre-
shold values for the classification of fault rates and a fixed threshold for permanent faults. In combination 
with field data obtained from 9728 processors of a SGI Altix 4700 computing system, a proposal for the fre-
quency-over-time behavior of faults results, experimentally justifying the assumption of dynamic and fixed 
threshold values. A pattern matching classifies the fault rate behavior over time. From the behavior a predic-
tion is made. Software simulations show that fault rates can be forecast with 98 % accuracy. The scheme is 
able to adapt to and diagnose sudden changes of the fault rate, e.g. a spacecraft passing a radiation emitting 
celestial body. By using this scheme, fault-coverage and performance can be dynamically adjusted during 
runtime. For validation, the scheme is implemented by using different design styles, namely Field Programm-
able Gate Arrays (FPGAs) and standard-cells. Different design styles were chosen to cover different econom-
ic demands. From the implementation, characteristics like the length of the critical path, capacity and area 
consumption result. 



 

This work deals with the handling of faults after 
they have been detected (fault diagnosis). We do 
not use the fault rate for the classification of fault 
types such as transient, intermittent or permanent 
faults. We classify the current fault rate and fore-
cast its development. On this basis the perfor-
mance and fault coverage can be dynamically ad-
justed during runtime. We call this scheme History 
Voting.  

The rest of this work is organized as follows: in 
Section 2, we present and discuss observations on 
fault rates in real-life systems. In Section 3, we 
discuss related work. Section 4 introduces History 
Voting. We seamlessly extend the scheme to sup-
port multiple operating units used in multicore or 
multithreaded systems. The scheme was modeled 
in software and its behavior simulated under the 
influence of faults. Section 5 presents experimental 
results and resource demands from standard-cell 
and FPGA (Field Programmable Gate Array)-
implementations. Section 6 concludes the paper. 

2 OBSERVATIONS 

Figure 2 shows the number of transient single bit 
errors (x-axis) for 193 systems and the number of 
systems which shows faulty behavior (y-axis) over 
16 months [7]. For many systems the number of 
faults is small. Few systems encounter an in-
creased fault rate. From this, intermittent or per-
manent faults can be concluded. 

 
Figure 2: Number of transient errors for 193 systems 

 

Figure 3 shows the daily number of transient single 
bit memory errors for a single system [7]. The 
faults within the first seven months were identified 
as transient. The first burst of faults appears at the 
beginning of month eleven, leading to the assess-
ment of intermittent faults. 

 

Figure 3: Number of daily transient single bit errors of a 

single system 

Actual data is depicted in Figure 4. Here, the num-
ber of detected faults (y-axis) in the main memory 
and caches of all 19 partitions for the SGI Altix 
4700 installation at the Leibniz computing center 
(Technical University of Munich) [8] is shown. 
The data was gained from the system abstraction 
layer (salinfo). In the observation interval (24.07.-
31.08.2007, x-axis) two permanent faults in Parti-
tion 3 and 13 can be recognized, since we have a 
massive increase of errors (y-axis). If permanent 
faults would be concluded from a history, they 
would be recognized too late, leading to a massive 
occurrence of side-effects. For the detection of 
permanent faults, the fault rate in the observation 
interval alone is relevant. In partitions 2, 5, 9, 10 
and 14, an increase of the fault rate before a mas-
sive fault appearance can be depicted. As much as 
a sudden growth, a decrease of the fault rate can be 
observed. 0
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in the future is determined from the list of proces-
sors which took part in a redundant execution 
scheme. Therefore, processors are assigned 
weights. Like [9] we separate between techniques 
which incur interference from outside and mechan-
isms based on algorithms. The latter are used in 
this work. 

 

4 DIAGNOSIS AND PREDICTION 

From the mentioned work and the observations, we 
can conclude that a classification of faults is possi-
ble by measuring the time between them. The lim-
its for a classification are fluent, since the applica-
tion, technology and circuit will determine the fre-
quency of faults. History Voting for redundant 
(structural and temporal) systems classifies fault 
rates during runtime. It predicts if the fault rate 
will increase. Based on this forecast, the perfor-
mance of a system can be dynamically adjusted if 
the prediction has a certain quality.  

We hereby exclude the possibility that the system 
performance is decreased unreasonable due to a 
false prediction. A trust γ is assigned to units. 
These can be e.g. the components of a NMR-
system, the cores in a multicore system or thread-
ing units in a multithreaded system. If the trust is 
zero, a faulty unit can be identified. An additional 
innovation is to dynamically adjust the threshold 
values to the fault scenario. From this we can ex-
clude a false detection of a permanent fault on an 
unexpected high fault rate, e. g. the bypass flight of 
a space probe on a radiation emitting celestial 
body. 

 
History Voting consists of two parts: 
1. Adjustment of threshold values to the operating 

environment 
2. Prediction of the fault rate and calculation of 

trust and prediction quality 
 
 

4.1 Adjustment of threshold values  
All related works from above use fixed threshold 
limits for the classification of fault types. This as-
sumption only matches an environment where the 
fault rate is known. To flexibly classify the fault 
rate we introduce three threshold variables: ϕι, ϕτ 

and ϕπ. These represent the upper borders for the 
rate of permanent (ϕπ), intermittent (ϕι) and tran-
sient faults (ϕτ). After a reset the variables are set 
to known maximum values of the expected fault 
scenario. For security and from the observations, 
ϕπ is set to a fixed value and is not dynamically 
adjusted. A counter Δi is needed to measure the 
time (in cycles) between faults. In the fault-free 
case, Δi is increased every cycle, else the trend of 
the fault rate is classified by the function i(a,b), 
defined by: 
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Table 1 shows the coding of i(a,b) and the conse-
quence on the trust (γ). γ>> represents the bitwise 
shifting of value γ to the right, γ++ an increase of 
value γ. If a fault cannot be tolerated, the trust is 
decremented until the minimum (null) is reached. 

Table 1: Coding of fault rates 

Coding i(a,b) Fault rate Consequence 

0 Normal γ++ 

1 Increase γ>> 

 

If Δi is substantially greater than ߮ఛ, this could 
mean that the diagnose unit does not respond. In 
this case, tests should be carried out to prevent 
further faulty behavior.  

 



 

4.2 Forecast of fault rates, calculation of trust 
and prediction quality 

A further observation is that a fault-tolerant system 
which does not know its past cannot express if a 
transient or intermittent (e.g. through frequent 
usage of a faulty component) fault occurred. Thus, 
it cannot predict these faults and cannot derive the 
system behavior over time. Therefore, we include a 
small memory (the history). The history holds the 
last three fault rates interpreted by i(a,b).  

For a prediction, neuronal nets or methods like 
branch prediction can be used. However, these 
methods are costly regarding time and area. We 
use a simple pattern matching depicted in Table 2. 
Here, the predicted fault rate and a symbolic repre-
sentation are shown. For a time-efficient imple-
mentation, the history is limited in size. Three re-
cent fault rates are considered. If the prediction 
matches the current fault rate development, the 
prediction quality η is increased, else decremented. 
Here, also the field data from Figure 4 was taken 
into account. The symbols are shown in Table 3. 

Table 2: History and forecasted fault rates 

H[1][2][3] Fault rate Prediction 

0 0 0  0 

0 0 1  0 

0 1 0  0 

0 1 1  1 

1 0 0  0 

1 0 1  1 

1 1 0  0 

1 1 1  1 

 

 

 

 

 

 

 

Table 3: Symbols (History Voting) 

Symbol Description 

γi Trust of unit i 
ϕτ Upper threshold: normal fault rate 
ϕι Mid-threshold: increased fault rate 

ϕπ 
Lower (fixed) threshold:  
permanent fault 

η Quality of prediction 

υ 
If η>υ, trust can be adjusted  
(quality-threshold) 

Δi 
Value of cycle-counter  
when detecting fault i 

H[i] Entry i in the history 

Entries 
Maximal number of entries  
in the history 

Prediction 
Prediction of the fault rate  
from the history (s. Figure 5) 

Predict 
Pattern matching to forecast  
the fault (s. Figure 5) 

 

Figure 5 shows the algorithm for the calculation of 
trust, the prediction and its quality. 

First, we test if an irreparable internal (IN-
TFAULT) or external fault (EXTFAULT) was 
signaled. If so, the fail-safe mode must be initiated. 
If no such fault occurred, the cycle counter Δi is 
increased. If a fault is detected (INT-/ and EX-
TFAULT are excluded here), the forecasted fault 
rate i(a,b) is entered into the history H. Over Pre-
dict, a prediction (Prediction) is made. The last 
fault rate is compared with the current one. If the 
prediction is correct, η is increased. Else it will be 
decremented until the minimum is reached. Only if 
η>υ the prediction can modify the trust γ and thus 
the system behavior. The more dense faults occur 
in time, the less trust a unit gets. The greater the 
trust, the higher the probability of a correct execu-
tion. A slow in- or decrease of the fault rate signals 
a change within the operating environment and 
threshold values are modified. 1i−Δ , the last dis-
tance of faults in time will be compared with the 
actual iΔ . If the elevation or decrease is over 50 % 
( ( )( )1 1i i−Δ > Δ >> , ( )( )1 1i i−Δ ≤ Δ >> ), we have a 
sudden change of the fault rate and threshold val-
ues will not be adjusted. 

  



 

Two possibilities to signal permanent internal 
faults exist:  
 The trust γi in unit i is less than the value pt 

(slow degradation, not shown in Figure 5)  
 Δi is less than threshold ϕπ (sudden increase) 

Hereby, we assume that no unit permanently locks 
resources, since then the trust of other units will 
decrease disproportionately. 

5 EXPERIMENTAL RESULTS 

To judge the mechanism, it was modeled in soft-
ware. Figure 6 shows the successful adjustment of 
threshold values (fault rate λ=10-5). The distance 
of faults in time, the threshold values and the accu-
racy are shown (from top to bottom: ϕτ, ϕι, ϕπ and 
accuracy in %). We purposely chose nearly equal 
(difference 100 cycles) starting values for ϕι and 
ϕτ, since we wanted to show the flexibility  of the 
mechanism. We see how the fault rate is framed by 
threshold values. Threshold ϕπ is set to a value 
where a permanent fault can be ascertained (100 
cycles). 

 
Figure 6: Successful adjustment of threshold values 

In the beginning, the accuracy is low due to the 
initial values of ϕτ and ϕι but evening out at about 
98 %. If these values are correctly initialized, the 
accuracy would have been 100 %. Table 4 shows 
the resource demands for History Voting (FPGA, 
Xilinx Virtex-e XCV1000). 
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Figure 5: Calculation of trust and prediction 



 

Table 4: Resource demands (FPGA) 

Place and route 

Critical path (ns) 9.962 

Energy consumption (at 200 MHz) 

 mA mW 

1,8 V voltage supply 6.88 12.39 

Area 

Slices 188 

Slice-FFs 200 

4-Input LUTs 233 

IOBs 4 

Gate Count 3661 

 

Table 5 shows the resource demands for History 
Voting for a standard-cell design by using a 
130 nm, 6 metal layer CMOS technology.  

 

Table 5: Resource demands (standard-cell) 

Place and route 

Critical path (ps) 3308 

Area (λ2) 1175 x 1200 

Transistors 5784 

Capacity (pF) 8.8 

 

6 CONCLUSION 

In this work we presented a novel fault classifica-
tion scheme in hardware. Apart from other 
schemes, the developed History Voting classifies 
the fault rate behavior over time. From this, a pre-
diction is made. Only if the prediction quality ex-
ceeds a known value, the trust in units can be ad-
justed. From the implementations a proof of con-
cept is made. From the results, we see that the 
scheme is relatively slow. Since faults – apart from 
permanent ones – occur seldom in time, this will 
not appeal against the scheme. It will easily fit 
even on small FPGAs. For the scheme, many ap-
plication areas exist. Depending on the size of the 
final implementation, it could be implemented as 
an additional unit on a space probe, adjusting the 
system behavior during the flight. Another applica-
tion area are large-scale systems, equipped with 
application specific FPGAs e.g. to boost the per-
formance of cryptographic applications. Here, the 

scheme could be implemented to adjust the per-
formance of a node, e.g. identify faulty cores using 
their trust or automatically generate warnings if a 
certain fault rate is reached.  
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