

1 INTRODUCTION

The performance requirements of modern micro-
processors have increased proportionally to their
growing number of applications. This led to an
increase of clock frequencies up to 4.7 GHz (2007)
and to an integration density of less than 45 nm
(2007). The Semiconductor Industry Association
roadmap forecasts a minimum feature size of
14 nm [6] until 2020. Below 90 nm a serious issue
occurs at sea level, before only known from aero-
space applications [1]: the increasing probability
that neutrons cause Single-Event Upsets in memo-
ry elements [1][3]. The measurable radiation on
sea level consists of up to 92 % neutrons from out-
er space [2]. The peak value is 14400 neu-
trons/cm2/h [4]. Figure 1 shows the number of neu-

tron impacts per hour per square centimeter for
Kiel, Germany (data from [5]).

Figure 1: Number of neutron impacts per hour for Kiel, Ger-

many (2007)

6100

6300

6500

0 2000 4000 6000 8000

N
u

m
b

er
 o

f n
eu

tr
on

 im
p

ac
ts

Time in hours

A Dynamic Fault Classification Scheme

Bernhard Fechner
Bernhard.Fechner@fernuni-hagen.de
FernUniversität in Hagen
Universitätsstraße 1
58084 Hagen

Tel.: +49 2331-987-4414

Fax.: +49 2331-987-308

ABSTRACT:

In this paper, we introduce a novel and simple fault rate classification scheme in hardware. It is based on the
well-known threshold scheme, counting ticks between faults. The innovation is to introduce variable thre-
shold values for the classification of fault rates and a fixed threshold for permanent faults. In combination
with field data obtained from 9728 processors of a SGI Altix 4700 computing system, a proposal for the fre-
quency-over-time behavior of faults results, experimentally justifying the assumption of dynamic and fixed
threshold values. A pattern matching classifies the fault rate behavior over time. From the behavior a predic-
tion is made. Software simulations show that fault rates can be forecast with 98 % accuracy. The scheme is
able to adapt to and diagnose sudden changes of the fault rate, e.g. a spacecraft passing a radiation emitting
celestial body. By using this scheme, fault-coverage and performance can be dynamically adjusted during
runtime. For validation, the scheme is implemented by using different design styles, namely Field Programm-
able Gate Arrays (FPGAs) and standard-cells. Different design styles were chosen to cover different econom-
ic demands. From the implementation, characteristics like the length of the critical path, capacity and area
consumption result.

This work deals with the handling of faults after
they have been detected (fault diagnosis). We do
not use the fault rate for the classification of fault
types such as transient, intermittent or permanent
faults. We classify the current fault rate and fore-
cast its development. On this basis the perfor-
mance and fault coverage can be dynamically ad-
justed during runtime. We call this scheme History
Voting.

The rest of this work is organized as follows: in
Section 2, we present and discuss observations on
fault rates in real-life systems. In Section 3, we
discuss related work. Section 4 introduces History
Voting. We seamlessly extend the scheme to sup-
port multiple operating units used in multicore or
multithreaded systems. The scheme was modeled
in software and its behavior simulated under the
influence of faults. Section 5 presents experimental
results and resource demands from standard-cell
and FPGA (Field Programmable Gate Array)-
implementations. Section 6 concludes the paper.

2 OBSERVATIONS

Figure 2 shows the number of transient single bit
errors (x-axis) for 193 systems and the number of
systems which shows faulty behavior (y-axis) over
16 months [7]. For many systems the number of
faults is small. Few systems encounter an in-
creased fault rate. From this, intermittent or per-
manent faults can be concluded.

Figure 2: Number of transient errors for 193 systems

Figure 3 shows the daily number of transient single
bit memory errors for a single system [7]. The
faults within the first seven months were identified
as transient. The first burst of faults appears at the
beginning of month eleven, leading to the assess-
ment of intermittent faults.

Figure 3: Number of daily transient single bit errors of a

single system

Actual data is depicted in Figure 4. Here, the num-
ber of detected faults (y-axis) in the main memory
and caches of all 19 partitions for the SGI Altix
4700 installation at the Leibniz computing center
(Technical University of Munich) [8] is shown.
The data was gained from the system abstraction
layer (salinfo). In the observation interval (24.07.-
31.08.2007, x-axis) two permanent faults in Parti-
tion 3 and 13 can be recognized, since we have a
massive increase of errors (y-axis). If permanent
faults would be concluded from a history, they
would be recognized too late, leading to a massive
occurrence of side-effects. For the detection of
permanent faults, the fault rate in the observation
interval alone is relevant. In partitions 2, 5, 9, 10
and 14, an increase of the fault rate before a mas-
sive fault appearance can be depicted. As much as
a sudden growth, a decrease of the fault rate can be
observed. 0

20
40
60
80
100

N
u

m
b

er
 o

f s
ys

te
m

s

Number of transient faults

0
5
10
15
20
25
30

1-May- 99 1-Jul-9
9 1-Sep- 99 1-Nov- 99 1-Jan-0
0 1-Mar- 00 1-May- 00 1-Jul-0
0

N
u

m
b

er
 o

f f
au

lt
s

From
can b
repe
that
and
placi

3 R

A s
syste
jority
state
votin
class
done
autom
[10]
cast
fault
plem
rate
the f

m [7] furth
be derived w
ated manif
they occur
permanent
ing the fault

RELATED W

tate-compar
em. For thr
y voter is u

e, being abl
ng many oth
sification o
e in early IB
mated fault
an analysis
and separ

ts. The ES/
ments a retry

transient fa
fault rate is

er propertie
which help
festation at
r in bursts.
faults and
ty compone

WORK

rator detec
ree or more
used for th
e to mask a
her selectio
f faults fro

BM mainfra
t diagnosis i
s of faults o
rate perma
/9000 Serie
y and thresh

aults and cla
 used to co

10

1000

10000

es of interm
to classify t
the same

. Naturally
can be reco

ent.

cts faults i
e results or
he selection
a fault. Bes
n criteria ex

om their fr
ames. One e
in the IBM

over time is
anent from
es, model 9
hold mecha
assify fault t
onstruct gro

Fi

1

10

00

mittent faul
these faults
location an
, intermitte
overed by r

in a duple
states a m

n of a corre
sides majori
xist [17]. Th
requency w
example is th
3081 [14].
used to for

m intermitte
900 [15] im
anism to tol
types. In [1
ups of faul

igure 4: Field

lts
: a
nd
ent
re-

ex-
ma-
ect
ity
he

was
he
In

re-
ent
m-
le-
2]
ts.

D
he
[1
sy
of
S
fi
ti
e.
if
ap
tw
in
co
th
ar
ce
th
an
Sh
fl
hi
m

data for the S

Detailed logs
elp to detec
16] the hist
ystem is use
ffline dispe
iewiorek [
ilesystem. T
on of faults
.g. the two-
f two faults
pproach fro
wo consecu
nterpretation
ount mecha
he above-na
re weighted
ent faults. A
he value α.
nd permane
habgahi an
lexible majo
istory of fau

mined. In [1

SGI Altix 4700

s from IBM
ct similaritie
tory of dete
ed to identif
ersion fram
11] diagno
The heuristi
s over time.
in-one rule

s occur with
om Mongard
utive cycles
n of a perm
anism is dev
amed and
d. A greater
Additionall
Faults are

ent faults ar
d Bennett [
ority voter f
ults the mo
8] the proce

0

M 3081 and C
es and perm

ected faults
fy the faulti

me mechani
oses faults
ic is based
Different ru
which gene

hin an hour
di [13]. Her
s within a u
manent faul
veloped. It p
additional
r weight is
ly, a unit is

classified,
re not diffe
[16] develo
for TMR-sy
ost reliable m
essor that w

CYPER-sys
manent faul

within a N
iest module
sm by Lin
in a Unix
on the obs
ules are der
erates a war
r. Similar i
re, two erro
unit lead to
lt. In [9] th
permits to m
variants. F
 assigned t
s weighted
but interm

erentiated. L
op and analy
ystems. From
module is d

will probably

stems
ts. In

NMR-
. The

n and
x-type
serva-
rived,
rning
is the
ors in
o the
he α-
model
Faults
to re-

with
mittent

Latif-
yze a
m the
deter-
y fail

in the future is determined from the list of proces-
sors which took part in a redundant execution
scheme. Therefore, processors are assigned
weights. Like [9] we separate between techniques
which incur interference from outside and mechan-
isms based on algorithms. The latter are used in
this work.

4 DIAGNOSIS AND PREDICTION

From the mentioned work and the observations, we
can conclude that a classification of faults is possi-
ble by measuring the time between them. The lim-
its for a classification are fluent, since the applica-
tion, technology and circuit will determine the fre-
quency of faults. History Voting for redundant
(structural and temporal) systems classifies fault
rates during runtime. It predicts if the fault rate
will increase. Based on this forecast, the perfor-
mance of a system can be dynamically adjusted if
the prediction has a certain quality.

We hereby exclude the possibility that the system
performance is decreased unreasonable due to a
false prediction. A trust γ is assigned to units.
These can be e.g. the components of a NMR-
system, the cores in a multicore system or thread-
ing units in a multithreaded system. If the trust is
zero, a faulty unit can be identified. An additional
innovation is to dynamically adjust the threshold
values to the fault scenario. From this we can ex-
clude a false detection of a permanent fault on an
unexpected high fault rate, e. g. the bypass flight of
a space probe on a radiation emitting celestial
body.

History Voting consists of two parts:
1. Adjustment of threshold values to the operating

environment
2. Prediction of the fault rate and calculation of

trust and prediction quality

4.1 Adjustment of threshold values
All related works from above use fixed threshold
limits for the classification of fault types. This as-
sumption only matches an environment where the
fault rate is known. To flexibly classify the fault
rate we introduce three threshold variables: ϕι, ϕτ

and ϕπ. These represent the upper borders for the
rate of permanent (ϕπ), intermittent (ϕι) and tran-
sient faults (ϕτ). After a reset the variables are set
to known maximum values of the expected fault
scenario. For security and from the observations,
ϕπ is set to a fixed value and is not dynamically
adjusted. A counter Δi is needed to measure the
time (in cycles) between faults. In the fault-free
case, Δi is increased every cycle, else the trend of
the fault rate is classified by the function i(a,b),
defined by:

{ }: 0,1

0 (,) and
(,) :

1 (,)

i

if a b
i a b

if a b
ι τ

π ι

ϕ ϕ
ϕ ϕ

× →

< Δ ≤⎧
= ⎨ < Δ ≤⎩

 with
:
(,) : .a b a b

Δ × →
Δ = −

Table 1 shows the coding of i(a,b) and the conse-
quence on the trust (γ). γ>> represents the bitwise
shifting of value γ to the right, γ++ an increase of
value γ. If a fault cannot be tolerated, the trust is
decremented until the minimum (null) is reached.

Table 1: Coding of fault rates

Coding i(a,b) Fault rate Consequence

0 Normal γ++

1 Increase γ>>

If Δi is substantially greater than ߮ఛ, this could
mean that the diagnose unit does not respond. In
this case, tests should be carried out to prevent
further faulty behavior.

4.2 Forecast of fault rates, calculation of trust
and prediction quality

A further observation is that a fault-tolerant system
which does not know its past cannot express if a
transient or intermittent (e.g. through frequent
usage of a faulty component) fault occurred. Thus,
it cannot predict these faults and cannot derive the
system behavior over time. Therefore, we include a
small memory (the history). The history holds the
last three fault rates interpreted by i(a,b).

For a prediction, neuronal nets or methods like
branch prediction can be used. However, these
methods are costly regarding time and area. We
use a simple pattern matching depicted in Table 2.
Here, the predicted fault rate and a symbolic repre-
sentation are shown. For a time-efficient imple-
mentation, the history is limited in size. Three re-
cent fault rates are considered. If the prediction
matches the current fault rate development, the
prediction quality η is increased, else decremented.
Here, also the field data from Figure 4 was taken
into account. The symbols are shown in Table 3.

Table 2: History and forecasted fault rates

H[1][2][3] Fault rate Prediction

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

Table 3: Symbols (History Voting)

Symbol Description

γi Trust of unit i
ϕτ Upper threshold: normal fault rate
ϕι Mid-threshold: increased fault rate

ϕπ
Lower (fixed) threshold:
permanent fault

η Quality of prediction

υ
If η>υ, trust can be adjusted
(quality-threshold)

Δi
Value of cycle-counter
when detecting fault i

H[i] Entry i in the history

Entries
Maximal number of entries
in the history

Prediction
Prediction of the fault rate
from the history (s. Figure 5)

Predict
Pattern matching to forecast
the fault (s. Figure 5)

Figure 5 shows the algorithm for the calculation of
trust, the prediction and its quality.

First, we test if an irreparable internal (IN-
TFAULT) or external fault (EXTFAULT) was
signaled. If so, the fail-safe mode must be initiated.
If no such fault occurred, the cycle counter Δi is
increased. If a fault is detected (INT-/ and EX-
TFAULT are excluded here), the forecasted fault
rate i(a,b) is entered into the history H. Over Pre-
dict, a prediction (Prediction) is made. The last
fault rate is compared with the current one. If the
prediction is correct, η is increased. Else it will be
decremented until the minimum is reached. Only if
η>υ the prediction can modify the trust γ and thus
the system behavior. The more dense faults occur
in time, the less trust a unit gets. The greater the
trust, the higher the probability of a correct execu-
tion. A slow in- or decrease of the fault rate signals
a change within the operating environment and
threshold values are modified. 1i−Δ , the last dis-
tance of faults in time will be compared with the
actual iΔ . If the elevation or decrease is over 50 %
(()()1 1i i−Δ > Δ >> , ()()1 1i i−Δ ≤ Δ >>), we have a
sudden change of the fault rate and threshold val-
ues will not be adjusted.

Two possibilities to signal permanent internal
faults exist:
 The trust γi in unit i is less than the value pt

(slow degradation, not shown in Figure 5)
 Δi is less than threshold ϕπ (sudden increase)

Hereby, we assume that no unit permanently locks
resources, since then the trust of other units will
decrease disproportionately.

5 EXPERIMENTAL RESULTS

To judge the mechanism, it was modeled in soft-
ware. Figure 6 shows the successful adjustment of
threshold values (fault rate λ=10-5). The distance
of faults in time, the threshold values and the accu-
racy are shown (from top to bottom: ϕτ, ϕι, ϕπ and
accuracy in %). We purposely chose nearly equal
(difference 100 cycles) starting values for ϕι and
ϕτ, since we wanted to show the flexibility of the
mechanism. We see how the fault rate is framed by
threshold values. Threshold ϕπ is set to a value
where a permanent fault can be ascertained (100
cycles).

Figure 6: Successful adjustment of threshold values

In the beginning, the accuracy is low due to the
initial values of ϕτ and ϕι but evening out at about
98 %. If these values are correctly initialized, the
accuracy would have been 100 %. Table 4 shows
the resource demands for History Voting (FPGA,
Xilinx Virtex-e XCV1000).

1
10
100
1000
10000
100000
1000000
10000000

Faults over Time

Figure 5: Calculation of trust and prediction

Table 4: Resource demands (FPGA)

Place and route

Critical path (ns) 9.962

Energy consumption (at 200 MHz)

 mA mW

1,8 V voltage supply 6.88 12.39

Area

Slices 188

Slice-FFs 200

4-Input LUTs 233

IOBs 4

Gate Count 3661

Table 5 shows the resource demands for History
Voting for a standard-cell design by using a
130 nm, 6 metal layer CMOS technology.

Table 5: Resource demands (standard-cell)

Place and route

Critical path (ps) 3308

Area (λ2) 1175 x 1200

Transistors 5784

Capacity (pF) 8.8

6 CONCLUSION

In this work we presented a novel fault classifica-
tion scheme in hardware. Apart from other
schemes, the developed History Voting classifies
the fault rate behavior over time. From this, a pre-
diction is made. Only if the prediction quality ex-
ceeds a known value, the trust in units can be ad-
justed. From the implementations a proof of con-
cept is made. From the results, we see that the
scheme is relatively slow. Since faults – apart from
permanent ones – occur seldom in time, this will
not appeal against the scheme. It will easily fit
even on small FPGAs. For the scheme, many ap-
plication areas exist. Depending on the size of the
final implementation, it could be implemented as
an additional unit on a space probe, adjusting the
system behavior during the flight. Another applica-
tion area are large-scale systems, equipped with
application specific FPGAs e.g. to boost the per-
formance of cryptographic applications. Here, the

scheme could be implemented to adjust the per-
formance of a node, e.g. identify faulty cores using
their trust or automatically generate warnings if a
certain fault rate is reached.

REFERENCES

[1] E. Normand. Single-Event Upset at Ground Level. IEEE Trans. on
Nuclear Science, vol. 43, no. 6, part 1, p.2742-2750, 1996.

[2] T. Karnik et al. Characterization of Soft Errors caused by Single-
Event Upsets in CMOS Processes. IEEE Trans. on Dependable and
Secure Computing, vol. 1, no. 2, p.128-143, 2004.

[3] R. Baumann, E. Smith. Neutron-induced boron fission as a major
source of soft errors in deep submicron SRAM devices. In Proc. of the
38th Int’l. Reliability Physics Symp., p.152-157, 2000.

[4] F. L. Kastensmidt, L. Carro, R. Reis. Fault-tolerance Techniques for
SRAM-based FPGAs. Springer-Verlag, ISBN 0-387-31068-1, 2006.

[5] National Geophysical Data Center (NGDC). Cosmic Ray Neutron
Monitor (Kiel).
ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/COSMIC_RAYS/kiel.07
. Revision 12/2007/ cited 21.01.2008.

[6] The International Technology Roadmap for Semiconductors (ITRS).
Front End Processes.
http://www.itrs.net/Links/2005ITRS/FEP2005.pdf, 2005 edition/ cited
18.01.2008.

[7] C. Constantinescu. Trends and Challenges in VLSI Circuit Reliability.
IEEE Micro, vol. 23, no. 4, p.14-19, 2003.

[8] M. Brehm, R. Bader, R. Ebner, Leibniz-Rechenzentrum (LRZ) der
Bayerischen Akademie der Wissenschaften, Hardware Description of
HLRB II, http://www.lrz-
muenchen.de/services/compute/hlrb/hardware. Revision 29.03.2007/
cited 30.11.2007.

[9] A. Bondavalli, et al. Threshold-Based Mechanisms to Discriminate
Transient from Intermittent faults. IEEE Trans. on Computers, vol. 49,
no. 3, p.230-245, 2000.

[10] M. M. Tsao, D. P. Siewiorek. Trend Analysis on System Error Files.
In Proc. of the 13th Int'l Symp. on fault-Tolerant Computing (FTCS-
13), p.116-119, 1983.

[11] T.-T. Y. Lin, D. P. Siewiorek. Error Log Analysis: Statistical Model-
ing and Heuristic Trend Analysis. IEEE Trans. on Reliability, vol. 39,
p.419-432, 1990.

[12] R. K. Iyer et al. Automatic Recognition of Intermittent Failures: An
Experimental Study of Field Data. IEEE Trans. on Computers, vol. 39,
no. 4, p.525-537, 1990.

[13] G. Mongardi. Dependable Computing for Railway Control Systems. In
Proc. of the 3rd Dependable Computing for Critical Applications
(DCCA-3), p.255-277, 1993.

[14] N. N. Tendolkar, R. L. Swann. Automated Diagnostic Methodology
for the IBM 3081 Processor Complex. IBM Journal of Research and
Development, vol. 26, p.78-88, 1982.

[15] L. Spainhower et al. Design for fault-Tolerance in System ES/9000
Model 900. In Proc. of the 22nd Int'l Symp. Fault-Tolerant Computing
(FTCS-22), p.38-47, 1992.

[16] G. Latif-Shabgahi, P. Bennett. Adaptive Majority Voter: A Novel Vot-
ing Algorithm for Real-Time fault-Tolerant Control Systems. In Proc.
of the 25th Euromicro Conference, vol. 2, p.2113ff, 1999.

[17] J. M. Bass, G. Latif-Shabgahi, P. Bennett. Experimental Comparison
of Voting Algorithms in Cases of Disagreement. In Proc. of the 23rd
Euromicro Conference, p.516-523, 1997.

[18] P. Agrawal. Fault Tolerance in Multiprocessor Systems without Dedi-
cated Redundancy. IEEE Trans. on Computers, vol. 37, no. 3, p.358-
362, 1988.

