
A Collaborative Virtual Computer Security Lab

Jörg Keller Ralf Naues
FernUniversiẗat in Hagen

Fakulẗat für Mathematik und Informatik — LG Parallelität und VLSI
Postfach 940, 58084 Hagen, Germany

{joerg.keller,ralf.naues}@fernuni-hagen.de

Abstract

The necessity of a lab course on computer security arises
from the students’ need to complement course work by
hands-on experience. In order to meet the distance teaching
demands of our institution, we designed an internet-based
laboratory. We sketch the types of tasks the students are to
perform, and our approach to check immediately whether
students have completed a task. Yet, the typical tasks in labs
only cover work done alone, while security engineering of-
ten comprises tasks involving several independent parties.
This in turn calls for collaborative tasks, which we sketch.
As students operate in larger groups, and the server host-
ing the lab machines can only run a finite number of them
simultaneously, a reservation scheme is employed to guar-
antee fair access for all participants.

Keywords: Education, remote laboratory, resource shar-
ing, IT-security, virtualization, semi-automatic assessment

1. Introduction

Computer security gains a growing importance in com-
puter science and engineering curricula. Yet, courses on
this subject have to be complemented by practical lab work
in order to achieve full understanding of the subject mat-
ter. While this holds true for many branches of computer
science, the value of training in computer security should
not be underestimated: a subtle flaw in a firewall or a proxy
server configuration can render useless all remaining efforts
to secure a computer network!

For this reason we set out to define a set of tasks to be
trained by computer science students in our computer sci-
ence programme. As our institution is a distance teach-
ing university, we specifically defined this lab course to be
workable from a distance. Yet, as we focussed on network
security, this was not really an issue, as most administrative

tasks nowadays are not performed at a computer’s console
anyway, but via a remote shell or web-based via a browser.
Yet, some of the tasks require collaboration among the stu-
dent participants, which is challenging from a distance, yet
still realistic: in a company beyond a certain size, collab-
orating administrators from different departments typically
sit in different locations as well.

The main issues to be considered were the following.
First, a student and his supervisor need feedback on when
a task is correctly performed. As many tasks consist in in-
stalling and/or configuring tools to protect a part of a net-
work, this has to be done via a test. A hint whether the task
is completed should be generated automatically, in order to
relieve students from the unproductive waiting time until a
human supervisor has checked their work. The latter hap-
pens still, but when the hint already indicates that there is
still a hole in the firewall configuration, there is no need for
the student to wait, and for the supervisor to be bothered.
We achieve this by carefully designed scripts, and log-file
screening.

Second, as a consequence of the large number of students
in the lab course, many machines have to be provided. As
network security often deals with regulating the communi-
cation between two machines, each student is provided two
machines, one being the one to be protected, one being the
“external” one that implements an attacker. As most of the
tools in the lab course, such as IP filters, intrusion detec-
tion systems and the like, change machine configurations,
machines cannot be shared between students although the
machines run the multi-user operating system Linux.

Third, the large number of machines not only has to be
provided but also actively maintained. If a student, work-
ing with administrator rights, misconfigures some tool, he
may well have destroyed the whole machine configuration,
so that it is necessary to get the system back in a stable state.
This is difficult from a distance, and sometimes impossible,
as the only solution may be to install the operating system
anew. Besides the effort to do this, this would prevent the
last task in a sequence of tasks being dependent on the com-



pletion of the earlier tasks, which is unrealistic in a normal
network setting. We achieve both tasks by employing vir-
tual machines. While the use of virtual machines has been
reported recently for a lab course on operating system ad-
ministration [3], the goals there were different, and we are
not aware of a security lab course employing virtualization.

Fourth, although we employ a powerful server to host
the virtual machines, the large number of participants pre-
vents the students from all being active simultaneously, as
the server can only run a restricted number of virtual ma-
chines simultaneously without being annoyingly slow. This
is not really a problem, because the students, that normally
work part-time and study part-time, have quite differing
preferences with respect to their study hours. Yet, there is
the need to coordinate their working hours by a reservation
system, so that, when a student spends his scarce time on
the lab course, the server is in fact available to host his vir-
tual machine. This reservation system is the first collabora-
tive action in the lab. In a second part of the lab, students
to work in teams, e.g. to realize a Virtual Private Network
(VPN) between two machines that are independently man-
aged. Therefore, the reservation system already must take
into account the coupling of student actions. Also the stu-
dents shall have the possibility to communicate with one an-
other comfortably, being able to have a log of their actions
or being able to show configuration files to one another. We
implement these features by employing the web-based col-
laboration tool CURE [2].

The working interface to the student is a remote shell,
as is usual for system administration tasks in Linux sys-
tems. Yet, the students also need an interface to see their
performance chart, the tasks alongside with links to further
documentation, and hints towards the solution, and so on.
Here we provide a web-based interface, that is coupled to a
database that contains the participant data and their perfor-
mance data.

The remainder of this article is organized as follows. In
Section 2 we sketch the architecture of the virtual network
connecting the virtual machines of the students. In Section
3 we describe how we designed the tasks so that their com-
pletion can be efficiently checked. We also report on inter-
face and collaboration issues. In Section 4 we conclude and
give an outlook on future work.

2. Lab Network Design

Figure 1 depicts the design of the network for the vir-
tual lab course. The students connect via the internet to
the lab server. The server’s physical IP address *.*.*.100
is only used for maintenance purposes, and accordingly
protected. The virtual network’s connection to the inter-
net is via *.*.*.101. This virtual server serves as a fire-
wall and as a router to the network itself via a private IP

192.168.100.1. The network address translation (NAT) is
also performed in the virtual server. The virtual machines
for the students are also in this network, they are depicted
on the right. The server has a third virtual network interface
(172.16.69.*) which only serves as a connection between
physical server and virtual server, and hence will not play a
role here. All virtual student machines have a second net-
work interface towards a network 192.168.101.*, to connect
them to the test server 192.168.101.1. This test server real-
izes a shared “external” machine, needed to test completion
of some tasks.

There is a straightforward rationale behind this architec-
ture: The physical server itself shall only be accessible for
administrative purposes such as configuring the VMware
server that provides the virtual machines and the virtual
network. Hence, this server can only be connected from
a particular external computer in possession of the admin-
istrator. From this fact arises the need that the connection
between the virtual server and the internet, which is used by
the students to log in, has to be realized by a virtual network
interface. As the virtual server also shields the virtual net-
work against outside attacks, the connection to the virtual
network requires another virtual network interface. A third
virtual network interface is needed to communicate between
virtual server and physical server. As three virtual network
interfaces is the maximum number provided by VMware,
there is only one network interface connecting to the virtual
network of student machines. Those machines are the ones
to be protected. However, there must also be an “external”
machine that is used in the course of the tests at the end of
the tasks. This machine has to be put in a different subnet.
As it cannot be connected to the virtual server, there arises
the need to connect this machine with the student machines
by a second virtual subnetwork.

3. Task Design, Interface and Collaboration

3.1. Task and Test Design

The lab course start with the simple task that the students
must acquire a digital certificate of our university, install a
VPN client and a secure shell tool at their home computer,
and securely connect to the lab server. Further tasks then de-
tail installation and configuration of a simple firewall (ipt-
ables), of intrusion detection systems (tripwire and snort),
and of network address translation.

With the example of the firewall we explain our philos-
ophy for checking completion of tasks. A typical require-
ment for a firewall is that some services (identified via ports)
are not accessible from the outside, or are only accessible
from particular external computers. After the student has
configured the firewall, he starts a port scan from an exter-
nal virtual machine. This port scan will generate log entries



Figure 1. Design of Virtual Lab Network.

in the firewall log for all accesses that were denied. If the
firewall is correctly configured, then this port scan will also
generate log entries for the service just restricted. The stu-
dent completes his task by starting a script. This script will
search the firewall log for the appropriate entry. If it finds
the entry, then the task is considered completed, otherwise
not. The script sends its results to the server where the re-
sults are entered into a database. When the student now
looks at his personal task performance web page, he sees
whether the task is indeed completed.

A task is considered to be completed if the log file con-
tains violations exactly for those actions that should be for-
bidden, i.e. it is also checked that there was not more re-
stricted than demanded. While this seems a minor point, it
is not to be underestimated in practice, because users are
quite annoyed if after a firewall change, they are not able
anymore to do their daily work. Also, a student may oth-
erwise be able to complete tasks by simply forbidding ev-
erything. Obviously, the design of the tests influences the
design of the tasks themselves. While the domains of the
tasks are fixed beforehand, the particular task has to be put
in a way that allows to be tested efficiently. Fortunately
enough, the security field seems to pose no difficulties in
this respect.

3.2. Student Interface, Collaboration

The interface towards the student is web-based, see Fig-
ure 2. The students log into a web server that resides on the
virtual lab server. There, they can access their personal per-
formance chart together with the log excerpt, so that they
get hints why they did not yet complete a task. Also, they
can see all task formulations, together with links to tools
and manuals, and with hints. In principle, a web-based se-
cure shell frontend could have been integrated with those
pages, so that students only would have to use a browser.
However, as the secure shell tool is the standard tool for
system administrators to work with, we thought it more re-
alistic not to do this.

The students are supposed to use a second web-based
interface, the CSCW tool CURE [2]. CURE provides the
concept of rooms, where students can meet in groups, can
post documents, comment on them, and perform similar
tasks. Also the logs can be posted there to archive records
of what has been done. CURE thus supports the collabora-
tive tasks. A typical collaborative task is the installation of
a communication channel between two systems that are ad-
ministrated by different authorities, and thus with different
policies. While both systems may have identical hardware
and run the same operating system, the configuration still



Figure 2. Student interface.

tends to be slightly different. This often leads to the neces-
sity to exchange log-files or configuration files. As those
often contain quite sensitive data with regard to security,
they should not be sent by email but put in a secure place
where only the people concerned can have access.

Still, CURE has not been designed primarily with such
an application in mind. Therefore we are keen to see stu-
dents comments on the suitability, and proposals for im-
provement, in the coming semester.

The CURE rooms are entered with personalized keys, so
that only the students of a group can enter a particular room.
CURE has been extended to provide time-dependent keys to
control access to a remote hardware lab. Hence, CURE can
be used as a reservation scheme for the virtual server, to
prevent overload. The maximum number of simultaneous
reservations must be adapted to the server hardware in use
and the typical load that current tasks provide.

4. Conclusions

Our virtual computer security lab has passed the first
user tests and will be used in the coming semester for a lab
course with about 50 students. Our current platform lim-
its the number of concurrently working virtual machines to
about 15 out of performance reasons. Therefore the reser-
vation scheme is indeed necessary. Currently, there are

two web-based systems in use: the CURE system is used
for reservation and collaboration. The web-based inter-
face for performance monitoring has been developed sep-
arately. The two systems are only connected by links. Here,
a tighter integration (e.g. only one login) is intended.

The performance of servers providing virtual machines
will be greatly accelerated in the very near future, as the
leading processor manufacturers Intel and AMD both have
announced hardware support for virtualization in their pro-
cessors [5, 1]. This will allow to increase the number of
concurrently running virtual machines on a given platform,
thus enabling deployment in even larger courses. Some
courses where lab excercises will be advantageous have en-
rolments of several hundreds, so that currently students have
to use their own computers, which raises lots of questions
because of differing operating systems and similar things.

More future work centers around the extended use of vir-
tualization. For example, a compact disc containing a CD-
bootable Linux version like Knoppix [4] and a ready-to-run
virtual machine configuration could be provided to the stu-
dents, so that they can use their own computers for part of
the lab tasks, without the danger of changing their normal
configurations. The ability to save a virtual machine state
and couple it with a player to run it on another machine is
now provided by VmWare [6]. The challenge here is to cre-
ate a virtual network of these distributed virtual machines so



that collaborative tasks are still conveniently possible, and
to link students from their homes to the collaboration plat-
form.

References

[1] Advanced Micro Devices. AMD Pacifica virtualization tech-
nology, March 2005.
http://enterprise.amd.com/Downloads/Pacificaen.pdf.

[2] J. M. Haake, A. Haake, T. Schümmer, M. Bourimi, and
B. Landgraf. End-user controlled group formation and access
rights management in a shared workspace system. InProc.
2004 ACM Conf. on Computer supported cooperative work
(CSCW04), pp. 554–563, ACM Press 2004.

[3] D. Hardway, M. J. Hogan, and R. G. Mathieu. Outsourcing
the university computer lab.IEEE Computer, 38(9):100–102,
2005.

[4] K. Knopper. KNOPPIX Linux Live CD.
http://www.knoppix.org/.

[5] R. Shiveley. Enhanced virtualization on Intel architecture-
based servers. Technology@Intel Magazine, pp. 1–
9, Apr. 2005. http://www.intel.com/technology/magazine/
computing/intel-virtualization-0405.pdf.

[6] VmWare. Free VMware player.
http://www.vmware.com/products/player/.


