

Porting a portable computer architecture platform

Bernhard Fechner
FernUniversität in Hagen
Lehrgebiet Parallelität und VLSI
Bernhard.Fechner@fernuni-hagen.de

Max Walter
Technische Universität München
Lehrstuhl für Rechnertechnik und Rechnerorganisation
Institut für Informatik 10
Max.Walter@in.tum.de

Abstract

Teaching computer architecture has always been a matter of understand-
ing details. In the struggle between motivation and time, students tend to
learn on a more abstract level. If the level is abstract, knowledge is broader
but does not go into details. We report experience with a portable computer
architecture lab developed at the Technical University of Munich which
helps to understand these details and thus assists to omit the impossibility
to answer the questions how? and - even more important – why?. We give
an overview to the simulator, some of its technical details and show the in-
tegration of existing learning material for the use within the elearning plat-
form 2003 (Lernraum Virtuelle Universität) at the FernUniversität in Hagen.

Keywords:
 Software design and integration, elearning, virtual learning spaces

1 Introduction

Multimedia-based online learning systems improve and enhance the quality of teaching and
learning worldwide. Instructors are confronted with more students at introductory levels with
various backgrounds and abilities. The challenge is to motivate and excite these students so
that each performs to their fullest potential [8].
A particular problem in elearning [7] courses is to motivate students to get hands-on expe-
rience and thus to receive detailed knowledge instead of abstract and thus superficial know-
ledge. We believe that this objective can be best achieved by projecting existing learning
material to a simulation-based environment, because students learn best by experimenting,
solving problems and finding answers to questions through designing and carrying out expe-
riments.
In this paper, we show how this goal can be achieved in the area of microprocessor design.
We discuss the integration of traditional course material and an existing computer architec-
ture simulator as elearning service. The paper is organized as follows. Section 2 reviews
background and related work. Section 3 presents the simulator architecture and a brief de-
scription of the elearning platform. Section 4 describes the platform integration. Section 5
concludes the paper.

2 Background and Related Work

A virtual learning space (vspace) brings all its services to the individual user via electronic
communication. In a vspace, students use computers or mobile devices as learning environ-
ments. Students are able to learn when, where and as much as they want, because they can
process at individual learning speeds.
There exist many vspace-types:

• virtual universities (e.g. the University of Hagen);
• virtual campuses (e.g. the EUNITE network’s European Virtual Campus,

http://www.eunite.org/eunite/index.htm); networks of universities and partners from
industry (e.g. EuroPACE, http://www.europace.org/);

• virtual laboratories [1][2][3][4][5].
All of these concepts were developed in several research projects. Now, the number of
worldwide commercially available platforms has significantly increased. Some of them are
educaNext.org, Net coach, promoted by the European Union, WeLearn
(http://welearn.fim.uni-linz.ac.at/cms/index.php?wl_produkt), supported by the Austrian Fed-
eral Ministry for Education, Science and Culture and WiBA Net
(http://hermes.tk.informatik.tu-darmstadt.de/Forschung/Poster/Wiba/W1). In Hagen, after the
first prototype, platform 2000, the strongly component oriented platform 2003 was developed
(https://vu.fernuni-hagen.de/lvuweb/lvu). For more examples and further details, see [9].

3 JMic Conception and Architecture

In the following, we will present the JMic architecture, a simulator of a microprogrammable
machine, written in the Java programming language. JMic is used as an acronym for Java
MICroprogrammable machine. The use of java makes an integration of the simulator simpler,
since Java is (mostly) a platform independent language. The learning material consists of a
documentation in portable document format (PDF), a description of the simulator’s architec-
ture, the simulator and about 40 example programs. JMic models a micro-programmable
machine, i.e. a machine whose instruction set is not fixed, but can (and must) be defined by
a microprogram stored in a separate memory called the microinstruction-memory. Figure 1
gives an overview over the JMic hardware architecture. We see that students have to deal
with a great level of detail to understand the function of the micro-programmable machine.
The significant difference to other hardware-based simulators is that the implementation of
the simulator is based on elementary hardware units as we will see later.

Micro−Instruction−Memory (4096 x 80 Bits)

Address−BUS

Sequencer

Micro−Instruction−Register (80 Bits)

Status−
RegistersRegisters

ALU &
Memory

216 Cells

a 16 bits

Register
Instruction

Unit
Mapping

Instruction
Counter

Data−BUS

Status

Condition

Figure 1: JMIC hardware architecture

In each cycle, one microinstruction is copied into the so-called microinstruction-register
whose 80-bit output controls the remaining parts of the machine comprising two 16-bit mem-
ory interconnect buses, the main memory, the arithmetic-logic-unit (ALU), the status-
registers, the (machine) instruction register, the (machine) instruction counter, and the so-
called sequencer. In the following, the most important properties of each of these compo-
nents will be described. For the students, a more detailed description exists, comprising
about 20 pages.

• The main memory consists of 216=65535 memory cells, each cell being 16 bits
wide.

• The ALU comprises 16 general purpose registers and a Q-register, which can be
used for intermediate results. The operations which can be performed by the ALU
include ADD, SUB, AND, OR. It processes two operands, which can be registers,
zero, or a 16-bit input of the ALU. The result can be stored into a register (if the
second input operand and the result are both general purpose registers, they
must be identical) or a 16-bit output of ALU. The arithmetic unit generates 4 status
flags, which are send to the

• Status-Register-Unit. This unit comprises two sets of status registers (Zero, Nega-
tive, Overflow, and Carry). One register is called the machine status register, be-
ing valid over several machine instructions. The other status register can be used
by the microprogram for internal conditional branches. Using this register avoids
an unwanted manipulation of machine-level state from within the microprogram.

• The instruction register contains a copy of the first 16 bits of the current machine
instruction. The format is the same for every machine instruction: it starts with an
8-bit opcode, and may then specify up to two general purpose registers (called
RA and RB).

• The instruction counter contains the address of the current machine instruction. It
points to the memory cell whose content was copied to the instruction register.
The instruction counter is able to increase its content by one, and can also load a
new content.

• The sequencer is responsible for choosing the next microinstruction. Depending
on the current microinstruction, the address of the next microinstruction may be:

1. The address of the current microinstruction increased by one,
2. a constant given by the current microinstruction or
3. a constant given by the opcode of the machine instruction register.

The next microinstruction may also be dependent on the status register. In this way, condi-
tional branches on the micro-level can be realized, which in turn are needed to implement
conditional jumps on the machine level.
The microinstruction-memory usually contains the microprogram IFETCH implementing the
instruction fetch and decode. In addition, a dedicated microprogramm is implemented for
each opcode, to realize the remaining phases like loading and storing operands as well as
performing arithmetic and logic calculations.
The typical execution of a single machine instruction will be implemented by a microprogram
as follows:

1. We assume that the first microinstruction of the program IFETCH is present in the micro-

instruction-register. Executing this instruction will tell the main memory to start a read
transaction, the instruction counter to output its content to the address bus, the ALU to do
nothing, and the sequencer to load the next microinstruction.

2. The second microinstruction will terminate the read access. Hence, the memory delivers
the content of the cell which was given on the address bus before, i.e. the current ma-
chine instruction. At the same time, the machine instruction register is directed to store
the content of the data bus. As a result, the current machine instruction is copied into the
instruction register. The sequencer loads the next microinstruction.

3. The sequencer is instructed to look at the opcode (stored in the first 8-bits of the instruc-
tion register) and choose the corresponding microinstruction, which implements this op-
code. This is done by a mapping unit, which maps 8-bit opcodes to the respective 12-bit
micro-addresses. At the same time, the machine instruction counter is increased by one.

4. This and the remaining steps are dependent on the current machine instruction. For ex-

ample, a simple ADD may add two registers, whereas a JMP may load the instruction
counter by a constant. In any case, at the end of the microprogram, a branch is made to
the beginning of the microprogram IFETCH to fetch and execute the next machine in-
struction.

The micro-programmable machine described above was implemented in hardware and as
software-simulator on gate level. We first created a set of Java classes which can simulate
simple combinational circuits like n-way AND, NOT and OR, as well as a simple class
representing an n-bit register. These classes were designed to form more complex circuits
through combination. For example, an XOR gate can be built using two AND gates, two
NOTs and an OR-gate. Moreover, a half-adder can be made out of an XOR and an AND.
Continuing, a full adder consists of two half-adders and an OR, and an n-bit ripple carry ad-
der can be constructed by using n full adders (see Figure 2).

Y

C

C

A

Y

A B

A A A A

YYYY

B B B B

C

B CIN

adder
ripple carry
4−bit

OUT

CIN

>=1

& &

>=1

& HA HA

XOR (=1):

=1

halfadder (HA): fulladder (FA):

03 2 1

FAFAFAFA

OUT

3 3 2 2 1 1 0 0

Figure 2: Different circuit hierarchies

Using this methodology, we are able to implement the simulator in a hierarchic way by using
Boolean gates. It is clear that such an implementation is very valuable from a didactical point
of view, as students can understand how the machine works by taking a look at the source
code. As Figure 3 exemplarily shows how a half-adder is implemented by using a class de-
rived from the abstract class HBlock.

// interface defining the in- and ouputs
public interface IHalfAdder extends IBlock {
 final int A = 0; // input
 final int B = 1;
 final int Y = 0; // output
 final int C = 1;
}

// implementation
public class HalfAdder extends HBlock implements IHalfAdder{

 //subblocks including branchings
 Branching b[] = new Branching[2];
 Xor xor;
 And and;

 public HalfAdder(){
 super(2,2); // 2 inputs and 2 outputs
 // create subblocks
 newSubblock(xor = new Xor());
 newSubblock(and = new And(2));
 newSubblock(b[0] = new Branching(2));
 newSubblock(b[1] = new Branching(2));
//connect input A/B to input 0 of b[0]/ b[1]
 connectInput(A,b[0],0);
 connectInput(B,b[1],0);
//internal wiring

connectSubBlocks(b[0],0,and,0);
connectSubBlocks(b[0],1,xor,0);
connectSubBlocks(b[1],0,and,1);
connectSubBlocks(b[1],1,xor,1);

//connect outputs
 connectOutput(and,0,C);
 connectOutput(xor,0,Y);

}
}

Figure 3: Source code of a half-adder

First, the subblocks are created. In this case, an AND-gate, XOR-gate with fan-in of two and
two branchings are required. The input of the half-adder is connected to the respective sub-
blocks. Then, the subblocks are connected and finally, the outputs of the half-adder are con-
nected to the outputs of the respective subblocks. Note that feedback loops are allowed if
memory units (e.g. registers) are used properly. In addition to the simulator core, JMic also
comprises a sophisticated graphical user interface (see Figure 4).

Figure 4: JMic User Interface

By using this interface, it is possible to
• view and modify the content of the main memory,
• view and modify registers and status flags, as well as the machine instruction coun-

ter,
• view and modify the content of the microinstruction-memory,
• setting the current microinstruction, as well as performing single steps, or running

the machine to a predefined breakpoint and
• saving and loading the machine's status to/from background storage.

Additionally to the simulator, about 40 example microprograms are provided to show elemen-
tary and complex operation of the underlying automaton.

4 Porting and Integrating the Lab

In this Section, the platform 2003 integration of the simulator will be described. Since JMic is
entirely written in the Java programming language, it is (mostly) platform independent and
therefore a good candidate for vspace integration. We either have the possibility to upload
the material via file transfer or via the web-interface. Then, we have to create logical links
between material and the platform user interface. Logical links are dedicated links between
platform content or uniform resource locators (URLs). When a new semester begins, the
platform content, consisting of links and learning material is cloned automatically. A classifi-
cation helps to put the material in the right logical context. In our case, the material is inte-
grated in Additional material, which is different from Course material and Solutions to
exercises. The documentation from the Technical University of Munich was in a portable
document format, so a logical link was created to the uploaded documentation. Figure 5
shows the final integration of the simulator, its documentation and exercises.

Figure 5: Integrated material

5 Conclusion

The benefits of vspaces are cost effectiveness, reduced need for teacher intervention, in-
creased student interest and control, adaptability to various learning styles and rates and the
automation of self-tests. In this paper, we showed the integration of traditional learning ma-
terial in an existing elearning platform 2003 at the University of Hagen. A simulator of a mi-
croprogrammable automaton, developed at the Technical University of Munich was
explained on a technical basis to show that the teaching of hard- and software matters does
not have to be necessarily separated. By looking at the source code, hardware design and

reuse within objected-oriented programming [6] can be educated simultaneously. The pre-
sented simulation environment can be presently used more in a single-user fashion. With
Cure [10], developed at the University of Hagen, we could also support collaborative work,
thus having several students working in parallel on the same problem, sharing their thoughts,
opinions and results for comparison.

References

[1] M. W. Davidson, K. I. Tchourioukanov, and M. Abramowitz, Virtual scanning electron mi-

croscopy applet, Olympus America Inc. and The Florida State University, 1998.
http://micro.magnet.fsu.edu/primer/java/electronmicroscopy/magnify1/index.html.

[2] M. Duguay, The TeleLearning Experience, http://www.telelearn.ca/.

[3] Virtual Laboratory, National University of Singapore (NUS), http://vlab.ee.nus.edu.sg/vlab/

[4] M. V. Goldman, Physics 2000 interactive applets, University of Colorado, Boulder,
http://www.colorado.edu/physics/2000.

[5] Howard Hughes Medical Institute, Virtual laboratories, http://www.hhmi.org/biointeractive/.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusa-
ble Object-Oriented Software, Addison Wesley Longman, Inc., Reading, MA, 1995.

[7] O. Bendel, S. Hauske (2004): E-Learning: The dictionary. Oberentfelden/Aarau, 2004
ISBN 3-0345-0111-0.

[8] B. Kleimann, K. Wannemacher: E-Learning at German Universities. From Project Devel-
opment to Sustainable Implementation. Hannover: HIS 2004 (HIS-Hochschulplanung,
Vol. 165). ISBN 3-930447-61-4. (German version: B. Kleimann, K. Wannemacher: E-
Learning an deutschen Hochschulen. Von der Projektentwicklung zur nachhaltigen Im-
plementierung. Hannover: HIS 2004. ISBN 3-930447-56-8).

[9] http://www.izhd.uni-hamburg.de/pdfs/Plattformen.pdf.

[10] J. Haake, T. Schümmer, M. Bourimi, B. Landgraf, A. Haake, CURE – Eine Umgebung für
selbstorganisiertes Gruppenlernen, i-com Zeitschrift für interaktive und kooperative Me-
dien 3(2), pp. 20-26, 2004.

