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Abstract  
 

Teaching computer architecture has always been a matter of understand-
ing details. In the struggle between motivation and time, students tend to 
learn on a more abstract level. If the level is abstract, knowledge is broader 
but does not go into details. We report experience with a portable computer 
architecture lab developed at the Technical University of Munich which 
helps to understand these details and thus assists to omit the impossibility 
to answer the questions how? and - even more important – why?. We give 
an overview to the simulator, some of its technical details and show the in-
tegration of existing learning material for the use within the elearning plat-
form 2003 (Lernraum Virtuelle Universität) at the FernUniversität in Hagen. 
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1 Introduction 
 
Multimedia-based online learning systems improve and enhance the quality of teaching and 
learning worldwide. Instructors are confronted with more students at introductory levels with 
various backgrounds and abilities. The challenge is to motivate and excite these students so 
that each performs to their fullest potential [8].  
A particular problem in elearning [7] courses is to motivate students to get hands-on expe-
rience and thus to receive detailed knowledge instead of abstract and thus superficial know-
ledge. We believe that this objective can be best achieved by projecting existing learning 
material to a simulation-based environment, because students learn best by experimenting, 
solving problems and finding answers to questions through designing and carrying out expe-
riments.  
In this paper, we show how this goal can be achieved in the area of microprocessor design. 
We discuss the integration of traditional course material and an existing computer architec-
ture simulator as elearning service. The paper is organized as follows. Section 2 reviews 
background and related work. Section 3 presents the simulator architecture and a brief de-
scription of the elearning platform. Section 4 describes the platform integration. Section 5 
concludes the paper.  
 



2 Background and Related Work 
 
A virtual learning space (vspace) brings all its services to the individual user via electronic 
communication. In a vspace, students use computers or mobile devices as learning environ-
ments. Students are able to learn when, where and as much as they want, because they can 
process at individual learning speeds.  
There exist many vspace-types: 

• virtual universities (e.g. the University of Hagen); 
• virtual campuses (e.g. the EUNITE network’s European Virtual Campus, 

http://www.eunite.org/eunite/index.htm); networks of universities and partners from 
industry (e.g. EuroPACE, http://www.europace.org/); 

• virtual laboratories [1][2][3][4][5].  
All of these concepts were developed in several research projects. Now, the number of 
worldwide commercially available platforms has significantly increased. Some of them are 
educaNext.org, Net coach, promoted by the European Union, WeLearn 
(http://welearn.fim.uni-linz.ac.at/cms/index.php?wl_produkt), supported by the Austrian Fed-
eral Ministry for Education, Science and Culture and WiBA Net 
(http://hermes.tk.informatik.tu-darmstadt.de/Forschung/Poster/Wiba/W1). In Hagen, after the 
first prototype, platform 2000, the strongly component oriented platform 2003 was developed 
(https://vu.fernuni-hagen.de/lvuweb/lvu). For more examples and further details, see [9]. 

 

3  JMic Conception and Architecture  
 
In the following, we will present the JMic architecture, a simulator of a microprogrammable 
machine, written in the Java programming language. JMic is used as an acronym for Java 
MICroprogrammable machine. The use of java makes an integration of the simulator simpler, 
since Java is (mostly) a platform independent language. The learning material consists of a 
documentation in portable document format (PDF), a description of the simulator’s architec-
ture, the simulator and about 40 example programs. JMic models a micro-programmable 
machine, i.e. a machine whose instruction set is not fixed, but can (and must) be defined by 
a microprogram stored in a separate memory called the microinstruction-memory. Figure 1 
gives an overview over the JMic hardware architecture. We see that students have to deal 
with a great level of detail to understand the function of the micro-programmable machine. 
The significant difference to other hardware-based simulators is that the implementation of 
the simulator is based on elementary hardware units as we will see later. 
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Figure 1: JMIC hardware architecture 



In each cycle, one microinstruction is copied into the so-called microinstruction-register 
whose 80-bit output controls the remaining parts of the machine comprising two 16-bit mem-
ory interconnect buses, the main memory, the arithmetic-logic-unit (ALU), the status-
registers, the (machine) instruction register, the (machine) instruction counter, and the so-
called sequencer. In the following, the most important properties of each of these compo-
nents will be described. For the students, a more detailed description exists, comprising 
about 20 pages. 
 

• The main memory consists of 216=65535 memory cells, each cell being 16 bits 
wide.  

• The ALU comprises 16 general purpose registers and a Q-register, which can be 
used for intermediate results. The operations which can be performed by the ALU 
include ADD, SUB, AND, OR. It processes two operands, which can be registers, 
zero, or a 16-bit input of the ALU. The result can be stored into a register (if the 
second input operand and the result are both general purpose registers, they 
must be identical) or a 16-bit output of ALU. The arithmetic unit generates 4 status 
flags, which are send to the 

• Status-Register-Unit. This unit comprises two sets of status registers (Zero, Nega-
tive, Overflow, and Carry). One register is called the machine status register, be-
ing valid over several machine instructions. The other status register can be used 
by the microprogram for internal conditional branches. Using this register avoids 
an unwanted manipulation of machine-level state from within the microprogram. 

• The instruction register contains a copy of the first 16 bits of the current machine 
instruction. The format is the same for every machine instruction: it starts with an 
8-bit opcode, and may then specify up to two general purpose registers (called 
RA and RB). 

• The instruction counter contains the address of the current machine instruction. It 
points to the memory cell whose content was copied to the instruction register. 
The instruction counter is able to increase its content by one, and can also load a 
new content. 

• The sequencer is responsible for choosing the next microinstruction. Depending 
on the current microinstruction, the address of the next microinstruction may be: 

1. The address of the current microinstruction increased by one, 
2. a constant given by the current microinstruction or 
3. a constant given by the opcode of the machine instruction register. 

The next microinstruction may also be dependent on the status register. In this way, condi-
tional branches on the micro-level can be realized, which in turn are needed to implement 
conditional jumps on the machine level. 
The microinstruction-memory usually contains the microprogram IFETCH implementing the 
instruction fetch and decode. In addition, a dedicated microprogramm is implemented for 
each opcode, to realize the remaining phases like loading and storing operands as well as 
performing arithmetic and logic calculations. 
The typical execution of a single machine instruction will be implemented by a microprogram 
as follows: 
 
1. We assume that the first microinstruction of the program IFETCH is present in the micro-

instruction-register. Executing this instruction will tell the main memory to start a read 
transaction, the instruction counter to output its content to the address bus, the ALU to do 
nothing, and the sequencer to load the next microinstruction. 
 

2. The second microinstruction will terminate the read access. Hence, the memory delivers 
the content of the cell which was given on the address bus before, i.e. the current ma-
chine instruction. At the same time, the machine instruction register is directed to store 
the content of the data bus. As a result, the current machine instruction is copied into the 
instruction register. The sequencer loads the next microinstruction. 



3. The sequencer is instructed to look at the opcode (stored in the first 8-bits of the instruc-
tion register) and choose the corresponding microinstruction, which implements this op-
code. This is done by a mapping unit, which maps 8-bit opcodes to the respective 12-bit 
micro-addresses. At the same time, the machine instruction counter is increased by one. 

 
4. This and the remaining steps are dependent on the current machine instruction. For ex-

ample, a simple ADD may add two registers, whereas a JMP may load the instruction 
counter by a constant. In any case, at the end of the microprogram, a branch is made to 
the beginning of the microprogram IFETCH to fetch and execute the next machine in-
struction. 

 
The micro-programmable machine described above was implemented in hardware and as 
software-simulator on gate level. We first created a set of Java classes which can simulate 
simple combinational circuits like n-way AND, NOT and OR, as well as a simple class 
representing an n-bit register. These classes were designed to form more complex circuits 
through combination. For example, an XOR gate can be built using two AND gates, two 
NOTs and an OR-gate. Moreover, a half-adder can be made out of an XOR and an AND. 
Continuing, a full adder consists of two half-adders and an OR, and an n-bit ripple carry ad-
der can be constructed by using n full adders (see Figure 2). 
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Figure 2: Different circuit hierarchies 
 
 
Using this methodology, we are able to implement the simulator in a hierarchic way by using 
Boolean gates. It is clear that such an implementation is very valuable from a didactical point 
of view, as students can understand how the machine works by taking a look at the source 
code. As Figure 3 exemplarily shows how a half-adder is implemented by using a class de-
rived from the abstract class HBlock.  
 

// interface defining the in- and ouputs 
public interface IHalfAdder extends IBlock {     
    final int A = 0;  // input 
    final int B = 1;     
    final int Y = 0;  // output 
    final int C = 1; 
} 



// implementation 
public class HalfAdder extends HBlock implements IHalfAdder{ 
 
 //subblocks including branchings 
 Branching b[] = new Branching[2]; 
 Xor xor; 
 And and; 
 
 public HalfAdder(){ 
        super(2,2); // 2 inputs and 2 outputs 
 // create subblocks 
        newSubblock(xor = new Xor()); 
        newSubblock(and = new And(2)); 
        newSubblock(b[0] = new Branching(2)); 
        newSubblock(b[1] = new Branching(2)); 
//connect input A/B to input 0 of b[0]/ b[1] 
        connectInput(A,b[0],0);  
        connectInput(B,b[1],0);  
//internal wiring 

connectSubBlocks(b[0],0,and,0);            
connectSubBlocks(b[0],1,xor,0);  
connectSubBlocks(b[1],0,and,1);         
connectSubBlocks(b[1],1,xor,1);  

//connect outputs  
        connectOutput(and,0,C); 
        connectOutput(xor,0,Y);  

} 
} 

Figure 3: Source code of a half-adder 
 
First, the subblocks are created. In this case, an AND-gate, XOR-gate with fan-in of two and 
two branchings are required. The input of the half-adder is connected to the respective sub-
blocks. Then, the subblocks are connected and finally, the outputs of the half-adder are con-
nected to the outputs of the respective subblocks. Note that feedback loops are allowed if 
memory units (e.g. registers) are used properly. In addition to the simulator core, JMic also 
comprises a sophisticated graphical user interface (see Figure 4).  
 

 
Figure 4: JMic User Interface 



By using this interface, it is possible to 
• view and modify the content of the main memory, 
• view and modify registers and status flags, as well as the machine instruction coun-

ter, 
• view and modify the content of the microinstruction-memory, 
• setting the current microinstruction, as well as performing single steps, or running 

the machine to a predefined breakpoint and  
• saving and loading the machine's status to/from background storage. 

 
Additionally to the simulator, about 40 example microprograms are provided to show elemen-
tary and complex operation of the underlying automaton. 
 
 
 
4 Porting and Integrating the Lab 
 
In this Section, the platform 2003 integration of the simulator will be described. Since JMic is 
entirely written in the Java programming language, it is (mostly) platform independent and 
therefore a good candidate for vspace integration. We either have the possibility to upload 
the material via file transfer or via the web-interface. Then, we have to create logical links 
between material and the platform user interface. Logical links are dedicated links between 
platform content or uniform resource locators (URLs). When a new semester begins, the 
platform content, consisting of links and learning material is cloned automatically. A classifi-
cation helps to put the material in the right logical context. In our case, the material is inte-
grated in Additional material, which is different from Course material and Solutions to 
exercises. The documentation from the Technical University of Munich was in a portable 
document format, so a logical link was created to the uploaded documentation. Figure 5 
shows the final integration of the simulator, its documentation and exercises. 
 

 
Figure 5: Integrated material  

 
5 Conclusion 
 
The benefits of vspaces are cost effectiveness, reduced need for teacher intervention, in-
creased student interest and control, adaptability to various learning styles and rates and the 
automation of self-tests. In this paper, we showed the integration of traditional learning ma-
terial in an existing elearning platform 2003 at the University of Hagen. A simulator of a mi-
croprogrammable automaton, developed at the Technical University of Munich was 
explained on a technical basis to show that the teaching of hard- and software matters does 
not have to be necessarily separated. By looking at the source code, hardware design and 



reuse within objected-oriented programming [6] can be educated simultaneously. The pre-
sented simulation environment can be presently used more in a single-user fashion. With 
Cure [10], developed at the University of Hagen, we could also support collaborative work, 
thus having several students working in parallel on the same problem, sharing their thoughts, 
opinions and results for comparison. 
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