
Mapped Taskgraphs as a Tool for Optimization in
Static Taskgraph Scheduling

Jörg Keller
Faculty of Mathematics and Computer Science

FernUniversität in Hagen
58084 Hagen, Germany

Joerg.Keller@FernUni-Hagen.de

Patrick Eitschberger
Faculty of Mathematics and Computer Science

FernUniversität in Hagen
58084 Hagen, Germany

Patrick.Eitschberger@FernUni-Hagen.de

Abstract—We present the concept of mapped taskgraphs,
which comprise all information of a static taskgraph and the
corresponding static schedule. Mapped taskgraphs allow to
reason about and optimize static schedules for taskgraphs in
the language of graphs. This allows to employ the wealth of
graph algorithmics, and still be able to extract easily a schedule
with a task order similar to the original schedule, but possibly
smaller makespan. We prove that our construction has the above
properties, and present two exemplary applications that use
mapped taskgraphs. One is new, the other a number of years
old but only mentions a variant of this technique in passing and
thus does not explicitly or formally explain it or deal with it.

Index Terms—static taskgraph scheduling, graph algorithms,
makespan optimization

I. INTRODUCTION

Static taskgraphs are a widely-used model for parallel appli-
cations [1], and static scheduling of taskgraphs for later execu-
tion on parallel machines has been researched for decades [2].
When a static schedule has been computed, there are a number
of techniques that do post-processing with the schedule, which
leave the task order on the processors as it was, but change the
schedule in other ways. For example, one might be interested
how the makespan of the schedule is affected if some of
the tasks have a runtime that slightly and randomly differs
from the execution time that was forecasted in the taskgraph
(a situation that occurs quite frequently in practice, but is
normally not considered in static taskgraph scheduling). As
a second example, one might ask which task would have to
be accelerated by a certain percentage to maximally reduce
the makespan of the resulting schedule, without having to
schedule again (a question that occurs when parallel codes
shall be tuned with restricted effort). This means, the tasks
remain mapped and ordered on the cores as previously, and
only their start times change.

These questions can be answered with the help of graph
algorithms. For example, in the second application scenario it
suffices to look at tasks on the critical path of the taskgraph
[3]. However, the constraint that the task order in the schedule
should remain unaltered excludes to only use the critical path
in the taskgraph as given to the scheduler. Hence, a technique
is needed to import this constraint into the taskgraph. In
addition, when the most promising task has been identified
and the code improved, it should suffice to adapt this task

runtime in the taskgraph to re-construct the starting times of
the tasks in the schedule without much effort.

As a solution to the above challenge, we present the concept
of mapped taskgraph, by which we mean a taskgraph that
is extended to represent also the constraints imposed by the
corresponding schedule. Without being too formal, we will
provide arguments that the mapped taskgraph has the desired
properties from the previous paragraph. We demonstrate the
applicability of our concept by describing two examples
of post-processing, which we have sketched already above:
taskgraph tuning [3] and static scheduling for taskgraphs with
randomized task runtimes. While the latter scenario is rather
new, especially for normally distributed task runtimes, the
former is almost 10 years old, but has used this technique only
implicitly, only alluding to it within a single paragraph, and not
arguing formally. We are aware that similar ideas have been
used in a number of works. However, they only use the mapped
taskgraph as a tool but do not explain or present it explicitly.
Hence, we see our contribution in making this method and
possible applications visible. By describing it in detail, we
enable its use by other researchers without the necessity to
re-invent it over and over.

The remainder of this article is structured as follows. Sect. II
provides definitions and properties of static taskgraphs and
taskgraph scheduling. In Sect. III we present the concept of
a mapped taskgraph and argue about its properties. Sect. IV
explains how to use mapped taskgraphs in two example
applications. Finally, in Sect. V we give conclusions and an
outlook on future work.

II. BASICS ON TASKGRAPHS AND STATIC SCHEDULING

A taskgraph1 is a directed, acyclic graph G = (V,E) where
the nodes in V represent the tasks (work) to be executed,
and are annotated with their runtimes (denoted by t(v)), while
the edges in E represent dependencies between tasks, and are
annotated with their communication time (denoted by c(u, v)).
Instead of annotations, we will also talk of weights in the
sequel. This model assumes that a task receives input (via
incoming edges) only at the beginning, and sends output (via
outgoing edges) only when it is completely executed. Hence,

1In the grid community, taskgraphs are also called workflows [1].

a task can only start when all of its inputs are present. For
each task, we can compute a static t-level, which is defined
as follows. For a task v with no incoming edges, tl(v) = 0.
Otherwise,

tl(v) = max{tl(u) + t(u) + c(u, v) | (u, v) ∈ E} , (1)

i.e. for each predecessor task (whose t-level is already com-
puted, because we have an acyclic graph) we compute its
completion time by adding its runtime, and also incorporate
the communication time between predecessor and actual task.

We assume that the taskgraph has a single source node α and
a single sink node Ω, each with runtime 0 and with outgoing
(resp. incoming) edges of weight 0. If the taskgraph does not
have this, these nodes can easily be added.

The t-levels can be computed in time O(|V | + |E|) from
a topological sorting of the nodes. When we mark (for each
node) the edge that determines the maximum in Eq. (1), and
follow these edges backward starting from Ω, we get the
critical path of the taskgraph, i.e. the longest path from α
to Ω. Please note that there may be several critical paths.

Figure 1(a) depicts a graphical representation of a taskgraph
with 6 tasks (plus α and Ω), where for simplicity the runtimes
are all the same (i.e. can be assumed to be unit) and the
communication times are 0. The critical path has length 4
(either 0-1-4-5 or 0-2-4-5), i.e. the critical path of a taskgraph
need not be and in this example is not unique.

Taskgraphs can be derived from parallel program code either
with automatic analysis tools (see e.g. Gordon’s method from
Streamit benchmarks [4]), can be known as e.g. for parallel
FFT or parallel mergesort, or can be derived by a manual
analysis (e.g. Foster’s PCAM method [5]).

A static schedule for a given taskgraph G and a machine
with a given number p of cores is a mapping of the tasks
(excluding α and Ω) onto the cores such that
• Each task v is mapped onto exactly one core, and given

a start time s(v).
• A core never executes more than one task at once, so for

any two tasks u and v mapped to the same core with
s(u) ≤ s(v), we require s(v) ≥ s(u) + t(u).

• Task start times must respect the dependencies, so for any
edge (u, v), we require s(v) ≥ s(u) + t(u). If the tasks
are mapped to different cores, also the communication
must be respected, i.e. s(v) ≥ s(u) + t(u) + c(u, v).

Sometimes, a schedule is defined with only the first two
properties, and schedules also having the third property are
called feasible.

The idea of the static schedule is that it is computed
only once and offline, i.e. prior to execution, so that the
execution scheme is rather simple: a processor executes the
tasks assigned to it one by one, and starts the next task as soon
as the previous one is completed and all inputs for the next
task are available. If the runtimes and communication times
are known exactly (as assumed in this model), then each task
will start exactly at its assigned start time.

Please note that the previous sentence assumes a hidden
assumption: that there is no schedule with identical mapping

but shorter makespan, i.e. that there is no possibility to simply
set a task to an earlier start time without violating one of
the requirements above. As the goal typically is to compute
a schedule with shortest possible makespan, this assumption
seems obvious, but as it is not included as a requirement in the
definition of a schedule, it should be made explicit, especially
as we later want to refer on it. We will call this property trivial
incompressibility.

From the second requirement above we can derive the
following property. If each core i, where i ∈ {0, . . . , p − 1},
has ni tasks mapped to it (we assume ni ≥ 1 in the sequel),
we can index each mapped task as ti,j if it is mapped to core
i and is the j-th task executed by that core.

It is customary to set s(α) = 0 (or more exactly: s(v) = 0
for all tasks solely dependent on α, as α itself is not mapped),
and thus the time when the last task completes execution, i.e.
s(Ω) = max{s(v) + t(v) | v ∈ V }, defines the length of the
execution and is called the makespan of the schedule.

Please note that the makespan of a schedule can be longer
or shorter than the critical path of the underlying taskgraph.
Figure 1(b) shows a schedule corresponding to the taskgraph
from (a), mapped onto two cores. Here the makespan is 5 and
thus longer than the critical path, whose length is 4. For a
taskgraph consisting of a chain of tasks with communication
times, which are all mapped onto one core, the makespan is
shorter than the critical path, because the communication times
can be ignored in the schedule, as all tasks are on the same
core.

Computing the static schedule of a taskgraph with minimum
makespan is known to be an NP-hard problem, and hence
many scheduling heuristics have been developed [2]. The
existence of heuristics also explains the existence of post-
processors or boosters that try to locally improve a schedule
after its computation and thus reduce the makespan, without
computing a completely new schedule. Such boosters might
profit from the concept presented in the next section.

III. THE CONCEPT OF MAPPED TASKGRAPHS

We define a mapped taskgraph as follows. Given a static
taskgraph G = (V,E) and a corresponding schedule S for
a machine with p processors, the mapped taskgraph GM =
(VM , EM) is a directed, acyclic graph with

VM = V ∪ {c1, . . . , cp} (2)
EM = E ∪ {(α, c1), . . . , (α, cp)} ∪ (3)

{(ci, ti,1), (ti,1, ti,2), . . . (ti,ni−1, ti,ni)|i = 1 . . . p} .

The node weights for the extra nodes and the edge weights
for the extra edges are 0. Finally, if E comprises an edge
(ti,j , ti,k), i.e. an edge between tasks mapped to the same
core, then the edge weight is set to 0.

Speaking in general terms, we add a node for each core,
and link all tasks mapped to one core into a chain. This is
illustrated in Fig. 1, where we see a taskgraph in part (a).
For simplicity, all communication edges have weight 0, and
all tasks have the same execution time. Part (b) shows the

corresponding schedule for two cores. Part (c) depicts the
mapped taskgraph. The colored edges indicate the chains of
tasks mapped to each core. For illustration, we draw two edges
when such a chain edge is added and tasks already have a
dependency edge (e.g. between tasks 3 and 5.) Please note
that this is just for demonstration. As EM is defined as a set,
there is only one edge between this pair of nodes. However,
we might annotate an edge as being a dependency edge, a
mapping (or chain) edge, or both.

0

1 3

4

5

2

0

1 3

4

5

2

α

C
0

C
1

5

Ω

α

Ω

4

2

1

0

3

C
0

C
1

(t)

Fig. 1. Mapped Taskgraph Example: (a) Taskgraph, (b) Schedule for 2
processors, (c) Mapped Taskgraph.

The first usable property of the mapped taskgraph is given
in the following Prop. 1.

Proposition 1: The length of the critical path in the mapped
taskgraph equals the makespan of the underlying schedule. ♦

Before we prove this, please note that this property is not
given in the original taskgraph. In Fig. 1(a), the critical path
is 0-1-4-5 (there is another of the same length: 0-2-4-5) and
has length 4, while the makespan of the schedule is 5.

We argue that Prop. 1 holds by considering two cases: if the
makespan is shorter (to be exact: not longer) than the critical
path in the original taskgraph, this can only be because of
ignoring communication times when mapping tasks onto the
same core. As these communication times are set to 0 in the
mapped taskgraph, the length of its critical path will reduce
accordingly.

If the makespan is longer than the critical path in the original
taskgraph, then this is due to the fact that a task is started later
that it could be given the task dependencies, because a core
is busy before. As this constraint is added by adding chain
edges, the critical path is increased accordingly.

Please note that in this argument we use the fact that the
schedule has the trivial incompressibility property.

As a corollary, we get that the start times of the tasks in
the schedule correspond exactly to the t-levels of the tasks in
the mapped taskgraph.

Another helpful property can thus be derived in Prop. 2.
Proposition 2: If we change the runtime of a task, then

recomputing the t-levels in the mapped taskgraph and using

these as the new start times of the tasks in a schedule with
unchanged mapping will produce a feasible schedule. ♦

IV. APPLICATIONS

In this section, we present two applications that profit from
and use the concept of a mapped taskgraph.

A. Taskgraph tuning

Assume that you have a taskgraph and the corresponding
schedule. In order to speedup the computation, we plan to
investigate the underlying code, and we are confident that we
can speedup a task, i.e. reduce its runtime, by some given
percentage. However, due to a lack of human resources, we
can only improve one task. The question to be solved is: which
task should we choose for improvement, so that the makespan
reduction of the schedule is maximum? The schedule structure,
i.e. the mapping of tasks to cores, and the order of tasks on
each core, should remain intact (we will give some explanation
for this constraint below).

As a brute force approach, we can compute the mapped
taskgraph, reduce the runtime of a task, and compute the length
of the critical path. This is done for each task, and the task
code leading to the shorted critical path is investigated for
improvement.

In [3], a faster solution is given, that reduces the mapped
taskgraph to a linegraph comprising only the critical path
(plus some edges that implement constraints from other paths
through the graph), and solves a linear optimization problem
(on the much smaller number of tasks of the critical path).

Please note that in that paper, the mapped taskgraph is only
mentioned (without using that expression) in a paragraph on
the second page. The reason behind is trivial: the taskgraphs
considered in that paper were all mapped taskgraphs. They
were derived from executions of MPI programs. In such
a program, it is obvious that a task starts with a receive
instruction (or because the previous task in that MPI process
has ended) and ends with either a send instruction or before a
receive instruction [6]. As all the code pieces (tasks) that are
executed during execution of an MPI process are also linked in
a chain, there are as many chains as there are MPI processes.

With the explicit use of the mapped taskgraph concept, the
approach proposed in [3] for traces of MPI programs can
also be used for taskgraphs and schedules computed in other
settings.

B. Taskgraphs with random runtimes

In Sect. II, we have assumed that task runtimes are known
exactly. However, this might not be true in practice for a
number of reasons. On the one hand, actions of the operating
system like executing interrupts, scheduling some other system
process inbetween or adapting the processor frequency in
case of heating up might influence the runtime, but normally
these influences only lead to some “noise” in the runtimes
comprising some percent at most, and are ignored.

On the other hand, the algorithm that executes a task may
have runtime differences depending on the structure of its

input data (e.g. presorted or not) or might be a randomized
algorithm so that the runtime is a random variable following
some distribution (e.g. normal distribution) with a mean and
a variance.

As typical scheduling heuristics are given deterministic task
runtimes (which might be the mean in case of a task with
random runtime), we are interested how the makespan of the
corresponding schedule is influenced, as now the time when
a task will start, i.e. when all of its inputs are present, does
not necessarily correspond to its assigned start time anymore.
The makespan has become a random variable itself.

While computing the runtime of a chain of dependent
tasks is straightforward (if the task runtimes are random
variables X1 and X2, then the compound X1 +X2 can e.g. be
easily expressed for normal distributions), the case of a task
depending from two predecessors is more difficult. Here, the
completion time of the dependent task is X3 +max(X1, X2),
if its own runtime is expressed as a random variable X3,
and the completion times of its predecessors are given as
random variables X1 and X2. Skipping the addition of X3,
the maximum X = max(X1, X2) can be expressed e.g. by

P (X ≤ x) = P (X1 ≤ x) · P (X2 ≤ x) , (4)

if the random variables X1 and X2 can be considered to be
independent.

Again, we have expressed this computation on a taskgraph.
As we are interested in the makespan of the schedule, we
can use the mapped taskgraph in this case, and by Prop. 1
computing the distribution of the length of the critical path
allows to compute the mean of the schedule’s makespan.

As complex dependency structures in a taskgraph might
lead to multiple nested maximums in the form of Eq. (4), the
analytical solution for the expectation can be difficult. Eq. (4)
uses the cumulative distribution function FX(x) = P (X ≤ x)
while computing the expectation needs the probability density
function fX(x) = F ′X(x) which is the derivate of the cumula-
tive distribution function, i.e. it is necessary to differentiate a
product of many factors. For the example from Eq. (4) we get
fX(x) = fX1

(x)FX2
(x) + fX2

(x)FX1
(x), i.e. the derivate

also contains terms coming from distribution functions. To
compute the expectation E[X] =

∫∞
−∞ x · fX(x) dx we also

have to multiply such products with x, but to compute the
variance σ2(X) = E[X2]− (E[X])2 one has to multiply even
with x2 when computing E[X2]. Thus, analytical solutions
can become difficult especially in case of normal distributions
where already the antiderivate of the product from cumulative
distribution function, i.e. Gaussian error function, and prob-
ability density function poses challenges. This may explain
why Martin [7], who was investigating PERT diagrams (where
the problem of scheduling does not appear given that enough
human resources are available), concentrated on polynomial
distributions.

As an example, Fig. 2 illustrates that the distribution of
the maximum of two normally distributed variables (same
variance, but different mean, both approximated by binomial
distributions) is not normally distributed.

Fig. 2. Maximum of independent, normally distributed random variables with
different means.

For practical purposes, another approach is proposed, using
the concept of mapped taskgraphs. Given a taskgraph with
known, randomly distributed task runtimes, we compute a
schedule using the means as task runtimes, and then compute
the mapped taskgraph. Now, a large number of samples can
be computed by randomly choosing concrete task runtimes
according to the distributions, and computing the length of
the critical path, i.e. makespan, in the mapped taskgraph for
each sample. Thus, the mean and variance of the makespan
can be computed approximately. Colajanni et al. [8] provided
bounds from below and above on the distribution, to compute
the mean, but they did not consider the variance, and they
seemingly did not use normal distributions.

V. CONCLUSIONS

We have presented the concept of mapped taskgraphs to
allow post processing of static schedules for taskgraphs in the
language of graphs. While the concept has been used previ-
ously, to our knowledge it has not been presented explicitly
before.

Moreover, we have presented two example applications
of this concept, in particular computation of the makespan
distribution if task runtimes have random distributions. The
latter application shows the necessity of a tool for quick
calculations on schedules, as for normal distribution of task
runtimes (which might seem a natural model), analytical
computation of the expected value of the makespan would
necessitate to integrate products containing the Gaussian error
function as a factor. Thus, the distribution and mean of the
makespan might better be approximated by creating many
samples of the mapped taskgraph with randomly chosen task
runtimes, and computing the makespan for each.

In the future, we plan to use mapped taskgraphs especially
for further exploration of scheduling static taskgraphs with
random task runtimes. In particular, it might be interesting to
know which (deterministic) task runtimes should be assumed
in a static scheduler (mean plus one standard deviation, or even
larger values) to have a schedule whose expected makespan
is not much larger than the expected makespan of a schedule

that works with mean task runtimes, but where the makespan
distribution is asymmetric in the sense that values that are
much larger than the projected makespan are extemely seldom.

ACKNOWLEDGMENT

We are very grateful to Wolfram Schiffmann, who helped
to shape the mapped taskgraph concept in several discussions,
and to Wolfgang Spitzer, who introduced us to analytic solu-
tions for taskgraphs with randomized task runtimes.

REFERENCES

[1] J. Yu and R. Buyya, “A taxonomy of workflow management systems for
grid computing,” J. Grid Computing, no. 3–4, pp. 171–200, 2005.

[2] Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for allocating
directed task graphs to multiprocessors,” ACM Comput. Surv., vol. 31,
no. 4, pp. 406–471, 1999.

[3] J. Keller and W. Schiffmann, “Guiding performance tuning for grid
schedules,” in Proc. 10th IEEE International Workshop on Parallel and
Distributed Scientific and Engineering Computing, May 2009.

[4] M. I. Gordon, W. Thies, and S. Amarasinghe, “Exploiting coarse-grained
task, data and pipeline parallelism in stream programs,” in Proc. 12th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS XII), 2006, pp. 151–162.

[5] I. Foster, Designing and Building Parallel Programs. Addison-Wesley,
1995.

[6] M. Schulz, “Extracting critical path graphs from MPI applications,” in
Proc. IEEE International Conference on Cluster Computing (Cluster
2005), 2005, pp. 1–10.

[7] J. J. Martin, “Distribution of the time through a directed acyclic network,”
Operations Research, vol. 13, pp. 46–66, 1965.

[8] M. Colajanni, F. L. Presti, and S. Tucci, “A hierarchical approach for
bounding the completion time distribution of stochastic task graphs,”
Performance Evaluation, vol. 41, pp. 1–22, 2000.

