
Fundamenta Informaticae 86 (2008) 1–17 1

IOS Press

Schedulability Analysis of Petri Nets Based on Structural Properties

Cong Liu∗†

Department of Electrical Engineering and Computer Sciences

University of California, Berkeley, CA 94720, USA

congliu@eecs.berkeley.edu

Alex Kondratyev, Yosinori Watanabe

Cadence Berkeley Labs, Berkeley, CA 94704, USA

{kalex, watanabe}@cadence.com

Jörg Desel

Lehrstuhl f̈ur Angewandte Informatik, Katholische Universität Eichsẗatt-Ingolstadt

Ostenstr. 28, 85071 Eichstätt, Germany

joerg.desel@ku-eichstaett.de

Alberto Sangiovanni-Vincentelli

University of California, Berkeley, CA 94720, USA

alberto@eecs.berkeley.edu

Abstract. A schedule of a Petri Net (PN) represents a set of firing sequences that can be infinitely
repeated within a bounded state space, regardless of the outcomes of the nondeterministic choices.
Schedulability analysis for a given PN answers the questionwhether a schedule exists in the reacha-
bility space of this net. This paper suggests a novel approach for schedulability analysis based solely
on PN structure. It shows that unschedulability can be caused by a structural relation among tran-
sitions modelling nondeterministic choices. A method based on linear programming for checking
this relation is proposed. This paper also presents a necessary condition for schedulability based on
the rank of the incidence matrix of the underlying PN. These results shed a light on the sources of
unschedulability often found in PN models of embedded multimedia systems.

Keywords: Petri net, structural property, quasi-static scheduling

∗Address for correspondence: Department of Electrical Engineering and Computer Sciences, University of California,
Berkeley, 253 Cory Hall #1772, Berkeley, CA 94720-1772, USA
†This research was partly supported by MARCO Gigascale Systems Research Center award 2003-DT-660.

2 C. Liu et al. / Petri Net Schedulability Analysis

1. Introduction

The use of concurrent models has become a necessity in embedded system design. This trend is driven
by the growing complexity and inherent multitasking of embedded systems. Describing a system as a
set of concurrently executed, relatively simple subtasks is more natural than using a single, complicated
task. Modelling concurrency explicitly is essential in finding an efficient mapping of specifications into
hardware, which is inherently concurrent, or programmableplatforms with multiple computing engines.

Embedded systems, however, have limited resources. They often have a few processors, small mem-
ories, and limited services provided by an operating system(if any). This implies that several concurrent
processes have to share a physical resource (e.g., CPU or bus). Thus, scheduling their operations is
inevitable. For embedded software, it means that concurrent processes (programs) have to be sequen-
tialized. This process is in general implemented manually.Obviously, this is a tedious, time-consuming,
and error-prone task. To automate the transformation, a number of synthesis algorithms [12] [14] [16]
[6] have been proposed.

In this paper, we rely on a modelling framework [6] [7] that uses Petri Nets (PNs) to represent
concurrent processes. This body of work considers processes that asynchronously communicate with
each other and the environment through unbounded FIFO buffers [9] [10] [11]. The synthesis starts by
transforming each of the processes that can be specified in a conventional programming language (e.g.,
C) into PN. Then a set of communicating PNs is scheduled resulting in a single sequential process.

Consider the example shown in Figure 1. Figure 1(a) describes two concurrent processes. Process
Filter receives samples from the environment and then conditionally keeps sending processed samples to
ProcessMultiplier. Depending on the availability of data, ProcessMultiplier either receives a processed
sample and outputs the product of the sample and a coefficient, or updates the coefficient supplied by
the environment. If both sample and coefficient are present,the choice of which one to consume is done
nondeterministically.

Figure 1(b) shows the generated PN, which represents the control flow and communications of the
processes. Specifically, a token in placep2 models the program counter of ProcessFilter, and a token in
placep4 or p5 models the program counter in ProcessMultiplier. Placesp1, p3, andp6 model unbounded
buffersIN, CHAN, and COEF, respectively. Transitionst1 andt6 model environment stimuli, and other
transitions model the inlined operations. Note that the data-dependent choice is modelled by afree choice
(Definition 1).

Figure 1(c) depicts the initialization and aschedule(Definition 2) of the PN. The schedule represents
an infinite sequential execution of the system within a bounded state space, no matter which environment
stimulus (t1 or t6) is present, and which data-dependent choice (t3 or t4) is taken during execution. The
single process shown in Figure 1(d) is generated from the schedule by substituting transitions with inlined
operations. Note that although originally buffers are assumed to be unbounded, the sequential process
can repeatedly execute using buffers of size one.

The synthesis method suggested in [6] is based on heuristicsbecause the existence of a solution
for the scheduling problem is proven only for simple subclasses of PNs (such as Marked Graphs, see
[12]). For general PNs the decidability of the scheduling problem remains open. Therefore, discovering
powerful sufficient conditions for unschedulability of PN is important for gaining efficiency in analysis.

This paper suggests a structural approach to schedulability analysis of PNs. This approach is chosen
due to two reasons. First, the underlying algorithms have polynomial-time complexity. Second, the
results are applicable to all initial markings.

C. Liu et al. / Petri Net Schedulability Analysis 3

(a)

(b) (c)

(d)

Figure 1. (a) Communicating concurrent processes. (b) A PN representation. (c) A schedule of the PN with
initialization. (d) The process transformed from the schedule.

4 C. Liu et al. / Petri Net Schedulability Analysis

Our contribution can be summarized as follows.

• After the basic concepts of PNs are reviewed (Section 2) and aschedule of a PN is defined (Sec-
tion 3), we introducecyclic dependence relation, a structural property defined on transitions of
PN (Section 4). To the best of our knowledge, this property provides the most general sufficient
condition for PN unschedulability.

• Though cyclic dependence is defined through T-invariants, which are nonnegativeintegersolutions
to a homogenous linear system, we show that it is not necessary to solve an integer programming
problem to check the property. We propose an exact algorithmthat is based on linear-programming
(Section 5).

• We prove another sufficient condition for unschedulabilitybased on therank of the incidence
matrix (Section 6). Checking this condition is computationally efficient.

• We demonstrate the effectiveness and efficiency of our approach by applying it to check unschedu-
lability of PNs generated from concurrent models of industrial JPEG and MPEG codecs (Sec-
tion 7).

2. Basic Definitions and Notations

A PN is a 4-tuple(P, T, F,M0). P = {p1, p2, . . . , pm} is a set ofplaces. T = {t1, t2, . . . , tn} is a set of
transitions. F : (P × T) ∪ (T × P) → N is the flow relation.M0 : P → N is theinitial marking, where
N denotes the set of nonnegative integers. LetN = (P, T, F) denote a PN structure without any specific
initial marking, and(N,M0) denote a PN with a given initial marking. Letv ∈ P ∪ T . Its preset and
postset are given by•v = {u ∈ P ∪ T |F (u, v) > 0}, v• = {u ∈ P ∪ T |F (v, u) > 0}.

A transitiont is enabledat a given markingM , if for each placesp ∈ P , M(p) ≥ F (p, t). When a
transition is enabled it canfire. The new markingM ′ reached after the firing of transitiont is defined as:
p ∈ P , M ′(p) = M(p) − F (p, t) + F (t, p). In this paper we use nets withsourcetransitions, i.e. with
empty presets. These transitions model the behavior of the input stimuli to a reactive system. They are
enabled in any PN marking.

A markingM ′ is reachablefrom the markingM if there exists a sequence of firings that transforms
M to M ′. This is denoted byM [σ > M ′, whereσ represents afiring sequence(tσ1, tσ2, · · · , tσk).
The firing sequence is said to becyclic if M ′ = M . Thefiring count vectorσ̄ of a firing sequenceσ
is a |T |-vector, where thei−th entry denotes the number of times transitionti appears inσ. The set of
markings reachable from the initial markingM0 is denoted asR(N,M0).

The incidence matrixA = [aij] is a |T | × |P | matrix, whereaij = F (ti, pj) − F (pj , ti). If a
markingM ′ is reachable fromM through a firing sequenceσ thenM ′ = M + ATσ̄. A T-invariant is
a nonnegative integer solution toATx = 0. It is known that a|T |-vectorx is a T-invariant if and only
if there exists a markingM and a firing sequenceσ from M back toM with σ̄ = x [15]. A T-invariant
x is minimal if there exists no T-invariantx′ 6= 0 with x′ ≤ x. The set of transitions corresponding to
non-zero entries in a T-invariantx is called thesupportof an invariant and is denoted by‖x‖. A support
is said to beminimal if no proper nonempty subset of the support is also a support.Given a minimal
support of a T-invariant, there exists a unique minimal T-invariant corresponding to the minimal support
[15], that is called aminimal supportT-invariant.

C. Liu et al. / Petri Net Schedulability Analysis 5

A PN (N,M0) is boundedif there exists a nonnegative integerk, such that for each reachable mark-
ing M ∈ R(N,M0), M(p) ≤ k for each placep ∈ P . A PN (N,M0) is said to belive, if for each
transitiont ∈ T and for each reachable markingM ∈ R(N,M0), there exists a firing sequenceσ from
M such thatσ containst. A PN is said to bedeadlock-freeif for each reachable marking, there exists at
least one enabled transition.

3. Schedule

First, we introduce free choice sets, a key concept in the definition of a schedule.

Definition 1. (Free choice)
Two distinct transitionst andt′ are in free choice relation, if for each placep ∈ •t ∪ •t′ and for each
transitiont′′ ∈ p•, F (p, t) = F (p, t′) = F (p, t′′).

The relation is symmetric and transitive. We call the maximal set of transitions that are pairwise in
free choice relation afree choice set(FCS). Note that source transitions make a single FCS according to
Definition 1.

We introduce the notion of FCS mainly to model environmentalstimuli and run-time data-dependent
choices, which are unknown at design time. For the sake of simplicity, when referring to FCSs we only
refer to FCSs that contain exactly two transitions. The assumption can be satisfied by representing an
arbitray FCS withn transitions as a a tree of binary FCSs. The PN shown in Figure 1(b) has exactly two
binary FCSs{t1, t6} (which are source transitions) and{t3, t4}.

Definition 2. (Schedule)
A scheduleof a PN(N,M) with a setTs of source transitions is a digraph(V,E, r) rooted byr with the
following properties:

1. V andE are finite and nonempty.

2. There exists a mappingµ : V → R(N,M) with µ(r) = M . For each(u, v) ∈ E, there exists

t ∈ T such thatµ(u)[t > µ(v). This is denoted byu
t
→ v.

3. Givenu
t
→ v, there existsu

t′

→ v′ if and only if t, t′ are in a FCS.

4. For eachv ∈ V , there exists a directed path to anawait vertexva satisfying∀t ∈ Ts, va
t
→.

5. For eachv ∈ V , there exists a directed path fromr to v and fromv to r.

The requirement in Property 1 ensures that any execution of the schedule visits a finite subset of a
state space: the underlying system can be executed with bounded memory.

Property 2 states that a vertex in a schedule (called schedule state or simply state) corresponds to
a reachable marking of the PN, an edge corresponds to a transition, and a path corresponds to a firing
sequence. Note that it is allowed that several schedule states are mapped to the same marking, and these
states fire different transitions at their output edges.

Property 3 has two implications. First, if an outgoing edge of a vertex corresponds to a transition in
a FCS, then there must exist another outgoing edge of the vertex that corresponds to another transition in
the FCS. It ensures that a schedule is complete, because all possible outcomes of FCSs are considered.

6 C. Liu et al. / Petri Net Schedulability Analysis

In this case, the FCS is said to beinvolvedin the schedule. Second, if a state of a schedule has more than
one outgoing edge then these edges must correspond to transitions in a FCS. Other enabled transitions
are not considered at a state. This property ensures that theschedule can be sequentially executed.

Property 4 guarantees the progress of a schedule, i.e. from any state of a schedule one can reach an
await state in which source transitions fire and therefore inputs from the environment are served. This
is a necessary condition for reactive systems. The progressnotion could be formulated with respect to
any set of transitions that are in FCS (not necessarily source ones). This makes it possible to treat PNs
without source transitions within the same framework.

Property 5 implies that a schedule isstrongly connected. Thus, following a schedule, the underlying
system can be infinitely executed without deadlock. Note that Property 5 of returning to the root makes
the definition of schedule more stringent than the one suggested in [7]. We believe that this is acceptable
because most practical applications has a designated resetstate that is reachable from any other state
(emergency exit) and from which the operation restarts. Such reset state may be interpreted as the root
state in Definition 2 of a schedule.

Given a schedule graphG(V,E, r) one can construct its spanning tree that imposes a partial order
between schedule states, i.e.v1 < v2 if and only if there exists a path fromv1 to v2 in the spanning tree.
Given the ordering relation between schedule vertices, thegraphG can be unfolded into a rooted tree
G′(V ′, E′, r′) (we denote objects in the unfolding by decorating the corresponding objects in a schedule

with ′). Unfolding terminates at statesv′i such that for the corresponding schedule statevi, vi
t
→ vj and

vj < vi (i.e. (vi, vj) is a backward edge). Clearly an unfolding of a schedule is finite because a schedule
is finite.

Definition 3. (Schedulability)
A PN (N,M0) is said to be schedulable if there exists a schedule(N,M) for some of its reachable
markingsM ∈ R(N,M0). A PN N is said to be schedulable, if there exist a markingM of N and a
schedule of(N,M).

Thus, a PNN is said to be unschedulable, if for any markingM of N there exits no schedule of(N,M).
The results presented in this paper give sufficient conditions for unschedulability.

Figure 2. (a) A non-live, bounded, schedulable Petri net. (b) A live, unbounded, and unschedulable Petri net.

C. Liu et al. / Petri Net Schedulability Analysis 7

In general, schedulability is independent of other Petri net properties, such as boundedness and live-
ness. We illustrate this with the examples shown in Figure 2.The Petri net in Figure 2(a) models two
dining philosophers. If both philosophers pick one chop stick, which is modelled by firing transition
a1, b2 or a2, b1, the system deadlocks and no one can obtain a pair. The Petri net is schedulable, because
there are no free-choice sets.(a1b1c1) and(a2b2c2) are cyclic firing sequences that could be contained
in its schedules. Figure 2(b) shows a live, unbounded Petri net. The left part models a producer, and the
right part models a consumer. The production/consumption rate is inconsistent. A cycle of the producer
consists of firing transitiona andc once, which produces two tokens and one token in the two channel
places, respectively. However, one cycle of the consumer consists of firing transitionb andd once, which
consumes one token from each channel place. The Petri net hasno T-invariants, and is not schedulable.

4. The Cyclic Dependence Theorem

We first introduce a pairwise transition dependence relation to give readers some intuition, and prove
a proposition that relates the dependence relation to schedulability of a PN. Then, we generalize the
dependence relation to sets of transitions.

4.1. Pairwise Transition Dependence Relation

Definition 4. (Pairwise transition dependence)
A transitiont of a PNN is said to bedependenton a transitiont′, if for each T-invariantx of N , t ∈ ‖x‖
impliest′ ∈ ‖x‖. This is denoted byt� t′.

The pairwise transition dependence is a binary relation onT . It is reflexive and transitive, but not
symmetric in general.

Proposition 1. Given a PNN with two FCSsS1 = {t1, t2}, S2 = {t3, t4}, if t1 � t3 andt4 � t2,
then for any markingM of N , there exists no schedule of(N,M) involving S1 or S2.

Proof:
We show that the unfoldingG′(V ′, E′, r′) of a scheduleG(V,E, r) with S1 or S2 involved is infinite,
which violates finiteness of a schedule.

The proof proceeds by showing the validity of at least one of the two statements:

I1: G′ contains an infinite pathr′ v′
1

t1→ y′
1
 v′

2

t1→ y′
2
· · · , such that the firing sequence

corresponding to the path fromr to vk (k = 1, 2, . . .) does not contain transitiont3.

I2: G′ contains an infinite pathr′ u′
1

t4→ z′
1
 u′

2

t4→ z′
2
· · · , such that the firing sequence

corresponding to the path fromr to uk (k = 1, 2, . . .) does not contain transitiont2.
In G′ let us choose vertexv′ in which transitions fromS1 or S2 are enabled andv′ to be the closest

vertex to the rootr′ with this property. This vertex exists becauseS1 or S2 is involved in a schedule.
Without loss of generality we may assume thatS1 is enabled inv′. Thenv′

1
= v′ in proving I1.

From Property 5 of a schedule, follows that there existsw′, v′ ∈ V ′ such that the path fromv′ to w′

containst1 andµ(w′) = µ(v′). This path corresponds to a firing sequenceσ that makes a cycle from
markingµ(v′) back to itself and hencēσ is a T-invariant.t1 � t3 impliest3 ∈ σ. Therefore,σ contains

a vertexu′ such thatu′ t3→. Let u′ be the closest descendant ofv′ with t3 enabled.

8 C. Liu et al. / Petri Net Schedulability Analysis

Figure 3. A PN containing pairwise dependent transitions inFCSs.

Let us consider pathσ1 ⊂ σ that goes fromv′ to u′. Two cases are possible.
Case 1. If t2 ∈ σ1 thenσ1 goes through vertexv′

2
with enabledt2. t1 and t2 are from the same

FCS and hencet1 is also enabled inv′
2
. Clearly the path fromr′ to v′

2
does not containt3 and therefore

v′
2

satisfies the conditions of I1 and is a descendant ofv′
1
. Repeating the consideration forv′

2
one can

conclude about the existence of infinite path satisfying I1.
Case 2.Suppose thatt2 6∈ σ1. Then the path fromr′ to u′ does not contain transitiont2. In addition

t4 is enabled inu′ (being in the same FCS ast3) and therefore one can useu′ asu′
1

in proving I2.
Bearing in mind thatt4 � t2 and applying the same arguments for closing the cycle fromu′

1
one

can conclude that there must exist a pathδ from u′
1

to v′
2

in which t2 is enabled. Ifδ does not contain
t3 thenv′

2
satisfies the conditions of I1, which is the basis for constructing an infinite path. Ifδ contains

t3 then by choosing the first firing oft3 in δ, one can obtain a vertexu′
2

in which t3 is enabled together
with t4, andu′

2
is a descendants ofu′

1
. This proves I2. ut

Figure 3 shows a PN that satisfies the condition of Proposition 1. It has two FCSs,{B,C} and
{F,G}, and two minimal T-invariants with supports{IN,A,B,E,G} and{C,D,F,H}. It is easy to
see thatC � F andG� B. Thus, according to Proposition 1 there exists no schedule of the PN that
involves either{B,C} or {F,G}.

4.2. General Transition Dependence Relation

Definition 5. (General transition dependence relation)
A transitiont of a PNN is said to bedependenton a setS of transitions, if for each T-invariantx of N ,
t ∈ ‖x‖ implies∃t′ ∈ S : t′ ∈ ‖x‖. This is denoted byt� S.

The pairwise transition dependence relation can be viewed as a special case of the general transition
dependence relation with|S| = 1. Note that by definition the general transition dependence relation, or
simply dependence relationis monotonically non-decreasing, i.e. ift � S, then for eachS′, S ⊆ S′,
t� S′.

Definition 6. (Cover of a set of FCSs)
A coverS of a setS of FCSs is a minimum subset of transitions such that for each FCSF ∈ S, there
exists a transitiont ∈ S ∩ F .

C. Liu et al. / Petri Net Schedulability Analysis 9

Figure 4. A PN containing FCSs in cyclic (general) dependence relation.

A cover of a set of FCSs contains exactly one transition from each FCS.

Definition 7. (Cyclic dependence relation)
A setS of FCSs of a PNN is said to be in cyclic dependence relation, if there exists acoverS of S, such
that for each transitiont ∈ S, t� S\S.

A FCS is said to becyclic dependentif there exists a setS of FCSs, such thatS contains the FCS, and
is in cyclic dependence relation. Note that although the general dependence relation is monotonic, the
cyclic dependence relation is not monotonic in general. Hence we can not prove the existence of the
relation in a set of FCSs by proving the existence of the relation for its subsets and vice versa.

Theorem 1. (Cyclic dependence theorem)
No schedule of a PN involves a cyclic dependent FCS.

The proof can be done in a way similar to the proof of Proposition 1.
Figure 4 shows a PN that contains FCSs in cyclic dependence relation. There are four FCSs{B,C},

{F,G}, {I, J}, {L,M}, and five minimal T-invariants with supports{IN,A,B, I,E,G,M}, {C,D,
F,H}, {C,D,L,N}, {J,K,F,H}, {J,K,L,N}. Note that there exists no cyclic pairwise dependence
relation among transitions in the FCSs. However, there exists a general dependence relation, and further-
more a cyclic dependence relation for the set of all FCSs in the PN. LetS = {C,G, J,M} be a cover of
theS, thenS\S = {B, I, F, L}. For each transitionst in S, t� S\S. Thus, by Theorem 1, there exists
no schedule involving any of the FCSs and PN is not schedulable for any initial marking.

5. Checking Cyclic Dependence with Linear Programming

Although the dependence relation is defined on the set of T-invariants of a PN, interestingly enough, such
a set does not have to be explicitly computed to check the relation. We propose an algorithm based on
linear programming to check the cyclic dependence relation.

10 C. Liu et al. / Petri Net Schedulability Analysis

Algorithm 1 Checking cyclic dependence relation using linear programming
INPUT: A: the incidence matrix of a PN,S: the set of FCSs to be checked.
OUTPUT: returns TRUE if there exists a cyclic dependence relation inS, FALSE otherwise.

1: for all coversS of S do
2: dependent ⇐ TRUE
3: for all ti ∈ S do
4: LP ⇐ (ATx = 0) ∩ (x ≥ 0) ∩ (xi > 0) ∩ (xj = 0,∀j, tj ∈ S\S)
5: if LP 6= ∅ then
6: dependent ⇐ FALSE
7: break
8: end if
9: end for

10: if dependent = TRUE then
11: return TRUE
12: end if
13: end for
14: return FALSE

Given a PNN , its incidence matrixA, and a setS of FCSs ofN to be checked, the algorithm
iterates through all possible covers ofS till one cover leads to a cyclic dependence relation. For each
cover, a feasibility problem of linear programming is constructed. As proved in Theorem 2, a solution
to the feasibility problem provides a counterexample to thedependence relation. If no solution is found,
the dependence relation holds. Since the task of linear programming has a polynomial-time complexity,
checking that a coverS leads to a cyclic dependence relation forS can be done in polynomial-time.

Theorem 2. A transition ti is dependent on a setS of transitions if and only if the following linear
system has no solution:

A
T
x = 0

x ≥ 0

xi > 0

∀j, tj ∈ S, xj = 0

Proof:
(if): We prove the contrapositive. Ifti � S does not hold, by definition, there exists a T-invariant
x ∈ N

|T |, such thatxi ≥ 1 and for eachtj ∈ S, xj = 0.
(only-if): We prove the contrapositive. Since the incidence matrixA is an integer matrix, if there

exists a real vector that satisfies all the constraints, thenthere exist a rational vectorx also satisfying the
constraints. Letθ be a common multiple of all the denominators of the elements of x and letx′ = θx. By
definition,x′ is a T-invariant, andx′ ≥ 0, x′

i > 0, for eachtj ∈ S, x′
j = 0. Thus,x′ is a counterexample

for ti � S. ut

The complexity of checking a cyclic dependence using Algorithm 1 is exponential on the number of
FCSs. This comes from the need to check explicitly all possible covers of the setS. The next section

C. Liu et al. / Petri Net Schedulability Analysis 11

Figure 5. Illustration of the proof of the rank theorem

presents a more efficient way to establish unschedulabilitybased on checking the rank of the incidence
matrix of PNs.

6. The Rank Theorem

The connection between behavioral properties of PNs and therank of the incidence matrix was first
observed for free-choice PNs, see [8]. The rank property shown there states that a PN of a specific class
of free-choice nets has a live and bounded marking if and onlyif the number of conflict clusters exceeds
the rank of the incidence matrix by one. In our terminology, conflict clusters of free-choice nets are either
free-choice sets or transitions which are not in conflict with any other transition. Since we assume that
free-choice sets have exactly two transitions, the number of all transitions equals the number of conflict
clusters plus the number of conflict sets. In other words, thenumber of conflict clusters can be written
as |T | − k, whereT is the set of all transitions andk is the number of free-choice sets. So, the rank
condition translates torank(A) = |T | − k − 1. The same property is shown in [8] to be sufficient for
the existence of a live and bounded marking in case of certainnon-free-choice nets.

Our setting is quite different to the one considered in [8]. The class of nets is different, and so is the
behavioral property under investigation. Nevertheless, the rank condition provided in Theorem 3 looks
pretty similar to the characterization mentioned above.

Theorem 3. (Rank theorem)
If there exists a schedule of a PN which involvesk FCSs, thenrank(A) ≤ |T | − k − 1.

Proof:
Let sch be a schedule of a PNN(P, T, F) for some markingM of N . First, we construct a PNN ′

by adding places and edges toN . Then, we show thatrank(A′) ≤ |T | − 1. Finally, we show that
rank(A′) = rank(A) + |S|, whereS is the set of FCSs involved insch. Thus,rank(A) ≤ |T | − |S| − 1
follows.

1. We construct a PNN ′ = (P ′, T, F ′). As illustrated in Figure 5, for eachFCSi = {ti, t
′
i} ∈ S, add

2 placespti, pti′ and 4 edgesF ′(pti, ti) = ni, F
′(ti, pti′) = ni, F

′(pti′ , t
′
i) = n′

i, F
′(t′i, pti) = n′

i.

2. We determineni, n
′
i. Since for each edge(u, v) in sch there exists a directed path fromr to u and

from v to r, and the number of edges is finite, there exists aclosed walksch′ in sch with finite
length, such thatsch′ visits each edge insch at least once. Letci, c

′
i be the number of times ofti, t′i

of FCSi appears insch′, respectively. Obviously,ci ≥ 1, c′i ≥ 1. Let c be a common multiple of
{c1, c

′
1
, . . . , ck, c

′
k}, andni = c/ci, n

′
i = c/c′i.

12 C. Liu et al. / Petri Net Schedulability Analysis

3. We showrank(A′) ≤ |T | − 1. First, we define

M ′(p) =

{

M(p) if p ∈ P ∩ P ′

c otherwise

It is easy to checksch′ corresponds to a firing sequence fromM ′ toM ′. The firing count vector of a
cyclic firing sequence is a T-invariant.A′Tx = 0 has non-null solution impliesrank(A′) ≤ |T |−1.

4. We construct the incidence matrixA′ of N ′. For eachFCSi = {ti, t
′
i}, two column vectors

yi,y
′
i

corresponding topti, pti′ , respectively, are added to the incidence matrixA of N . Let
Y = [y1 . . . y|S|] andY ′ = [y′

1
. . . y′

|S|]. ThenA′ = [A|Y |Y ′].

pti pti′

. . . 0
. . . 0

. . .

ti . . . −ni . . . ni . . .
. . . 0

. . . 0
. . .

ti′ . . . n′
i . . . −n′

i . . .
. . . 0

. . . 0
. . .

In vectoryi, there are exactly two non-zero entries−ni, ni, corresponding to transitionti, t′i re-
spectively. Similarly, in vectoryi

′, there are entriesn′
i,−n′

i, corresponding to transitionti, t′i
respectively.

5. We showrank(A′) = rank(A) + |S|.

Sinceyi + yi
′ = 0, yi,yi

′ are linearly dependent. Thus,rank(A′) = rank([A|Y]).

We show that each column vectoryi of Y is linearly independent with respect to other column
vectors in[A|Y]. We prove by contradiction. It is known that vectoryi is linearly dependent with
respect to other columns vectors in[A|Y] if and only if yi is a linear combination of other vectors.

yi =
∑

1≤j≤|P |

ajAj +
∑

1≤k≤|S|
k 6=i

bkyk

whereA = [A1 . . . A|P |], aj ∈ Q, bk ∈ Q. Let vectora = [a1 . . . a|P |]
T, andz = yi −

(
∑

1≤k≤|S|
k 6=i

bkyk). Thenz = Aa. For each T-invariantx of N ,

ATx = 0 ⇒ aTATx = 0 ⇒ (Aa)Tx = 0 ⇒ zTx = 0.

We then show thatzTx = 0 implies the existence of a cyclic dependence relation. Notethat the
non-zero entries inz corresponds to transitions in FCSs, and for a FCS{ta, tb}, za > 0 if and only
zb < 0. DenoteS

′ ⊆ S the set of FCS that has non-zero entries inz. Obviously,FCSi ∈ S
′. Let

S = {ta|za > 0}, S′ = {tb|zb < 0}. It is easy to see thatS is a cover ofS′, andS′ = S
′\S. Since

C. Liu et al. / Petri Net Schedulability Analysis 13

Figure 6. A PN whose unschedulability can be proved by Theorem 1, but not by Theorem 3.

zTx = 0, for each transitionti ∈ S, xi > 0 implies that there exists at least one transitiontj ∈ S′

such thatxj > 0. That is, for each transitiont ∈ S, t � S′. SinceS′ = S
′\S, S

′ is in cyclic
dependence relation. Thus, the schedulesch involves a cyclic dependent FCS. This contradicts
Theorem 1.

Since each column vectoryi of Y is linearly independent with respect to other column vectors in
[A|Y], whereY = [y1 . . . y|S|], rank([A|Y]) = rank(A) + |S| follows.

ut

Theorem 3 is equivalent to the statement: a schedule of a PN involves at most(|T | − rank(A) − 1)
FCSs. It implies that ifrank(A) > |T | − |S| − 1, whereS is the set of all FCSs of a PNN , then for any
markingM of N , there exists no schedule of(N,M) that involves all FCSs of the net.

Consider the PN shown in Figure 3.|T | = 9, rank(A) = 7, |S| = 2, thus no schedule involves all
FCSs. For the PN shown in Figure 4,|T | = 15, rank(A) = 11, |S| = 4, thus no schedule involves all
FCSs.

Since computing the rank of a matrix has a polynomial-time complexity, checking unschedulability
by the rank of the incidence matrix is more efficient than by a cyclic dependence because the latter
requires to iterate through all possible covers of a set of FCSs (potentially exponential).

However, the rank condition is weaker in establishing the unschedulability as is shown by the fol-
lowing example. Figure 6 shows a PN with|T | = 15, rank(A) = 12, and|S| = 2. Thus, we can not
prove unschedulability by the rank theorem. Note that the left part of the PN is identical to the PN shown
in Figure 3. There exists a cyclic dependence relation in FCSs {B,C}, {F,G}. Thus, we can prove
unschedulablity by the cyclic dependence theorem.

7. Experiments

In this section, we show that PNs generated from a wide class of real-life industrial applications are not
schedulable, and our approach can be effectively applied toestablish that. Note that to prove unschedu-
lability of a PN based on Theorem 1, we need to assert that eachschedule involves at least one cyclic
dependent FCS. To prove unschedulability based on Theorem 3, we need to assert that each schedule
involves all FCSs of a PN. We use some public available JPEG and MPEG codecs as our test bench. The
codecs used in our experiments are modelled as Kahn process networks [9], [10].

14 C. Liu et al. / Petri Net Schedulability Analysis

7.1. Benchmarks

MPEG-2 decoder We use an MPEG-2 video decoder [17] developed by Philips. Thesystem con-
sists of 11 concurrent processes communicating through 45 channels. It was implemented with about
5,000 lines of YAPI [11] code, a system specification language based on C++. We perform schedulabil-
ity analysis on 5 processes that implement the spatial compression decoding, the temporal compression
decoding, and image generation. In total, the 5 processes have 10 channels and 16 interfaces (communi-
cating ports with the environment). Each process contains an average of 17 communication primitives in
8 control structures. They were implemented with about 2,000 lines of code.

M-JPEG* encoder We use an M-JPEG* [13] encoder also developed by Philips. Thesource code is
obtained through the SESAME [1] project public release. Thesystem consists of 8 processes commu-
nicating through 18 channels. Each process contains an average of 11 communication primitives in 5
control structures. They were implemented with about 2,000lines of YAPI code. The encoder supports
RGB and YUV formats and dynamically adjusts quantization and Huffman tables based on collected
statistics. We perform schedulability analysis on the entire system (instanceMJPEGencin Table 1).

XviD MPEG4 encoder We model a XviD MPEG4 video encoder based on the C source code from
[3] and the model from [5], which was developed as a SESAME application. The encoder supports
two frame types: I-frame and P-frame. It performs motion estimation analysis to determine whether an
incoming frame will be treated as I-frame or P-frame. Consequently two types of frame will go through
different processing paths. An I-frame will be split into macro-blocks and encoded independently. In
a P-frame, a macro-block could be an intra-block, an inter-block, or an not-coded-block, depending
the value of Sum of Absolute Differences (SAD). The granularity of tokens passing between processes
is macroblock. We perform schedulability analysis on 9 processes with 15 channels and 6 interfaces
(instanceMPEG4encin Table 1).

PVRG JPEG encoder We obtain the Stanford Portable Video Research Group (PVRG)JPEG codec
source code from [2]. Based on JPEG baseline standard, our model consists of 10 processes and 21
channels. The functional core part consists of 4 processes implementing Discrete Cosine Transform
(DCT), quantization, Huffman coding, and control. The granularity of tokens passing between processes
is block. We preform schedulability analysis both on PNs generated from the model of the encoder
(instanceJPEGenc2in Table 1) and its functional core (instanceJPEGenc1in Table 1).

Additionally, we create a set of instances to test the worst case performance of our approach. Each
PN instance is a chain of free choices and contains no cyclic dependence. Finding a schedule for this
kind of PNs is easy. However, to prove there is no cyclic dependent FCSs, the analyzer has to check all
subsets of FCSs and all covers of each subset.

7.2. Results and Analysis

We implemented our schedulability analyzer in C. All experiments were run on a 3.0 GHz Intel Pen-
tium CPU with 512 MB memory. Since no other schedulability analyzer is available, we compare its
performance with a scheduler. The scheduler performs a schedulability analysis via heuristic construc-
tion of a schedule. Table 1 summarizes the experiment results of PNs modelling JPEG MPEG codecs.

C. Liu et al. / Petri Net Schedulability Analysis 15

Runtime

Instance Place Tran. Arc FCS Rank Schedulable Check Rank Check Dependence Scheduling

JPEGenc1 26 27 64 6 21 N <0.01s 0.19s 523.75s

JPEGenc2 67 68 167 14 57 N <0.01s 0.54s >24hr

MJPEGenc 117 124 330 25 108 N <0.01s 0.04s >24hr

MPEG2dec1 116 144 358 38 111 N <0.01s 0.25s >24hr

MPEG2dec2 115 106 309 8 97 Y <0.01s 17.28s 6.91s

MPEG4enc 72 72 184 15 63 N <0.01s 0.16s >24hr

Table 1. Statistics of schedulability analysis of PN modelsof JPEG and MPEG codecs

Runtime

Instance Place Tran. Arc FCS Rank Schedulable Check Rank Check Dependence Scheduling

choice3 6 9 20 3 5 Y <0.01s 0.01s <0.01s

choice4 7 11 25 4 6 Y <0.01s 0.02s 0.01s

choice5 8 13 30 5 7 Y <0.01s 0.05s 0.01s

choice6 9 15 35 6 8 Y <0.01s 0.14s 0.04s

choice7 10 17 40 7 9 Y <0.01s 0.45s 0.05s

choice8 11 19 45 8 10 Y <0.01s 1.42s 0.09

choice9 12 21 50 9 11 Y <0.01s 4.45s 0.29s

choice10 13 23 55 10 12 Y <0.01s 14.06s 0.87s

choice11 14 25 60 11 13 Y <0.01s 44.86s 1.06s

choice12 15 27 65 12 14 Y <0.01s 141.55s 4.43s

Table 2. Statistics of schedulability analysis of PNs in thetest suite

Our analyzer typically proves a PN is not schedulable withina second, while the scheduler often fails
to terminate in 24 hours. Note that there are two instances modelling MPEG2 decoders,MPEG2dec1
andMPEG2dec2. The former, generated from the original YAPI source code, is not schedulable. The
second, generated from a modified source code, is schedulable. The modification removes the corre-
lated control structures that result in cyclic dependence using the technique described in [4]. Note that
our schedulability analyzer computes the minimum set of FCSs that has a cyclic dependence relation,
once it proves a PN is unschedulable. The minimum set of FCSs provides useful information to find the
correlated control structures.

Table 2 shows that for schedulable PNs, the run time of checking cyclic dependence grows exponen-
tially as the number of FCSs increases. However, checking rank remains efficient. In fact, checking rank
takes less than 10 milliseconds for all of our experiments.

Our schedulability analyzer is effective because there exist certain program structures in the codecs.
We illustrate this using a Huffman coding process of a JPEG encoder. Figure 7 shows a simplified
description of the process. The process first reads from a control process a header which includes all
parameters necessary to perform Huffman coding on a block. Then it iterates through all blocks of a
component in a Minimum Coded Unit (MCU). The Huffman coding and reading from a zigzag process
are performed at the block level inside the loop. Since JPEG standard requires samples of a component
must use the same Huffman coding table, and multiple component samples could be interleaved within
a compressed data stream, it needs to update the Huffman table from time to time. Also note that the
loop has a variable number of iterations. The vertical and horizontal sampling factors could be different

16 C. Liu et al. / Petri Net Schedulability Analysis

PROCESS Huffman(

In_DPORT Control_headerIn,

In_DPORT Zigzag_blockIn,

Out_DPORT Output)

{

while(1) {

READ_DATA(Control_headerIn, header, 1);

Vi = getVSF(header);

Hi = getHSF(header);

Htable = getHtable(header);

for(v=0; v<Vi; v++) {

for(h=0; h<Hi; h++) {

READ_DATA(Zigzag_blockIn, block, 1);

block = HuffmanEncoding(block, Htable);

WRITE_DATA(Output, block, 1);

} } } }

Figure 7. A simplified Huffman coding process.

for different components and only known at run-time. All of the above requires communications inside
and outside a loop structure. The quantization process has asimilar program structure to the Huffman
coding process, because samples of a component are requiredto use the same quantization table and
processing and communication data is performed at block level. The control process synchronizes the
two concurrent processes such that a block is processed in the quantization process and later in a Huffman
coding process with the set of parameters (e.g. vertical andhorizontal sampling factors) of the same
component.

Synchronized communications inside and outside a loop structure are common in the codecs. How-
ever, the controls of loops are abstracted as non-deterministic free choices in a PN. These two factors
cause unschedulability that can be efficiently checked by our structural analysis. Note that this particular
code structure is just a special case that results in cyclic dependence.

8. Conclusion and Future Work

We defined the notion of PN schedulability and provided several sufficient conditions for checking un-
schedulability using linear algebra and linear programming techniques. Our preliminary experimental
results indicate that these techniques effectively and efficiently detect unschedulability of PNs for prac-
tical examples. They also identify the correlated choices that cause unschedulability.

We believe there are some interesting open problems in the research area covered in this paper. In
particular:

• Does a sufficient condition exist that is tighter than the ones presented here for the class of general
PNs?

• How much do we need to restrict the class of PNs to yield a necessary and sufficient condition for
schedulability?

• Our results can be used to represent the unbounded parts of the schedule in an implicit but finite
form. Hence, we believe an implementation could be derived that guarantees boundedness as
long as a system functions in a “good” part of the schedule andraising the flag when it enters a
potentially unbounded part. This approach would significantly extend the applicability of quasi-
static scheduling for practical applications.

C. Liu et al. / Petri Net Schedulability Analysis 17

References

[1] The SESAME Software Project, URL:http://sesamesim.sourceforge.net.

[2] Stanford PVRG JPEG codec, URL:http://www.dclunie.com/jpegge.html.

[3] XviD MPEG-4 video codec, URL:http://www.xvid.org.

[4] Arrigoni, G., Duchini, L., Lavagno, L., Passerone, C., Watanabe, Y.: False Path Elimination in Quasi-Static
Scheduling,Proceedings of the Design Automation and Test in Europe Conference, March 2002.

[5] Broekhof, P., Roosen, N., Verhoef, J., Jun, W.: ModelingXviD as a Kahn Process Network, a SESAME
Application Design Document, URL:http://staff.science.uva.nl/∼andy/apps/xvid.pdf.

[6] Cortadella, J., Kondratyev, A., Lavagno, L., Massot, M., Moral, S., Passerone, C., Watanabe, Y., Sangiovanni-
Vincentelli, A.: Task generation and compile-time scheduling for mixed data-control embedded software,
DAC ’00: Proceedings of the 37th Conference on Design Automation, 2000.

[7] Cortadella, J., Kondratyev, A., Lavagno, L., Passerone, C., Watanabe, Y.: Quasi-static scheduling of indepen-
dent tasks for reactive systems,IEEE Transactions on Computer-Aided Design, 24(10), 2005, 1492–1514.

[8] Desel, J., Esparza, J.:Free choice Petri nets, vol. 40 ofCambridge Tracts In Theoretical Computer Science,
Cambridge University Press, New York, NY, USA, 1995.

[9] Kahn, G.: The semantics of a simple language for parallelprogramming,Information Processing, Aug 1974.

[10] Kahn, G., MacQueen, D. B.: Coroutines and networks of parallel processes,Information Processing, Aug
1977.

[11] de Kock, E. A., Smits, W. J. M., van der Wolf, P., Brunel, J.-Y., Kruijtzer, W. M., Lieverse, P., Vissers, K. A.,
Essink, G.: YAPI: Application Modeling for Signal Processing Systems,DAC ’00: Proceedings of the 37th
Conference on Design Automation, 2000.

[12] Lee, E. A., Messerschmitt, D. G.: Static scheduling of synchronous data flow programs for digital signal
processing,IEEE Trans. Comput., 36(1), 1987, 24–35.

[13] Lieverse, P., Stefanov, T., van der Wolf, P., Deprettere, E.: System level design with SPADE: an M-JPEG
case study,Proceedings of IEEE/ACM International Conference on Computer Aided Design, Nov 2001.

[14] Lin, B.: Software synthesis of process-based concurrent programs, DAC ’98: Proceedings of the 35th
ACM/IEEE Conference on Design Automation, 1998.

[15] Memmi, G., Roucairol, G.: Linear Algebra in Net Theory., Lecture Notes in Computer Science: Net Theory
and Applications, Proc. of the Advanced Course on General Net Theory of Processes and Systems, Hamburg,
1979(Brauer, W., Ed.), 84, Springer-Verlag, Berlin, Heidelberg, New York, 1980.

[16] Sgroi, M., Lavagno, L., Watanabe, Y., Sangiovanni-Vincentelli, A.: Synthesis of embedded software using
free-choice Petri nets,DAC ’99: Proceedings of the 36th ACM/IEEE Conference on Design Automation,
1999.

[17] van der Wolf, P., Lieverse, P., Goel, M., Hei, D. L., Vissers, K.: An MPEG-2 decoder case study as a driver
for a system level design methodology,CODES ’99: Proceedings of the 7th International Workshop on
Hardware/Software Codesign, 1999.

