Fundamenta Informaticae 86 (2008) 1-17 1
10S Press

Schedulability Analysis of Petri Nets Based on Structural Poperties

Cong Liu*f

Department of Electrical Engineering and Computer Scisnce
University of California, Berkeley, CA 94720, USA
congliu@eecs.berkeley.edu

Alex Kondratyev, Yosinori Watanabe
Cadence Berkeley Labs, Berkeley, CA 94704, USA
{kalex, watanabp@cadence.com

Jorg Desel

Lehrstuhl fir Angewandte Informatik, Katholische Unive#iEichshtt-Ingolstadt
Ostenstr. 28, 85071 Eiclidt, Germany

joerg.desel@ku-eichstaett.de

Alberto Sangiovanni-Vincentelli
University of California, Berkeley, CA 94720, USA
alberto@eecs.berkeley.edu

Abstract. A schedule of a Petri Net (PN) represents a set of firing sexpsethat can be infinitely
repeated within a bounded state space, regardless of themoess of the nondeterministic choices.
Schedulability analysis for a given PN answers the questtoether a schedule exists in the reacha-
bility space of this net. This paper suggests a novel apprimacschedulability analysis based solely
on PN structure. It shows that unschedulability can be chbgea structural relation among tran-
sitions modelling nondeterministic choices. A method base linear programming for checking
this relation is proposed. This paper also presents a regessndition for schedulability based on
the rank of the incidence matrix of the underlying PN. Thessilts shed a light on the sources of
unschedulability often found in PN models of embedded mddia systems.

Keywords: Petri net, structural property, quasi-static scheduling

*Address for correspondence: Department of Electrical fg®ying and Computer Sciences, University of California,
Berkeley, 253 Cory Hall #1772, Berkeley, CA 94720-1772, USA
TThis research was partly supported by MARCO Gigascale SysResearch Center award 2003-DT-660.

2 C. Liu et al./ Petri Net Schedulability Analysis

1. Introduction

The use of concurrent models has become a necessity in estbegstem design. This trend is driven
by the growing complexity and inherent multitasking of emitbed systems. Describing a system as a
set of concurrently executed, relatively simple subtaskaare natural than using a single, complicated
task. Modelling concurrency explicitly is essential in fimgl an efficient mapping of specifications into
hardware, which is inherently concurrent, or programmaldégforms with multiple computing engines.

Embedded systems, however, have limited resources. Thay love a few processors, small mem-
ories, and limited services provided by an operating sygieamy). This implies that several concurrent
processes have to share a physical resource (e.g., CPU)or Dligs, scheduling their operations is
inevitable. For embedded software, it means that concumertesses (programs) have to be sequen-
tialized. This process is in general implemented manu@lwiously, this is a tedious, time-consuming,
and error-prone task. To automate the transformation, ebeuwf synthesis algorithms [12] [14] [16]
[6] have been proposed.

In this paper, we rely on a modelling framework [6] [7] thatessPetri Nets (PNs) to represent
concurrent processes. This body of work considers prosdbsg asynchronously communicate with
each other and the environment through unbounded FIFOrby8§[10] [11]. The synthesis starts by
transforming each of the processes that can be specifieddanvamtional programming language (e.g.,
C) into PN. Then a set of communicating PNs is scheduledtiaguh a single sequential process.

Consider the example shown in Figure 1. Figure 1(a) desctilve concurrent processes. Process
Filter receives samples from the environment and then conditiokeéps sending processed samples to
ProcesdMultiplier. Depending on the availability of data, Proc&asltiplier either receives a processed
sample and outputs the product of the sample and a coefficenipdates the coefficient supplied by
the environment. If both sample and coefficient are presieatchoice of which one to consume is done
nondeterministically.

Figure 1(b) shows the generated PN, which represents theotflow and communications of the
processes. Specifically, a token in plagsemodels the program counter of Proc&dter, and a token in
placep, or p5s models the program counter in Proc4dltiplier. Placew, p3, andpg model unbounded
buffersIN, CHAN, and COEFrespectively. Transitiong andts model environment stimuli, and other
transitions model the inlined operations. Note that tha-d&pendent choice is modelled biyee choice
(Definition 1).

Figure 1(c) depicts the initialization andsaehedulgDefinition 2) of the PN. The schedule represents
an infinite sequential execution of the system within a bedrstate space, no matter which environment
stimulus ¢; or tg) is present, and which data-dependent chaig®(t,) is taken during execution. The
single process shown in Figure 1(d) is generated from thedsdb by substituting transitions with inlined
operations. Note that although originally buffers are asstito be unbounded, the sequential process
can repeatedly execute using buffers of size one.

The synthesis method suggested in [6] is based on heurlsticause the existence of a solution
for the scheduling problem is proven only for simple suts#asof PNs (such as Marked Graphs, see
[12]). For general PNs the decidability of the schedulingbtem remains open. Therefore, discovering
powerful sufficient conditions for unschedulability of P&important for gaining efficiency in analysis.

This paper suggests a structural approach to schedwadnilitlysis of PNs. This approach is chosen
due to two reasons. First, the underlying algorithms havgnomial-time complexity. Second, the
results are applicable to all initial markings.

C. Liu et al./ Petri Net Schedulability Analysis

process Filter process Multiplier
(InPort IN; QutPort CHAN) (InPort CHAN, COEF; OutPort OUT)
begin begin
loop c=1
get (IN, sample, 1) loop
while (sample > threshold) select
sample = f (sample) case CHAN
put (CHAN, sample, 1) get (CHAN, data, 1)
end while put (OUT, c*data, 1)
end loop case COEF
end proc get (COEF, ¢, 1)
end select
end loop
end proc
(a)

000100

ts)

000010
b 100010 000011
121

010010
t
get (CHAN, data, 1) 41) b

put (QUT, ¢* data, 1) 011010
(b) (c)

process Filter&Multiplier
(InPort IN, COEF; OutPort OUT)
begin
c=1
loop
select
case IN
get (IN, sample, 1)
while (sample > threshold)
sample =f (sample)
data = sample
put (OUT, c’data, 1)
end while
case COEF
get (COEF, ¢, 1)
end select
end loop
end proc

sample = f (sample)
put (CHAN, sample, 1)

(d)

Figure 1. (a) Communicating concurrent processes. (b) A épiMesentation. (c) A schedule of the PN with
initialization. (d) The process transformed from the sehed

4 C. Liu et al./ Petri Net Schedulability Analysis

Our contribution can be summarized as follows.

e After the basic concepts of PNs are reviewed (Section 2) asahedule of a PN is defined (Sec-
tion 3), we introducecyclic dependence relatiora structural property defined on transitions of
PN (Section 4). To the best of our knowledge, this propertyioles the most general sufficient
condition for PN unschedulability.

e Though cyclic dependence is defined through T-invarianécinvare nonnegativimtegersolutions
to a homogenous linear system, we show that it is not negegsaplve an integer programming
problem to check the property. We propose an exact algotitiatis based on linear-programming
(Section 5).

e We prove another sufficient condition for unschedulabiligsed on theank of the incidence
matrix (Section 6). Checking this condition is computadily efficient.

¢ We demonstrate the effectiveness and efficiency of our agprby applying it to check unschedu-
lability of PNs generated from concurrent models of indastiPEG and MPEG codecs (Sec-
tion 7).

2. Basic Definitions and Notations

A PNis a4-tuple(P, T, F, My). P = {p1,p2,...,pm}iSasetoplaces T = {ty,tq,...,t,} isasetof
transitions F': (P x T') U (T x P) — Nis the flow relation.\,: P — N is theinitial marking, where
N denotes the set of nonnegative integers. Net (P, T, F') denote a PN structure without any specific
initial marking, and(V, M,) denote a PN with a given initial marking. Lete P U T. Its preset and
postset are given by = {u € PUT|F(u,v) > 0},v* = {u € PUT|F(v,u) > 0}.

A transitiont is enabledat a given marking\/, if for each placep € P, M (p) > F(p,t). When a
transition is enabled it cafire. The new marking\/’ reached after the firing of transitiaris defined as:
p € P, M (p) = M(p) — F(p,t) + F(t,p). In this paper we use nets wiglourcetransitions, i.e. with
empty presets. These transitions model the behavior ohihet stimuli to a reactive system. They are
enabled in any PN marking.

A marking M’ is reachablefrom the marking)/ if there exists a sequence of firings that transforms
M to M’. This is denoted by [c > M’, whereo represents &iring sequenc€t,i,tyo, - ,tok)-
The firing sequence is said to bgclicif M’ = M. Thefiring count vectors of a firing sequencer
is a|T'|-vector, where thé—th entry denotes the number of times transitipappears inr. The set of
markings reachable from the initial markiddy is denoted ag(V, My).

The incidence matrixA = [a;;] is a|T'| x |P| matrix, wherea;; = F(t;,p;) — F(p;,t;). If a
marking M’ is reachable from\/ through a firing sequencethenM’ = M + A'5. A T-invariantis
a nonnegative integer solution ®'x = 0. It is known that §7'|-vectorx is a T-invariant if and only
if there exists a marking/ and a firing sequence from M back toM with ¢ = « [15]. A T-invariant
x is minimal if there exists no T-invariant’ # 0 with =’ < x. The set of transitions corresponding to
non-zero entries in a T-invariantis called thesupportof an invariant and is denoted ljy||. A support
is said to beminimal if no proper nonempty subset of the support is also a supg&iten a minimal
support of a T-invariant, there exists a unique minimalv&anmant corresponding to the minimal support
[15], that is called aninimal supportT-invariant.

C. Liu et al./ Petri Net Schedulability Analysis 5

A PN (N, M) is boundedf there exists a nonnegative integersuch that for each reachable mark-
ing M € R(N, M), M(p) < k for each placew € P. A PN (N, M) is said to belive, if for each
transitiont € T and for each reachable markidd € R(N, M), there exists a firing sequeneerom
M such thatr containst. A PN is said to beleadlock-fredf for each reachable marking, there exists at
least one enabled transition.

3. Schedule

First, we introduce free choice sets, a key concept in thaitiefi of a schedule.

Definition 1. (Free choice)
Two distinct transitiong and¢’ are in free choice relation, if for each plages *t U *t’ and for each
transitiont” € p®, F(p,t) = F(p,t') = F(p,t").

The relation is symmetric and transitive. We call the maxis®d of transitions that are pairwise in
free choice relation &ree choice sefFCS). Note that source transitions make a single FCS aicgpta
Definition 1.

We introduce the notion of FCS mainly to model environmesti@huli and run-time data-dependent
choices, which are unknown at design time. For the sake gflsiity, when referring to FCSs we only
refer to FCSs that contain exactly two transitions. The mgdion can be satisfied by representing an
arbitray FCS withm transitions as a a tree of binary FCSs. The PN shown in Figiimehhs exactly two
binary FCSHt1,ts} (which are source transitions) afith, ¢4 }.

Definition 2. (Schedule)
A scheduleof a PN(N, M) with a setT’s of source transitions is a digragh’, £, r) rooted byr with the
following properties:

1. V andF are finite and nonempty.

2. There exists a mapping: V. — R(N, M) with u(r) = M. For each(u,v) € FE, there exists
t € T such thapu(u)[t > u(v). This is denoted by L.

3. Givenu 5 v, there exists: Y o if and only if¢,t" are in a FCS.

4. For eachy € V, there exists a directed path to await vertexv,, satisfyingvt € Ty, v, L,
5. For eachy € V, there exists a directed path franto v and fromw to r.

The requirement in Property 1 ensures that any executioheo§¢hedule visits a finite subset of a
state space: the underlying system can be executed wittdbdunemory.

Property 2 states that a vertex in a schedule (called sohextiale or simply state) corresponds to
a reachable marking of the PN, an edge corresponds to atinansind a path corresponds to a firing
sequence. Note that it is allowed that several schedulesstaé mapped to the same marking, and these
states fire different transitions at their output edges.

Property 3 has two implications. First, if an outgoing edfia wvertex corresponds to a transition in
a FCS, then there must exist another outgoing edge of thexvérat corresponds to another transition in
the FCS. It ensures that a schedule is complete, becausesalbfe outcomes of FCSs are considered.

6 C. Liu et al./ Petri Net Schedulability Analysis

In this case, the FCS is said to ioeolvedin the schedule. Second, if a state of a schedule has more than
one outgoing edge then these edges must correspond tditmasish a FCS. Other enabled transitions
are not considered at a state. This property ensures thatiieelule can be sequentially executed.

Property 4 guarantees the progress of a schedule, i.e. figratate of a schedule one can reach an
await state in which source transitions fire and therefopaitim from the environment are served. This
is a necessary condition for reactive systems. The progratisn could be formulated with respect to
any set of transitions that are in FCS (not necessarily soones). This makes it possible to treat PNs
without source transitions within the same framework.

Property 5 implies that a schedulesigsongly connectedThus, following a schedule, the underlying
system can be infinitely executed without deadlock. NoteRnaperty 5 of returning to the root makes
the definition of schedule more stringent than the one sugdés [7]. We believe that this is acceptable
because most practical applications has a designatedstasetthat is reachable from any other state
(emergency exit) and from which the operation restarts hSaset state may be interpreted as the root
state in Definition 2 of a schedule.

Given a schedule grapH(V, E/,) one can construct its spanning tree that imposes a pardaf or
between schedule states, ive.< vy if and only if there exists a path from to v, in the spanning tree.
Given the ordering relation between schedule verticesgthphG can be unfolded into a rooted tree
G'(V', E’,r") (we denote objects in the unfolding by decorating the cpording objects in a schedule

with /). Unfolding terminates at states such that for the corresponding schedule state; LA v; and
v; < v; (i.e. (v;,v;) is a backward edge). Clearly an unfolding of a schedule itefimécause a schedule
is finite.

Definition 3. (Schedulability)

A PN (N, M) is said to be schedulable if there exists a schede)) for some of its reachable
markingsM € R(N, My). A PN N is said to be schedulable, if there exist a markiigof N and a
schedule of N, M).

Thus, a PNV is said to be unschedulable, if for any markihgof N there exits no schedule 6N, M).
The results presented in this paper give sufficient contfor unschedulability.

Figure 2. (a) A non-live, bounded, schedulable Petri ngtA(live, unbounded, and unschedulable Petri net.

C. Liu et al./ Petri Net Schedulability Analysis 7

In general, schedulability is independent of other Petripneperties, such as boundedness and live-
ness. We illustrate this with the examples shown in Figur&l® Petri net in Figure 2(a) models two
dining philosophers. If both philosophers pick one chopkstivhich is modelled by firing transition
a1, bs OF ag, by, the system deadlocks and no one can obtain a pair. The Betsi schedulable, because
there are no free-choice sets.;b1c1) and(a2bacy) are cyclic firing sequences that could be contained
in its schedules. Figure 2(b) shows a live, unbounded PetriThe left part models a producer, and the
right part models a consumer. The production/consumpgdmis inconsistent. A cycle of the producer
consists of firing transitiom andc once, which produces two tokens and one token in the two @hann
places, respectively. However, one cycle of the consunmesists of firing transitiord andd once, which
consumes one token from each channel place. The Petri nabh&#variants, and is not schedulable.

4. The Cyclic Dependence Theorem

We first introduce a pairwise transition dependence ralatogive readers some intuition, and prove
a proposition that relates the dependence relation to stddatity of a PN. Then, we generalize the
dependence relation to sets of transitions.

4.1. Pairwise Transition Dependence Relation

Definition 4. (Pairwise transition dependence)
Atransitiont of a PNN is said to balependenon a transitiont’, if for each T-invariante of N, ¢ € ||x||
impliest’ € ||z||. This is denoted by — ¢'.

The pairwise transition dependence is a binary relatioriionlt is reflexive and transitive, but not
symmetric in general.

Proposition 1. Given a PNN with two FCSsS| = {t1,t2}, So = {t3,t4}, If t; — t3 andty — to,
then for any marking\/ of N, there exists no schedule @V, M) involving Sy or Ss.

Proof:
We show that the unfolding’ (V', E’,r") of a scheduleg=(V, E,r) with S; or Sy involved is infinite,
which violates finiteness of a schedule.

The proof proceeds by showing the validity of at least ondeftivo statements:

I11: G’ contains an infinite path’ ~ v} 4, Yy~ vl b, y4 -+, such that the firing sequence
corresponding to the path fromto v;, (k = 1,2, ...) does not contain transition.

12: @' contains an infinite path’ ~ u} % 2| ~ u}, % z,---, such that the firing sequence
corresponding to the path fromto u;, (k = 1,2, ...) does not contain transitios.

In G’ let us choose vertex in which transitions froms; or S, are enabled and to be the closest
vertex to the root’ with this property. This vertex exists becausgor S; is involved in a schedule.
Without loss of generality we may assume tHatis enabled in/. Thenv] = v’ in proving I1.

From Property 5 of a schedule, follows that there exista’ € V' such that the path fromt to v’
containst; and u(w') = u(v’). This path corresponds to a firing sequencthat makes a cycle from
markingu(v') back to itself and hence is a T-invariant.t; — t3 impliests € o. Thereforeg contains

a vertexu’ such that’ 2. Let«/ be the closest descendantdiwith t3 enabled.

8 C. Liu et al./ Petri Net Schedulability Analysis

Figure 3. A PN containing pairwise dependent transitiorfs@ss.

Let us consider path; C o that goes from’ to «'. Two cases are possible.

Case 1.If t5 € o1 theno; goes through vertex), with enabledt,. ¢, andt, are from the same
FCS and hence is also enabled in},. Clearly the path from’ to v, does not contain; and therefore
v} satisfies the conditions of I1 and is a descendant; ofRepeating the consideration fof one can
conclude about the existence of infinite path satisfying I1.

Case 2.Suppose that, ¢ 0. Then the path from’ to «’ does not contain transition. In addition
t4 is enabled in/ (being in the same FCS &g and therefore one can uséasw in proving I2.

Bearing in mind that, — t, and applying the same arguments for closing the cycle fugrone
can conclude that there must exist a patinom «) to v} in which ¢, is enabled. 1% does not contain
ts thenv), satisfies the conditions of I1, which is the basis for comsing an infinite path. I contains
ts then by choosing the first firing @f in 4, one can obtain a vertex, in which 3 is enabled together
with ¢4, anduj, is a descendants af . This proves 12. O

Figure 3 shows a PN that satisfies the condition of Propesitio It has two FCSs{B,C'} and
{F, G}, and two minimal T-invariants with suppo{d N, A, B, E,G} and{C, D, F, H}. Itis easy to
see thatC — F andG — B. Thus, according to Proposition 1 there exists no scheduleed®N that
involves eithe{ B, C'} or {F, G}.

4.2. General Transition Dependence Relation

Definition 5. (General transition dependence relation)
A transitiont of a PN is said to balependenbn a setS of transitions, if for each T-invariant of IV,
t € ||| implies3t’ € S : ¢’ € ||x||. This is denoted by — S.

The pairwise transition dependence relation can be viewedspecial case of the general transition
dependence relation wifl$| = 1. Note that by definition the general transition dependeptaion, or
simply dependence relatiois monotonically non-decreasing, i.e.tif— S, then for eachs’, S C &,
t— S,

Definition 6. (Cover of a set of FCSs)
A cover S of a setS of FCSs is a minimum subset of transitions such that for edc® F < S, there
exists a transition € SN F.

C. Liu et al./ Petri Net Schedulability Analysis 9

Figure 4. A PN containing FCSs in cyclic (general) dependertation.

A cover of a set of FCSs contains exactly one transition frachd-CS.

Definition 7. (Cyclic dependence relation)
A setS of FCSs of a PNV is said to be in cyclic dependence relation, if there existsverS of S, such
that for each transitione S, t — S\S.

A FCS is said to beyclic dependenif there exists a sef of FCSs, such tha contains the FCS, and
is in cyclic dependence relation. Note that although theeggdrdependence relation is monotonic, the
cyclic dependence relation is not monotonic in general. ddeme can not prove the existence of the
relation in a set of FCSs by proving the existence of theimidbr its subsets and vice versa.

Theorem 1. (Cyclic dependence theorem)
No schedule of a PN involves a cyclic dependent FCS.

The proof can be done in a way similar to the proof of Propasiti.

Figure 4 shows a PN that contains FCSs in cyclic dependetatére There are four FCSs3, C'},
{F,G}, {I,J}, {L, M}, and five minimal T-invariants with suppor{d N, A, B, I, E,G, M}, {C, D,
F,H},{C,D,L,N},{J,K,F,H},{J, K, L, N}. Note that there exists no cyclic pairwise dependence
relation among transitions in the FCSs. However, therd®aigeneral dependence relation, and further-
more a cyclic dependence relation for the set of all FCSsdrPiN. LetS = {C, G, J, M } be a cover of
theS, thenS\S = {B, I, F, L}. For each transitionsin S, t — S\\S. Thus, by Theorem 1, there exists
no schedule involving any of the FCSs and PN is not schedufablany initial marking.

5. Checking Cyclic Dependence with Linear Programming

Although the dependence relation is defined on the set ofdrents of a PN, interestingly enough, such
a set does not have to be explicitly computed to check thédorlaWe propose an algorithm based on
linear programming to check the cyclic dependence relation

10 C. Liu et al./ Petri Net Schedulability Analysis

Algorithm 1 Checking cyclic dependence relation using linear programgm
INPUT: A: the incidence matrix of a PN the set of FCSs to be checked.
OUTPUT: returns TRUE if there exists a cyclic dependence relatidh IFALSE otherwise.
1: for all coversS of S do
dependent <= TRUE
forall ¢; € Sdo
LP <= (AT =0)N(z>0)N(z; >0)N (z; =0,Vj,t; € S\S)
if LP # () then
dependent <= FALSE
break
end if
end for
10: if dependent = TRUEthen
11: return TRUE
12: endif
13: end for
14: return FALSE

n

Given a PNN, its incidence matrixA, and a se of FCSs of N to be checked, the algorithm
iterates through all possible covers$till one cover leads to a cyclic dependence relation. Foheac
cover, a feasibility problem of linear programming is consted. As proved in Theorem 2, a solution
to the feasibility problem provides a counterexample todéyeendence relation. If no solution is found,
the dependence relation holds. Since the task of lineargnoging has a polynomial-time complexity,
checking that a cove$ leads to a cyclic dependence relation $ozan be done in polynomial-time.

Theorem 2. A transition t; is dependent on a sé of transitions if and only if the following linear
system has no solution:

Az =0

x>0

z; >0

Vi, t; €S,2; =0

Proof:
(if): We prove the contrapositive. If; — S does not hold, by definition, there exists a T-invariant
x € NI7I, such that; > 1 and for eacht; € S,z; = 0.

(only-if): We prove the contrapositive. Since the incidematrix A is an integer matrix, if there
exists a real vector that satisfies all the constraints, there exist a rational vectar also satisfying the
constraints. Lefl be acommon multiple of all the denominators of the elemeinisand letz’ = 6x. By
definition,z’ is a T-invariant, and:’ > 0, z; > 0, for eacht; € S, x; = 0. Thus,z’ is a counterexample
fort; — S. O

The complexity of checking a cyclic dependence using Atgaril is exponential on the number of
FCSs. This comes from the need to check explicitly all pdssibvers of the se$. The next section

C. Liu et al./ Petri Net Schedulability Analysis 11

Figure 5. lllustration of the proof of the rank theorem

presents a more efficient way to establish unschedulaliisged on checking the rank of the incidence
matrix of PNs.

6. The Rank Theorem

The connection between behavioral properties of PNs andathie of the incidence matrix was first
observed for free-choice PNs, see [8]. The rank propertwaslibere states that a PN of a specific class
of free-choice nets has a live and bounded marking if and ibitie number of conflict clusters exceeds
the rank of the incidence matrix by one. In our terminolognftict clusters of free-choice nets are either
free-choice sets or transitions which are not in conflichveiy other transition. Since we assume that
free-choice sets have exactly two transitions, the numball transitions equals the number of conflict
clusters plus the number of conflict sets. In other wordsntivaber of conflict clusters can be written
as|T'| — k, whereT is the set of all transitions anklis the number of free-choice sets. So, the rank
condition translates teank(A) = |T'| — k — 1. The same property is shown in [8] to be sufficient for
the existence of a live and bounded marking in case of cem@irfree-choice nets.

Our setting is quite different to the one considered in [8]e Tlass of nets is different, and so is the
behavioral property under investigation. Nevertheldss,rank condition provided in Theorem 3 looks
pretty similar to the characterization mentioned above.

Theorem 3. (Rank theorem)
If there exists a schedule of a PN which involveBCSs, themank(A) < |T'| — k — 1.

Proof:

Let sch be a schedule of a PW (P, T, F') for some markingM of N. First, we construct a P\’
by adding places and edges A Then, we show thatank(A’) < |T| — 1. Finally, we show that
rank(A’) = rank(A) + |S|, whereS is the set of FCSs involved ith. Thus,rank(A) < |T| — S| — 1
follows.

1. We construct a PW’ = (P’, T, F'). As illustrated in Figure 5, for eachiC'S; = {t;,t.} € S, add
2 place$ti7pti/ and 4 edgegl(ptiv tl) = Ny, Fl(tivpti/) = Ny, F/(ptilvtg) = ngv F/(t£7ptz) - n;

2. We determiney;, n;. Since for each edge, v) in sch there exists a directed path framo « and
from v to r, and the number of edges is finite, there existdosed walksch’ in sch with finite
length, such thatch’ visits each edge isch at least once. Let;, ¢, be the number of times of, ¢/
of FCS; appears irsch/, respectively. Obviously;; > 1, ¢, > 1. Letc be a common multiple of
{e1,¢y, ... ep, ¢} andn; = ¢/ci,nl = ¢/c.

C. Liu et al./ Petri Net Schedulability Analysis

3. We showrank(A’) < |T'| — 1. First, we define

M(p) ifpe PNP
c otherwise

M'(p) = {

It is easy to checkch’ corresponds to a firing sequence fradi to M’. The firing count vector of a
cyclic firing sequence is a T-invarian’"z = 0 has non-null solution impliesink(A’) < |T|—1.

4. We construct the incidence matrid’ of N’. For eachF'C'S; = {t;,t.}, two column vectors
y;, y, corresponding tQy;, p, respectively, are added to the incidence mauof N. Let
YV =ly1...yglandY’ = [y7 ... y[g. ThenA’ = [A|Y|Y].

Dti Pty
0 0

tv|... —my ... ny
0

t/ ... nf ... —nl
0 0

In vectory;, there are exactly two non-zero entries;, n;, corresponding to transitiof), t; re-
spectively. Similarly, in vectow;’, there are entries, —n/, corresponding to transitioty, ¢,
respectively.

5. We showrank(A') = rank(A) + [S].
Sincey; + yi’ = 0, y;, yi’ are linearly dependent. Thusink(A’) = rank([A|Y]).

We show that each column vectgs of Y is linearly independent with respect to other column
vectors in[A|Y]. We prove by contradiction. It is known that vectgyis linearly dependent with
respect to other columns vectors/i|Y] if and only if y; is a linear combination of other vectors.

yi=) @A+ Y bk

1<5<|P| 1<k<[S|
ki

where A = [A;... Ajp||, a; € Q, by € Q. Letvectora = [a1...ap]", andz = y; —
(2_1<k<js| brYk). Thenz = Aa. For each T-invariant of N,
ki

ATlz=0=a"AT2=0= (Aa)'z2=0= 2"z =0.

We then show thatT2 = 0 implies the existence of a cyclic dependence relation. Nuiethe
non-zero entries ig corresponds to transitions in FCSs, and for a RESt, }, z, > 0 if and only
2z, < 0. DenoteS’ C S the set of FCS that has non-zero entrieg.irDbviously, F'CS; € S'. Let
S = {talza > 0}, 8" = {ty|2, < 0}. Itis easy to see that is a cover ofS/, andS’ = §'\S. Since

C. Liu et al./ Petri Net Schedulability Analysis 13

Figure 6. A PN whose unschedulability can be proved by Thadrebut not by Theorem 3.

z'x = 0, for each transitiont; € S, z; > 0 implies that there exists at least one transitiprE S’
such that; > 0. That is, for each transition € St — S’. SinceS’ = S\ S, S’ is in cyclic
dependence relation. Thus, the schedule involves a cyclic dependent FCS. This contradicts
Theorem 1.

Since each column vectey; of Y is linearly independent with respect to other column vecior
[A]Y], whereY = [y; ... yg|], rank([A[Y]) = rank(A) + [S] follows.
g

Theorem 3 is equivalent to the statement: a schedule of aRIN@s at most|T'| — rank(A) — 1)
FCSs. Itimplies that ifank(A) > |T'| — |S| — 1, whereS is the set of all FCSs of a PN, then for any
marking M of N, there exists no schedule @V, M) that involves all FCSs of the net.

Consider the PN shown in Figure 8| = 9,rank(A) = 7, S| = 2, thus no schedule involves all
FCSs. For the PN shown in Figure|4;| = 15,rank(A) = 11,|S| = 4, thus no schedule involves all
FCSs.

Since computing the rank of a matrix has a polynomial-timenglexity, checking unschedulability
by the rank of the incidence matrix is more efficient than byyelic dependence because the latter
requires to iterate through all possible covers of a set @$(potentially exponential).

However, the rank condition is weaker in establishing thectiedulability as is shown by the fol-
lowing example. Figure 6 shows a PN with| = 15, rank(A) = 12, and|S| = 2. Thus, we can not
prove unschedulability by the rank theorem. Note that tfigokart of the PN is identical to the PN shown
in Figure 3. There exists a cyclic dependence relation ind=a% C}, {F,G}. Thus, we can prove
unschedulablity by the cyclic dependence theorem.

7. Experiments

In this section, we show that PNs generated from a wide classablife industrial applications are not
schedulable, and our approach can be effectively appliegtablish that. Note that to prove unschedu-
lability of a PN based on Theorem 1, we need to assert that ®swdule involves at least one cyclic
dependent FCS. To prove unschedulability based on Theoreme Beed to assert that each schedule
involves all FCSs of a PN. We use some public available JPEGVHPEG codecs as our test bench. The
codecs used in our experiments are modelled as Kahn proewgsrks [9], [10].

14 C. Liu et al./ Petri Net Schedulability Analysis

7.1. Benchmarks

MPEG-2 decoder We use an MPEG-2 video decoder [17] developed by Philips. siséeem con-
sists of 11 concurrent processes communicating throughdbnels. It was implemented with about
5,000 lines of YAPI [11] code, a system specification langubgsed on C++. We perform schedulabil-
ity analysis on 5 processes that implement the spatial cessfon decoding, the temporal compression
decoding, and image generation. In total, the 5 processesltachannels and 16 interfaces (communi-
cating ports with the environment). Each process contairesarage of 17 communication primitives in
8 control structures. They were implemented with about@)ds of code.

M-JPEG* encoder We use an M-JPEG* [13] encoder also developed by Philips. sbaece code is
obtained through the SESAME [1] project public release. 3ysem consists of 8 processes commu-
nicating through 18 channels. Each process contains aage@f 11 communication primitives in 5
control structures. They were implemented with about 2J0@& of YAPI code. The encoder supports
RGB and YUV formats and dynamically adjusts quantizatiod kluffman tables based on collected
statistics. We perform schedulability analysis on therergystem (instancelJPEGendn Table 1).

XviD MPEG4 encoder We model a XviD MPEG4 video encoder based on the C source code f
[3] and the model from [5], which was developed as a SESAMHiegion. The encoder supports
two frame types: I-frame and P-frame. It performs motioinestion analysis to determine whether an
incoming frame will be treated as I-frame or P-frame. Consedy two types of frame will go through
different processing paths. An I-frame will be split into enablocks and encoded independently. In
a P-frame, a macro-block could be an intra-block, an inkeciy or an not-coded-block, depending
the value of Sum of Absolute Differences (SAD). The grarnityasf tokens passing between processes
is macroblock. We perform schedulability analysis on 9 psses with 15 channels and 6 interfaces
(instanceMPEG4endn Table 1).

PVRG JPEG encoder We obtain the Stanford Portable Video Research Group (PVIRE)G codec
source code from [2]. Based on JPEG baseline standard, odelroonsists of 10 processes and 21
channels. The functional core part consists of 4 procesapteinenting Discrete Cosine Transform
(DCT), quantization, Huffman coding, and control. The gHanty of tokens passing between processes
is block. We preform schedulability analysis both on PNsegated from the model of the encoder
(instance]JPEGenc2n Table 1) and its functional core (instand@EGencln Table 1).

Additionally, we create a set of instances to test the wase @erformance of our approach. Each
PN instance is a chain of free choices and contains no cyeliendence. Finding a schedule for this
kind of PNs is easy. However, to prove there is no cyclic ddpahFCSs, the analyzer has to check all
subsets of FCSs and all covers of each subset.

7.2. Results and Analysis

We implemented our schedulability analyzer in C. All expeits were run on a 3.0 GHz Intel Pen-
tium CPU with 512 MB memory. Since no other schedulabilitylginer is available, we compare its
performance with a scheduler. The scheduler performs alatdtglity analysis via heuristic construc-
tion of a schedule. Table 1 summarizes the experiment sestiPNs modelling JPEG MPEG codecs.

C. Liu et al./ Petri Net Schedulability Analysis 15

Runtime

Instance Place | Tran. Arc FCS Rank | Schedulable| Check Rank| Check Dependence Scheduling
JPEGencl 26 27 64 6 21 N <0.01s 0.19s 523.75s
JPEGenc2 67 68 167 14 57 N <0.01s 0.54s >24hr
MJIPEGenc 117 124 330 25 108 N <0.01s 0.04s >24hr
MPEG2decl 116 144 358 38 111 N <0.01s 0.25s >24hr
MPEG2dec2 115 106 309 8 97 Y <0.01s 17.28s 6.91s
MPEG4enc 72 72 184 15 63 N <0.01s 0.16s >24hr

Table 1. Statistics of schedulability analysis of PN mod¢l3PEG and MPEG codecs

Runtime

Instance Place Tran. Arc FCS Rank | Schedulable| Check Rank | Check Dependence Scheduling
choice3 6 9 20 3 5 Y <0.01s 0.01s <0.01s
choice4 7 11 25 4 6 Y <0.01s 0.02s 0.01s
choice5 8 13 30 5 7 Y <0.01s 0.05s 0.01s
choice6 9 15 35 6 8 Y <0.01s 0.14s 0.04s
choice7 10 17 40 7 9 Y <0.01s 0.45s 0.05s
choice8 11 19 45 8 10 Y <0.01s 1.42s 0.09
choice9 12 21 50 9 11 Y <0.01s 4.45s 0.29s
choice10 13 23 55 10 12 Y <0.01s 14.06s 0.87s
choicell 14 25 60 11 13 Y <0.01s 44.86s 1.06s
choicel2 15 27 65 12 14 Y <0.01s 141.55s 4.43s

Table 2. Statistics of schedulability analysis of PNs inttst suite

Our analyzer typically proves a PN is not schedulable withisecond, while the scheduler often fails
to terminate in 24 hours. Note that there are two instancedettiog MPEG2 decodersyIPEG2decl
andMPEG2dec2 The former, generated from the original YAPI source codadt schedulable. The
second, generated from a modified source code, is scheduldble modification removes the corre-
lated control structures that result in cyclic dependersieguthe technique described in [4]. Note that
our schedulability analyzer computes the minimum set of $@&t has a cyclic dependence relation,
once it proves a PN is unschedulable. The minimum set of F@&&des useful information to find the
correlated control structures.

Table 2 shows that for schedulable PNs, the run time of chgatyclic dependence grows exponen-
tially as the number of FCSs increases. However, checkimgnemains efficient. In fact, checking rank
takes less than 10 milliseconds for all of our experiments.

Our schedulability analyzer is effective because therst@drtain program structures in the codecs.
We illustrate this using a Huffman coding process of a JPEGa@er. Figure 7 shows a simplified
description of the process. The process first reads from @adgrocess a header which includes all
parameters necessary to perform Huffman coding on a blotlenTt iterates through all blocks of a
component in a Minimum Coded Unit (MCU). The Huffman codinglaeading from a zigzag process
are performed at the block level inside the loop. Since JPB@ard requires samples of a component
must use the same Huffman coding table, and multiple comp@anples could be interleaved within
a compressed data stream, it needs to update the Huffmanftabi time to time. Also note that the
loop has a variable number of iterations. The vertical arizbotal sampling factors could be different

16 C. Liu et al./ Petri Net Schedulability Analysis

PROCESS Huffman (
In_DPORT Control_headerIn,
In_DPORT Zigzag_blockIn,
Out_DPORT Output)
{
while(1) {
READ_DATA(Control_headerIn, header, 1);
Vi = getVSF(header) ;
Hi = getHSF (header);
Htable = getHtable(header);
for(v=0; v<Vi; v++) {
for(h=0; h<Hi; h++) {
READ_DATA(Zigzag_blockIn, block, 1);
block = HuffmanEncoding(block, Htable);
WRITE_DATA(Output, block, 1);
}rr}

Figure 7. A simplified Huffman coding process.

for different components and only known at run-time. All bétabove requires communications inside
and outside a loop structure. The quantization process kamikar program structure to the Huffman

coding process, because samples of a component are retpivsg the same quantization table and
processing and communication data is performed at bload.lééhe control process synchronizes the
two concurrent processes such that a block is processed gqutntization process and later in a Huffman
coding process with the set of parameters (e.g. verticalhmmzontal sampling factors) of the same
component.

Synchronized communications inside and outside a loogtsire are common in the codecs. How-
ever, the controls of loops are abstracted as non-detestigirifee choices in a PN. These two factors
cause unschedulability that can be efficiently checked bygtuctural analysis. Note that this particular
code structure is just a special case that results in cyefieddence.

8. Conclusion and Future Work

We defined the notion of PN schedulability and provided sevaufficient conditions for checking un-
schedulability using linear algebra and linear prograngmichniques. Our preliminary experimental
results indicate that these techniques effectively andieffily detect unschedulability of PNs for prac-
tical examples. They also identify the correlated choibes tause unschedulability.

We believe there are some interesting open problems in Heareh area covered in this paper. In
particular:

¢ Does a sufficient condition exist that is tighter than thesgme&sented here for the class of general
PNs?

¢ How much do we need to restrict the class of PNs to yield a sacgsind sufficient condition for
schedulability?

e Our results can be used to represent the unbounded parts s€hiledule in an implicit but finite
form. Hence, we believe an implementation could be derived jluarantees boundedness as
long as a system functions in a “good” part of the scheduleraigihg the flag when it enters a
potentially unbounded part. This approach would signifigaextend the applicability of quasi-
static scheduling for practical applications.

C. Liu et al./ Petri Net Schedulability Analysis 17

References

(1]
(2]
(3]
(4]

(5]

(6]

[7]

(8]

(9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

The SESAME Software Project, URhttp://sesamesim. sourceforge.net.
Stanford PVRG JPEG codec, URhttp://www.dclunie.com/jpegge.html.
XviD MPEG-4 video codec, URLhttp://wuw.xvid.org.

Arrigoni, G., Duchini, L., Lavagno, L., Passerone, C.athabe, Y.: False Path Elimination in Quasi-Static
Scheduling Proceedings of the Design Automation and Test in Europeetenée March 2002.

Broekhof, P., Roosen, N., Verhoef, J., Jun, W.: Model¥\gD as a Kahn Process Network, a SESAME
Application Design Document, URIkttp://staff.science.uva.nl/~andy/apps/xvid.pdf.

Cortadella, J., Kondratyev, A., Lavagno, L., Massot, Moral, S., Passerone, C., Watanabe, Y., Sangiovanni-
Vincentelli, A.: Task generation and compile-time schauyifor mixed data-control embedded software,
DAC '00: Proceedings of the 37th Conference on Design Autimmg000.

Cortadella, J., Kondratyev, A., Lavagno, L., Passer@heWatanabe, Y.: Quasi-static scheduling of indepen-
dent tasks for reactive systemEEE Transactions on Computer-Aided Desigd(10), 2005, 1492-1514.

Desel, J., Esparza, Free choice Petri nets/ol. 40 of Cambridge Tracts In Theoretical Computer Science
Cambridge University Press, New York, NY, USA, 1995.

Kahn, G.: The semantics of a simple language for parptlegramming)nformation ProcessingAug 1974.

Kahn, G., MacQueen, D. B.: Coroutines and networks obital processes|nformation ProcessingAug
1977.

de Kock, E. A., Smits, W. J. M., van der Wolf, P., BrunekYJ, Kruijtzer, W. M., Lieverse, P., Vissers, K. A,,
Essink, G.: YAPI: Application Modeling for Signal ProcesgiSystemsPAC '00: Proceedings of the 37th
Conference on Design Automatj@000.

Lee, E. A., Messerschmitt, D. G.: Static scheduling yrichronous data flow programs for digital signal
processing]EEE Trans. Comput36(1), 1987, 24-35.

Lieverse, P., Stefanov, T., van der Wolf, P., Deprettét.: System level design with SPADE: an M-JPEG
case studyProceedings of IEEE/ACM International Conference on CotaipAided DesignNov 2001.

Lin, B.: Software synthesis of process-based conaiirpeograms, DAC '98: Proceedings of the 35th
ACM/IEEE Conference on Design Automati@898.

Memmi, G., Roucairol, G.: Linear Algebra in Net Thegriecture Notes in Computer Science: Net Theory
and Applications, Proc. of the Advanced Course on GeneralfReory of Processes and Systems, Hamburg,
1979(Brauer, W., Ed.), 84, Springer-Verlag, Berlin, Heidelipddew York, 1980.

Sgroi, M., Lavagno, L., Watanabe, Y., Sangiovannidéntelli, A.: Synthesis of embedded software using
free-choice Petri netsPAC '99: Proceedings of the 36th ACM/IEEE Conference on fregiutomation
1999.

van der Wolf, P., Lieverse, P., Goel, M., Hei, D. L., \&ss, K.: An MPEG-2 decoder case study as a driver
for a system level design methodologODES '99: Proceedings of the 7th International Workshop on
Hardware/Software Codesigh999.

