Inhaltsübersicht

1. Planungs- und Entscheidungstechniken im Unternehmen 1

2. Die Planungstechnik CPM ... 5
 2.1. Elemente .. 5
 2.2. Das Projekt ... 8
 2.3. Die Struktur .. 8
 2.4. Zeitrechnung ohne Wartezeiten und Termineinschränkungen .. 9
 2.5. Zeitrechnung mit Wartezeiten und Termineinschränkungen 14
 2.6. Ressourcen- und Kostenplanung 19
 2.7. Kontrolle und Steuerung 20

3. Die Lineare Planungsrechnung in der Produktion 25
 3.1. Mathematische Charakterisierung von Produktionsprozessen . 25
 3.2. Hauptmodelle der Linearen Planungsrechnung 30
 3.2.1. Die einstufige Produktionsplanung 30
 3.2.2. Substitution linear limitationaler Produktionsprozesse 32
 3.2.3. Ein Beispiel einer mehrstufigen Linearen Planungsrechnung ... 35
 3.3. Materialmischungen und Verschnittoptimierung 39
 3.3.1. Materialmischungen ... 39
 3.3.2. Verschnittoptimierung 41

4. Algorithmische Lösung von Linearen Optimierungsproblemen 43
 4.1. Die Zielsetzung dieses Kapitels 43
 4.2. Von Ungleichungs- zu Gleichungssystemen 44
 4.3. Die kanonische Form des LP-Problems 48
 4.4. Die Berechnung numerischer Beispiele in einer und in zwei Phasen ... 52
 4.5. Der allgemeine Simplex-Algorithmus in der Zwei-Phasen-Form ... 57

5. Varianten der Linearen Programmierung als unternehmerisches
 Planungsinstrument .. 63
 5.1. Planung von Transporten und Güterströmen 63
 5.1.1. Präliminarien .. 63
 5.1.2. Kostenminimaler Fluss 64
 5.1.3. Das Transport- und Zuordnungsproblem 67
5.1.4. Maximaler Fluss und kürzester Pfad .. 72
5.2. Kapitalertragsplanung bei Risiko und Rentabilitätsmaximierung
als Problem der quadratischen bzw. Quotienten-
Programmierung .. 74
5.2.1. Fast Linearisierbarkeit ... 74
5.2.2. Die Auswahl eines Portefeuilles als fast linearisierbare
quadratische Aufgabe ... 75
5.2.3. Algorithmische Lösung von Quadratischen Programmen 77
5.2.4. Rentabilitätsoptimierung als fast linearisierbare Quotienten-
Aufgabe .. 81
5.2.5. Algorithmische Lösung von Quotientenprogrammen 82
5.3. Die Behandlung von Ganzzahligkeit bei Linearen
Programmen .. 84
5.3.1. Herkunft der Ganzzahligkeit .. 84
5.3.2. Futtermittelmischung bei Beschränkung der Rohstoffzahl 84
5.3.3. B&B mit LP-Relaxation ... 86
5.4. Die Behandlung von Nichtlinearität bei Separablen
Programmen .. 94
5.4.1. Optimale leitungsgebundene Wärmeversorgung in Städten 94
5.4.2. Stückweise Linearisierung bei Separablen Programmen 96
5.4.3. Algorithmische Lösung von Separablen Programmen 102
5.5. Lineare Planung bei unscharf formulierten Problemen 102
5.5.1. Umgestaltung eines Parkdecks ... 102
5.5.2. Einige Grundbegriffe der Theorie unscharfer Mengen 105
5.5.3. Vom scharfen zum unscharfen LP-Problem 110
6. Heuristiken .. 113
6.1. Merkmale von Heuristiken ... 113
6.2. Entscheidungsunterstützung mittels Heuristiken 114
6.2.1. Transport- und Qualitätsplanung .. 114
6.2.2. Das Rundreiseproblem ... 118
7. Optimierung mit intelligenten Strategien .. 123
7.1. Übersicht der Verfahren ... 123
7.2. Genetischer Algorithmus ... 124
7.2.1. Einführung ... 124
7.2.2. Der Algorithmus .. 125
7.3. Bandabgleichproblem und Genetischer Algorithmus 130
7.3.1. Beschreibung des Bandabgleichproblems 130
7.3.2. Ausgestaltung des Algorithmus .. 131
8. Lösungen zu den Übungsaufgaben ... 137
9. Literaturhinweise .. 165
10. Stichwortverzeichnis .. 167
Diese Seite bleibt aus drucktechnischen Gründen frei.
Kapitel 1

Planungs- und Entscheidungstechniken im Unternehmen

Seitdem Unternehmen und Behörden eine fast unbegrenzte Rechenkapazität in Form von Personal-Computern bis hin zu Mainframes zur Verfügung steht, werden mehr und mehr unternehmerische Entscheidungsprobleme rechnerunterstützt gelöst.

Solche "quantitativen" Entscheidungsprobleme treten in allen betrieblichen Funktionsbereichen auf. Ohne Anspruch auf Vollständigkeit seien hier einige genannt:

- **Beschaffung**: Bedarfsprognose, Tarif- und Transportgestaltung, Qualitäts sicherung

- **Produktion**: Fertigungs- und Ablaufplanung (Reihenfolgen, Maschinenbelegung, Arbeitsverteilung), Produktmengenplanung, Bereitstellungsplanung, Prozessplanung (Rezeptoptimierung), innerbetriebliche Transportplanung

- **Investition und Finanzierung**: F&E-Planung, Standortplanung, Projektplanung, simultane Investitions- und Finanzierungsrechnung

- **Absatz**: Distributionsplanung in Form von Wegen, Transporten und Tarifen, Werbeplanung

- **Personal**: Personalbeschaffung und Personaleinsatzplanung.

Der Wissenschaftszweig, der solche Modelle für betriebliche Sachprobleme im größeren Stil entwickelte und zur Entscheidungsfindung heranzog, heißt Operations Research, zu deutsch Unternehmensforschung.

Es war keinesfalls immer schon selbstverständlich, sich quantitativer Methoden bei der Entscheidungsvorbereitung zu bedienen. Der langanhaltende Grabenkrieg zwischen "verballogischen" und "mathematisch orientierten" Ökonomen in den 60er Jahren ist heute schwer nachvollziehbar. Für den historisch interessierten Leser sei auf Ischboldin und Schlittenberger als Vertreter der Intuitionisten sowie Kosiol und Müller-Merbach als Verfechter der quantitativen Linie verwiesen.

Der Kurs Planungs- und Entscheidungstechniken ist als Einführung und Motivation zum späteren vertiefenden Studium des Operations Research (OR) zu

In Kapitel 4 wird ein Algorithmus vorgestellt, mit dem lineare Optimierungsaufgaben gelöst werden können. Das Verständnis dieses Lösungsverfahrens ist wichtig, um gängige LP-Software sinnvoll einsetzen zu können.

In allen Kapiteln wurde der Versuch unternommen, die Grundideen der Verfahren so weit wie möglich am Beispiel zu entwickeln. Die Vermittlung exakten Methodenwissens muss also zugunsten anschaulicher Anwendungen zurückstehen; für den bloßen Benutzer von Planungs- und Entscheidungstechniken also ein soviel wie nötig und sowenig wie möglich.
Diese Seite bleibt aus drucktechnischen Gründen frei.
Kapitel 2

Die Planungstechnik CPM

2.1. Elemente

Um neueren Entwicklungen Rechnung zu tragen und Sie mit der Handhabung von **Netzplantechnikprogrammen** vertraut zu machen, stellen wir hier die Netzplantechnik (NPT) CPM anhand der softwareseitigen Realisierung von MS-PROJECT vor. Abweichend von früheren Versionen werden hier Vorgänge als Knoten und Abfolgebeziehungen als Pfeile dargestellt. Das Kürzel CPM steht für Critical Path Method, also Methode des **kritischen Pfades**. Der Begriff CPM leitet sich daraus ab, dass sich über der Zeitachse vom Beginn zum Ende eines Projektes ein oder mehrere Pfade von sogenannten kritischen Vorgängen ziehen. Vorgänge werden als kritisch bezeichnet, wenn durch ihre Verzögerung das Projektende in Verzug gerät; sie sind bestimmend für die Projektdauer.

Zyklen, d.h. Schleifen im Netzplan, sind in einem CPM-Netzplan nicht erlaubt. Es darf also nicht vorkommen, dass ein Vorgang wiederholt in einer Abfolge von Tätigkeiten auftaucht, wie dies etwa in Forschungs- und Entwicklungsprojekten...
Die Planungstechnik CPM (F&E-Projekten) häufig der Fall ist. Beispielsweise stellt ein mehrfach, bis zur Erfolgseinstellung mit unterschiedlichen Zusätzen durchgeführter chemischer Versuch eine (Versuchs-)Schleife dar.

Tab. 2.1: Vorgangsliste (Auszug)

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Vorgang</th>
<th>Dauer [Tage]</th>
<th>Vorgänger</th>
<th>Termine</th>
<th>Ressourcen</th>
<th>Kosten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ein Eintrag (eine Zeile) der Vorgangsliste aus Tabelle 2.1 wird im Netzplan als Vorgangsknoten dargestellt. Er enthält, schöpft man alle Darstellungsmöglichkeiten aus, die in der Abbildung 2.1 gezeigten Informationen.

Die im Weiteren verwendeten Kürzel stehen für folgende Inhalte:

- **D** Dauer des Vorgangs
- **FAZ** Früheste Anfangszeit des Vorgangs unter Berücksichtigung aller Abfolgebeziehungen zu den Vorgängern, Wartezeiten und Termineinschränkungen
- **FEZ** Früheste Endzeit des Vorgangs, als seine früheste Anfangszeit zuzüglich seiner Dauer
- **SAZ** Späteste Anfangszeit des Vorgangs unter Berücksichtigung aller Abfolgebeziehungen zu den Nachfolgern, Wartezeiten und Termineinschränkungen
- **FAZ+** Frühester Anfang des Vorgangs gemäß vom Planer fixierter Kalenderdaten
- **FEZ+** Frühestes Ende des Vorgangs
- **SAZ−** Spätester Anfang
- **GP** Gesamtpuffer des Vorgangs, als Differenz seiner spätesten und frühesten Anfangszeit
- **FP** Freier Puffer des Vorgangs, als Differenz des frühesten Anfangs aller Nachfolger und seiner frühesten Endzeit
- **WZ** Wartezeiten können positiv oder negativ sein. Mit ihnen kann man steuern, dass
 - der Nachfolger nicht unmittelbar nach Vorgangsende beginnen darf, sondern verzögert
 - der Nachfolger schon vor Vorgangsende beginnen darf, also eine Überlappung erlaubt ist
 - keines von beiden eintritt.

Nach diesem ersten Eindruck der vielseitigen Darstellungsmöglichkeiten in einem CPM-Netzplan gehen wir alle Planungsschritte anhand eines kleinen Projektes durch.
2.2. Das Projekt

Des Weiteren betrachten wir folgende entsprechend abgekürzte Vorgänge:

\[\begin{align*}
\text{KURE} & \triangleq \text{Terminabsprachen mit KUndern und REferenten} \\
\text{ORRA} & \triangleq \text{Festlegen von ORt und RÄumlichkeiten in einem erstklassigen Hotel} \\
\text{PRAE} & \triangleq \text{Detaillierte Planung der PRÄsentation der Palette eigener Produkte} \\
\text{UNTE} & \triangleq \text{Vorbereiten der UNTErlagen für den Druck} \\
\text{ENDE} & \triangleq \text{ProjektENDE}
\end{align*}\]

Anhand dieser fünf Vorgänge werden wir nun den gesamten Planungsvorgang in all seinen Facetten erarbeiten.

2.3. Die Struktur

Den Vorgangsnamen werden nun laufende Nummern und Vorgänger zugeordnet. Daraus ergibt sich die erste Vorgangsliste zum Projekt in Tabelle 2.2. Wir wollen stets so verfahren, dass die Spalten zu noch nicht benötigten Informationen grau hinterlegt werden.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Vorgang</th>
<th>Dauer [Tage]</th>
<th>Vorgänger</th>
<th>Termine</th>
<th>Ressourcen</th>
<th>Kosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KURE</td>
<td></td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ORRA</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>PRAE</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>UNTE</td>
<td>2</td>
<td>3, 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ENDE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Vorgänger sind stets als unmittelbare Vorgänger zu verstehen. Sie können ab sofort einen Beziehungspfeil von einem Vorgänger zum Vorgang (Nachfolger) ziehen. Der Strukturplan zur Vorgangsliste in Tabelle 2.2 ist in Abbildung 2.2 gezeigt.

Auch bei den Netzplänen zeichnen wir nur die bereits vorhandenen Informationen ein; sie werden dann sukzessive erweitert. In einer Legende (rechts) fügen wir stets die bereits belegten Größen an.

Machen Sie sich beispielsweise klar, dass ENDE zwei unmittelbare Vorgänger hat, nämlich UNTE (Nr. 4) und PRAE (Nr. 3), wie es laut Vorgangsliste auch sein soll.

![Diagram of the network plan with predecessors and successors](image)

2.4. Zeitrechnung ohne Wartezeiten und Termineinschränkungen

Lassen Sie uns nun annehmen, dass für die einzelnen Vorgänge Zeitschätzungen (gemäß Tabelle 2.3) vorgenommen wurden.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Vorgang</th>
<th>Dauer [Tage]</th>
<th>Vorgänger</th>
<th>Termine</th>
<th>Ressourcen</th>
<th>Kosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KURE</td>
<td>10</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ORRA</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>PRAE</td>
<td>14</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>UNTE</td>
<td>6</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ENDE</td>
<td>0</td>
<td>3, 4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ENDE ist im strengen Sinne kein Vorgang, was auch durch die Dauer $D_5 = 0$ zum Ausdruck kommt (vgl. Tabelle 2.3). Er dient als Endmeilenstein des Projektes, an dem man als wichtiges Ergebnis die **Projektdauer** ablesen kann.

Nomenklatur

Vorwärtsrechnung

Nun berechnen wir zu jedem Vorgang j seine früheste Anfangszeit. Sie ergibt sich stets durch die Formel

$$ FAZ_j = \max_i (FEZ_i) = \max_i (FAZ_i + D_i). $$

Bedenken Sie, dass die FAZ zu Beginn des Projektes immer 0 ist!

Beginnen Sie links und schreiben dann nach rechts fort. Berechnen Sie stets nur die FAZ eines Vorgangs, für dessen sämtliche Vorgänger FEZ bereits bekannt ist. Dabei ergibt sich innerhalb eines Knotens i

$$ FEZ_j = FAZ_j + D_j. $$

Abb. 2.3: Netzplan zu Tabelle 2.3
Wir haben einige Werte für Sie errechnet und in den Netzplan auf der vorigen Seite eingetragen.

KURE: FAZ = 0, FEZ = 0 + 10 = 10
ORRA: FAZ = 10, FEZ = 10 + 4 = 14
PRAE: FAZ = 10, FEZ = 10 + 14 = 24

Übungsaufgabe 2.1

Vervollständigen Sie den Netzplan in Abbildung 2.3 durch Vorwärtsrechnung für alle FAZ und FEZ.

Rückwärtsrechnung

Sind alle FAZ berechnet, ist insbesondere auch das früheste Projektende (24. Tag) bekannt. Nun wollen wir wissen, wann die Vorgänge spätestens beginnen müssen, ohne dieses Projektende zu gefährden. Wir berechnen für jeden Vorgang seine späteste Anfangszeit. Sie ergibt sich stets durch die Formel

\[SAZ_i = \min_j (SAZ_j - D_i) \]

Beginnen Sie rechts und schreiben dann nach links fort. Berechnen Sie stets nur die SAZ eines Vorgangs, für dessen sämtliche Nachfolger SAZ bereits bekannt sind.

Abb. 2.4: Netzplan mit FAZ, FEZ und SAZ
Wir haben wiederum einige Werte für Sie berechnet und diese in den Netzplan der Abbildung 2.4 eingetragen.

\[\text{ENDE } \text{SAZ} = 24 \] (Falls man das Projekt auch spätestens zum Zeitpunkt 24 beenden will.)
\[\text{UNTE } \text{SAZ} = 24 - 6 = 18 \]
\[\text{PRAE } \text{SAZ} = 24 - 14 = 10 \]

Algorithmus 2.1 stellt die oben dargestellten Berechnungen in kompakter Form dar.

Algorithmus 2.1: Netzplanberechnung

Vorwärtsrechnung

- **Initialisierung**
 Bestimme Menge der Quellknoten Q (Knoten ohne Vorgänger)
 \[FAZ_q := 0, q \in Q ; \text{Knoten } q \text{ ist berechnet.} \]

M1 Wahl Knoten j
Wähle einen Knoten \(j \), der keinen unberechneten Vorgänger hat.

- **Berechnung Knoten j**
 \[FAZ_j = \max_i \{ FEZ_i \} = \max_i \{ FAZ_i + D_i \} \]

- **Abbruch Vorwärtsrechnung**
 Falls \(j \neq \text{ENDE} \), gehe zu **M1**.

Rückwärtsrechnung

- **Initialisierung**
 \[SAZ_{\text{ENDE}} := FAZ_{\text{ENDE}} ; \text{Knoten } \text{ENDE} \text{ ist berechnet.} \]

M2 Wahl Knoten i
Wähle einen Knoten \(i \), der keinen nichtberechneten Nachfolger hat.

- **Berechnung Knoten i**
 \[SAZ_i = \min_j \{ SAZ_j - D_j \} \]

- **Abbruch Rückwärtsrechnung**
 Falls \(i \neq q \), gehe zu **M2**.

STOP.
Übungsaufgabe 2.2

Vervollständigen Sie die Rückwärtsrechnung des Netzplans in Abbildung 2.4 durch Eintrag aller SAZ.

Natürlich kann man die SAZ auch auf einen späteren Termin als 24 Tage nach Projektbeginn setzen, also das Projektende weniger restriktiv handhaben.

Übungsaufgabe 2.3

Führen Sie die Rückwärtsrechnung des Netzplans in Abbildung 2.4 erneut durch Eintrag aller SAZ jedoch mit dem spätesten Projektende 26 Tage nach Beginn durch.

Pufferzeiten

Sind alle FAZ und SAZ berechnet, kann man die Pufferzeiten ermitteln. Der Gesamtpuffer GP für den Vorgang \(i\) ergibt sich durch die Formel

\[
GP_i = SAZ_i - FAZ_i. \tag{2.4}
\]

Diese Pufferzeit stellt die Zeit dar, um die sich der Vorgang verzögern darf, ohne das berechnete Projektende zu gefährden.

Neben dem Gesamtpuffer gibt es noch den freien Puffer FP. Ihn ermittelt man nach der Formel

\[
FP_i = \min_j (FAZ_j) - FEZ_i. \tag{2.5}
\]

Natürlich ist der FP stets kleiner oder gleich dem GP (warum?); FP ist restriktiver als GP. Hiermit wird die Zeit errechnet, um die sich der Vorgang verzögern darf, ohne die FAZ auch nur eines Nachfolgers zu gefährden. Insbesondere haben dadurch alle Nachfolger noch ihren vollständigen GP zur Verfügung!
Berechnen Sie nun alle Gesamtpuffer und überprüfen unsere Angaben im Netzplan in Abbildung 2.5. Berechnen Sie dann die FP für die Knoten UNTE und PRAE und überprüfen ebenfalls unsere Angaben.

Übungsaufgabe 2.4

Vervollständigen Sie die Freien Puffer FP in Abbildung 2.5.

kritischer Vorgang
kritischer Pfad

Übungsaufgabe 2.5

Gibt es stets einen kritischen Pfad?
Hinweis: Kritische Vorgänge werden durch FAZ und SAZ bestimmt.

2.5. Zeitrechnung mit Wartezeiten und Termineinschränkungen

Aufgrund von Sachzusammenhängen kann es erforderlich sein, positive oder negative Wartezeiten WZ vorzugeben. Positive Wartezeiten müssen nach Ende des Vorganges in jedem Fall bis zum Beginn des Nachfolgers verstreichen; negative

Tab. 2.4: Vorgangsliste zusätzlich Wartezeiten

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Vorgang</th>
<th>Dauer [Tage]</th>
<th>Vorgänger</th>
<th>Termine</th>
<th>Ressourcen</th>
<th>Kosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KURE</td>
<td>10</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ORRA</td>
<td>4</td>
<td>1 EA</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>PRAE</td>
<td>14</td>
<td>1 EA</td>
<td>-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>UNTE</td>
<td>6</td>
<td>2 EA</td>
<td>+2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ENDE</td>
<td>0</td>
<td>3 EA</td>
<td>0</td>
<td>4 EA</td>
<td>+0</td>
</tr>
</tbody>
</table>

Konkret sei angenommen, dass die Ende/Anfang-Beziehung EA zwischen Vorgang PRAE \((j=3)\) und seinem Vorgänger KURE \((i=1)\) eine Überlappung von 4 Tagen erlaubt; mit der Präsentationsvorbereitung kann daher schon 4 Tage vor Beendigung von KURE begonnen werden, da sich bereits ein positives Abstimmungsergebnis mit Kunden und Referenten abgezeichnet hat. Man bildet diese Überlappung durch eine negative Wartezeit \(WZ_{13} = -4\) ab.

Demgegenüber will man vor dem Festlegen des Präsentationsortes und vor der Buchung von Hotelzimmern noch die schriftliche Teilnahmebestätigung der Kunden und Referenten abwarten, für die man zwei Tage ansetzt. Sind keine Wartezeiten vorgesehen \((EA + 0)\), unterdrückt man diese Information gewöhnlich in der Vorgangsliste.

Wartezeiten \(WZ\) berücksichtigt man bei der Vorwärtsrechnung gemäß der Formel

\[
FAZ_j = \max_i \left(FEZ_i + WZ_{ij} \right) = \max_i \left(FAZ_i + WZ_{ij} + D_i \right)
\]

und bei der Rückwärtsrechnung gemäß

\[
SAZ_i = \min_j \left(SAZ_j - WZ_{ij} \right) - D_i
\]

Natürlich ändern sich damit auch die Pufferzeiten! Für den GP gilt nach wie vor \(GP_i = SAZ_i - FAZ_i\) des neu berechneten Netzplans. Den FP erhält man mittels der Formel

\[
FP_i = \min_j \left(FAZ_j - WZ_{ij} \right) - FEZ_i
\]

Abb. 2.6: Netzplan zusätzlich Wartezeiten

Übungsaufgabe 2.6

Berechnen Sie alle freien Puffer FP für den Netzplan in Abbildung 2.6.

Tab. 2.5: Vorgangsliste zusätzlich Termineinschränkungen

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Vorgang</th>
<th>Dauer [Tage]</th>
<th>Vorgänger</th>
<th>Termine</th>
<th>Ressourcen</th>
<th>Kosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KURE</td>
<td>10</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ORRA</td>
<td>4</td>
<td>1 EA</td>
<td>FAZ⁺ : 14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>PRAE</td>
<td>14</td>
<td>1 EA - 4</td>
<td>AZ⁻ : 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>UNTE</td>
<td>6</td>
<td>2 EA + 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ENDE</td>
<td>0</td>
<td>3 EA, 4EA</td>
<td>SAZ⁻ : 24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Übungsaufgabe 2.7

ii) Ist KURE – ORRA – UNTE – ENDE ein kritischer Pfad?

Die **Terminkonflikte** offenbaren sich im Netzplan durch negative Pufferzeiten! Der Vorgang UNTE soll am 20. Tag frühestens und am 18. Tag spätestens anfangen. Das ergibt einen Gesamtpuffer von -2; gleiches gilt für ORRA. Solche Ter-
minkonflikte müssen aufgelöst werden. Dazu bieten sich folgende Möglichkeiten an:

- Rücknahme der SAZ⁻-Forderung am Projektende,
- Vorverlegen des Projektbeginns um 2 Tage und entsprechenden Abgleich der FAZ⁺ und SAZ⁻-Beschränkungen, wie sie vorher eingerechnet wurden,
- Beschleunigung des Vorgangs ORRA oder des Vorgangs UNTE um 2 Tage,
- Rücknahme der Wartezeit zwischen ORRA und UNTE.

Abb. 2.8: Netzplan zusätzlich weiterer Termineinschränkungen

Übungsaufgabe 2.8

Zeigen Sie, dass die Wiederaufhebung der Wartezeit zwischen ORRA und UNTE beide Terminkonflikte auflöst.

In MS-PROJECT wird der Benutzer bei Festlegen der Termineinschränkung für ENDE auf einen möglichen Konflikt hingewiesen, und es werden allgemeine Strategien zur Auflösung angeboten (vgl. Abbildung 2.9).
2. Die Planungstechnik CPM

2.6. Ressourcen- und Kostenplanung

Neben der Einplanung der Vorgänge eines Projekts gemäß ihrer sachlich / zeitlichen Abhängigkeiten werden auch notwendigerweise benötigte Ressourcen und damit verbundene Kosten berücksichtigt, die von den Vorgängen beansprucht werden: Personal, Maschinen, Räumlichkeiten, Fremdleistungen.

Für unser kleines Projekt mögen diese Vollkostensätze für
Müller (als Leiter) 350,-- € / Tag,
Hübner (als Sachbearbeiterin) 250,-- € / Tag und
Schubert (als Auszubildende) 75,-- € / Tag
betragen.

Tab. 2.6: Vorgangsliste zusätzlich mit Ressourcenverbräuchen und Vorgangskosten

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Vorgang</th>
<th>Dauer [Tage]</th>
<th>Vorgänger</th>
<th>Termine</th>
<th>Ressourcen</th>
<th>Kosten [€]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KURE</td>
<td>10</td>
<td>-</td>
<td>Mü [0.5], Hü [0.5]</td>
<td></td>
<td>3.000,--</td>
</tr>
<tr>
<td>2</td>
<td>ORRA</td>
<td>4</td>
<td>1 EA</td>
<td>FAZ⁺: 14 Hū [0.25], Sch [0.5]</td>
<td>400,--150,--</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>PRAE</td>
<td>14</td>
<td>1 EA − 4</td>
<td>AZ⁻: 10 Mü [0.25], Hū [0.5]</td>
<td>2.975,--</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>UNTE</td>
<td>6</td>
<td>2 EA + 2</td>
<td>Mü [0.33], Hū [0.5] Sch [1.0]</td>
<td>1.893,--</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ENDE</td>
<td>0</td>
<td>3 EA, 4 EA</td>
<td>SAZ⁻: 24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.7. Kontrolle und Steuerung

Während der Projektplanung bekanntwerdende strukturelle, terminliche, technische oder budgetmäßige Änderungen führen dazu, dass der Netzplan überprüft und ggf. überarbeitet werden muss.

Das Gleiche gilt für Änderungen während der Projektdurchführung. Diese Anpassung der Planung für die Zukunft heißt Projektsteuerung.

Übungsaufgabe 2.9

Diskutieren Sie ausgiebig die notwendigen Überarbeitungsschritte hinsichtlich

- Strukturdatenänderungen,
- Zeitdatenänderungen und
- Änderungen von Ressourcen- oder Kostendaten.

Das Balkendiagramm

Sortiert man die Vorgänge nach ihren frühesten Anfangszeiten FAZ aufsteigend – eine Option, die von NPT-Programmen standardmäßig zur Verfügung gestellt wird – und trägt sie über der Zeichenebene zu ihren FAZ linksbündig ein, so erhält man eine gute, kalenderorientierte Projektübersicht. Für unser kleines Projekt mit

Abb. 2.11: Balkendiagramm zum Netzplan in Abbildung 2.6

Dieses Vorgehen fassen wir in Algorithmus 2.2 im Pseudo-Code zusammen.

Algorithmus 2.2: Balkendiagramm-Erstellung

Vorberechnungen

- **Topologische Sortierung**
 Der Netzplan wurde in einem Vorlauf topologisch sortiert.

- **Netzplanberechnung**
 Gemäß Algorithmus 2.1 wurden die frühesten Zeiten FAZ_i berechnet.

Anordnung der Vorgänge

- **1. Kriterium**
 Ordne die Vorgänge nach ihren FAZ_i.

- **2. Kriterium**
 Haben Vorgänge gleiche FAZ_i, ordne sie nach ihren Vorgangsnummern.

Graphische Umsetzung

- Zeichne die Vorgänge gemäß obiger Anordnung von oben nach unten zu ihren frühesten Anfangszeiten in das Vorgangs-/Zeit-Diagramm ein.

Die Fortschrittskontrolle bezieht sich stets auf das aktuelle Datum. So kann für jeden einzelnen Vorgang der jeweilige Fortschritt überprüft werden.

jedoch um etwas mehr als einen Tag im Verzug. Die Erstellung der Unterlagen hat noch nicht begonnen.

![Balkendiagramm mit Stichtag 12. Juli 2001 und Fortschrittsanzeige](image)

Abb. 2.12: Balkendiagramm mit Stichtag 12. Juli 2001 und Fortschrittsanzeige

Übungsaufgabe 2.10

Kann der Projektabschlusstermin trotz der Verzögerung bei PRAE eingehalten werden? – Begründen Sie Ihre Antwort.
Diese Seite bleibt aus drucktechnischen Gründen frei.
3.2. Hauptmodelle der Linearen Planungsrechnung

Übungsaufgabe 3.3

a) Zeichnen Sie die Nebenbedingungen von (3.5) in der x_1, x_2-Ebene und lösen Sie die Aufgabe $\max x = x_1 + x_2$ graphisch!

b) $x_2 = 0$ bzw. $-\frac{2}{200}r_1 + \frac{10}{200}r_2 = 0$ bzw. $r_1 = 5r_2$ beschreibt die Produktionen, die sich ausschließlich des Prozesses 1 bedienen. $x_1 = 0$ bzw. $\frac{3}{200}r_1 - \frac{5}{200}r_2 = 0$ bzw. $r_1 = \frac{5}{3}r_2$ beschreibt die Produktionen, die sich ausschließlich des Prozesses 2 bedienen. Tragen Sie diese in ein (r_1, r_2)-Koordinatensystem ein; in der Literatur heißen sie Prozessstrahlen! Tragen Sie dann für $x = 13$ die Prozesskombinationen $x = \frac{1}{200}(r_1 + 5r_2)$ ein.

Erläutern Sie das unter (a) gefundene Ergebnis $x_1 = 3, x_2 = 10$.

Im nächsten Abschnitt bleiben wir bei der Situation substitutionaler Prozesse, ändern jedoch das ökonomische Ziel.

3.2.2.2. Kostenminimierung bei gewünschter Ausbringungsmenge

Wie schon in Abschnitt 3.2.1 unterstellen wir konstante Faktoreinheitskosten q_i.

Mit dem dort entwickelten Ausdruck $k_j = \sum_{i=1}^{m} a_{ij} q_i$ erhält man jetzt die Prozesskosten des j-ten Prozesses. Beachten Sie hierbei, dass (3.3) sowohl den Fall linearer Limitationalität des Produktes P_j als auch zusammen mit (3.4) den Fall linearer Substitutionalität beschreibt. Sollen nun minimale Gesamtkosten K bei einem bestimmten Produktionsniveau x und bei teilweise beschränkt vorhandenen Einsatzfaktoren erreicht werden, hat man die LP-Aufgabe

$$\min K = \sum_{j=1}^{n} k_j x_j$$

unter den Nebenbedingungen

$$\sum_{j=1}^{n} a_{ij} x_j \leq \bar{r}_i \quad \text{eineige } i$$

$$\sum_{j=1}^{n} x_j = x$$

$$x_j \geq 0.$$
Die abstrakte Formulierung erläutern wir wieder am Beispiel.

Beispiel 3.5 (Fortsetzung von 3.4)

Die Faktorkosten mögen 1,00 € je Katalog und 2,00 € je Prospekt betragen. Die Prozesskosten belaufen sich dann auf

\[k_1 = 100 \cdot 2 + 20 \cdot 1 = 220 \text{ € pro Einheit} \]
\[k_2 = 50 \cdot 2 + 30 \cdot 1 = 130 \text{ € pro Einheit}. \]

Will man \(x = 13 \) Informationspakete zusammenstellen, ergibt sich beispielsweise bei einer Beschränkung auf 300 Kataloge folgende LP-Aufgabe

\[
\begin{align*}
\min K &= 220x_1 + 130x_2 \\
\text{unter den Nebenbedingungen} \\
&20x_1 + 30x_2 \leq 300 \\
&x_1 + x_2 = 13 \\
&x_1, x_2 \geq 0.
\end{align*}
\]

Übungsaufgabe 3.4

a) Zeichnen Sie die Aufgabe in der \((x_1, x_2)\)-Ebene, und lösen Sie sie graphisch!

b) Visualisieren Sie das in (a) gefundene Ergebnis in der \((r_1, r_2)\)-Ebene. Tragen Sie dazu Isokostenlinien ein, d. h. Faktoreinsatzlinien gleicher Kosten \(K\).

Bisher waren die Produktionsprozesse stets einstufig. Im folgenden Abschnitt wird ein auf mehreren Stufen lineares substitutionales Modell vorgestellt.

3.2.3. Ein Beispiel einer mehrstufigen Linearen Planungsrechnung

Lösungen zu den Übungsaufgaben

Übungsaufgabe 2.1

| UNTE FAZ = 14, FEZ = 14 + 6 = 20 |
| ENDE FAZ = max{20,24} = 24, FEZ = 24 + 0 = 24 |

Übungsaufgabe 2.2

| ORRA SAZ = 18 - 4 = 14 |
| KURE SAZ = min{14-10, 10-10} = 0 |

Legende: Vorgangsnamen
Nr. FAZ Dauer FEZ
Lösungen der Übungsaufgaben

Übungsaufgabe 2.3

<table>
<thead>
<tr>
<th>Schritt</th>
<th>SAZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENDE</td>
<td>26</td>
</tr>
<tr>
<td>UNTE</td>
<td>20</td>
</tr>
<tr>
<td>PRAE</td>
<td>12</td>
</tr>
<tr>
<td>ORRA</td>
<td>16</td>
</tr>
<tr>
<td>KURE</td>
<td>2</td>
</tr>
</tbody>
</table>

Übungsaufgabe 2.4

<table>
<thead>
<tr>
<th>Schritt</th>
<th>FP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORRA</td>
<td>0</td>
</tr>
<tr>
<td>KURE</td>
<td>0</td>
</tr>
</tbody>
</table>

Legende:

- **Nr.** FAZ
- **Dauer** FEZ
- **SÄZ**
Übungsaufgabe 2.5

Der Gesamtpuffer ist gerade dann gleich 0, wenn SAZ gleich FAZ ist. Ein kritischer Pfad im Netzplan also sowohl durch die Werte von FAZ als auch von SAZ bestimmt. Ist das Projektende so terminiert, dass SAZ dort nicht mit FAZ übereinstimmt, ist dort der GP ungleich 0. Dieser Puffer pflanzt sich im Projekt fort und es gibt im zugehörigen Netzplan keinen kritischen Pfad.

Übungsaufgabe 2.6

<table>
<thead>
<tr>
<th>Vorgang</th>
<th>FP</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNTE</td>
<td>22 – 22 = 0</td>
</tr>
<tr>
<td>PRAE</td>
<td>22 – 20 = 2</td>
</tr>
<tr>
<td>ORRA</td>
<td>(16 – 2) – 14 = 0</td>
</tr>
<tr>
<td>KURE</td>
<td>min {10 – 0, 6 + 4} – 10 = 0</td>
</tr>
</tbody>
</table>

Übungsaufgabe 2.7

a) KURE \(FP = \min \{14 – 0, 10 + 4\} – 10 = 4 \)

b) Die Gesamtpuffer der Vorgänge ORRA, UNTE und ENDE sind zwar
gleich 0, der Vorgang KURE besitzt jedoch einen Puffer von 4 Tagen, und damit ist KURE – ORRA – UNTE – ENDE insgesamt kein kritischer Pfad.

Übungsaufgabe 2.8

Eine Änderung in den Strukturdaten hat in der Regel die vollständige Neuberechnung aller Zeiten zur Folge.

Zeitdatenänderungen haben häufig nur lokale Auswirkungen. Die Verkürzung oder Verlängerung von Vorgangsdauern wirken sich beispielsweise nur dann zwingend auf das Projektende aus, wenn die entsprechenden Vorgänge auf dem kritischen Pfad liegen. Besteht an der zu betrachtenden Stelle ein Puffer, so wird möglicherweise nur dieser verändert.

Übungsaufgabe 2.10

Der Projektabschlusstermin kann trotz der Verzögerung bei PRAE eingehalten werden, da für die Planung der Präsentation ein Puffer von 2 Tagen besteht und dieser Vorgang planmäßig zum frühesten Zeitpunkt begonnen wurde.

Übungsaufgabe 3.1

- **Substantiell in die Produktion eingehende Verbrauchsfaktoren:**
 Schrauben, Tischplatten, Messingwinkel, etc.
- **Nicht substantiell in die Produktion eingehende Verbrauchsfaktoren:**
 Schmiermittel, Reinigungsmittel, etc.
- **Potentialfaktoren mit Abgabe von Werkverrichtungen:**
 Maschinen, Arbeitskräfte
- **Potentialfaktoren ohne Abgabe von Werkverrichtungen:**
 Gebäude, Grundstücke
- **Dispositiver Faktor:**
 Leitungsfunktion
- **Zusatzfaktoren:**
 Versicherungsbeiträge, Kapitalzinsen

Übungsaufgabe 3.2

<table>
<thead>
<tr>
<th>Typ der Firma</th>
<th>Anzahl von Produkten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einproduktunternehmen</td>
<td>$n = 1$</td>
</tr>
<tr>
<td>Mehrproduktunternehmen</td>
<td>$n > 1$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stufigkeit der Produktion</th>
<th>Anzahl der Stufen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einstufige Produktion</td>
<td>$\ell = 0$</td>
</tr>
<tr>
<td>Mehrstufige Produktion</td>
<td>$\ell > 0$</td>
</tr>
</tbody>
</table>
Lösungen der Übungsaufgaben

Übungsaufgabe 3.3

a)

Die schraffierte Menge erfüllt alle Nebenbedingungen; für $x = 5$ ist die Isoquante aller Prozesskombinationen $5 = x_1 + x_2$ eingezeichnet. Verschiebt man die Isoquante nach „oben rechts“, berührt sie irgendwann den Punkt $P = (3, 10)$; er ist der Punkt maximaler Ausbringungsmenge $x = 3 + 10 = 13$.

b)

Für $x_1 = 3, x_2 = 10$ wird gerade im Punkt O produziert.

✓
a) Die gestrichelte Linie stellt die Menge zulässiger Produktionen dar. Die Kosten sind minimal bei $x_1 = 9, x_2 = 4$.

b) Für $x_1 = 9, x_2 = 4$ wird gerade im Punkt O, $r_1 = 1100, r_2 = 300$ produziert.
Übungsaufgabe 3.5

Die variablen Produktionskosten pro Tonne:

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
<th>Benzin</th>
<th>Gasöl</th>
<th>Gasöl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Beschaffung</td>
<td>Veredelung</td>
<td></td>
</tr>
<tr>
<td>EK</td>
<td>79,00</td>
<td>84,00</td>
<td>275,00</td>
<td>232,00</td>
<td>--</td>
</tr>
<tr>
<td>Destillation</td>
<td>5,50</td>
<td>5,50</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Entschwef.</td>
<td>0,15-1,50</td>
<td>0,20-1,50</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Veredelung</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>6,00</td>
</tr>
<tr>
<td>\sum</td>
<td>84,725</td>
<td>89,80</td>
<td>275,00</td>
<td>232,00</td>
<td>6,00</td>
</tr>
</tbody>
</table>

Außerdem fallen Fixkosten von 1.150.000,-- DM/Tag an.

Die Zielfunktion lautet

\[\max - 84,725 r_1 - 89,8 r_2 - 275 r_3 - 232 r_4 - 6 y \\
+ 260 x_1 + 240 x_2 + 230 x_3 + 220 x_4 + 195 x_5 - 1.150 \]

Übungsaufgabe 3.6

\[\min r_1 + r_2 + r_3 + \ldots + r_{15} \]

bzw.

\[\min 20 r_1 + 5 r_2 + 10 x_3 + \ldots + 20 r_{15} \]

unter den Restriktionen

\[\begin{align*}
2 r_1 + 1 r_2 + 1 r_3 + 1 r_4 + 1 r_5 & \geq 400 \\
1 r_2 + 2 r_6 + 2 r_7 + 1 r_8 + 1 r_9 + 1 r_{10} & \geq 200 \\
2 r_3 + 1 r_4 + 1 r_6 + 2 r_8 + 1 r_9 + 4 r_{11} + 3 r_{12} + 2 r_{13} + 1 r_{14} & \geq 800 \\
1 r_2 + 2 r_4 + 3 r_5 + 1 r_7 + 2 r_9 + 4 r_{10} + 1 r_{12} + 3 r_{13} + 5 r_{14} + 6 r_{15} & \geq 600 \\
r_i & \geq 0 \text{ und ganzzahlig.}
\end{align*} \]