1181K96 - 1 - M 1', MINF 1, K

Aufgabe 1

5 Punkte Bestimmen Sie für die komplexe Zahl

$$z:=\frac{3+i}{4}$$

Ret, $\operatorname{Im} z$ und |z|, und geben Sie \overline{z} und z^{-1} jeweils in der Form a+bi mit a, $b\in\mathbb{R}$ an.

Aufgabe 2

4 Punkte Zeigen Sie: Für alle n ∈ N gilt:

$$\sum_{k=1}^{n} \frac{1}{3^{k-1}} = \frac{3}{2} \left(1 - \frac{1}{3^n} \right).$$

Aufgabe 3

Sei V ein Vektorraum über einem Körper K .

2 Punkte **a)** Wann heißt eine Teilmenge U von V ein Untervektorraum von V?

4 Punkte **b)** Beweisen Sie für eine Teilmenge U von V die Äquivalenz folgender Aussagen:

- (i) U ist ein Untervektorraum von V.
- (ii) Es gilt $0_V \in U$ und $au + u' \in U$ für alle $a \in K$ und alle $u, u' \in U$.

Aufgabe 4

- **a)** Es seien V ein Vektorraum über einem Körper K, $n \in \mathbb{N}$ und $v_1, \ldots, v_n \in V$ paarweise verschieden.
- **2** Punkte (i) Wann heißen die Vektoren v_1, \ldots, v_n linear unabhängig?
- **2** Punkte (ii) Wann heißt $\{v_1, \ldots, v_n\}$ ein Erzeugendensystem von V?
- 2 Punkte (iii) Wann heißt $\{v_1, \ldots, v_n\}$ eine Basis von V?
 - **b)** Untersuchen Sie, ob die folgenden Vektoren im @-Vektorraum C³

$$\begin{pmatrix} i \\ 0 \\ -1 \end{pmatrix}, \quad \begin{pmatrix} 1+i \\ -2 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} 1+2i \\ -4 \\ 2-i \end{pmatrix}$$

- 3 Punkte (i) linear unabhängig sind,
- 2 Punkte (ii) ein Erzeugendensystem von C³ bilden,
- 2 Punkte (iii) eine Basis von C³ bilden.

Aufgabe 5

- a) Seien V, W Vektorräume über einem Körper K und $f: V \rightarrow W$ eine Abbildung.
- 2 Punkte (i) Wann heißt f linear?
- 4 Punkte (ii) Sei f linear. Definieren Sie die Begriffe Kern f und rangf.

1181K96 - 2 - M 1 / MINF 1, K

b) Die lineare Abbildung $f: \mathbb{R}^3 \to \mathbb{R}^4$ sei definiert durch

$$f(egin{pmatrix} x_1 \ x_2 \ x_3 \end{pmatrix}) := egin{pmatrix} x_1 + 2x_2 - x_3 \ x_1 + x_2 + x_3 \ 2x_1 + 3x_3 \ x_1 + x_2 \end{pmatrix} & ext{für alle } \begin{pmatrix} x_1 \ x_2 \ x_3 \end{pmatrix} \in \mathbb{R}^3.$$

(Sie brauchen *nicht* nachzuweisen, da% f eine lineare Abbildung ist.)

- 3 Punkte (i) Überprüfen Sie, ob f injektiv ist.
- 5 Punkte (ii) Bestimmen Sie eine Basis von Bild f, und ermitteln Sie rang f. Ist f surjektiv?

Aufgabe 6

- 2 Punkte **a)** Wie lautet die Dimensionsformel für eine lineare Abbildung $f: V \to W$ zwischen endlich-dimensionalen Vektorräumen V und W?
 - **b)** Geben Sie für die Eigenschaften (i),...,(iv) jeweils (mit Beweis) eine lineare Abbildung $f: \mathbb{R}^3 \to \mathbb{R}^4$ an mit der jeweiligen Eigenschaft, oder beweisen Sie, da% eine solche lineare Abbildung nicht existiert:
- 2 Punkte (i) rangf = 2 und dim Kern f = 2,
- 2 Punkte (ii) f surjektiv,
- 2 Punkte (iii) f injektiv,
- 2 Punkte (iv) f bijektiv.

Aufgabe 7

7 Punkte a) Für welche a $\in \mathbb{R}$ ist das reelle lineare Gleichungssystem

$$G_a$$
 $x_1 + x_2 = 1$ $2x_1 + ax_2 - 2ax_3 = 0$ $x_1 + x_2 + ax_3 = 2$

- (i) lösbar,
- (ii) eindeutig lösbar?
- 3 Punkte **b)** Bestimmen Sie alle Losungen von G_a für a=2

Aufgabe 8

Seien K ein Körper und $n \in \mathbb{N}$.

- 2 Punkte a) Wann heißt eine Matrix $P \in \operatorname{Mat}_n(K)$ invertierbar?
- 4 Punkte b) Seien $P,Q \in Mat_n(K)$ invertierbar. Beweisen Sie: PQ ist invertierbar mit

$$(PQ)^{-1} = Q^{-1}P^{-1}$$
.

(Die Aussage ist aus dem Kurs bekannt, sie soll hier nochmal bewiesen werden.)

Aufgabe 9

Es sei $\mathcal{B} = (v_1, v_2, v_3, v_4)$ eine geordnete Basis eines W-Vektorraumes V, und eine geordnete Basis C von V sei definiert durch

$$C = (w_1, w_2, w_3, w_4) := (v_4, v_1, v_3, v_2).$$

(Sie brauchen nicht zu zeigen, daß C eine geordnete Basis von V ist.)

Sei $f: V \rightarrow V$ eine lineare Abbildung mit

$$M_{\mathcal{B}}(f) = \begin{pmatrix} 9 & 0 & 0 & 0 \\ 2 & 7 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 0 & 5 & 1 & 1 \end{pmatrix}$$

- 4 Punkte a) Bestimmen Sie Mc(f).
- **3** Punkte **b)** Bestimmen Sie ein $P \in GL@$ mit $Mc(f) = P^{-1}M_B(f)P$.

Aufgabe 10

1 Punkte Zeigen Sie, daß für beliebige $a, b \in \mathbb{R}$ die Matrix

$$P := \begin{pmatrix} 1 & -a & b \\ a & 1 & 0 \\ -b & 0 & 1 \end{pmatrix} \in \operatorname{Mat}_{3}(\mathbb{R})$$

invertierbar ist, bestimmen Sie det P, und berechnen Sie $\det(P^{-1})$.

Aufgabe 11

Seien K ein Körper, $n \in \mathbb{N}$ und $A \in Mat_n(K)$.

- **2** Punkte a) Wann heißt $\lambda \in K$ Eigenwert von A?
- 3 Punkte b) Seien λ_1 , λ_2 Eigenwerte von A mit $\lambda_1 \neq \lambda_2$. Beweisen Sie:

$$\operatorname{Eig}_{A}(\lambda_{1}) \cap \operatorname{Eig}_{A}(\lambda_{2}) = \{0\}.$$

Aufgabe 12

Es sei $A \in Mat_3(\mathbb{R})$ definiert durch

$$A := \begin{pmatrix} 3 & -2 & -2 \\ 1 & 0 & -1 \\ 3 & -3 & -2 \end{pmatrix}.$$

- 4 Punkte a) Bestimmen Sie das charakteristische Polynom und die Eigenwerte von A.
- 4 **Punkte** b) Geben Sie zu jedem Eigenwert von **A** eine Basis des zugehörigen Eigenraums an.
- **2 Punkte** c) Untersuchen Sie (mit Beweis), ob A diagonalisierbar ist, und ermitteln Sie gegebenenfalls eine invertierbare Matrix $P \in \operatorname{Mat}_3(\mathbb{R})$, so daß $P^{-1}AP$ eine Diagonalmatrix ist.

1181LK96 M I / MINF 1, LK

Mathematik 1 / Mathematik für Informatiker 1, WS 96/97 Klausur vom 15.02.97:

Lösungshinweise zu den Klausuraufgaben

Aufgabe 1

Es gilt

$$z = \frac{15 - 5i}{4 + 3i} = \frac{(3 + i)(4 - 3i)}{(4 + 3i)(4 - 3i)} = \frac{(12 + 3) + (4 - 9)i}{16 + 9} = \frac{15 - 5i}{25} = \frac{3}{5} - \frac{1}{5}i,$$

also ist Rez = $\frac{3}{5}$ und Imz = $-\frac{1}{5}$. Es folgt

$$|z| = \sqrt{\left(\frac{3}{5}\right)^2 + \left(\frac{1}{5}\right)^2} = \sqrt{\frac{10}{25}} = \frac{1}{5}\sqrt{10},$$

$$\overline{z} = \frac{3}{5} + \frac{1}{5}i,$$

$$z^{-1} = \frac{\overline{z}}{|z|^2} = \frac{\frac{3}{5} + \frac{1}{5}i}{\frac{2}{5}} = \frac{3}{2} + \frac{1}{2}i.$$

Aufgabe 2

Zu zeigen ist: Für alle $n \in \mathbb{N}$ gilt

$$\sum_{k=1}^{n} \frac{1}{3^{k-1}} = \frac{3}{2} \left(1 - \frac{1}{3^n} \right).$$

Wir führen den Beweis mittels vollständiger Induktion nach n.

Induktionsanfang n = 1: Für n = 1 erhält man

$$\sum_{k=1}^{1} \frac{1}{3^{k-1}} = \frac{1}{3^{1-1}} = 1 = \frac{3}{2} \left(1 - \frac{1}{3} \right),$$

womit der Induktionsanfang gesichert ist.

Induktionsschritt von n auf n t 1:

Wir betrachten ein $n \in \mathbb{N}$ und nehmen an, es gelte

$$\sum_{k=1}^{n} \frac{1}{3^{k-1}} = \frac{3}{2} \left(1 - \frac{1}{3^n} \right).$$

Wir haben zu zeigen, daß dann

$$\sum_{k=1}^{n+1} \frac{1}{3^{k-1}} = \frac{3}{2} \left(1 - \frac{1}{3^{n+1}} \right)$$