Kurs 1653

Einführung in die Theoretische Informatik A Lösungshinweise zur Klausur vom 18. März 2006

Aufgabe 1

(a) Sei $n \in \mathbb{N}$. Wir beweisen die Aussage durch vollständige Induktion über $n \in \mathbb{N}$.

 $\underline{n=0}$ Für n=0 gilt

$$ES^{3\cdot 0}(2,(x,y,z,0,...)) = (2,(x+0\cdot y,y,z-0,0,...))$$

und damit die gewünschte Behauptung.

 $\underline{n\to n+1}$ Sei $n+1\le z.$ Dann ist insbesondere $n\le z$ und mit der Induktionsvoraussetzung erhalten wir

$$ES^{3(n+1)}(2, (x, y, z, 0, ...))$$
= $ES^{3}(2, (x + n \cdot y, y, z - n, 0, ...))$ da $n \le z$
= $(2, (x + n \cdot y + y, y, z - n - 1, 0, ...)),$

also die Behauptung für n+1. Damit ist die Induktion abgeschlossen.

(b) Sei $a \in \mathbb{N}$. Wir erhalten

$$ES^{3a+2}(1, (0, a, 0, 0, ...))$$
= $ES^{3a+1}(2, (0, a, a, 0, 0, ...))$
= $ES(2, (0 + a \cdot a, a, a - a, 0, ...))$
= $(5, (a^2, a, 0, 0, ...)).$

Insgesamt folgt daraus $f_M(a) = a^2$ für alle $a \in \mathbb{N}$.

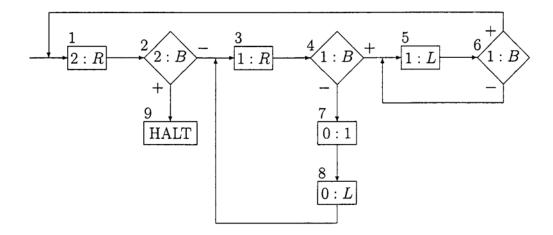
Aufgabe 2

Das folgende WHILE-Programm berechnet f

$$((R_1:(R_0+;R_1-));(R_2:(R_0-;R_2-))).$$

Aufgabe 3

Die durch das folgende Flussdiagramm gegebene Turingmaschine leistet das Gewünschte:



Aufgabe 4

(a) Es ist

$$h = \operatorname{Sub}\left(s, \operatorname{Sub}\left(m, \operatorname{pr}_{1}^{(3)}, \operatorname{pr}_{3}^{(3)}\right), \operatorname{Sub}\left(S, \operatorname{pr}_{2}^{(3)}\right)\right).$$

(Dabei sind s und m wie in Satz 7.2.2., und S ist wie in Definition 7.2.1.) Es folgt, dass f primitiv-rekursiv ist.

(b) Die Funktion $f: \mathbb{N}^2 \longrightarrow \mathbb{N}$ erfüllt die folgenden Rekursionsgleichungen:

$$f(x,0) = x \cdot 0 = Z(x)$$

und

$$f(x, y + 1) := f(x, y) + x \cdot (y + 1) = s(f(x, y), m(x, S(y)))$$

für alle $x, y \in \mathbb{N}$. Definiert man nun $h' : \mathbb{N}^3 \longrightarrow \mathbb{N}$ durch h'(x, y, z) := s(z, m(x, S(y))), dann gilt offenbar $f = \operatorname{Prk}(Z, h')$. Ferner sind sowohl Z als (nach Satz 7.2.2) auch h' primitiv-rekursiv, denn

$$h' = \operatorname{Sub}\left(s, \operatorname{pr}_{3}^{(3)}, \operatorname{Sub}\left(m, \operatorname{pr}_{1}^{(3)}, \operatorname{Sub}\left(S, \operatorname{pr}_{2}^{(3)}\right)\right)\right).$$

Es folgt, dass f primitiv-rekursiv ist.

(c) Es sei $\tilde{g}: \mathbb{N}^2 \longrightarrow \mathbb{N}$ definiert durch

$$\tilde{g}(x,y) := |x - y^2|$$

für alle $x, y \in \mathbb{N}$. Dann ist \tilde{g} primitiv rekursiv, denn

$$\tilde{g} = \text{Sub}\left(g, \text{pr}_1^{(2)}, \text{Sub}\left(m, \text{pr}_2^{(2)}, \text{pr}_2^{(2)}\right)\right).$$

Ferner gilt, falls es ein $y \in \mathbb{N}$ mit $x = y^2$ gibt,

$$\operatorname{sqrt}(x) = \sqrt{x} = \min\{y \in \mathbb{N} \mid x = y^2\} = \min\{y \in \mathbb{N} \mid |x - y^2| = 0\}.$$

Andernfalls ist die Menge $\{y \in \mathbb{N} \mid x = y^2\}$ leer, und dann ist $\operatorname{sqrt}(x) = \operatorname{div}$. Also gilt in jedem Falle $\operatorname{sqrt}(x) = \tilde{\mu}\left(\tilde{g}\right)(x)$, d. h., $\operatorname{sqrt} = \tilde{\mu}\left(\tilde{g}\right)$.

Aufgabe 5

Sei $h :\subseteq \mathbb{N}^2 \to \mathbb{N}$ definiert durch $h(j, \langle n, i \rangle) := \varphi_n \langle i, j \rangle + 1$. Dann ist $h \in \mathbb{P}^{(2)}$, denn für alle $i, j, n \in \mathbb{N}$ gilt

$$h(j, \langle n, i \rangle) = u_{\varphi}(n, \langle i, j \rangle) + 1.$$

Nach dem utm-Theorem ist u_{φ} berechenbar, die Cantorschen Tupelfunktionen, ihre Inversen und die Projektionen sind berechenbar. Also entsteht h durch Substitution von berechenbaren Funktionen in berechenbare Funktionen und ist damit auch berechenbar. Nach dem smn-Theorem gibt es ein $r \in \mathbb{R}^{(1)}$ mit

$$\varphi_{r(j)}\langle n, i \rangle = h(j, \langle n, i \rangle)$$

für alle $j, \langle n, i \rangle \in \mathbb{N}$. Nach dem Rekursionssatz gibt es zu jeder Funktion $r \in \mathbb{R}^{(1)}$ eine Zahl j_0 mit $\varphi_{j_0} = \varphi_{r(j_0)}$. Also folgt insgesamt

$$\varphi_{j_0}\langle n,i\rangle = \varphi_{r(j_0)}\langle n,i\rangle = h(j_0,\langle n,i\rangle) = \varphi_n\langle i,j_0\rangle + 1$$

für alle $n, i \in \mathbb{N}$.

Aufgabe 6

- (a) Es sei M eine verallgemeinerte Registermaschine, die bei Eingabe von $\langle i, x \rangle$ erst $\varphi_i(x)$, dann $\varphi_x(i)$ berechnet und hält, wenn beide Werte existieren und gleich sind (und andernfalls divergiert). Offenbar ist $A = \text{Def}(f_M)$. Nach dem utm-Theorem sind alle vorkommenden Funktionen sowie alle Tests berechenbar. Damit ist f_M berechenbar und somit A rekursiv-aufzählbar.
- (b) Wir zeigen $K_{\varphi} \leq A$. Da K_{φ} nicht rekursiv ist, kann nach Satz 9.3.5 auch A nicht rekursiv sein. Es gilt

$$i \in K_{\varphi} \iff [\varphi_i(i) \text{ existiert und } \varphi_i(i) = \varphi_i(i)] \iff \langle i, i \rangle \in A.$$

Wir definieren $h(i) := \langle i, i \rangle$. Dann ist $h \in \mathbb{R}^{(1)}$ und es gilt $K_{\varphi} = h^{-1}[\{0\}]$. Damit gilt $K_{\varphi} \leq A$.

(c) A kann nicht εndlich sein, denn jede endliche Menge ist rekursiv (Satz 9.1.4).

Aufgabe 7

(a) Es sei $f :\subseteq \mathbb{N} \to \mathbb{N}$ definiert durch

$$f\langle i, j, k \rangle := \begin{cases} 0 & \text{falls } i = j + k \\ \text{div sonst.} \end{cases}$$

Für alle $\langle i, j, k \rangle \in \mathrm{Def}(\nu)$ gilt dann

$$f\langle i, j, k \rangle$$
 exist. $\iff i = j + k \iff (i - j)/k = 1 \iff \nu\langle i, j, k \rangle = 1$.

Nach Def. 10.1.3 des Kurses ist die Menge $\{1\}$ ν -r.a.

(b) Es gilt für $k \neq 0$ und $i \neq j$,

$$\frac{1}{\frac{i-j}{k}} = \frac{k}{i-j} = \left\{ \begin{array}{l} \frac{k-0}{i-j} \text{ falls } i > j \\ \frac{0-k}{j-i} \text{ falls } i < j \end{array} \right.$$

Wir definieren daher z.B. eine Funktion $g: \mathbb{N} \to \mathbb{N}$ durch

$$g\langle i,j,k \rangle := \left\{ \begin{array}{ll} \langle k,0,i-j \rangle \ \mathrm{falls} & i>j \\ \langle 0,k,j-i \rangle \ \mathrm{falls} & i\leq j \end{array} \right.$$

für alle $i, j, k \in \mathbb{N}$. Dann ist g berechenbar, und es gilt für alle $\langle i, j, k \rangle \in \mathrm{Def}(\nu)$, so dass $1/\nu \langle i, j, k \rangle$ existiert, also für alle $\langle i, j, k \rangle$ mit $k \neq 0$ und $i \neq j$:

$$f \circ \nu \langle i, j, k \rangle = \frac{k}{i-j} = \left\{ \begin{array}{l} \frac{k-0}{i-j} = \nu \langle k, 0, i-j \rangle = \nu \circ g \langle i, j, k \rangle & \text{falls} \quad i > j \\ \frac{0-k}{j-i} = \nu \langle 0, k, j-i \rangle = \nu \circ g \langle i, j, k \rangle & \text{falls} \quad i < j \,. \end{array} \right.$$

Nach Def. 10.1.3 ist die Funktion $f(\nu, \nu)$ -berechenbar.

Aufgabe 8

- (a) Nein, denn f ist nicht stetig. Nach Satz 10.4.12 ist aber jede (ρ, ρ) -berechenbare Funktion stetig
- (b) Es sei $w \in \Sigma^*$ so dass $\nu_{\rm rat}(w) = 0$. Die Funktion $g : \Sigma^{\omega} \to \Sigma^{\omega}$ mit $g(p) := w \# w \# w \# \dots$ ist berechenbar. Für alle $p \in {\rm Def}(\rho)$ mit $\rho(p) \in {\rm Def}(f)$ d.h. $\rho(p) \neq 0$ gilt $f \circ \rho(p) = 0 = \rho \circ g(p)$. Damit ist $f(\rho, \rho)$ -berechenbar.

- (c) Es gibt ein Wort $w \in \Sigma^*$, so dass $\nu_{\rm rat}(w) = a$. Es sei $p := w \# w \# w \# \dots$ Dann ist die Funktion $g : \{()\} \to \Sigma^\omega$ mit g() = p berechenbar. Offenbar gilt $a = \rho \circ g()$. Damit ist die Zahl a ρ -berechenbar.
- (d) Es gibt nur abzählbar viele berechenbare Funktionen $g:\{()\}\to \Sigma^\omega$. Also kann es nur abzählbar viele berechenbare Zahlen geben. Die Menge der reellen Zahlen ist aber nicht abzählbar.