Lösungsvorschläge zur Klausur zum Kurs 01653 Einführung in die Theoretische Informatik A

Aufgabe 1

Auigane	<u> </u>	
(1) Welckorrekt	he der fo	olgenden Aussagen ist/sind korrekt?
[]		Für eine partielle Funktion $f :\subseteq A \to B$ und $X \subseteq A$ gilt $f[X] = \{b \in B \mid \exists x \in A \text{ mit } f(x) = b\}.$
[]		Für jede partielle Funktion $f = (A, B, \rho)$ ist $f^{-1} = (B, A, \{(b, a) \mid (a, b) \in \rho\})$ eine partielle Funktion.
[X]		Eine partielle Funktion $f = (A, B, \rho)$ heißt total, genau dann wenn $A = Def(f)$ gilt.
(2) Welc	he der f	olgenden Aussagen ist/sind korrekt?
korrekt	falsch	
[X]	[]	Es gilt $\langle x_1, x_2, x_3, x_4 \rangle = \Pi^{(4)}(x_1, x_2, x_3, x_4)$.
[X]	[]	Für alle $f \subseteq \mathbb{N}^{n+1} \to \mathbb{N}, \ g : \mathbb{N}^n \to \mathbb{N} \text{ und } h : \mathbb{N}^{n+2} \to \mathbb{N} \text{ gilt:}$
		Wenn f aus g und h durch primitive Rekursion entsteht,
		dann ist f total.
[]	[X]	Für alle $h: \mathbb{N}^{k+1} \to \mathbb{N}$ gilt: $\tilde{\mu}(h)$ ist total
(3) Welc	he der f	olgenden Aussagen ist/sind korrekt?
korrekt	falsch	
[X]	[]	Syntaktisch ist jedes WHILE-Programm ein LOOP-Programm.
[]	[X]	Jede WHILE-berechenbare Funktion ist auch LOOP-berechenbar.
[X]	[]	Jede LOOP-berechenbare Funktion ist auch primitiv rekursiv.
[]	[X]	Für jede berechenbare Wortfunktion $f:\subseteq \Sigma^* \to \Sigma^*$ existiert eine
		Registermaschine M mit $f_M = f$.
[X]	[]	Für jede Funktion $f:\subseteq \Sigma^* \to \Sigma^*$ für die eine Turingmaschine M
		existiert, so dass $f_M = f$ gilt, existiert auch eine Bandmaschine M
		$mit f_{M'} = f.$

(4) Welche der folgenden Funktionen $f:\subseteq \mathbb{N} \to \mathbb{N}$ ist/sind berechenbar? berechenbar nicht ber.

(5) Welche der folgenden Mengen ist/sind rekursiv / rekursiv aufzählbar, aber nicht rekursiv / nicht rekursiv-aufzählbar?

rekursiv r.a., aber nicht r.a. nicht rek.

	nicht rek
	[X]
[X]	[]
[]	[]
[]	[]
[X]	[]
[X]	[]

 $\{n, m > | \varphi_n - \varphi_m\}$ $\{n \mid f(n) = n\}$ wobei $f \in R^{(1)}$ gegeben ist. $Def(\varphi)$

(6) Welche der folgenden Aussagen ist/sind korrekt?

korrekt falsch

[] [X] Sei $A \subseteq \mathbb{N}$ rekursiv-aufzählbar. Dann ist auch jede Menge $B \subseteq A$ rekursiv-aufzählbar.

[X] [] Für alle $A_1, A_2 \subseteq \mathbb{N}$ gilt: Wenn A_1, A_2 rekursiv sind, dann ist auch $\mathbb{N} \setminus (A_1 \cup A_2)$ rekursiv.

[X] [] Für alle Mengen A und alle Funktionen $g \in R^{(1)}$ gilt: $g^{-1}[\operatorname{Bild}(cf_A)]$ ist rekursiv.

Aufgabe 2

Wir geben nur die Nummern der Definitionen an. Die nötigen Formulierungen können dann an der entsprechenden Stelle im Kurstext nachgelesen werden.

- (a) Siehe Text und Def. 1.3.2
- (b) Def. 3.1.1.1
- (c) Def. 3.1.3.1
- (d) Def. 5.3.2.4
- (e) Def. 5.3.3.3
- (f) Def. 7.1.1
- (g) Def. 9.3.4
- (h) Def. 10.1.10

Aufgabe 3

- (i) (a) Satz 8.2.6
 - (b) Satz 9.3.7
- (ii) (a) A = Def(f) für $f \in P$
 - (b) $A = \emptyset$ oder $(A = Bild(g) \text{ für } g \in R^{(1)})$
 - (c) $A = \{x \in \mathbb{N} \mid (\exists t) \ (x, t) \in B\}$ für ein rekursives $B \subseteq \mathbb{N}^2$

- (iii) (a) $P = \{f \mid f = f_M \text{ für eine RM } M\}$ (Def. 9.2.1)
 - (b) $P = \{f \mid f = AC \circ \tau(P) \circ EC \text{ für ein WHILE-Programm } P\}$ (Satz 9.2.5.1)
 - (c) $P = \{f \mid f = f_{\mu} \text{ für eine } \mu\text{-rekursive Funktion } f_{\mu}\}$ (Satz 9.2.5.2)
 - (d) $P = \{ f \mid \nu_{\Sigma} f \nu_{\Sigma}^{-1} \text{ berechenbar } \}$

Weiterhin sind Charakterisierungen über Markov-Algorithmen, λ -definierbare Funktionen oder durch Gleichungssysteme im Kurs vorgestellt worden.

Aufgabe 4

- (a) Seien P := (R1 : P1), P1 := (R1 : P2) und P2 := R0+.
- (b) Es gilt:
 - (B1) $\forall a, b, t. \ \lambda(P2)^t(a, b, 0, ...) = (a + t, b, 0, ...)$
 - $(B2) \quad \forall a, b. \qquad \lambda(P1)(a, b, 0, \ldots) = (a+b, b, 0, \ldots)$
 - (B3) $\forall a, b, t.$ $\lambda(P1)^t(a, b, 0, ...) = (a + tb, b, 0, ...)$ (B4) $\forall a, b.$ $\lambda(P)(a, b, 0, ...) = (a + b^2, b, 0, ...)$

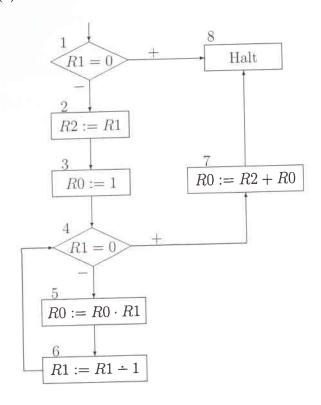
 - (B1) zeigt man mit Induktion nach t, (B2) mit (B1), (B3) mit Induktion nach t und
 - (B4) mit (B3).
 - Aus (B4) folgt $AC \circ \lambda(P) \circ EC(a) = AC \circ \lambda(P)(0, a, 0, ...) = AC(a^2, 0, ...) = a^2$.

Aufgabe 5

Sei $g(a, < b, c >, < d, e, f >) = (a^2d + b^2d + 2abe + 2acd + dc^2 + 2eab, a^2e + 2abd + abc + 2acd + dc^2 + 2abc + 2a$ $b^2e+2aec+2bcd+c^2e,f)$ für alle $a,b,c,d,e,f\in\mathbb{N}$. Dann ist g berechenbar und es gilt $f(a, \nu_{\mathbb{Z}}(b), \nu_{\mathbb{Q}}(c)) = \nu_{\mathbb{Q}}g(a, b, c)$ für alle $a, b, c \in \mathbb{N}$, wie sich durch nachrechnen überprüfen lässt. Somit ist f (id $_{\mathbb{N}}, \nu_{\mathbb{Z}}, \nu_{\mathbb{Q}}, \nu_{\mathbb{Q}}$)-berechenbar.

Aufgabe 6

(a) Sei R durch das folgende Flussdiagramm F gegeben:



(b) Es gilt:

(B1)
$$\forall a, b, c \in \mathbb{N}, b > 0.$$
 $(4, (a, b, c, 0, \ldots)) \stackrel{*}{\models} (4, (a \cdot b!, 0, c, 0, \ldots))$

Beweis per Induktion nach b:

beweiß per indutation
$$b = 1$$
 $(4, (a, 1, c, 0, ...)) \vdash (5, (a, 1, c, 0, ...)) \vdash (6, (a \cdot 1, 1, c, 0, ...))$ $\vdash (4, (a, 0, c, 0, ...)) = (4, (a \cdot 1!, 0, c, 0, ...))$

$$b \to b+1: (4, (a, b+1, c, 0, \ldots)) \stackrel{3}{\vdash} (4, (a \cdot (b+1), b, c, \ldots))$$

$$\stackrel{*}{\vdash_{\text{IV}}} (4, (a \cdot (b+1)b!, 0, c, 0, \ldots)) = (4, (a \cdot (b+1)!, 0, c, 0, \ldots))$$

Mit (B1) folgt für n > 0:

$$(1, (0, n, 0, \ldots)) \qquad \stackrel{3}{\vdash} (4, (1, n, n, 0, \ldots))$$

$$\stackrel{*}{\vdash} (4, (n!, 0, n, 0, \ldots))$$

$$\vdash (7, (n!, 0, n, 0, \ldots))$$

$$\vdash (8, (n! + n, 0, n, 0, \ldots))$$

$$= (8, (f(n), 0, n, 0, \ldots)).$$

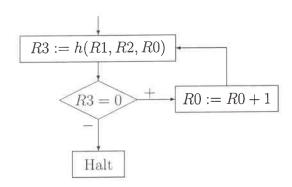
Für n = 0 ergibt sich:

$$(1, (0, n, 0, \ldots)) \vdash (8, (f(0), n, 0, \ldots)).$$

Somit ist $f_R(n) = AC \circ f_T \circ EC(n) = AC((f(n), 0, ...)) = f(n)$ für alle $n \in \mathbb{N}$.

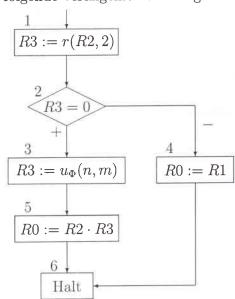
Aufgabe 7

(a) Es ist $u_{\Phi}(i,x) = \mu t[h(i,x,t) \neq 0]$, da aus $h(i,x,t) \neq 0$ folgt, dass $\Phi_i(x) \leq t$ (und $x \in \text{Def}(\Phi_i)$). Die folgende verallgemeinerte Registermaschine berechnet dann u_{Φ} :



(b) Sei $f(n,m) := \begin{cases} m \cdot \Phi_n(m) & \text{falls } m \text{ gerade} \\ n & \text{sonst.} \end{cases}$

Die folgende verallgemeinerte Registermaschine M berechnet f:

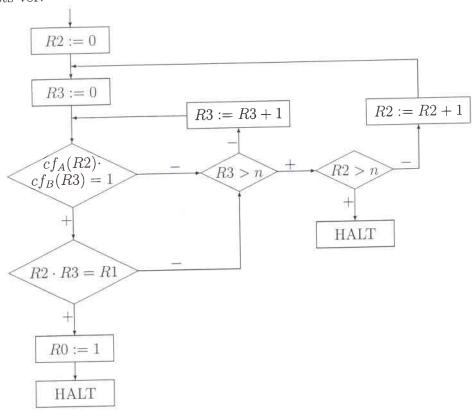


Die Funktion r in Marke 1 ist das r aus Satz 3.2.4.10. Die Funktion u_{Φ} ist nach Teil (a) berechenbar. Somit kommen im Flussdiagramm von M nur berechenbare Tests und Funktionen vor. Da M offensichtlich f berechnet, ist f berechenbar. Nach dem smn-Theorem gibt es nun ein $r \in R^{(1)}$, so dass $\varphi_{r(n)}(m) = f(n, m)$

$$= \begin{cases} m \cdot \Phi_n(m) & \text{falls } m \text{ gerade} \\ n & \text{sonst} \end{cases}$$
 für alle $n, m \in \mathbb{N}$ gilt.

Aufgabe 8

(a) Folgende verallgemeinerte Registermaschine berechnet die charakteristische Funktion von $A \cdot B$. Da A und B rekursiv sind, kommen nur berechenbare Funktionen und Tests vor.



(b) Es gilt $\varphi^{-1}\{f\} = \{i \in \mathbb{N} \mid \varphi_i = f\}$. Weiterhin gilt $\{f\} \neq \emptyset$ und $\{f\} \neq P^{(1)}$. Nach dem Satz von Rice ist $\{i \in \mathbb{N} \mid \varphi_i = f\}$ somit nicht rekursiv. Wäre $\{i \in \mathbb{N} \mid \varphi_i = f\}$ endlich, dann wäre die Menge rekursiv. Widerspruch.