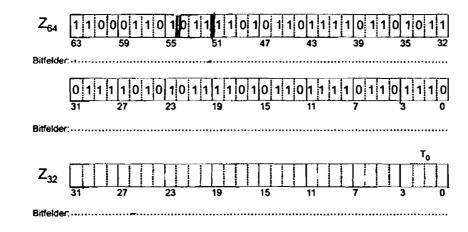
Postanschrift: FernUniversität, D-5808 Name, Vorname	4 Hager	Matri Adres sons mogt		ner und	ng			INF
Straße, Nr.							F	ERNUNIVERSITÄT
PLZ, Wohnort								D-58084 Hagen
Fachbereich Inf	orm	atik						
Kurs: 1708 "T	echn	ische	Info	rmati	k II"			
Nachklausur am 05.0	3.200	05						
					<u>Höre</u>	<u>rstatų</u>	ıs:	Klausurort:
Zutreffen dingt ank			£		☐ Te ☐ Zv ☐ Ga ☐ Ba ☐ Le	eilzeits veithö asthö acheld ehram	rer Or	☐ Berlin ☐ Bochum ☐ Frankfurt ☐ Hamburg ☐ Karlsruhe ☐ Köln ☐ München ☐ Bregenz ☐ Wien
. 20		Γ .		1,7,4		43.3		ם ו
Aufgabe	1	2	3	4	5	6	Summe	
erreichbare Punktzahl	10	20	20	25	25		100]
bearbeitet								
erreichte Punktzahl								
Note:								

©2005 FernUniversität - Gesamthochschule - in Hagen

Ge	ben Sie für die folgenden Aussagen an, ob sie richtig oder falsch sind.	richtig	falsch
a)	Die Register-Selektion in Peripheriebausteinen geschieht in allen Mikrorechner-Systemen immer über spezielle Steuersignale.		
b)	Bei allen Mikroprozessoren liefert die Leistungsangabe in MIPS (<i>Million Instructions per Second</i>) und MOPS (<i>Million Operations per Second</i>) stets denselben Wert.		
c)	Statische Speicherbausteine sind dadurch gekennzeichnet, daß sie nach dem Ausschalten der Betriebsspannung ihre gespeicherte Information nicht verlieren.		
Erç	jänzen Sie die folgenden Sätze:		
d)	Der ist ein serielles hauptsächlich zur Verbindung vonverwendet wird und zunächst für den Einsatz im Automobilbau entwicke	***********	
e)	Ein Peripheriebaustein, der mit Hilfe eines Dualzählers verschiedene dinen erzeugen kann, wird als	² be	zeichnet
f)	Durch welche speziellen Hardwareeigenschaften ist ein Digitaler (DSP) in der Lage, pro Taktperiode wenigstens einen Zweiadreßbefolgenen Sie wenigstens 3.		
	1	••••	
	2	••••	
	3	••••	

(10 Punkte)


Aufgabe 1:

¹ Abkū. ung <u>und</u> volle Bezeichnung verlangt.
² Deuts ie <u>und</u> englische Bezeichnung verlangt.

Aufgabe 2: Datentypen und Datenformate

(20 Punkte)

In dieser Aufgabe geht es um die Umwandlung von Zahlen im IEEE-754-Standard vom 64-bit-Format ins 32-bit-Format und den dabei verwendbaren verschiedenen Rundungsverfahren. Dazu sei zunächst die folgende 64-bit-Zahl Z₆₄ in binärer Schreibweise gegeben:

b) Kennzeichnen Sie im oben stehenden Bild die verschiedenen Bitfelder durch senkrechte Striche und benennen Sie sie! (Vorzeichen V, Charakteristik C, Mantissenteil M) Kennzeichnen Sie diese Bitfelder ebenso im 32-Bit-Format im Bild unten! Markieren Sie für Z₆₄ durch einen senkrechten doppelten Strich die Bitposition, ab der bei der Rundung vom 64-bit- ins 32-bit-Format alle Bits weggelassen werden! (Beachten Sie die Längen der Charakteristiken.)

Lage des Doppelstriches zwischen Bit ____ und ___

c) Welche Bedingung muß für die Charakteristik C₆₄ von Z₆₄ gelten, damit eine Rundung ins 32-bit-Format ohne Fehler in der Charakteristik C₃₂ möglich ist? Gehen Sie bei Ihrer Lösung vom (zulässigen) Exponenten E der zu rundenden Zahl aus. (Berechnung erforderlich!)

dezimal:

binär:

d)	Tragen Sie im oben stehenden Bild die Zahl Z_{32} in binärer Form ein, die man durch Konvertierung der 64-bit-Zahl Z_{64} ins 32-bit-Format erhält, wenn als Rundungsverfahren "Abschneiden" (<i>Truncate</i>) gewählt wird. Geben Sie an, wie man aus der 64-bit-Charakteristik C_{64} und dem Exponenten E die 32-bit-Charakteristik C_{32} gewinnt.
	dezimal:

binär:		
C ₆₄ = ₂	=	C ₃₂ =2

e) Die niederstwertige Tetrade T_n von Z_{64} , die bei der Rundung ins 32-bit-Format <u>nicht</u> abgeschnitten wird, habe den Wert $T_n = 1011_2$, die höchstwertige Tetrade T_{n-1} des abgeschnittenen Restes den Wert $T_{n-1} = 1101_2$.

Ergänzen Sie die folgende Tabelle durch die Werte, die man für die niederstwertige Tetrade T_0 von Z_{32} erhält, wenn man die vier im Kurs beschriebenen Rundungsverfahren ins 32-bit-Format auf Z_{64} anwendet:

Rundung zur

- i) nächstgelegenen 32-bit-Zahl,
- ii) nächstgrößeren 32-bit-Zahl,
- iii) nächstkleineren 32-bit-Zahl,
- iv) betragsmäßig nächstkleineren 32-bit-Zahl ("Abschneiden").

Vorzeichen	Rundung zur 32-bit-Zahl									
der Mantisse	nächstgelegenen	nächstgrößeren	nächstkleineren	Abschnei- den						
positiv (+/0)										
negativ (-/1)										

(20 Punkte)

Wiederholung aus Kurs 1708:

Ein MMX-Rechenwerk (Multimedia Extension) unterstützt gepackte Datenformate, die in einem 64-bit-Register wahlweise 8 Bytes, 4 (16-bit-)Wörter, 2 (32-bit-)Doppelwörter oder ein 64-bit-Wort (Quadword) unterbringen. Alle Werte können vorzeichenlos oder vorzeichenbehaftet sein. Negative Werte werden dabei im 2er-Komplement dargestellt. Spezielle MMX-Befehle wirken parallel auf diese Datenformate, d.h. es können z.B. durch einen einzigen Addier-Befehl zweimal 8 Bytes addiert werden. Ein Übertrag zwischen den einzelnen Werten der gepackten Daten findet dabei nicht statt. Die Datenbreite wird im Assemblerbefehl spezifiziert. Der erwähnte Addier-Befehl hat z.B. die Form: PADDX, wobei X = B, W, D für 8 Bytes, 4 Wörter, 2 Doppelwörter steht.

Der MMX-Befehlssatz enthält u.a. die in der folgenden Tabelle angegebenen Befehle.

Mnemo		Bemerkung
	Logische Operation	en (wirken auf alle 64 Bits)
PAND	Packed And	bitweise Und-Verknüpfung
PANDN	Packed And-Not	bitweise Und-Verknüpfung mit negiertem erstem Operanden
POR	Packed Or	bitweise Oder-Verknüpfung
PXOR	Packed Exclusive Or	bitweise Antivalenz-Verknüpfung
<u> </u>	Vergleichsbefehle (f	ür X = B, W, D)
PCMPEQX	P. Compare Equal	elementeweiser, vorzeicher/loser Vergleich auf gleich
PCMPGTX	P. Compare Greater	elementeweiser, vorzeichenloser Vergleich auf größer
		Transferbefehle
MOVQ	Move Quadword	64-bit-Transfer zw. MMX-Reg. und MMX-Reg./Speicher
MOVD	Move Doubleword	32-bit-Transfer zw. MMX-Reg. und MMX-Reg./Speicher
PSWAPD	P. Swap Doubleword	Vertauschen der Doppelwörter in Registern
	Multiplia	zier/Addierbefehle (W × W → D)
PMULADDWD	Multiply-Add	4fache Multiplikation mit Addition zu Doppelwörtern
PADDX	Packed Add	Parallele Addition mit X = B, W, D
PSUBX	Packed Sub	Parallele Subtraktion mit X = B, W, D

Als Ergebnis liefern die Vergleichsbefehle für jedes Element (B, W, D) den Wert \$F...F (also eine Folge von ,1'-Bits), wenn der Vergleich wahr ist, andemfalls den Wert \$0...0 (also eine Folge von ,0'-Bits).

Die Befehle werden im Zweiadreß-Format angegeben. Dabei bedeutet die Assemblernotation <Befehl> R1, R2:

Der Inhalt von Register R1 wird mit dem Inhalt von R2 durch die Operation <op> verknüpft und das Ergebnis wird im Register R1 abgelegt.

In Kurzform:

R1 := R1 < op > R2.

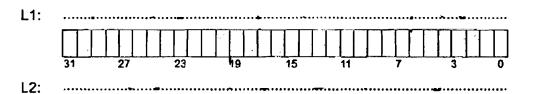
Vereinfachend werde angenommen, daß durch den Befehl

MOVQ Ri, #<Konstante> oder MOVQ Ri, [Speicher] oder MOVQ Ri, Rj ein MMX-Register R unmittelbar mit einer 64-bit-Konstanten, einem 64-bit-Speicherwort oder dem Inhalt eines anderen MMX-Registers geladen werden kann.

Aufgabenstellung:

Über eine Datenleitung werden die Hexadezimalziffern 0,...,9,A,...,F im ASCII-Code nach folgender Codierungstabelle übertragen:

Hex.	0	1	2	3	4	5	6	7	8	9	Α	В	,c	D	Ε	F
ASCII	30	31	32	33	34	35	36	37	38	39	41	42	43	44	45	46


- a) Geben Sie einen Algorithmus an, der aus einem empfangenen ASCII-Zeichen nach oben stehender Tabelle das entsprechende Hexadezimalzeichen ermittelt! Das Ergebnisregister darf die errechneten Hexadezimalzeichen mit führender Null enthalten, also: \$00, ..., \$09, \$0A, ..., \$0F. (Es reicht eine "umgangssprachliche" Formulierung: "lade ...", "vergleiche ...", "springe ...", "subtrahiere ...", "addiere ..." usw.)
 - 1. lade ASCII-Zeichen aus dem Speicher ins Register R0
 - 2.
 - 3.
 - 4.
 - 5.
 - 6.
 - **7**.
 -
- b) Schreiben Sie nun ausgehend vom Algorithmus unter a) eine Folge von MMX-Befehlen, die einen Vektor aus 8 ASCII-Zeichen nach oben stehender Tabelle aus dem Speicher liest und diese parallel in den Vektor der 8 zugeordneten Hexadezimal-Ziffern umwandelt und zwar in der Darstellung/\$00, ..., \$09, \$0A, ..., \$0F. Es stehen Ihnen die Register R0 R7 zur Verfügung.

Nr.	Befehl	Kommentar
1	MOVQ R0, [Speicher]	; lade 8-stelligen ASCII-Vektor nach R0
2		
3		
4	-	
5		
6		
7		
8		
9		
10		
11		

Ein Mikroprozessor mit 32-bit-Adreßbus und 64-bit-Datenbus besitze die in der folgenden Tabelle beschriebenen Cache-Speicher. Die Cache-Kohärenz werde jeweils durch das ME-SI-Protokoll gewährleistet.

e e e	L1-Cache	L2-Cache
Kapazität (Datenspeicher)	64 kbyte	256 kbyte
Verwaltung	4-way set associative	direct mapped
Länge der Einträge	8 byte (64 bit)	32 byte (256 bit)
Datenspeicher: Organisation		7
Adreßspeicher: Organisation		
Adreßspeicher: Kapazität		

a) Kennzeichnen Sie im folgenden Bild – jeweils für den L1- und L2-Cache – die unterscheidbaren Bitfelder einer Speicheradresse durch senkrechte Striche und tragen Sie ihre Bezeichnungen ein.

b) Leiten Sie die Werte für die Organisation der Datenspeicher und der Organisation sowie der Kapazität der Adreßspeicher ab. Vervollständigen Sie die oben stehende Tabelle um diese Angaben. Berücksichtigen Sie dabei die erforderlichen Bits für das MESI-Protokoll.

L1:

Datenspeicher-Organisation:

Adreßspeicher-Organisation:

Adreßspeicher-Kapazität:

L2:

Datenspeicher-Organisation:

Adreßspeicher-Organisation:

Adreßspeicher-Kapazität:

- c) Der Inhalt der Speicherzelle mit der Adresse \$A7B0 6D5E liege in beiden Caches vor. Geben Sie für beide Caches die folgenden Werte in Hexadezimalform an:
 - Wert im Adreßspeicher

L1: \$_____

L2: \$_____

• Nummer des Eintrags

L1: \$____

L2: \$____

Byteauswahl

L1: \$_____

L2: \$____

Benutzen Sie zur Ermittlung der Werte die folgende Zeichnung und markieren Sie dann die verschiedenen Bitfelder für den L1- bzw. L2-Cache:

		Ш				$\prod \prod$		
31	27	23	19	15	11	7	3	O

Aufgabe 5: DSP-Programmierung

(25 Punkte)

Durch die folgende Tabelle sei das Ergebnis einer Klausur zu einem Kurs der Technischen Informatik gegeben. Sie sollen in dieser Aufgabe eine Befehlsfolge für den ADSP-218x schreiben, die in möglichst wenigen Taktzyklen aus dieser Tabelle die Durchschnittsnote der Klausur ermittelt.

Note	1	2	3	4	5
%	10	14	25	18	33

a) Geben Sie an, welche Zahlendarstellung (signed/unsigned integer, signed/unsigned fractional) Sie besonders geeignet für die interne Verarbeitung der Noten- und Prozentwerte durch den ADSP-218x halten. (Begründung erforderlich!) Wie sind die Zahlenwerte im Speicher abzulegen und wie ist das erhaltene Ergebnis zu interpretieren?

b) Geben Sie eine Berechnungsformel für die Durchschnittsnote an und leiten Sie daraus ab, wie die Tabellenwerte so in den internen Speicherbereichen abzulegen sind, daß auf sie zur Berechnung des Durchschnittswertes möglichst effektiv zugegriffen werden kann. (Begründung erforderlich!)

c)	ratoren und Zu nicht die Regis Die Startadress	istands-Flags ge ter-Initialisierung sen der Tabellen	eignet initialisiert we nach dem Rücksetz	e benötigten Register o rden, d.h. das "Progra en des Prozessors zu eeignet vorgeben. De	amm" soll sicl nutze machen
	Adresse Befe	ehl	Kommentar		
	0x0100 0x0101 0x0102 0x0103				
	0x0104				
	0x0105 0x010€				
	0x0107				

d)	len - also auch	n in möglichst w	enigen Taktzyklen -	ttsnote mit möglichst v berechnet und das (g nwerksregister ausgibt	gf. gerundete
	Adresse Befe	<u>∍hl</u>	Kommentar		= -
	0x0110				
	0x0111				
	0x0112				
	0x0113				
	0x0114				
	0x0115				
	0x0116				
	0xU117				
	0x0118				
	0x0119				
	•••••				
) Geben Sie das zu finden ist.	(16-bit-)Register	an, in welchem das (gerundete Ergebnis Ihr	es Programms
	Fractional Mode	- •			

Integer Mode: