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Abstract John Horton Conway presents in his book “On Numbers and Games” a
general method to create a class of numbers containing all real numbers
as well as every ordinal number. Using the logical law of excluded middle
(LEM) he equips this class with the structure of a totally ordered field.
This paper is a first step to investigate the contribution of Conway’s
theory to the foundations of Constructive Nonstandard Analysis. In his
book Conway suggests defining real numbers as (Conway) cuts in the
set of rational numbers. Following his ideas, a constructive notion of
real numbers will be developed. Parallels to and differences from the
concept of generalized real numbers recently published by Fred Richman
[Indag. Mathem., N. S., 9 (4) 595-606 (1998)] will be outlined.

Introduction
In his book “On Numbers and Games” [2] John H. Conway develops a
very general theory of numbers and games, frequently using the logical
law of excluded middle (LEM). This paper aims to start a constructive
investigation of this theory. Following his ideas, constructive notions
for Conway games and Conway numbers will be developed and a con-
structive version of Conway’s theory will be given. We shall mark any
application of (LEM), constructively rejected omniscience or choice prin-
ciples are avoided. Whether the author’s aim to avoid even countable
choice has been achieved may be judged by mathematicians with more
experience in working without choice. (Fred Richman suggested to drop
countable choice at the Antipodes-Symposion, cf. also [7] and [9].)
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Conway games are defined in Section 1 and operations of addition
and subtraction for such games are presented in Section 2 resp. 3. The
relations of order and equality are shown to have the expected proper-
ties in Sections 4–5. Section 6 (resp. 7) deals with (real) Conway num-
bers. In Section 8 real Conway numbers are compared with generalized
Dedekind reals (cf. [6] and [9]).

1. CONWAY GAMES
1.1 Motivation. Conway games are played by two players (usually
called Left and Right) moving alternately according to specific rules
without chance moves and without hidden information. Such a game is
characterized by the positions each of the two players can reach from any
position with the next move. Thus, a Conway game x will be described
by two sets Lx and Rx, the sets of Left resp. Right options (i. e. positions
reachable by Left resp. Right from the starting position of x within one
move). As every position P in a game x can be identified with the
shortened game xP (which is played according to the rules of x starting
from position P ) the sets Lx and Rx will be identified with sets of Conway
games. Vice versa, whenever L and R are sets of Conway games, we can
construct a new Conway game {L|R}, in which Left may move to any
element of L whereas Right may move to any element of R. Having this
in mind the following definition can be given.

1.2 Definition. (Conway games)
For every set X let Γ(X) := P(X)×P(X) be the set of pairs of subsets
of X. Define G0 := Γ(∅), G1 := Γ(G0), G2 := Γ(G1), . . .

Gω:= Γ
( ⋃∞

k=0Gk

)
, Gω+1 := Γ(Gω), etc.

i. e. define Gα+1 := Γ(Gα) for every ordinal α, and for any lim-ordinal
λ define Gλ := Γ (

⋃
{Gα : α contained in λ }). (Containment is intro-

duced in A.3 of [8], where the appendix presents a constructive notion of
ordinal numbers which is compatible with constructive Conway theory.)

Ugj :=
⋃
{Gα : α ∈ Onj } may be called j-th (Conway) game class

(j ∈ N0), and elements of Ug? :=
⋃∞
j=0 Ugj are (Conway) games. (Con-

way denotes by Ug his proper class of “unimpartial” games, i. e. games
possibly favouring one of the players, cf. [2] p. 78. The ordinal number
classes Onj corresponding to the ordinals ωj−1 are defined in A.2 of [8].)

1.3 Notation. (Left/Right Options)
The projections prL : Ug? → Ug?, (L,R) 7→ L and prR : Ug? → Ug?,
(L,R) 7→ R are used to define two sets of games for every game x ∈ Ug?:
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Lx := prL(x) and Rx := prR(x), the set of Left resp. Right options in x.
Two games are called identical if their sets of Left options and their sets
of Right options coincide: x ≡ y :⇐⇒ Lx = Ly and Rx = Ry (x and
y have the same form). If x ≡ (Lx,Rx) is a game, xL will be a typical
element of Lx (typical Left option) and xR will be a typical element of
Rx (typical Right option).

Let {x1, . . . , xn|y1, . . . , ym} abbreviate ({x1, . . . , xn} , {y1, . . . , ym}).
Instead of y ≡ ({z} , ∅) we will write y ≡ {z|} etc. Sometimes the
expression

{
xL

∣∣xR
}

will be used as notation for the game x.

1.4 Examples. (The four simplest games)
(1) ⊥ ≡ {|} ≡ (∅, ∅), the empty game, in which both players are unable
to move, is the only element of Ug0.
(2) 1L ≡ {⊥|} ≡ ({⊥} , ∅), the Left unit game, in which Left has a move
to ⊥ while Right is unable to move, is an element of Ug1;
(3) 1R ≡ {|⊥} ≡ (∅, {⊥}), the Right unit game, in which Right has a
move to ⊥ while Left is unable to move, is an element of Ug1;
(4) ∗ ≡ {⊥|⊥} ≡ ({⊥} , {⊥}), the Nim unit game, in which both players
have a move to ⊥, is an element of Ug1. (Nim is described in [1].)

1.5 Convention. (Normal play convention)
A player unable to move loses, the other player is the winner. (No game
can go on forever, cf. the Descending Chain Condition in A.3 of [8].)

1.6 Definition. (Outcome classes)
For any x ∈ Ug? define (a game theoretic interpretation is given in 1.7)
x≥ 0 :⇐⇒ ∀xR ∈ Rx : xR B 0 (Left can win if Right starts),
xB 0 :⇐⇒ ∃xL ∈ Lx : xL ≥ 0 (Left can win if Left starts),
x≤ 0 :⇐⇒ ∀xL ∈ Lx : xL C 0 (Right can win if Left starts),
xC 0 :⇐⇒ ∃xR ∈ Rx : xR ≤ 0 (Right can win if Right starts),
x> 0 :⇐⇒ x ≥ 0 and xB 0 (x is positive, Left can win),
x< 0 :⇐⇒ x ≤ 0 and xC 0 (x is negative, Right can win),
x ‖ 0 :⇐⇒ xB 0 and xC 0 (x is fuzzy, the first player can win),
x= 0 :⇐⇒ x ≥ 0 and x ≤ 0 (x is zero, the second player can win).
(Here ‘can win’ stands for ‘has a winning strategy’. Readers who rely
on this intuitive concept may prefer to define the outcome classes by the
expresssions in parentheses; they can arrive at the formal definition given
here by considering 1.7. Other readers may use the formal definitions
given here to make precise the concept of winning strategy using 1.7.)
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1.7 Remark. Left can win x in case Right moves first (i. e. x ≥ 0)
if all possible Right moves lead to games which Left can win, provided
Left is allowed to make the first move there. Left can win x in case Left
moves first (i. e. x B 0) if there is a Left (winning) move leading to a game
which Left can win, provided Right has to move first there. Interpret
the outcome classes in favour of Right (x ≤ 0, x C 0) analoguously.

1.8 Examples. The outcome classes for the games from 1.4:
(1) ⊥ = 0 as both players are unable to move in ⊥;
(2) 1L > 0 as Left wins (by moving to ⊥ or since Right has no move);
(3) 1R < 0 as Right wins (by moving to ⊥ or since Left has no move);
(4) ∗ ‖ 0 as the first player wins by moving to ⊥.

1.9 Proposition.
(1) For all games x ∈ Ug? we have

(i) ¬(x ≥ 0 and x C 0), (ii) ¬(x ≤ 0 and x B 0).
(2) The logical law of excluded middle,

(LEM) ψ or ¬ψ for every proposition ψ,
is equivalent to each of the following statements:
(a) x ≥ 0 or x C 0 for all x ∈ Ug?,
(b) x ≤ 0 or x B 0 for all x ∈ Ug?.

Proof:
(1): (i) and (ii) are proved by mutual game induction, i. e. by game
induction (transfinite induction on α ∈ Onj , j ∈ N0, x ∈ Gα) for the
conjunction of (i) and (ii); the induction basis will not be mentioned as
there are no options of {|}, the only element of G0 = Γ(∅).
Ind. Step: (i) Suppose we have x ≥ 0 and x C 0, hence xR B 0 for all
xR ∈ Rx and xR ≤ 0 for some xR ∈ Rx; but xR B 0 and xR ≤ 0 would
contradict Ind.Hyp. (ii).
(ii) x ≤ 0 and x B 0 would yield similarly a contradiction to Ind. Hyp. (i).
(2): “(LEM) =⇒ (a), (b)” is also proved by mutual game induction:
Since ¬(x C 0) =⇒ ¬(∃xR ∈ Rx : xR ≤ 0) =⇒ ∀xR ∈ Rx : ¬(xR ≤ 0)

=⇒ ∀xR ∈ Rx : xR B 0 [by Ind.Hyp. (b)] =⇒ x ≥ 0,
we can deduce (a) from (LEM) via (x C 0 or ¬(x C 0) ); (b) is deduced
similarly from (LEM) and Ind.Hyp. (a).
“(a) =⇒ (LEM)”: Let xψ ≡ (∅,Rψ) ∈ Ug?, Rψ := {x ∈ {⊥} : ψ }, then
xψ ≥ 0 ⇐⇒ ∀ y ∈ Rψ : y B 0 ⇐⇒ ⊥ /∈ {x ∈ {⊥} : ψ } ⇐⇒ ¬ψ and
xψ C 0 ⇐⇒ ∃ y ∈ Rψ : y ≤ 0 ⇐⇒ ⊥ ∈ {x ∈ {⊥} : ψ } ⇐⇒ ψ.

“(b) =⇒ (LEM)” is proved analogously. �
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2. ADDITION
2.1 Motivation. Two games x, y ∈ Ug? are played simultaneously
by the simultaneous play rule: The player to move may choose from the
allowed moves in exactly one of the components x or y leaving the other
component unchanged. This leads to the following inductive definition.

2.2 Definition. (Addition of Conway games)
For games x, y ∈ Ug? their (disjunctive) sum is x+y ≡ (Lx+y,Rx+y) with
Lx+y := (Lx+y)∪ (x+Ly) =

{
xL + y : xL ∈ Lx

}
∪

{
x+ yL : yL ∈ Ly

}
,

Rx+y := (Rx+y)∪(x+Ry) =
{
xR + y : xR ∈ Rx

}
∪

{
x+ yR : yR ∈ Ry

}
;

we write concisely x+ y ≡
{
xL + y, x+ yL

∣∣xR + y, x+ yR
}
.

2.3 Remark. For all α, β ∈ Onj , j ∈ N0, we find γ ∈ Onj with
x+y ∈ Gγ whenever x ∈ Gα, y ∈ Gβ; hence addUg?

: Ug?×Ug? → Ug?,
(x, y) 7→ x+ y satisfies addUg?

(x, y) ∈ Ugj for all x, y ∈ Ugj , j ∈ N0.

2.4 Examples.
(1) ⊥+⊥ ≡ {|}+ {|} ≡ {|} ≡ ⊥;
(2) 1L +⊥ ≡ {⊥|}+ {|} ≡ {⊥+⊥|} ≡ 1L by (1);
(3) ⊥+ 1R≡ 1R can be seen similarly;
(4) 1L + 1R≡ {⊥+ 1R|1L +⊥} ≡ {1R|1L} by (2) and (3).

2.5 Proposition. (Ug? monoid)
Ug? is a commutative monoid with neutral element ⊥ ≡ {|}:
For all games x, y, z ∈ Ug? we have
(1) x+⊥≡ x,
(2) x+ y≡ y + x,
(3) (x+ y) + z≡ x+ (y + z).

Proof: The proofs are carried out by ordinary game inductions:
(1): x+⊥ ≡

{
xL +⊥

∣∣xR +⊥
}
≡

{
xL

∣∣xR
}

[Ind.Hyp.] ≡ x.
(2): y + x ≡

{
yL + x, y + xL

∣∣yR + x, y + xR
}

≡
{
x+ yL, xL + y

∣∣x+ yR, xR + y
}

[Ind.Hyp.] ≡ x+ y.

(3): (x+ y) + z ≡
{
(xL + y) + z, (x+ yL) + z, (x+ y) + zL

∣∣. . .}
≡

{
xL + (y + z), x+ (yL + z), x+ (y + zL)

∣∣. . .} [Ind.Hyp.] ≡ x+ (y+ z). �

2.6 Lemma. (Outcome classes and addition)
For all games x, y ∈ Ug? the following statements hold.
(1) x ≥ 0 and y ≥ 0 =⇒ x+ y ≥ 0,
(2) x ≥ 0 and y B 0 =⇒ x+ y B 0,
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(3) x+ y ≥ 0 and y ≤ 0 =⇒ x ≥ 0,
(4) x+ y ≥ 0 and y C 0 =⇒ x B 0,
(5) x+ y B 0 and y ≤ 0 =⇒ x B 0.

(2.7 gives a game theoretic interpretation of some of these implications.)

Proof:
(1) and (2) are mutually proved by a straightforward game induction.

(3), (4) and (5) are also proved by mutual game induction (cf. 1.9):
(3): x+ y ≥ 0 =⇒ ∀xR ∈ Rx : xR + y B 0

=⇒ ∀xR ∈ Rx : xR B 0 [by Ind. Hyp. (5)].
(4): x+ y ≥ 0 =⇒ ∀ yR ∈ Ry : x+ yR B 0

=⇒ x B 0 [by Ind.Hyp. (5)],
because y C 0 =⇒ ∃ yR ∈ Ry : yR ≤ 0.

(5): x+ y B 0 =⇒ ∃xL ∈ Lx : xL + y ≥ 0 or ∃ yL ∈ Ly : x+ yL ≥ 0;
first case: ∃xL ∈ Lx : xL + y ≥ 0 =⇒ xL ≥ 0 [by Ind.Hyp. (3)];
second case: ∃ yL ∈ Ly : x+ yL ≥ 0 =⇒ x B 0 [by Ind. Hyp. (4)],

because y ≤ 0 =⇒ ∀ yL ∈ Ly : yL C 0. �

2.7 Interpretation. The first implication of 2.6 asserts that Left
can win the sum if Right starts, provided Left can win each component.
Indeed, Left can find a good reply to any move of Right because there
is a good reply in any component, thus Left will win by choosing always
the same component as Right and playing a winning move there. The
second implication of 2.6 means that Left having the first move can win
the sum x+y, provided Left can win one component x with Right moving
first and the other component y having the first move. Indeed, Left may
start with a move from x + y to x + yL ≥ 0 choosing a winning move
yL ≥ 0 in y. Interpret the remaining implications of 2.6 analogously.

3. SUBTRACTION
3.1 Motivation.
The antigame −x is played like the original game x in which the roles
of Left and Right have been interchanged: The allowed moves for Left
in −x correspond to the Right moves in x and the allowed moves for
Right in −x correspond to the Left moves in x, where the roles have to
be interchanged in the options too. The following definition formalizes
this idea.
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3.2 Definition. (Subtraction)
For every game x ∈ Ug? its antigame is given by −x ≡ (L−x,R−x) with
L−x := −Rx =

{
−xR : xR ∈ Rx

}
and R−x := −Lx =

{
−xL : xL ∈ Lx

}
;

we write concisely −x ≡
{
−xR

∣∣−xL
}
. The difference of x, y ∈ Ug? is

x− y ≡ x+ (−y) ≡
{
xL − y, x− yR

∣∣xR − y, x− yL
}
.

3.3 Remark. We have −x ∈ Ugj whenever x ∈ Ugj , j ∈ N0; using
addUg?

from 2.3 we obtain subUg?
: Ug? × Ug? → Ug?, (x, y) 7→ x − y

with subUg?
(x, y) ≡ addUg?

(x,−y) ∈ Ugj whenever x, y ∈ Ugj , j ∈ N0.

3.4 Examples.
(1) −⊥≡ −{|} ≡ {|} ≡ ⊥;
(2) −1L≡ −{⊥|} ≡ {|−⊥} ≡ 1R by (1);
(3) −∗≡ −{⊥|⊥} ≡ {−⊥|−⊥} ≡ ∗ by (1);
(4) 1L − 1L≡ 1L + 1R ≡ {1R|1L} by (2) and 2.4 (4).

3.5 Note. For all games x ∈ Ug? we have
(1) x≤ 0 ⇐⇒ −x≥ 0,
(2) xC 0 ⇐⇒ −xB 0,
(3) x< 0 ⇐⇒ −x> 0.

((1) and (2) are proved by mutual game induction, then (3) follows.)

3.6 Proposition.
For all games x, y ∈ Ug? the following statements hold.
(1) −(−x)≡ x,
(2) −(x+ y)≡ (−x) + (−y),
(3) −(x− y)≡ y − x,
(4) x− x= 0.

(Example 3.4 (4) shows that (4) cannot be replaced by x− x ≡ ⊥.)

Proof:
The proofs of (1) and (2) are carried out by ordinary game inductions:
(1) −(−x) ≡ −

{
−xR

∣∣−xL
}
≡

{
−(−xL)

∣∣−(−xR)
}

[Ind.Hyp.] ≡ x .
(2) −(x+ y) ≡

{
−(xR + y),−(x+ yR)

∣∣−(xL + y),−(x+ yL)
}

≡
{
(−xR) + (−y), (−x) + (−yR)

∣∣(−xL) + (−y), (−x) + (−yL)
}

[Ind.Hyp.]

≡ (−x) + (−y).
(3) is a consequence of (1), (2) and 2.5 (2).
(4): We prove x− x ≤ 0. (This, (3) and 3.5 (1) yields x− x ≥ 0.)

We have xL − x C 0 for all xL ∈ Lx as xL − xL ≤ 0 by Ind.Hyp. and
we have x− xR C 0 for all xR ∈ Rx as xR − xR ≤ 0 by Ind.Hyp. Hence
(x− x)L C 0 holds for all (x− x)L ∈ Lx−x, i. e. x− x ≤ 0. �
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4. ORDER
4.1 Definition. (Order)
For games x, y ∈ Ug? define
x ≥ y :⇐⇒ x− y≥ 0 (x is at least as favourable for Left as y),
x ≤ y :⇐⇒ x− y≤ 0 (x is at most as favourable for Left as y),
x B y :⇐⇒ x− yB 0 (x is partly more favourable for Left than y),
x C y :⇐⇒ x− yC 0 (x is partly less favourable for Left than y),
x > y :⇐⇒ x− y > 0 (x is more favourable for Left than y),
x < y :⇐⇒ x− y < 0 (x is less favourable for Left than y),
x = y :⇐⇒ x− y=0 (x and y are equally favourable for Left),
x ‖ y :⇐⇒ x− y ‖ 0 (x and y are incompatible).

4.2 Hint. For all games x, y ∈ Ug? we have
(1) x ≤ y ⇐⇒ y ≥ x ⇐⇒ −x ≥ −y,
(2) x C y ⇐⇒ y B x ⇐⇒ −x B −y,
(3) x < y ⇐⇒ y > x ⇐⇒ −x > −y.

(The proofs are straightforward with 3.5 and 3.6.)

4.3 Lemma. (Characterization of order)
For all games x, y ∈ Ug? the following statements hold.
(1) x ≤ y ⇐⇒ ∀xL ∈ Lx : xL C y and ∀ yR ∈ Ry : x C yR,
(2) x C y ⇐⇒ ∃xR ∈ Rx : xR ≤ y or ∃ yL ∈ Ly : x ≤ yL,
(3) x > y ⇐⇒ x ≥ y and x B y,
(4) x = y ⇐⇒ x ≥ y and y ≥ x,
(5) x ‖ y ⇐⇒ x B y and y B x.

Proof:
(1): x ≤ y ⇐⇒ ∀ (x− y)L ∈ Lx−y : (x− y)L C 0

⇐⇒ ∀xL ∈ Lx : xL − y C 0 and ∀ yR ∈ Ry : x− yR C 0.
(2) is proved similarly, while (3), (4) and (5) are plain. �

4.4 Note. (Properties of order)
For all games x, y, z ∈ Ug? the following statements hold.
(1) x ≥ x,
(2) x ≥ y and y ≥ z =⇒ x ≥ z,
(3) x ≥ y and y B z =⇒ x B z,
(4) x ≥ y ⇐⇒ x+ z ≥ y + z,
(5) x B y ⇐⇒ x+ z B y + z,
(6) xL C x and x C xR whenever xL ∈ Lx, xR ∈ Rx.

(For (1) and (6) use 3.6 (4), for (2), (3), (4) and (5) use 2.6.)
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4.5 Remark. (Properties of strict order)
For all games x, y, z ∈ Ug? we have
(1) ¬(x > x),
(2) x > y =⇒ ¬(y > x),
(3) x > y and y > z =⇒ x > z,
(4) x > y ⇐⇒ x+ z > y + z.

((1) and (2) are proved with 1.9 (1); (3) and (4) are consequences of 4.4.)

4.6 Result. ≥ is a preorder relation (reflexive and transitive) on
Ug? with associated equivalence relation =, and > is a strict partial
order relation on Ug?.

5. EQUALITY
5.1 Note. The equivalence relation = (cf. 4.1 and 4.6) is invariant
with respect to translations and reflections, i. e. for all x, y, z ∈ Ug?
(1) x = y =⇒ x+ z = y + z,
(2) x = y =⇒ −x = −y.

(The proofs are straightforward with 4.3 (4), 4.4 and 3.5.)

5.2 Observation. Addition and subtraction preserve equality,
and ≥, B, > as well as ‖ allow substitution of equals, viz. for all
x1, x2, y1, y2, x, y, z ∈ Ug? the following statements hold.
(1) x1 = x2 and y1 = y2 =⇒ x1 + y1 = x2 + y2,
(2) x1 = x2 and y1 = y2 =⇒ x1 − y1 = x2 − y2,
(3) x = y and y % z =⇒ x % z whenever % ∈ {≥,B, >, ‖},
(4) x % y and y = z =⇒ x % z whenever % ∈ {≥,B, >, ‖}.

((1) and (2) are consequences of 5.1, the proofs of (3) and (4) for≥ and B
are plain with 4.4, then (3) and (4) for > and ‖ follow easily .)

5.3 Result. Ug?, i. e. Ug? modulo = , is a partially ordered group.
(Here bold print symbolizes the employment of = as equality.)

5.4 Lemma.
Let x, y ∈ Ug? and L′, R′ ⊆ Gα with α ∈ Onj, j ∈ N0. Then
(1) (Lx ∪ L′,Rx) = x, if L′ C x (i. e. if x′ C x for all x′ ∈ L′);
(2) (Ly,Ry ∪R′) = y, if y C R′ (i. e. if y C y′ for all y′ ∈ R′);
(3) (Lx ∪ L′,Rx ∪R′) = x, if L′ C x C R′

(i. e. if x′ C x C y′ for all x′ ∈ L′, y′ ∈ R′).
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Proof:
In (1) let x̃ ≡ (Lx ∪ L′,Rx) and prove x̃ ≤ x: We have L′ C x by
assumption and Lx C x by 4.4 (6), hence Lx̃ = (Lx ∪L′) C x. Moreover,
by 4.4 (6), we have x̃ C Rx̃ = Rx. (x ≤ x̃ is proved similarly.)
For (2) apply (1) with x = −y, L′ = −R′, for (3) apply (1) and (2). �

5.5 Notation.
For every subset A ⊆ X of a set X with preorder ≤ we call
↑A := {x ∈ X : ∃ a ∈ A : a ≤ x } the upwards closure of A,
↓A := {x ∈ X : ∃ a ∈ A : x ≤ a } the downwards closure of A.

5.6 Hint. ↑ and ↓ are closure operators:
(1) A ⊆ ↑A and A ⊆ ↓A,
(2) ↑↑A = ↑A and ↓↓A = ↓A,
(3) A ⊆ B =⇒ ↑A ⊆ ↑B and ↓A ⊆ ↓B,
(4) (A ⊆ ↑B ⇐⇒ ↑A ⊆ ↑B) and (A ⊆ ↓B ⇐⇒ ↓A ⊆ ↓B).

(The proofs are plain; closure spaces are presented in [5].)

5.7 Proposition.
For all games x, y ∈ Ug? the following statements hold.
(1) Lx ⊆ ↓Ly and Ry ⊆ ↑Rx =⇒ x ≤ y,
(2) ↓Lx = ↓Ly and ↑Ry = ↑Rx =⇒ x = y.

(The implications are no equivalences; for instance, x ≡ {∗|} = {|} ≡ y
by 5.4 as ∗ ≡ {⊥|⊥} C ⊥ ≡ {|}, but Lx = {∗} ) ∅ = ↓Ly.)

Proof:
(1): Because of Lx ⊆↓Ly we have Lx C y (i. e. xL C y for all xL ∈ Lx)
and because of Ry ⊆↑Rx we have x C Ry (i. e. x C yR for all yR ∈ Ry).
(2) is a consequence of (1). �

5.8 Interpretation. Proposition 5.7 (2) is interpreted as follows:
To omit any dominated option leaves the value of a game unchanged.
(A dominated option of x is a Left option xL ∈ ↓(Lx r

{
xL

}
) or a Right

option xR ∈ ↑(Rx r
{
xR

}
).)

6. CONWAY NUMBERS
6.1 Motivation. The difference xL−x (resp. x−xR) is the so-called
incentive for a move from x to xL (resp. from x to xR), cf. [2] p. 207.
If xL < x (resp. xR > x) does always hold, Left (resp. Right) will
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try to avoid moving in x because every move would be disadvantageous.
(High/low values are advantageous for Left resp. Right.)
A game z ∈ Ug? with this negative incentive property , in which in addi-
tion all (Left and Right) options also have this same property, is called
Conway number.

6.2 Definition. (Conway numbers)
A Conway number is a Conway game z ∈ Ug? satisfying the following
conditions:
(N1) zL C zR for all zL ∈ Lz, zR ∈ Rz,
(N2) all zL ∈ Lz and all zR ∈ Rz are Conway numbers.

Analogously to 1.2 define sets Nα ⊂ Gα for every α ∈ Onj , j ∈ N0:
N0 := G0, N1 := { z ∈ Γ(N0) : (N1) } , N2 := { z ∈ Γ(N1) : (N1) } , . . .
Nω := { z ∈ Γ (

⋃∞
k=0Gk) : (N1) } , Nω+1 := { z ∈ Γ(Gω) : (N1) }, etc.

Noj :=
⋃
{Nα : α ∈ Onj } may be called the j-th Conway number

class (j ∈ N0), and No? :=
⋃∞
j=0 Noj is the set of all Conway numbers.

(Conway denotes by No his proper class of numbers, cf. [2] p. 4.)

6.3 Examples. (M, ∅) and (∅,M) are Conway numbers for any set
of Conway numbers M ⊂ Nα (α ∈ Onj , j ∈ N0). Especially ⊥ ≡ {|},
1L ≡ {⊥|} and 1R ≡ {|⊥} are Conway numbers.
∗ ≡ {⊥|⊥} is not a Conway number as ⊥ C ⊥ does not hold.

6.4 Remark. (Properties of Conway numbers)
For all Conway numbers z, z1, z2 ∈ No? we have
(1) zL < z < zR whenever zL ∈ Lz, zR ∈ Rz;
(2) z1 C z2 ⇐⇒ z1 < z2;
(3) −z, z1 + z2 ∈ No?.

Therefore No?, i. e. No? modulo = , is a subgroup of Ug?.
( (1) is proved using (N1) and 4.4 (3) by Conway number induction, i. e.
by transfinite induction on α ∈ Onj , j ∈ N0, z ∈ Nα; using 4.3 (2) and 4.4
we obtain (2) from (1); now (3) is proved with ((2) by game inductions.)

6.5 Lemma. (Simplicity Lemma)
Let x ∈ Ug? be a game. Then x = z for any number z ∈ No? with
Lx C z C Rx (i. e. with xL C z C xR for all xL ∈ Lx, xR ∈ Rx),
Lz ⊆ ↓Lx and Rz ⊆ ↑Rx.
(If the assumptions hold, z is the “simplest” Conway number between
Lx and Rx, because – as zL ≤ xL and xR ≤ zR hold for some xL ∈ Lx and
xR ∈ Rx – it is impossible that always xL C zL C xR or xL C zR C xR.)
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Proof:
z ≤ x: Because of Lz ⊆↓Lx we have Lz C x (i. e. zL C x for all zL ∈ Lz),
and by assumption we have z C Rx. (x ≤ z is proved similarly.) �

6.6 Auxiliary Theorem. (Dyadic Conway numbers)
Set Dk := 2−kZ for all k ∈ N0, and let D∞ :=

⋃∞
k=0Dk denote the set

of dyadic rationals (i. e. rationals m
2k with m ∈ Z, k ∈ N0).

(1) There is a unique map c∞ : D∞ → No? with image c∞[D∞] ⊆ No1

and (i) c∞(0) ≡ {|} ≡ ⊥, the neutral element of No?,
(ii) c∞(n) ≡ {c∞(n− 1)|} for all n ∈ N,
(iii) c∞(−n) ≡ {|−c∞(n− 1)} for all n ∈ N,
(iv) c∞

(
2`+1
2k

)
≡

{
c∞

(
`

2k−1

) ∣∣c∞(
`+1
2k−1

)}
for all k ∈ N, ` ∈ Z.

(2) c∞ is reflection preserving and strictly increasing, i. e. we have
c∞(−s) ≡ −c∞(s) and c∞(s) < c∞(t) if s < t and s, t ∈ D∞.

(3) c∞ := pr◦c∞ is an injective group homomorphism c∞ : D∞ → No?,
where pr : No? → No? is the canonical projection (No? as in 6.4).

Proof:
(1): First construct c0 : Z → No? satisfying c0[Z] ⊂ No1 as well as (i),
(ii) and (iii) with c0 instead of c∞, then extend ck−1 : Dk−1 → No? to
ck : Dk → No? using (iv) with ck instead of c∞. Finally define c∞(s) to
be ck(s) if s ∈ Dk. Uniqueness is proved by inductions on n and on k.
(2) is proved with (1) (i)–(iv), and (3) is proved with 6.5. �

6.7 Convention. Dyadic rationals can be interpreted as Conway
numbers by dint of 6.6. Numbers of the form c∞(s) with s ∈ D∞
may be called dyadic Conway numbers. Occurrences of c∞ will usually
be suppressed, provided that no misunderstandings are to be expected:
0 ≡ {|}, 1 ≡ {0|}, 2 ≡ {1|}, 3 ≡ {2|}, . . . , 1

2 ≡ {0|1}, 1
4 ≡

{
0
∣∣ 1
2

}
,

3
4 ≡

{
1
2

∣∣1}, −1 ≡ {|0}, −2 ≡ {|−1}, −3 ≡ {|−2}, . . . , −1
2 ≡ {−1|0},

−1
4 ≡

{
−1

2

∣∣0} etc. (Writing 0 for ⊥ is consistent with Definition 1.6, as
x%⊥ is equivalent to x% 0 for every % ∈ {≥,B,≤,C, >,<, ‖,=}; in 1.4
we have 1L ≡ 1 and 1R ≡ −1.)

7. REAL CONWAY NUMBERS
7.1 Definition. (Real Conway numbers)
A Conway number z ∈ No? is called real if
(R1) −n < z < n for some n ∈ N,
(R2) for all zL ∈ Lz there is an m ∈ N with z − zL > 2−m

and for all zR ∈ Rx there is an m ∈ N with zR − z > 2−m.
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We call a (real) Conway number z located if c(s) < z or z < c(t) holds
whenever s, t ∈ D∞ with s < t. We set Noreal := { z ∈ No? : z is real }
and R := pr [{ z ∈ Noreal : z is located }] (with pr from 6.6).

7.2 Example. Dyadic Conway numbers (cf. 6.7) are located reals.

7.3 Remark. (Properties of real Conway numbers)
(1) R is a subgroup of No?.
(2) A real Conway number z is located if and only if for every k ∈ N

there are s, t ∈ D∞ with z − 2−k < s < z < t < z + 2−k.
(3) For z1, z2 ∈ Noreal with z1 < z2 there is m ∈ N with z2 − z1 > 2−m.

7.4 Auxiliary Theorem. (Rational Conway numbers)
(1) c : Q→ No?, q 7→ (c∞[{ s ∈ D∞ : s < q }], c∞[{ s ∈ D∞ : s > q }])

satisfies c(s) = c∞(s) for all s ∈ D∞ (with c∞ and D∞ from 6.6).
(2) All rational Conway numbers (elements of c[Q]) are located reals.
(3) c is reflection preserving and strictly increasing, i. e. we have

c(−q) ≡ −c(q) and c(p) < c(q) if p < q and p, q ∈ Q.
(4) c := pr ◦ c is an injective group homomorphism c : Q→ No?

with image Q := c[Q] ⊂ R (where pr : No? → No? is as in 6.6).
(5) The following statements is equivalent to (LEM) from 1.9:

(a) Every z ∈ R can be approximated on both sides by rational
numbers, i. e. for all z ∈ R and all k ∈ N there are r1, r2 ∈ Q
with z − 2−k < r1 < z < r2 < z + 2−k.
(b) All Conway reals are located.

Proof: (1),(2): c(q) is a located real Conway number because c∞ is
strictly increasing, while c(s) = c∞(s) can be seen with 5.4.
(3) is proved easily using the definition of c, and (4) is proved with 6.5.
(5): “(a) ⇐⇒ (b)” is proved with 7.3, “(LEM) =⇒ (b)” with 1.9 (2),
and for “(b) =⇒ (LEM)” use the real Conway number zψ ≡ −xψ with
xψ as in the proof of 1.9. �

7.5 Definition. (Rational cuts)
A rational cut is a pair (P,Q) of subsets P,Q ⊆ Q such that
(C1) P and Q are downwards/upwards closed : ↓P = P and ↑Q = Q,

i. e. p < p′ ∈ P =⇒ p ∈ P resp. q > q′ ∈ Q =⇒ q ∈ Q;
(C2) P and Q are disjoint , thus P < Q, (p < q for all p ∈ P , q ∈ Q;)
(C3) P and Q are open, i. e. for all p ∈ P there is p′ ∈ P with p′ > p

and for all q ∈ Q there is q′ ∈ Q with q′ < q.
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A rational cut (P,Q) is called bounded if P and Q are non-empty, and
(P,Q) is called located if P ∪ Q is dense in Q (equivalently p ∈ P or
q ∈ Q whenever p, q ∈ Q with p < q).

7.6 Theorem. (Real Conway numbers and rational cuts)
(1) For all rational cuts (P,Q) the Conway number ĉ(P,Q) ≡ (c[P ], c[Q])
satisfies (R2); it is real (and located) if (P,Q) is bounded (and located).
(2) For every real Conway number z the rational cut č(z) := (Pz, Qz)
with Pz := { p ∈ Q : c(p) < z } and Qz := { q ∈ Q : c(q) > z } is located
if z is located. Whenever (P,Q) is located we have č(ĉ(P,Q)) = (P,Q).
(3) There is a bijection between the set R (defined in 7.1) and the set R
of Dedekind reals, i. e. bounded and located rational cuts.

Proof: (1) is proved straightforwardly.
(2): The assertions of the first sentence are easily verified; s < ĉ(P,Q)
can hold with a located rational cut (P,Q) only if s ∈ P .
(3): Using 7.3 (1) we have Lz ⊆ ↓c[Pz], Rz ⊆ ↑c[Qz] for z ∈ R, thus
z = ĉ(č(z)) holds by the Simplicity Lemma 6.5, as c[Pz] < z < c[Qz]. �

8. GENERALIZED REAL NUMBERS
Generalized Dedekind reals (introduced by Fred Richman in [6] and Peter
Schuster in [9]) are just rational cuts (cf. 7.5). Addition for these cuts
is defined by (P,Q) + (P ′, Q′) := (P + P ′, Q + Q′) in contrast to 2.2,
whereas reflection −(P,Q) := (−Q,−P ) corresponds to Definition 3.2.
The partial order relation for cuts defined by (P,Q) ≤ (P ′, Q′) :⇐⇒
(P ⊆ P ′ and Q ⊇ Q′) is different from the one defined in 4.1, because
all cuts of the form (P,Q) = (Qr↑{p},Qr↓{q}), with ↑and ↓ from 5.5,
have ĉ(P,Q) = 0 if p < 0 < q.
In [6] multiplication is defined only for weakly positive cuts (i. e. for cuts
with (P,Q) ≥ 0). Conway’s definition of multiplication (cf. [2] p. 19)
xy ≡ {xLy + xyL − xLyL,xRy + xyR − xRyR |

xLy + xyR − xLyR, xRy + xyL − xRyL}
is possibly useful to define a product for arbitrary cuts.

Acknowledgments
I am grateful to Peter Schuster for drawing my attention to the Symposion “Reuniting
the Antipodes” and to Conway’s article [3], for several preprints of [9] as well as for
encouraging me to give a talk on Conway numbers in Venice. Volkswagen foundation



On Conway Numbers and Generalized Real Numbers 15

Hannover and FernUniversität Hagen supported my participation at the Symposion
“Reuniting the Antipodes” in May 1999 at Venice International University.
Furthermore I appreciate the valuable instructions of Prof. Holger P. Petersson before
my departure and after my return to FernUniversität Hagen, and the helpful dis-
cussions with participants of the “Oberseminar über Algebra und Topologie”, where
I presented some details of constructive Conway theory in June 1999. Moreover
I want to thank Dipl. Math. Peter Brühne and HDoz. Goswin Große-Erdmann for
proof-reading penultimate versions of this paper as well as Prof. Reinhard Börger for
discussing some technical items. Their notes, suggestions and hints turned out to be
very helpful during the revision.

The anonymous referee stimulated the revised version of this paper by insisting on
precision concerning the employed notion of ordinal numbers, a topic I discussed in
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