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Abstract We rephrase the classical theory of composition alge-
bras over fields, particularly the Cayley–Dickson Doubling Process
and Zorn’s Vector Matrices, in the setting of locally ringed spaces.
Fixing an arbitrary base field, we use these constructions to classify
composition algebras over (complete smooth) curves of genus zero.
Applications are given to composition algebras over function fields
of genus zero and polynomial rings.

Introduction

Our main concern in this paper is to initiate the study of nonassociative al-
gebras over algebraic varieties. As we shall see below, even ordinary finite–
dimensional algebras over fields may benefit from such an investigation. Rather
than treating the subject in excessive generality, we prefer to focus attention
on the classification problem for the most elementary among the interesting
classes of algebras (composition algebras) over the most elementary among the
interesting classes of varieties (curves of genus zero) ; the base field is arbitrary.

Along the way towards classification, we find it convenient to rephrase the
theory of composition algebras in the language of locally ringed spaces, leading,
after some terminological preliminaries in Section 1, to relative versions of the
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Cayley–Dickson–Doubling Process (2.5) and Zorn’s Vector Matrices (3.5) ; the
former is related to the concept of a quadratic space relative to a “Hamilto-
nian”quaternion algebra introduced by Knus [Kn] . The proof of the Classifi-
cation Theorem (4.4) will be carried out in Section 5. The critical step is to
show that a composition algebra of rank at least two over a curve X of genus
zero contains a composition subalgebra of rank exactly two defined over the
base field (5.5) . The Classification Theorem then follows by the method of
descent. As a byproduct of the proof one obtains the additional result (4.5)
that, roughly speaking, composition algebras of rank r over X containing a
nonsplit composition subalgebra of rank r

2
which is defined over the base field

are, with one exception, themselves defined over the base field.

Due to the intimate relationship between octonion algebras and groups of
type G2 , the present investigation may be regarded as a supplement, carried
out on an elementary level, of Harder’s fundamental work on algebraic group
schemes over complete curves. As Harder himself has pointed out ([H], pp.
147–148) , one should be able, at least in principle, to classify the semisimple
ones among these objects once the underlying curve has genus zero, and it is
quite conceivable that such a classification more or less directly implies our
own Classsification Theorem 4.4. Even if this should be the case, however, the
approach adopted here seems to deserve some independent interest since it ra-
ther quickly leads to results that are quite explicit. Moreover, it immediately
suggests generalizations to curves of higher genus as well as to more general
classes of algebras.

Two applications of our results to finite–dimensional nonassociative alge-
bras over fields will be discussed in this paper. In 3.8 we construct a whole
series of quadratic alternative algebras with big radicals which do not square
to zero by considering split octonions over projective n–space and passing to
global sections. In Section 6 we concern ourselves with composition algebras
over function fields of genus zero and polynomial rings. Guided by a classical
theorem of Harder on symmetric bilinear forms over polynomial rings, we show
in particular (6.8) that an octonion algebra over the polynomial ring k[t] is de-
fined over k , for any field k which is perfect or of characteristic not two.

The terminology adopted in this paper is the standard one; concepts from
algebraic geometry not explained in the text are to be understood in the sense
of Hartshorne [Ha] . The author is greatly indebted to R. Börger, H. Lin-
del, G. Schabhüser, W. Scharlau, M. Schulte, M. Slater and, in particular,
to O. Loos for useful conversations on the subject; also, to M. Knus for having
supplied him with a copy of [Kn] as well as with references concerning the
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Brauer groups of the affine and projective line. Finally, the extremely useful
comments by the referee, having improved considerably upon the original ver-
sion of the paper, are gratefully acknowledged. Special cases of our results have
been announced in [P2] .

1. Composition algebras over locally ringed spaces

1.1 Let R be a (unital commutative associative) ring of scalars. An R–module
M is said to have full support if Supp M = Spec R , so Mp 6= 0 for all prime
ideals p ⊂ R . Given a quadratic form q : M −→ R , the bilinear form induced
by q will be written as

M ×M −→ R , (u, v) 7−→ q(u, v) = q(u + v)− q(u)− q(v) .

The term “R–algebra” always refers to unital nonassociative algebras over R
which are finitely generated projective as R–modules. An R–algebra C is said
to be quadratic in case there exists a quadratic form n : C −→ R satisfying the
following two conditions:
QA1 n is unital, so n(1C) = 1 .
QA2 Each u ∈ C satisfies the equation

u2 − t(u)u + n(u)1C = 0 (t(u) = n(1C , u)) .

Quadratic algebras are invariant under base change.

1.2 Lemma Let C be a quadratic algebra over R . Then there exists a unique
quadratic form n on C satisfying conditions QA1,2 above.

Proof.1 By standard facts about localizations, the statement is local on R , so
we may assume that R is a local ring, with maximal ideal m, and hence C is
free as an R–module. Since n is unital, we may extend 1C 6∈ mC to a basis of
C , and the assertion follows from [M] , 2.3(vi) . Q. E. D.

1.3 Because of 1.2, we are now allowed to call n = nC the norm , t = tC ,
defined by t(u) = n(1C , u) , the trace, and

∗ : C −→ C , u 7−→ u∗ = t(u)1C − u ,

the canonical reflection of the quadratic algebra C over R .

1.4 An R–algebra C is said to be a composition algebra in case it has full

1This proof grew out of a conversation with G. Schabhüser.
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support (1.1) and there exists a quadratic form n : C −→ R satisfying the
following two conditions:
CA1 The symmetric bilinear form induced by n is nondegenerate, so determi–

nes a module isomorphism C
∼−→ Č = HomR(C, R) .

CA2 n permits composition, so n(uv) = n(u)n(v) for all u, v ∈ C .

Since a composition algebra C over R by definition has full support, hence
must be unitally faithfull in the sense of [M] ,p. 85 ,it follows from [M] , 4.6 that
C is alternative (so the associator (uv)w−u(vw) is alternating) as well as qua-
dratic in the sense of 1.1; more precisely, the quadratic form n on C satisfying
conditions CA 1,2 above is unique and, in fact, agrees with the norm of C in the
sense of 1.3. Also, the canonical reflection of C is an algebra involution ([M] ,
p. 96) , called the canonical involution of C . Finally, composition algebras are
invariant under base change.

1.5 Now fix a locally ringed space X , with structure sheaf OX . For P ∈ X ,
we denote by OP,X (or simply OP if no confusion can arise) the local ring of
OX at P , by mP = mP,X the maximal ideal of OP , and by κ(P ) = OP /mP

the corresponding residue class field; the stalk of an OX–module F at P will
be denoted by FP . As in 1.1, F is said to have full support if SuppF = X , so
FP 6= 0 for all P ∈ X . An OX–module E is said to be locally free of finite rank
if each P ∈ X admits an open neighborhood P ∈ U ⊂ X such that E|U ∼= O n

U ,
for some integer n ≥ 0 (which may depend on P ) . We then define the rank of
E as sup {rankOP

EP ; P ∈ X} (which is either an integer or + ∞ ) . (Nonas-
sociative) algebras over X are always tacitly assumed to be unital and locally
free of finite rank as OX–modules.

1.6 As in 1.4 we define a composition algebra over X to be an OX–algebra C
which has full support and admits a quadratic form N : C −→ OX satisfying
the following conditions:
CA 1 The symmetric bilinear form induced by N is nondegenerate, so de-

termines a module isomorphism C ∼−→ Č = HomX(C,OX) .
CA 2 N permits composition, so N(uv) = N(u)N(v) for all sections u, v of

C over the same open subset of X .

Quadratic (resp. alternative) algebras over X are defined in a similar man-
ner, and it is clear that 1.2 – 4 carry over to this more general setting. In
particular, we may talk about the norm, trace, canonical involution of a com-
position algebra C over X , denoted by N = NC , T = TC , ∗ , respectively; also,
we have the following result.

1.7 Proposition a) Let C be an algebra over X and N : C −→ OX a qua-
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dratic form. Then C is a composition algebra over X with norm N if and only
if, for each P ∈ X , CP is a composition algebra over OP with norm NP .

b) Composition algebras are invariant under base change: If σ : X ′ −→ X
is a morphism of locally ringed spaces, and C is a composition algebra over
X , σ∗C = C ⊗OX

OX′ is a composition algebra over X ′ .

c) Composition algebras are quadratic alternative.

d) Composition algebras exist only in ranks 1, 2, 4, 8 .

e) A composition algebra is associative if and only if it has rank at most 4 ; it
is commutative associative if and only if it has rank at most 2 .

Proof. Since composition algebras by definition have full support, a) is obvious.
b) – d) follow immediately from the corresponding statements in 1.4 and stan-
dard properties of composition algebras over fields by passing to the stalks CP

and to the residue class algebras CP ⊗OP
κ(P ) , for P ∈ X . e) By Nakayama’s

Lemma, the property of a composition algebra over a field to be commutative
associative (resp. associative) if and only if it has rank at most 2 (resp. 4) if
and only if it may be generated by one (resp. two) element(s) carries over to
composition algebras over local rings. Hence e) follows from a) . Q. E. D.

1.8 A composition algebra over X is said to be a torus (resp. a quaternion
algebra, resp. an octonion algebra) in case it has constant rank 2 (resp. 4 , resp.
8 ) . For example,

OX ⊕OX (direct sum of ideals)

is a torus, its norm being given by the hyperbolic quadratic form (a, b) 7−→ ab .
A composition algebra over X is said to be split if it contains an isomorphic
copy of OX ⊕OX as a composition subalgebra.

1.7 c) implies that, for any open subset U of X , Γ(U, C) (i.e., the set of sec-
tions of the sheaf C over U ) is a quadratic alternative algebra over Γ(U,OX) ,
without, however, being in general a composition algebra. In fact, examples
will be specified below where this algebra has a highly degenerate norm form
and, consequently, a big radical. 1.7 d) has been obtained earlier in a slightly
different context by Legrand [Le] .

1.9 Let Y = Spec R be an affine scheme. Under the usual categorical equi-
valence, (composition) algebras over Y in the sense of 1.6 are basically the
same as (composition) algebras over R in the sense of 1.4. We will not always
distinguish carefully between these two notions. If X is an R–scheme, with
structure morphism τ : X −→ Y , a (composition) algebra C over X is said
to be defined over R in case there exists a (composition) algebra C over R
such that C ∼= τ ∗C . We close this section by giving an elementary but useful
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criterion for a composition algebra to be defined over the base ring.

1.10 Lemma Let X be a scheme over the affine scheme Y = Spec R and
suppose Γ(X,OX) = R . Then a (composition) algebra C over X is defined over
R providing it is globally free as an OX–module.

Proof. With n = rank C , Rn = Γ(X,O n
X) ∼= Γ(X, C) carries the structure of

a (composition) algebra over R whose base change to X becomes canonically
isomorphic to C . Q. E. D.

2. The Cayley–Dickson Doubling Process

2.1 Let D be an associative composition algebra over the ring R and µ ∈ R
be a unit. Then Albert [A] has shown that the R–module D ⊕ D becomes a
composition algebra under the multiplication

(u, v)(u′, v′) = (uu′ + µv′∗v, v′u + vu′∗)

for u, v, u′, v′ ∈ D . This composition algebra, denoted by Cay(D, µ) , is tra-
ditionally said to arise from D , µ by means of the Cayley–Dickson Doubling
Process. Its norm relates to the norm of D via the formula

nCay(D,µ)((u, v)) = nD(u)− µnD(v) .

The imbedding of D to the first summand of Cay(D, µ) is an algebra monomor-
phism. If D has rank at most two, Cay(D,µ) is associative, and we abbreviate
the iterated Cayley–Dickson construction Cay(Cay(D, µ), ν) by Cay(D; µ, ν) .

2.2 Lemma Let D be a proper composition subalgebra of a quadratic alter-
native algebra C over R .
a) Suppose ` ∈ D⊥ , the orthogonal complement of D in C relative to nC , is
invertible in C , and put µ = −nC(`) . Then the imbedding D ↪→ C uniquely
extends to an imbedding Cay(D, µ) ↪→ C sending (0, 1D) to ` .

b) If C is a composition algebra and R is a local ring, there always exists an
` ∈ D⊥ which is invertible in C .

Proof. a) is the fundamental fact underlying the structure theory of composi-
tion algebras over fields. In this generality, it is due to McCrimmon ([M], 6.5) .
b) is well known and trivial for composition algebras over fields. In the general
situation, we pass to the base change C ′ = C ⊗R k from R to its residue class
field and find an l′ ∈ (D ⊗R k)⊥ = D⊥ ⊗R k wich is invertible in C ′ . Lifting l′

to D⊥ now yields an element l of the desired kind. Q. E. D.
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2.3 Given any algebra H of “Hamiltonian quaternions” over a real scheme,
Knus ([Kn], 1.3) has introduced the notion of a quadratic space of type H and
has constructed universal gadgets in this context ([Kn], 1.5,1.6) . For our pur-
pose it will be convenient to rephrase this part of his work in the more general
setting of locally ringed spaces.

So let X be a locally ringed space, D an associative composition algebra over
X and P a locally free right D–module of (constant) rank one. We write D× for
the sheaf of units of D . Matching canonically the pointed set of isomorphism
classes of locally free right D–modules of rank one with Ȟ1(X,D×) in the
sense of noncommutative Čech cohomology ([Mi], III,4.6) , and noting that the
morphism ND : D× −→ O×

X of group sheaves determines a morphism

ND : Ȟ1(X,D×) −→ Ȟ1(X,O×
X) = Pic X

of pointed sets, ND(P) is an invertible sheaf on X , called the norm of P . We
say P is of norm one if ND(P) ∼= OX . A quadratic map Q : P −→ F in the
category of OX–modules is said to be multiplicative in case

Q(w·u) = ND(u)Q(w)

for all sections w in P , u in D , the dot on the left referring to the right D–
module structure of P . By a norm on P we mean a multiplicative quadratic
map N : P −→ ND(P) whose induced symmetric bilinear map is nondegene-
rate, i.e., induces a linear isomorphism P ∼−→ HomX(P , ND(P)) .

2.4 Keeping the notations of 2.3, norms on P always exist and are unique up
to an invertible factor in Γ(X,OX) . Indeed, let U = (Ui)i∈I be an open cover
of X such that the right D–module P becomes free of rank one over each Ui ,
with basis vector `i ∈ Γ(Ui,P) . Then `j = `i·uij over Uij = Ui ∩ Uj , for some
uij ∈ Γ(Uij,D×) , and α = (uij) is a cocycle of D× over X which determines P
in Ȟ1(X,D×) . Hence, setting u′ij = ND(uij) , α′ = (u′ij) is a cocycle of O×

X over
X which determines L = ND(P) in Pic X , so we may assume that L becomes
free over each Ui , with basis vector `′i ∈ Γ(Ui,L) satisfying `′j = `′iu

′
ij over Uij .

Now it follows easily that the multiplicative quadratic maps Ni : P|Ui
−→ L|Ui

sending `i to `′i (i ∈ I) glue to give a norm N on P . Also, as observed in
([Kn], 1.5) , N is universal (in the obvious sense) in the category of multipli-
cative quadratic maps, implying its uniqueness up to a factor in Γ(X,O×

X ) .
Q.E.D.

2.5 Cayley–Dickson Doubling Theorem a) Let D be an associative
composition algebra over the locally ringed space X , P a locally free right D–
module of rank one and norm one and N : P −→ ND(P) = OX a norm on P .
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Then there is a unique OX–bilinear map P×P −→ D , written multiplicatively
and satisfying

(w·u)(w·v) = N(w)v∗u

for all u, v in D , w in P . Also, the OX–module

Cay(D,P , N) = D ⊕ P

becomes a composition algebra under the multiplication

(u,w)(u′, w′) = (uu′ + ww′, w′·u + w·u′∗) ,

with norm NCay(D,P,N) = ND ⊕ (−N) .

b) Conversely, suppose C is a composition algebra of constant rank r over X
and D ⊂ C a composition subalgebra of constant rank r

2
. Then there exist a

locally free right D–module P of rank one and norm one as well as a norm N on
P such that the identity of D extends to an isomorphism Cay(D,P , N)

∼−→ C .

Proof. a) Ui, `i, i ∈ I , having the same meaning as in 2.4, we set λi = N(`i) ∈
Γ(Ui,OX) and obtain a bilinear map of the desired kind by glueing the local
data (P|Ui

)× (P|Ui
) −→ D|Ui

given by

(`i·u)(`i·v) = λiv
∗u

for u, v in D|Ui
. Uniqueness is clear locally, hence globally. That Cay(D,P , N)

does indeed become a composition algebra over X as indicated is now a matter
of straightforward verification.

b) We write P = D⊥ for the orthogonal complement of D in C relative to NC .
Then the action

P ×D −→ P , (w, u) 7−→ w·u = uw ,

where the right–hand side refers to multiplication in C , gives P the structure
of a right D–module which is locally free of rank one (1.7 a), 2.2) . Choosing
U , `i, uij as in 2.4, and setting λi = NC(`i) , we conclude ND(uij) = λ−1

i λj over
Uij . Hence ND(P) ∼= OX . Clearly, the restriction of −NC to D⊥ makes up a
norm N on P and Cay(D,P , N) = C . Q.E.D.

2.6 Remark The construction of Cay(D,P , N) is functorial in P , N : If ϕ :
(P , N) −→ (P ′, N ′) is a morphism, i.e., a D–linear map P −→ P ′ preserving
norms,

1D ⊕ ϕ : Cay(D,P , N)
∼−→ Cay(D,P ′, N ′)
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is an isomorphism of composition algebras. As a matter of terminology, the
bilinear map P × P −→ D of 2.5 a) is said to be associated with N .

2.7 Corollary Let C be a split quaternion algebra over X . Then there exists
an invertible sheaf L on X such that

C ∼= EndX(L ⊕OX) =
(OX L
Ľ OX

)
,

the module on the right being equipped with ordinary matrix multiplication.
More precisely, given a split torus D ⊂ C , there exists an isomorphism C ∼−→
EndX(L ⊕OX) sending D to the diagonal of EndX(L ⊕OX) .

Proof. We may identify D with OX ⊕ OX (1.8) and have C = Cay(D,P , N)
as in 2.5. Since Ȟ1(X,D×) = Pic X ⊕ Pic X , we have P ∼= L ⊕ M , with
invertible OX–modules L, M , forcing L ⊗M ∼= ND(P) ∼= OX and allowing
us to assume P = L ⊕ Ľ . By 2.4, N = µN0 for some µ ∈ Γ(X,O×

X ) , where
N0 is the hyperbolic quadratic form on L⊕Ľ . The bilinear map P ×P −→ D
associated with N (2.6) is then given by

(s, š)(t, ť) = µ(〈s, ť〉 , 〈t, š〉)

for s, t in L , š, ť in Ľ , 〈 , 〉 being the canonical pairing L × Ľ −→ OX . Now

ϕ : Cay(D,P , N) −→
(OX L
Ľ OX

)
,

defined by

ϕ((a, b) , (s, š)) =
(

a µs
š b

)

for sections a, b in OX , s in L , š in Ľ , is easily seen to be an isomorphism of
composition algebras. Q. E. D.

2.8 Remark The invertible sheaf L in 2.7 is not uniquely determined by C .
In fact,

(OX L
Ľ OX

)
∼−→

(OX Ľ
L OX

)
,

(
a s
š b

)
7−→

t (
a s
š b

)∗
=

(
b −š
−s a

)

is an isomorphism.

2.9 Example Let D be an associative composition algebra over the locally
ringed space X . Then DD , which is simply D viewed canonically as a right D–
module, is globally free of rank one and norm one. The norms on DD are exactly
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the quadratic forms N = µND , µ ∈ Γ(X,O×
X ) ; the bilinear map DD×DD −→

D associated with such an N is then given by (w, w′) 7−→ µw′∗w , and the
multiplication of Cay(D,DD, N) attains the form

(u,w)(u′, w′) = (uu′ + µw′∗w , w′u + wu′∗) .

Hence we are back to the original Cayley–Dickson Doubling Process of 2.1.

2.10 Example For X,D as in 2.9, Pic X acts on Ȟ1(X,D×) via (L,P) 7−→
L ⊗ P , and we have ND(L ⊗ P) ∼= L2 ⊗ ND(P) . This allows us to construct
examples of right D–modules which are locally free of rank one and norm one
without being globally free. For instance, if L ∈ Pic X has order two, L ⊗ DD
is such a module.

2.11 Example Let E a locally free module of constant rank two over X .
Then D = EndX(E) , the OX–algebra of endomorphisms of E , is a quaternion
algebra over X whose norm is the usual determinant (cf. EGA II 6.4.8) . The
canonical involution of D (1.6) may be described as follows: Recalling the
natural isomorphism (det E = ∧2E)

φE : (det E)⊗ Ě ∼−→ E

given by
φE((s1 ∧ s2)⊗ ť) = 〈s1, ť〉s2 − 〈s2, ť〉s1 ,

we have
f ∗ = φE ◦ (1det E ⊗ f̌) ◦ (φE)−1

for f in D . Standard techniques in glueing local data on ringed spaces show
that all locally free right D–modules of rank one have the form

P = F ⊗ Ě = HomX(E ,F) ,

F being a locally free OX –module of constant rank two; it follows ND(P) ∼=
(detF) ⊗ (det E)∨ , so P has norm one if and only if there exists an isomor-
phism α : detF ∼−→ det E . Fixing such an isomorphism, there exists a unique
quadratic form N : P −→ OX satisfying

N(g)(s1 ∧ s2) = α(g(s1) ∧ g(s2))

for g in P = Hom(E ,F) , s1, s2 in E , and N is a norm on P whose associated
bilinear map P × P −→ D has the form

(g1, g2) 7−→ g ∗1 ◦ g2 ,
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g∗ , for g in P , being defined by

g∗ = φE ◦ (α⊗ ǧ) ◦ (φF)−1 .

3. Zorn Algebras

3.1 Let R be an arbitrary base ring. It is known since the work of Zorn [Zo]
that, using the standard vector product R3 ×R3 −→ R3 , (u, v) 7−→ u× v , on
three–dimensional column space over R , the free R–module

Zor (R) =
(

R R3

R3 R

)

of rank 8 becomes an octonion algebra under the multiplication

(
a u
u′ a′

) (
b v
v′ b′

)
=

(
ab + tuv′ av + b′u− u′ × v′

bu′ + a′v′ + u× v tu′v + a′b′

)

for a, a′, b, b′ ∈ R , u, u′, v, v′ ∈ R3 , called the Zorn algebra (of vector matrices)
over R . As in the case of quaternions, the norm of Zor (R) is the determinant:

det
(

a u
u′ a′

)
= aa′ − tuu′ .

If R is a field, Zor (R) is the only split octonion algebra over R .

3.2 We wish to extend this construction from rings to locally ringed spaces. To
this end, we consider a locally ringed space X and a locally free OX –module
T of constant rank 3 such that det T = ∧3E ∼= OX . Fixing an isomorphism
α : det T ∼−→ OX , unique up to an invertible factor in Γ(X,OX) , we obtain
an induced bilinear map T × T −→ Ť according to the rule

(u, v) 7−→ u× v = α(u ∧ v ∧ −) .

This bilinear map is called the vector product on T since, locally, it just looks
like the ordinary vector product. On the other hand, α uniquely determines an
isomorphism β : det Ť ∼−→ OX , characterized by the condition

α(u1 ∧ u2 ∧ u3)β(ǔ1 ∧ ǔ2 ∧ ǔ3) = det(〈ui, ǔj〉)

for ui in T , ǔj in Ť , 1 ≤ i , j ≤ 3 . Hence we also obtain a vector product
Ť × Ť −→ T , defined analogously to the one on T , using β rather than α .
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3.3 Keeping the notations of 3.2, we contend that

Zor (T , α) =
(OX T
Ť OX

)

becomes an octonion algebra over X under the multiplication

(
a u
ǔ a′

) (
b v
v̌ b′

)
=

(
aa′ + 〈u, v̌〉 av + b′u− ǔ× v̌

bǔ + a′v̌ + u× v 〈v, ǔ〉+ a′b′

)

whose norm is given by the determinant:

det
(

a u
ǔ a′

)
= aa′ − 〈u, ǔ〉 .

Indeed, one simply notes that, locally, Zor (T , α) looks like the Zorn algebra of
3.1, and then invokes 1.7.2

3.4 The octonion algebras obtained in 3.3 are called Zorn algebras (of vec-
tor matrices) over X . Their construction is functorial in the parameters in-
volved: Suppose T , T ′ are locally free OX –modules of constant rank 3 , and
α : det T ∼−→ OX , α′ : det T ′ ∼−→ OX are isomorphisms. Suppose further that
ϕ : (T , α) −→ (T ′, α′) is a morphism, i.e., an OX –linear map T −→ T ′ having
α′ ◦ (det ϕ) = α . Then ϕ is bijective, and

(
a u
ǔ a′

)
7−→

(
a ϕ(u)

ϕ̌−1(ǔ) a′

)

determines an isomorphism Zor (T , α)
∼−→ Zor (T ′, α′) . Along similar lines,

(
a u
ǔ a′

)
7−→

t (
a u
ǔ a′

)∗
=

(
a′ −ǔ
−u a

)

turns out to be an isomorphism Zor (T , α)
∼−→ Zor (Ť , β) , β being defined as

in 3.2.

Zorn algebras are obviously split. The converse is also true, as we shall now
prove.

3.5 Theorem Let C be a split octonion algebra over the locally ringed space
X . Then C is a Zorn algebra. More precisely, given a split torus D ⊂ C ,
there exist a locally free OX–module T of constant rank 3 , an isomorphism

2The author is indebted to O. Loos, who greatly simplified the original construction of
these algebras.
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α : det T ∼−→ OX and an isomorphism C ∼−→ Zor (T , α) sending D to the
diagonal of Zor (T , α) .

Proof. We proceed in three steps.
(1) Identifying D = OX ⊕ OX , one obtains, by passing to global sections, a
complete orthogonal system (c1, c2) of primitive idempotents in D = Γ(X,D) ⊂
C = Γ(X, C) , giving rise to a Peirce decomposition

C = C11 ⊕ C12 ⊕ C21 ⊕ C22 , Cii = OXci (i = 1, 2)

with the usual properties (cf. [S] , 3.4) . The OX–modules C12 , C21 are locally
free and dual to each other under T = TC , so both have constant rank 3 . The
expression T (u1u2u3) being alternating in u1, u2, u3 ∈ T = C12 , we obtain a
uniqueOX–linear map α : det T −→ OX satisfying α(u1∧u2∧u3) = T (u1u2u3) .

(2) We now consider the special case X = Spec R , where R is a local ring, put
t = tC and contend that there is a basis (e1, e2, e3) of C12 = Γ(X, C12) over R
such that

t(e1e2e3) = 1 = −t(ě1ě2ě3) ,

(ěi) being the t–dual basis of C21 = Γ(X, C21) relative to (ei) . If R is a field,
the assumption t(u1u2u3) = 0 for all u1, u2, u3 ∈ C12 forces C 2

12 = 0 by nonde-
generacy of t , and from (uv)w̌ + (uw̌)v = u(vw̌ + w̌v) for u, v ∈ C12 , w̌ ∈ C21 ,
we conclude t(uw̌)v = t(vw̌)u , in contradiction to C12 having dimension 3 ;
hence t(u1u2u3) 6= 0 for some u1, u2, u3 ∈ C12 . If R is arbitrary, passing to its
residue class field now yields a basis (ei) of C12 satisfying t(e1e2e3) = 1 . Since,
in addition, e1e2 ∈ C21 is perpendicular to e1, e2 , this implies e1e2 = ě3 . We
also have eiěj = δijc1 , ěiej = δijc2 , which first yields

(ě1ě2)e1 = ě1(ě2e1) + ě1(e1ě2)− (ě1e1)ě2 = −ě2

and then

t(ě1ě2ě3) = t(ě1ě2, e1e2) = t((ě1ě2)e1, e2) = −t(ě2e2) = −1 ,

as claimed.

(3) Returning to the general situation, it follows from (2) that α as defined in
(1) is an isomorphism and

det(T (ui, ǔj)) = −T (u1u2u3)T (ǔ1ǔ2ǔ3)

for u1, u2, u3 in T , ǔ1, ǔ2, ǔ3 in Ť = C21 . Hence the vector product T ×T −→ Ť
coming from α via 3.2 agrees with the original multiplication of C restricted
to C12 , and the vector product Ť × Ť −→ T belonging to the isomorphism
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β : det Ť ∼−→ OX is the negative of the original multiplication of C restricted
to C21 . It now follows that the map φ : C −→ Zor (T , α) given by

φ(ac1 + u + ǔ + a′c2) =
(

a u
ǔ a′

)

for a, a′ in OX , u in T = C12 , ǔ in Ť = C21 is an isomorphism of the desired
kind. Q. E. D.

3.6 Corollary (cf. [BS], (3.4)) Let R be a principal ideal domain and C
a composition algebra with zero divisors over R . Then C is isomorphic to
R⊕R , Mat2(R) (the algebra of 2–by–2 matrices over R ) or Zor(R) .

Proof. Since finitely generated projective R–modules are free, and in view of
2.7, 3.5, it suffices to show that C is split. So let u 6= 0 be a zero divisor in
C . Then nC(u) = 0 , and we may assume that u is unimodular relative to
some basis of C . By nondegeneracy, this yields an element v ∈ C satisfying
tC(uv) = 1 , and (uv , 1C − uv) is a complete orthogonal system of primitive
idempotents in C . Q. E. D.

3.7 Let X = Pn
R be projective n–space over a ring R , so X = Proj S where

S = R[xo, . . . , xn] is the polynomial ring in n + 1 variables over R , equipped
with the natural grading S = ⊕d≥0Sd . Note that X is covered by the open
affines Ui = Spec Sxi◦ for i = 0, . . . , n , where

Sxi◦ = R[
xj

xi

; 0 ≤ j ≤ n, j 6= i]

stands for the elements of degree 0 in the Z-graded k –algebra Sxi
obtained

by localizing S with respekt to the multiplicative subset {1, xi, x
2
i , . . .} . For

d ∈ Z, , we write as usual OX(d) for the unique (invertible) OX - module
whose sections over Ui ( 0 ≤ i ≤ n) are the elements of degree d in Sxi

. Recall
that Γ(X,OX(d)) vanisches for d < 0 and agrees with Sd otherwiese ([Ha] , II
(5.13)).

3.8 We now make good on our promise to construct natural examples of qua-
dratic alternative algebras with big radicals (1.8) . Keeping the above notations
and fixing positive integers `,m ,

T = OX(`)⊕OX(m)⊕OX(−`−m)

is a locally free OX–module of constant rank 3 , and the multiplication of S
induces a canonical isomorphism α : det T ∼−→ OX . Hence we may form the
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octonion algebra C = Zor (T , α) over X . From 3.7, we conclude

C = Γ(X, C) =
(

R S` ⊕ Sm

S`+m R

)
.

Multiplication in this R–algebra is carried out according to the rule
(

a f` ⊕ fm

f`+m a′

) (
b g` ⊕ gm

g`+m b′

)

=
(

ab (ag` + b′f`)⊕ (agm + b′fm)
bf`+m + a′g`+m + f`gm − fmg` a′b′

)
,

where a, a′, b, b′ ∈ R and the f ′s and g′s are homogeneous polynomials in S ,
with subscripts indicating their respective degrees. C is quadratic alternative
(1.7) and free of rank

(
`+n
n

)
+

(
m+n

n

)
+

(
`+m+n

n

)
+ 2 .

Note that C is an R–subalgebra of Zor(S) . If R is a field, the radical of C has
the form

rad C =
(

0 S` ⊕ Sm

S`+m 0

)

and satisfies

(rad C)2 =
(

0 0
S`+m 0

)
, (rad C)3 = 0 ,

the last equation being part of a general phenomenon, observed independently
by Zagler ([Z], 6.4) and Kunze–Scheinberg ([KS], Theorem 1.5) , see also [M] ,
5.6.

4. Curves of genus zero and the Classification Theorem

4.1 Throughout this section, we fix an arbitrary base field k . By a curve we
mean a geometrically integral, complete, smooth scheme of dimension one over
k . Given a divisor D on a curve X , we write deg D for its degree and L(D) for
the corresponding invertible sheaf, so D 7−→ L(D) determines the canonical
identification of the class group of X with Pic X . The term “point”without
further specification always refers to closed points. On the other hand, the
generic point of X is usually denoted by ξ . We write κ(X) = Oξ,X for the
function field of X .

4.2 Let X be a curve of genus zero, i. e., a smooth quadric in the plane. The
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following statements are standard consequences of the Riemann–Roch Theorem
(cf. [T]) . X always contains points of degree at most two and is rational (i.e.,
isomorphic to P 1

k ) if and only if it contains rational points. In particular, X is
a form of the projective line, so becomes isomorphic to it after passing to the
algebraic closure or, in fact, to an appropriate quadratic extension. If P0 ∈ X
is a point of minimal degree (≤ 2 ) , the assignment m 7−→ L(mP0) gives an
isomorphism Z

∼−→ Pic X . We also have

dimkΓ(X,L(D)) = deg D + 1

for every divisor D of X having degree ≥ 0 , whereas Γ(X,L(D)) = 0 other-
wise.

4.3 Following Witt [W] , there is a one–to–one correspondence between (nonra-
tional) curves of genus zero and quaternion (division) algebras over k . In order
to describe this correspondence, we adopt the approach of Tillmann ([T] , 5.4) .
Accordingly, X being a nonrational curve of genus zero, there exists an inde-
composable vector bundle E of rank two over X , unique up to multiplication
with a unique invertible sheaf, and D = EndX(E) is the quaternion division
algebra we are looking for. A standard model E0 of such a bundle may be des-
cribed as follows: Let P0 ∈ X be a point of degree two, t a local parameter
of X at P0 and f ∈ O×

P0,X have the property that f(P0) generates κ(P0)/k .
Then E0 is the subsheaf of the constant sheaf κ(X)2 (column vectors) which
agrees with O 2

X outside P0 and whose stalk at P0 is the (free) OP0–module

generated by
(

1
0

)
,

(
t−1f
t−1

)
. This description obviously implies det E0 = L(P0) .

We also recall from [T] , 5.5 that all locally free OX–modules of rank at least
3 are decomposable.

Now we are in a position to state the main results of the paper.

4.4 Classification Theorem Let X be a curve of genus zero and C a
composition algebra over X . Then one of the following holds.
(i) C is defined over k (see also 4.6).
(ii) C is a split quaternion algebra (see also 4.7).
(iii) C is a split octonion algebra (see also 4.8).
(iv) X is not rational and C ∼= Cay(D,P , N) , where D is the base change from
k to X of the quaternion division algebra over k associated with X , P is a
locally free right D–module of rank one and norm one, and N is a norm on P
(see also 4.9).

4.5 Theorem Let X be a curve of genus zero and C a composition algebra of
rank r over X . Suppose C contains a nonsplit composition subalgebra of rank
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r
2

which is defined over k but not isomorphic to the base change from k to X
of the quaternion algebra over k associated with X . Then C is defined over k .

4.6 A few comments on the Classification Theorem, whose proof, along with
the one of 4.5, will be postponed to the next section, are in order. Let Y
be any k–scheme having Γ(Y,OY ) = k and C a composition algebra over
k . Writing C for the base change of C from k to Y , we conclude that the
natural map ρ : C −→ Γ(Y, C) is an isomorphism since both algebras have
the same dimension, C is simple as an algebra with involution and ρ preserves
involutions. In particular, we recover C from C by passing to global sections,
which, in the situation of 4.4, implies that composition algebras over X defined
over k are basically the same as composition algebras over k .

4.7 Let C be a split quaternion algebra over X and suppose C is not defined
over k . Then, by 2.7 and 4.2 ,

C ∼=
( OX L(mP0)
L(−mP0) OX

)
,

where P0 ∈ X is a point of minimal degree (≤ 2) and m ∈ Z is non–zero; in
fact, we may even assume m > 0 (2.8) . Then the Krull–Schmidt Theorem ([T]
Satz 2.7), according to which any locally free OX -module splits into the direct
sum of indecomposables unique up to order and isomorphiom, shows that m is
uniquely determined by C .

4.8 Now let C be a split octonion algebra over X and again suppose C is not
defined over k . Then, by 3.5, C is a Zorn algebra over X , so C ∼= Zor (T , α) , for
some locally free OX–module T of rank 3 and some isomorphism α : det T ∼−→
OX . With P0 as in 4.7, we then have the following possibilities for T .

Case 1 T splits into the direct sum of line bundles.
Then, since det T ∼= OX ,

T = L(m1P0)⊕ L(m2P0)⊕ L(−(m1 + m2)P0)

for integers m1,m2 not both zero; in fact, using functoriality (3.4) , we may
assume m1 ≥ m2 ≥ 0 , m1 > 0 and then conclude from the Krull–Schmidt
Theorem that C determines m1,m2 uniquely. Analogously, the isomorphism
class of C is easily seen to be independent of the choice of α .

Case 2 T does not split into the direct sum of line bundles.
Then X is not rational and, arguing as in Case 1, we conclude

T = L(− (2m + 1)P0)⊕ [L(mP0)⊗ E0] ,
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where E0 has the meaning explained in 4.3 and m ≥ 0 is an integer uniquely
determined by C . Again C is independent of the choice of α .

4.9 Finally, suppose X is not rational and write D for the quaternion division
algebra over k associated with X . For D,P , N as in 4.4 (iv) , we assume that
C = Cay(D,P , N) is not defined over k . Observing D = EndX(E0) (4.3), 5.2
below showsD = EndX(E0) . As in 2.11, this gives P = F⊗Ě0 = HomX(EO,F) ,
where F is a locally free OX–module of rank two satisfying detF ∼= det E0 =
L(P0) . If F were indecomposable, this would imply F = E0 , hence P = DD ,
forcing C to be defined over k (1.10) , a contradiction. Hence F splits and so,
without loss, P attains its final form

P = P1 ⊕ P2 , P1 = L(mP0)⊗ Ě0 , P2 = L((−m + 1)P0)⊗ Ě0

for some integer m ≥ 0 uniquely determined by C . Viewing Ě0 as a sheaf
of row vectors, the norm N0 on P determined by the natural isomorphism
α : det F ∼−→ det E0 via 2.11 has Pi (i = 1, 2) as totally isotropic submodules
and induces the canonical pairing

(s1 ⊗ ť1, s2 ⊗ ť2) 7−→ −s1s2 det
(

ť1
ť2

)

on P1×P2 . We now conclude N = µN0 for some µ ∈ k× (2.4) . Also, the map
(P , N) −→ (P , N0) defined to be multiplication by µ on the first summand
and the identity on the second turns out to be a morphism in the sense of 2.6
and hence shows C = Cay(D,P , N) ∼= Cay(D,P , N0) .

Using the Krull–Schmidt Theorem, the octonion algebras constructed in
4.8, Cases 1,2 and 4.9 are easily seen to be mutually nonisomorphic. We have
thus obtained a complete classification, without repetitions, of composition al-
gebras over X .

5. Proofs

5.1 The proofs of 4.4, 4.5, which are our main concern in this section, will be
carried out simultaneously. We continue to work over an arbitrary base field k
and consider a fixed curve X of genus zero. Our first objective is to show that
every composition algebra over X , other than OX , contains a torus defined
over k . To this end, we first require the following elementary but crucial ob-
servation, which, incidentally, generalizes 1.10.

5.2 Proposition Let R be a ring, Y an R–scheme, C a quadratic alge-
bra over Y and D ⊂ Γ(Y, C) a composition subalgebra over R . Then D , the
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OY –submodule of C generated by the global sections in D , is a composition
subalgebra defined over R . More precisely, there is a natural isomorphism from
D to the base change of D from R to Y .

Proof. We write σ : Y −→ Z = Spec R for the structure morphism of Y
and denote by M 7−→ M̃ the natural equivalence between the category of
R–modules and the category of quasicoherent OZ–modules. Recall that, more
generally, the functor ∼ is left adjoint to the global section function Γ(Z, ·)
from OZ–modules to R–modules and, also, that σ∗ is left adjoint to the direct
image functor σ∗ from OY –modules to OZ–modules. This being so, the inclu-
sion D ↪→ Γ(Y, C) = Γ(Z, σ∗C) first induces a homomorphism D̃ −→ σ∗C and
then a homomorphism α : σ∗D̃ −→ C of quadratic algebras whose image is
D . For each P ∈ Y the map (σ∗D̃) ⊗ κ(P ) −→ C ⊗ κ(P ) determined by α
is injective since composition algebras over fields are simple as algebras with
involution. Hence α is injective and so yields an isomorphism σ∗D̃ ∼−→ D .
Q.E.D.

5.3 Corollary Let Y be a projective k–scheme having Γ(Y,OY ) = k , C
a composition algebra over Y and k′/k an arbitrary field extension. Write C ′
for the base change of C from Y to Y ′ = Y ×k k′ . If C ′ admits a composition
subalgebra of rank r defined over k′ , then C admits a composition subalgebra of
rank r defined over k .

Proof. C = Γ(Y, C) , C ′ = Γ(Y ′, C ′) are finite–dimensional quadratic alterna-
tive algebras over k, k′ , respectively (1.7) , and we have C ′ = C ⊗k k′ . By
hypothesis, C ′ contains a composition subalgebra of dimension r over k′ . Since
the assertion is trivial for r = 1, we may assume r > 1 . Then C becomes a
composition algebra modulo its radical and so contains a Wedderburn factor
([S] Theorem 3.18), which is a composition algebra of rank at least r , hence
admits a composition subalgebra of rank exactly r . Now 5.2 applies. Q. E. D.

5.4 At this stage we allow ourselves a digression. Letting Y = P 1
k be the

projective line over k , we wish to classify up to isometry quadratic spaces over
Y , i.e., pairs (E , Q) where E is a locally free OY –module of finite rank and
Q : E −→ OY is a quadratic form whose induced symmetric bilinear form
is nondegenerate. For bilinear spaces, hence for quadratic ones as well if the
characteristic is not two, this classification has been carried out by Knebusch
([K], Theorem 13.2.2) . With very minor adjustments, however, the same argu-
ment works for quadratic spaces over an arbitrary base field, leading to a result
which may be described as follows. For a positive integer m , the hyperbolic
qudratic form (a, b) 7−→ ab gives the OX − module OX(m) ⊗ OX(−m) the
structure of a quadratic space over Y , which we denote by h(m) ; quadratic
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spaces of this kind are called hyperbolic planes. Knebusch’s Theorem now says
that a quadratic space over Y decomposes into the orthogonal sum of finitely
many hyperbolic planes and a quadratic space defined over k .

Returning to our original curve X of genus zero, we are now in a position
to establish an auxiliary result which is implicit in the Classification Theorem
4.4 and turns out to be of critical importance for the completion of the proof.

5.5 Lemma (cf. [H], Satz 3.1) Let C be a composition algebra over X having
rank 2n > 1 . Then C contains a torus defined over k .

Proof. By 5.3 we may assume that X = P 1
k is the projective line over k .

Writing N = NC for the norm of C , Knebusch’s Theorem (5.4) allows us to
decompose the quadratic space (C, N) as

(C, N) = h(m1)⊥ . . .⊥h(mr)⊥σ∗(V, q) ,

where 0 ≤ r ≤ 2n/2 , m1 ≥ · · · ≥ mr > 0 are integers , σ : X −→ Spec k
denotes the structure morphism, and (V, q) is a quadratic space over k . Passing
to global sections and oberving 3.7, we conclude

C = Γ(X, C) = Γ(X,OX(m1))⊥ · · ·⊥Γ(X,OX(mr))⊥V

and

1C =
r∑

j=1

gj + e

for some gj ∈ S homogeneous of degree mj and e ∈ V . Hence q(e) = N(1C) =
1 , so r < 2n/2 , and V has dimension at least two. It is now easy find a vector
u ∈ V , u 6∈ ke , such that the subspace of V spanned by e , u is nondegenerate
relative to the symmetric bilinear form induced by q . Thus k1C+ku = k[u] ⊂ C
is a composition subalgebra, giving rise to a subtorus of C defined over k (5.2).
Q. E. D.

5.6 Remark 5.5 says in particular that every torus over X is defined over k .
For k algebraically closed of characteristic not two, this result may be put into
a more general context as follows. Let Y be any curve over k . Then a torus
over Y has the form Cay(OY ,L, N) where L ∈ Pic Y has order two and N is
a norm on L (2.5) . Hence any torus over Y determines an element of order
two in Pic Y ; equivalently, it determines an étale cover of Y having degree two
[Ha, IV Ex 2.7] . Since Pic X ∼= Z is torsionfree, and X is simply connected,
both of these facts explain why any torus over X is defined over k .

5.7 Before proceding with the proof, we introduce some notation. Let k′/k be
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a separable quadratic field extension. If C is a composition algebra over X , we
write C ′ for its base change from X to X ′ = X×k k′ ; similar conventions apply
to other algebraic objects over X . The nontrivial Galois automorphism of k′/k
will be denoted by τ . We let it act on X ′ through the second factor. Observe
that, given any OX–module F , τ acts on F ′ ; more precisely, we obtain a
natural isomorphism τ ∗F ′ ∼−→ F ′ . Also, the automorphism of Pic X ′ induced
by τ is the identity.

5.8 Now suppose C is a quaternion algebra over X . Then C contains a torus
D defined over k (5.5) , and, in order to prove 4.4, 4.5 for C , we may assume
that D is not split, so it comes from a separable quadratic field extension k′/k
by changing scalars from k to X . We have to show that C is defined over k .
Adopting the terminology of 5.7, it suffices to show that C ′ is defined over k′

(5.3) . But, D′ being a split torus in C ′ , 2.7 yields an identification

C ′ =
(OX′ L′
Ľ′ OX′

)

matching D′ with the diagonal, where L′ is an invertible sheaf on X ′ . The-
refore τ , being the exchange involution on D′ , hence switching the diagonal
idempotents in the matrix representation of C ′ above, induces an isomorphism
L′ ∼−→ Ľ′ . Since Pic X ′ ∼= Z is torsionfree, this forces L′ ∼= OX′ , making C ′
globally free as an OX′–module, hence defined over k′ (1.10) . Q. E. D.

5.9 It remains to establish 4.4, 4.5 for an octonion algebra C over X . Assu-
ming C to be nonsplit, our first goal is to show that C contains a quaternion
subalgebra defined over k . To this end, we again start with a torus D ⊂ C
defined over k which agrees with the base change from k to X of a separable
quadratic field extension k′/k . Again adopting the terminology of 5.7, it suf-
fices to show that C ′ contains a quaternion subalgebra defined over k′ . But C ′ ,
containing D′ as a split torus, is itself split and so is a Zorn algebra over X ′

as in 3.3: C ′ = Zor (T ′, α′) where T ′ is a locally free OX′–module of rank 3
and α′ : det T ′ ∼−→ OX′ is an isomorphism. Again τ interchanges the diagonal
and so yields an isomorphism τ ∗T ′ ∼−→ Ť ′ . Now write T ′ = L′ ⊕ T ′

1 , where
L′, T ′

1 are locally free of rank 1, 2 , respectively. If T ′
1 were indecomposable, the

Krull–Schmidt Theorem would imply L′ ∼= OX′ , hence det T ′
1
∼= det T ′ ∼= OX′ ,

a contradiction. Therefore T ′ is a selfdual direct sum of line bundles and so
has the form T ′ = L′ ⊕ OX′ ⊕ Ľ′ , for some invertible sheaf L′ on X ′ . This
gives Ť ′ = Ľ′ ⊕ OX′ ⊕ L′ , and the two middle summands of T ′, Ť ′ , together
with the diagonal D′ ⊂ C ′ , produce a quaternion subalgebra of C ′ defined over
k′ , as claimed.

5.10 Continuing with the proof of 4.4, 4.5 for our nonsplit octonion algebra
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C over X , we change notation and now let D ⊂ C be a quaternion subalgebra
defined over k (5.9) , so D = σ∗D for some quaternion algebra D over k , σ :
X −→ Spec k being the structure morphism. We may assume that D is not split
and not the quaternion algebra associated with X and have to show that C is
defined over k . Since κ(X) , the function field of X , splits X without splitting
D [W] , we may assume X = P 1

k . Now write C = Cay(D,P , N) as in 2.5 and
consider a separable quadratic field extension k′/k that splits D . Adopting the
terminology of 5.7, we obtain C ′ = Cay(D′,P ′, N ′) andD′ = EndX′(OX′⊕OX′) ,
so P ′ = OX′(m)⊕OX′(m)⊕OX′(−m)⊕OX′(−m) for some integer m ≥ 0 as
an OX′–module (2.11) , forcing P = OX(m)⊕OX(m)⊕OX(−m)⊕OX(−m)
as an OX–module. By 1.10 it suffices to show m = 0 . Arguing indirectly, we
assume m > 0 . The right D–module structure of P amounts to a homomor-
phism Dop −→ EndX(P) of OX–algebras. By passing to global sections and
observing 3.7 in conjunktion with the natural isomorphisms

HomX(OX(p) , OX(q)) ∼= OX(p)∨ ⊗OX(q) ∼= OX(q − p)

for arbitrary integers p, q , this gives rise to a homomorphism

ϕ : Dop −→
(

Mat2(k) Mat2(S2m)
0 Mat2(k)

)

of k–algebras, where Mat2 refers to 2 × 2–matrices and S = ⊕d≥0Sd is the
polynomial ring in two variables over k with its natural grading. Following ϕ
with the projection to the upper left–hand corner of the block matrices on
the right now yields a homomorphism Dop −→ Mat2(k) . Since D is a division
algebra, this cannot be. Q. E. D.

6. Applications

6.1 We now apply our previous results to one–dimensional function fields of
genus zero. In doing so, we will always tacitly assume that the nonsingular
model associated with such a field is a curve in the sense of 4.1; this convention
agrees with the established usage unless we are working over a nonperfect base
field of characterisic two. Given a one–dimensional function field K/k of genus
zero, our aim is to characterize intrinsically those composition algebras over K
which are defined over k .

6.2 To understand this characterization, we need to recall some facts from
[P1] . Let L be a field which is complete under a discrete valuation and C a
composition division algebra over L . Then the valuation of L uniquely extends
to a valuation of C , so the standard vocabulary of valuation theory applies to
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C . Setting r = dim C , the residue class algebra C̄ of C over the residue class
field L̄ of L has dimension r or r

2
, and is either a composition algebra or a purely

inseparable field extension of characteristic two and exponent one. C is said
to be unramified if C̄ is a composition algebra having dim C̄ = r ; otherwise,
deviating from the terminology of [P1] , it is said to be ramified. Finally, we
call C separably ramified if C̄ is a composition algebra of dimension r

2
. In this

case, C has the form Cay(D, π) , where D is an unramified composition division
algebra of dimension r

2
over L and π is a prime element of the valuation ring

R of L . Writing RC , RD for the valuation rings of C, D , respectively, and M̌
for the t–dual (t = tC) of an R–lattice M ⊂ C , it follows easily that

RC = RD ⊕RD , ŘC = RD ⊕ (π−1RD) ,

so RC ⊂ ŘC and

dimL̄ ŘC/RC =
r

2
.

By contrast, if C is unramified, RC is selfdual relative to t : ŘC = RC .

6.3 Returning to our onedimensional function field K/k of genus zero as in
6.1, we let X be its associated nonsingular model. For any point P ∈ X , OP,X

is a discrete valuation ring, giving rise to a discrete valuation on K , trivial
on k , so that we may form the corresponding completion, denoted by K̂P .
Following Küting [Kü] , a composition algebra C over K is said to be unrami-
fied at P in case ĈP = C ⊗K K̂P is either split or an unramified composition
division algebra over K̂P ; C is said to be (separably)ramified at P if ĈP is a
division algebra having this property over K̂P . For C to be unramified at P it
is necessary and sufficient that ĈP contain a selfdual order. We are now ready
to establish the characterization announced in 6.1.

6.4 Theorem Let K/k be a one–dimensional function field of genus zero
and X its associated nonsingular model. Then a composition algebra over K is
defined over k if and only if it is unramified at all points of X .

Proof. The condition is clearly necessary. Conversely, suppose C is a compo-
sition algebra over K which is unramified at all points of X . Then standard
arguments from elementary lattice theory allow us to find a composition al-
gebra C over X whose stalk at the generic point is isomorphic to C . By the
Classification Theorem 4.4, we have the following possibilities for C .
Case 1 C is defined over k . Then C is defined over k .
Case 2 C is split. Then C is split, hence trivially defined over k .
Case 3 C is as in 4.4 (iv) . Since K splits the quaternion algebra associated
with X , D becomes split at the generic point, forcing C to be split, hence
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defined over k . Q. E. D.

6.5 Remark (i) The preceding argument shows that a composition algebra
over X whose stalk at the generic point is a division algebra must be defined
over k . This corresponds to [H], Satz 3.5.
(ii) If K = k(t) is rational over k , there is a remarkable improvement of 6.4
due to Küting ([Kü] , 4.3.5) : Assuming char k 6= 2 , a composition algebra over
K is defined over k if and only if it is unramified at all points of the affine line
over k . The following example, modifying in a more general context an earlier
one also due to Küting ([Kü] , 4.7.1) , shows that the hypothesis on k cannot
be avoided.

6.6 Example Let k be a (nonperfect) field of characteristic 2 and ` =
k(
√

a0,
√

a1,
√

a2) a purely inseparable field extension of exponent 1 and de-
gree 8 . Put K = k(t) as in 6.5(ii), and let E/K be the splitting field of the
separable polynomial

p = x2 + t−1x + a0 ∈ K[x] .

We view E as a torus over K , which is easily seen to be unramified at all points
P ∈ A1

k . By contrast, Ê∞ is a separable quadratic field extension of K̂∞ , with
residue class field isomorphic to k(

√
a0)/k ; hence E ramifies at infinity. These

properties carry over to the octonion algebra C = Cay(E; a1, a2) , thus showing
that C is unramified precisely at the finite places of K/k without being defined
over k (6.4) .

6.7 Remark Küting’s Characterization Theorem (6.5) rests on a result of
Harder’s ([K] 13.4.3 and [L], VI.3.13) according to which a nondegenerate
symmetric bilinear form over the polynomial ring k[t] , char k 6= 2 , can always
be diagonalized (hence is defined over k) . It turns out that the original proof
of this result easily adapts to the setting of composition algebras to yield the
following conclusion.

6.8 Theorem Let C be a composition algebra of rank r over the polynomial
ring k[t] and assume char k 6= 2 , or r > 2 and k is perfect. Then C is defined
over k .

Proof. By 3.6, we may assume that C has no zero divisors, so C ′ = C ⊗k[t]

K , K = k(t) , is a division algebra. Setting X = A1
k = Spec k[t] and X ′ =

P1
k = X ∪∞ , we write C for the composition algebra over X determined by

C . Elementary lattice theory allows us to extend C to an algebra C ′ over X ′ in
such a way that C ′∞ becomes a maximal O∞,X′–order in C ′ . Although C ′ may
not be a composition algebra in general, the norm of C ′ induces quadratic form
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NC′ : C ′ −→ OX′ whose associated symmetric bilinear form has zero radical
and so determines a short exact sequence

0 −→ C ′ −→ Č ′ −→ N ′ −→ 0

of OX′–modules, where N ′ is concentrated at infinity. Here we pass to the
Euler characteristics and observe χ(N ′) = h0(X ′,N ′) = m

2
r , where m = 1 or

0 according as C ′ ramifies at infinity or not (6.2) ; in the former case, it does so
separably, by the hypotheses on k . We now invoke the Weak Riemann–Roch
Theorem, which says that χ(E ′) = deg det E ′ + rank E ′ for any locally free
OX′–module E ′ of finite rank. Hence

2 deg det C ′ + m

2
r = χ(C ′)− χ(Č ′) + χ(N ′) = 0 ,

forcing

h0(X ′, C ′) ≥ χ(C ′) = deg det C ′ + r = (1− m

4
) r ≥ 3

4
r .

But Γ(X ′, C ′) , being a finite–dimensional quadratic alternative k–subalgebra
of the composition division algebra C ′ over K , has no zero divisors and so, by
the hypotheses on k , is itself a composition algebra, of dimension at least 3

4
r .

Since no number strictly between r
2

and r can be attained as the dimension of
a composition algebra, this implies dim Γ(X ′, C ′) = r , so C ′ is defined over k
(5.2) . But then C = C ′|X is defined over k as well. Q. E. D.

6.9 In 6.8, the hypotheses on k and r cannot be avoided. On the one hand,
Küting ([Kü], 4.7.1) constructs a torus over F2[t] not defined over F2 . On
the other hand, returning to 6.6, the change of variables y = tx leads to the
polynomial

q = y2 + y + t2a0 ∈ k[t][y]

and thus produces a torus E ′ over k[t] . Hence Cay(E ′; a0, a1) is an octonion
algebra over k[t] not defined over k since, if it were, the same would be true of
the octonion algebra Cay(E; a0, a1) over k(t) , which we have ruled out.

References

[A] A. A. Albert. Quadratic forms permitting composition. Ann. of Math.
(2) 43 (1942), 161–177.

[BS] F. van der Blij and T. A. Springer. The arithmetics of octaves and the
group G2. Nederl. Akad. Wetensch. Indag. Math. 21 (1959) , 406–418.



– 26 –
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