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Abstract

We prove that every 2-finitedimensional covering standard division
grid of a Jordan pair V over a Henselian field canonically determines
a norm on V . This is used to classify maximal orders which contain
a covering division grid of V . We show that weakly separable orders
always satisfy this condition and link their existence to ramification
properties of V .

0. Introduction

In this paper, we use Neher’s theory of grids [12, 13, 14] to derive new results
on orders in finitedimensional Jordan pairs over local fields, generalizing our
earlier approach [19] to the same topic. In particular, we classify saturated
maximal orders (5.3), where an order is said to be saturated if it contains a
covering division grid of the ambient Jordan pair. Though not all maximal
orders are saturated (5.5), our results seem to indicate that the saturated
ones are a natural object to study in the local arithmetics of Jordan pairs.
For example, by an unpublished result of Neher (5.11), whose proof we will
include here with its author’s kind permission, every order which is weakly
separable in the sense that it becomes semi-simple after reduction modulo
the valuation ideal of the base field is automatically saturated. The existence
of weakly separable orders, as well as of separable ones in the sense of Loos
[8], is linked to ramification properties in 7.6. As an application we prove in
7.12 that a finitedimensional Jordan pair over the function field of a regular
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integral scheme X of dimension 1 extends to a separable Jordan pair over all
of X if and only if it is everywhere unramified.

Beside grids, some of whose main features will be summarized and, occa-
sionally, expanded in Section 3, our main tools to establish these results are
the general valuation theory of Jordan division rings due to Niggemann [16],
which we adapt to our purposes in Section 1, and its extension to Jordan di-
vision pairs carried out in Section 2. The technically most demanding result
is the Norm Theorem 4.3, according to which every 2-finitedimensional cove-
ring standard division grid of a Jordan pair V over a Henselian field induces
a norm on V in a canonical way. Once the Norm Theorem has been estab-
lished, most of our arithmetic results reduce to the case of Jordan division
pairs where methods from valuation theory can be applied. In particular,
after having defined the anisotropic part of a nondegenerate simple Artinian
Jordan pair in Section 6, this reduction lends itself to an intrinsic treatment
of the ramification properties we are interested in.

The results of this paper have been announced in [23]. I am indebted to R.
Bőrger, O. Loos, K. McCrimmon and M.L. Racine for valuable comments.
My special thanks go to E. Neher for numerous helpful suggestions on grids, 3-
graded root systems and related topics; in particular, the idea of defining the
anisotropic part of a nondegenerate simple Artinian Jordan pair by induction
on the length is due to him. Also, his permission to include 5.11 and its proof
in our presentation is gratefully acknowledged.

1. Valuations of Jordan division rings.

A valuation theory of Jordan division rings, its conceptual foundations al-
ready implicit in the work of Knebusch [6], was developed by the author [17]
for valuations of height 1 and by Niggemann [16] in full generality. In the
present section, we will briefly describe those features of the theory that are
relevant for the intended applications. The reader is referred to Jacobson [5]
for notations and standard facts about quadratic Jordan algebras; he may
consult Bourbaki [1] and Ribenboim [26] for results on classical valuation
theory.
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1.1 The concept of a valuation. Let 4 be a totally ordered additive
abelian group and J a Jordan division ring. Following Niggemann [16], a
valuation of J with values in 4 is a map ν : J −→ 4∞ = 4∪{∞} satisfying
the following conditions for all x, y ∈ J .

(VA1) ν(x) = ∞⇐⇒ x = 0.

(VA2) ν(x + y) ≥ min(ν(x), ν(y)).

(VA3) ν(Uxy) = 2ν(x) + ν(y).

Then ν(1) = 0;

(1.1.1) O = O(J, ν) = {x ∈ J : ν(x) ≥ 0} ⊂ J

is a unital subring, called the valuation ring of (J, ν);

(1.1.2) P = P(J, ν) = {x ∈ J : ν(x) > 0} ⊂ O

is an ideal, called the valuation ideal of (J, ν), and κ(J, ν) = O/P is a Jordan
division ring, called the residue class ring of (J, ν). The set of all valuations
of J with values in 4 will be denoted by Val(J,4). For δ ∈ 4 we generalize
(1.1.1), (1.1.2) to define

(1.1.3) O(J, ν)(δ) = {x ∈ J : ν(x) ≥ δ},
(1.1.4) P(J, ν)(δ) = {x ∈ J : ν(x) > δ}.

1.2 Isotopes and valuations. It is a fundamental observation, though
straightforward to prove, that a valuation on a Jordan division ring J canon-
ically induces valuations on all its isotopes. More specifically, for an invertible
(= nonzero) element y ∈ J and a valuation ν of J with values in 4, the map
ν(y) : J (y) −→ 4∞ given by ν(y)(x) = ν(x) + ν(y) for x ∈ J is a valuation of
the y-isotope J (y) of J [16, 2.1.4]; in addition, given another invertible ele-
ment z ∈ J , we have (ν(y))(z) = ν(Uyz) (loc. cit). From this we immediately
derive the following conclusion.
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1.3 Proposition. Let 4 be a totally ordered additive abelian group, J a
Jordan division ring and y an invertible element of J . Then the assignment
ν 7−→ ν(y) gives a bijection from Val(J,4) onto Val(J (y),4), with inverse
ρ 7−→ ρ(z), z = y−2. ¤

1.4 Extensions of valuations. Now suppose J is a Jordan division alge-
bra over a field K. Then K identifies with K1 ⊂ J , and every ν ∈ Val(J,4)
restricts to map ν0 : K −→ 4∞, which is actually a valuation in the usual
sense [16, 2.2.1, 2.2.2]. Conversely, given a subgroup Γ of 4 and a valuation
λ : K −→ Γ∞, a valuation ν : J → 4∞ is said to be an extension of λ in
case ν0 = λ on K = K1. It then follows

(1.4.1) ν(ax) = λ(a) + ν(x) (a ∈ K, x ∈ J)

by [16, (2.1)].

1.5 r-finitedimensionality for Jordan algebras. In analogy to Cohn
[3] and Schilling [29], a (unital) quadratic Jordan algebra over a field is said
to be locally finitedimensional of level r (or r-finitedimensional for short)
(r ∈ Z, r > 0) if every unital subalgebra on r generators is finitedimensional.

1.6 Henselian fields. Recall that a Henselian field is a triple (K, Γ, λ),
where K is a field, Γ is a totally ordered additive abelian group and
λ : K → Γ∞ is a valuation such that the various equivalent properties known
as Hensel’s Lemma are fulfilled; see Ribenboim [26] for details. In keeping
with the terminology of 1.1, we write o = o(K, λ) for the valuation ring,
p = p(K,λ) for the valuation ideal and κ = κ(K,λ) = o/p for the residue
class field of (K, Γ, λ).

We are now ready to state the most important single result in the valuation
theory of Jordan division rings.

1.7 Extension Theorem for Jordan division algebras. Let (K, Γ, λ)
be a Henselian field and J a 2-finitedimensional Jordan division algebra
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over K. Then λ has a unique extension to a valuation of J with values in
4 = Γ⊗Z Q.

Proof. Since J is 2-finitedimensional and the defining properties of valuations
((VA1) - (VA3) of 1.1) involve at most two elements, we are immediately
reduced to the finitedimensional case, which has been solved by Niggemann
[16, 4.2.4].

2. Valuations of Jordan division pairs.

We now carry out the transition from the valuation theory of Jordan division
rings to that of Jordan division pairs. Since Jordan division pairs up to
isomorphism are virtually the same as Jordan division rings up to isotopy,
this transition is neither surprising nor difficult. Yet it entails an increase in
overall flexibility which is very much worth the effort and, in fact, of critical
importance later on. In the sequel, the basic theory of Jordan pairs will be
taken for granted; the reader is referred to Loos [7] for details. Given a Jordan
pair V = (V +, V −) and ε = ±, the set of elements in V ε that are invertible
in V will be denoted by V ε×. Observe that we may have V +× = V −× = ∅. In
this paper, ε always stands for one of the symbols ±. Unspecified statements
involving ε are always meant to hold for both + and −. We denote by Rad V
the Jacobson radical of V . Throughout this section, we fix a totally ordered
additive abelian group 4 as in 1.1.

2.1 The concept of a valuation. Let V be a Jordan division pair. By
a valuation of V with values in 4, symbolized as µ : V −→ 4∞, we mean
a pair µ = (µ+, µ−) of mappings µε : V ε −→ 4∞ satisfying the following
conditions for all x, x′ ∈ V ε, y ∈ V −ε.

(VP1) µε(x) = ∞⇐⇒ x = 0.

(VP2) µε(x + x′) ≥ min(µε(x), µε(x′)).

(VP3) µε(Q(x)y) = 2µε(x) + µ−ε(y).

The set of all valuations of V with values in 4 will be denoted by Val(V,4).
Always containing the trivial valuation given by the maps V ε −→ 4∞, 0 7−→
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∞, x 7−→ 0 for x ∈ V ε×, Val(V,4) is not empty. Given µ ∈ Val(V,4), we
put

(2.1.1) O(V, µ) = (O(V, µ)+, O(V, µ)−), P(V, µ) = (P(V, µ)+,P(V, µ)−),

where

(2.1.2) O(V, µ)ε = {x ∈ V ε : µε(x) ≥ 0},
P(V, µ)ε = {x ∈ V ε : µε(x) > 0}.

More generally, for δ ∈ 4 we put

(2.1.3) O(V, µ)(δ) = (O(V, µ)(δ)+,O(V, µ)(δ)−),

P(V, µ)(δ) = (P(V, µ)(δ)+, P(V, µ)(δ)−),

where

(2.1.4) O(V, µ)(δ)ε = {x ∈ V ε : µε(x) ≥ εδ},
P(V, µ)(δ)ε = {x ∈ V ε : µε(x) > εδ}.

2.2 Examples. a) Let J be a Jordan division ring and V = (J, J) the
associated Jordan division pair. If ν : J −→ 4∞ is a valuation, then so is
µ = (ν, ν) : V −→ 4∞, and we have

O(V, µ) = (O(J, ν),O(J, ν)), P(V, µ) = (P(J, ν),P(J, ν)).

See 2.8 below for generalization.
b) Let V be a Jordan division pair and µ = (µ+, µ−) a valuation of V with
values in 4. Then µop = (µ−, µ+) is a valuation of V op with values in 4.

2.3 Proposition. Let V be a Jordan division pair and µ ∈ Val(V,4). Then
a) µ−ε(x−1) = −µε(x) for all x ∈ V ε×.
b) O(V, µ) is a subpair of V , called the valuation pair of (V, µ).
c) O(V, µ)ε× = O(V, µ)ε −P(V, µ)ε.
d) P(V, µ) is an ideal in O(V, µ), called the valuation ideal of (V, µ).
e) Calling κ(V, µ) = O(V, µ)/P(V, µ) the residue class pair of (V, µ), the
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following statements are equivalent .
(i) O(V, µ) is a local Jordan pair.
(ii) κ(V, µ) is a Jordan division pair.
(iii) κ(V, µ) 6= 0.
(iv) µ+(x) = 0 for some x ∈ V +.
(v) µ−(y) = 0 for some y ∈ V −.
In this case, Rad O(V, µ) = P(V, µ).

Proof. a) follows immediately from (VP3) and Q(x)x−1 = x.
b) follows immediately from (VP2), (VP3).
c) follows immediately from a) and the fact that V is a division pair.
d) By (VP2), (VP3), P = P(V, µ) is additively closed in O = O(V, µ) and
satisfies Q(Oε)P−ε+Q(Pε)O−ε ⊂ Pε. Hence it remains to prove {xyz} ∈ Pε

for x ∈ Oε, y ∈ O−ε, z ∈ Pε. By c) we may assume x ∈ Oε×. But then
x−1 ∈ O−ε×, and from [7, 2.1.2, p. 22] we conclude

Q(x−1){xyz} = Q(x−1)Q(x, z)y = D(x−1, z)y

= {x−1zy} ∈ Q(O−ε)Pε ⊂ P−ε,

whence {xyz} ∈ Q(x)P−ε ⊂ Pε.
e) By c), P(V, µ) is the set of noninvertible elements of O(V, µ), and all
nonzero elements of κ(V, µ) are invertible. Hence (i) - (iii) are equivalent.
(iii) in turn is equivalent to µε(x) = 0 for some ε = ± and some x ∈ V ε.
By a) this last condition is equivalent to (iv) and to (v) as well. The last
statement follows from [7, 4.4a)]. ¤

2.4 Translates of valuations. The main difference between valuations of
pairs and algebras, which also accounts for the increase in flexibility men-
tioned earlier, derives from the fact that, in the situation of 2.1, 4 acts on
Val(V,4) by (right) translations: Let µ : V −→ 4∞ be a valuation and
δ ∈ 4. Then µ + δ : V −→ 4∞, with (µ + δ)ε : V ε −→ 4∞ given by

(µ + δ)ε(x) = µε(x) + εδ (x ∈ V ε),

is again a valuation, called the δ-translate of µ. From (2.1.1-4) we conclude

(2.4.1) O(V, µ + δ) = O(V, µ)(−δ), P(V, µ + δ) = P(V, µ)(−δ).
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Though translates have no direct analogue in the setting of Jordan algebras,
the do relate to the possibility of passing to the valuation induced on an
isotope (1.2). The precise nature of this relationship will be described in 2.5,
2.8 below.

2.5 Proposition. Let V be a Jordan division pair and y ∈ V −ε×.
a) If µ : V −→ 4∞ is a valuation of V , then

µε
y : V ε

y −→ 4∞, x 7−→ µε
y(x) = µε(x) + µ−ε(y)

is a valuation of the Jordan division ring V ε
y .

b) If ν : V ε
y −→ 4∞ is a valuation, so is νy : V −→ 4∞, where (νy)

ε =
ν, (νy)

−ε = ν ◦Q(y−1).
c) For valuations µ : V −→ 4∞, ν : V ε

y −→ 4∞ we have

(µε
y)y = µ + εµ−ε(y), (νy)

ε
y = ν.

d) The assignments µ 7−→ µε
y, ν 7−→ νy give inverse bijections from

Val(V,4)/4 onto Val(V ε
y ,4) and vice versa.

The proof consists in straightforward verifications of the various defining
conditions and is omitted.

2.6 Separated valuations. Let V be a Jordan division pair. A valuation
µ : V −→ 4∞ is said to be separated if it satisfies the equivalent conditions (i)
- (v) of 2.3e). A valuation µ, though it need not be separated itself, always has
a separated translate. Indeed, for any δ ∈ 4, µ− δ is separated if and only if
δ is a value of µ+ (or, equivalently, of µ− (2.3e)). We denote by Valsep(V,4)
the set of separated valuations of V with values in 4. The trivial valuation
is always separated, as are the valuations of 2.2a).

2.7 Proposition. Let J be a Jordan division ring and V = (J, J) the asso-
ciated Jordan division pair. Then the projection µ = (µ+, µ−) 7−→ µ+ yields
a bijective map

Valsep(V,4) →̃
⋃

y∈J×
Val(J (y),4)
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whose inverse sends a valuation ν : J (y) −→ 4∞ (y ∈ J×) to (ν, ν ◦ Uy−1) ∈
Valsep(V,4).

Proof. If µ : V −→ 4∞ is a separated valuation, 2.3e) yields an element
y ∈ V − = J satisfying µ−(y) = 0. Then µ+ = µ+

y belongs Val(J (y),4)

(2.5a)). Conversely, suppose ν ∈ Val(J (y),4) for some y ∈ J×. Then νy =
(ν, ν ◦ Uy−1) = (ν, ν ◦ Q(y−1)) belongs to Val(V,4) (2.5b)) and is obviously
separated. We claim that νy does not depend on the choice of y. To see this,
let also y′ ∈ J× satisfy ν ∈ Val(J (y′),4). Then ν(y′−1) = ν(1(y′)) = 0, and
for all x ∈ J we obtain

ν ◦ Uy′−1(x) = ν(U
(y)

y′−1Uy−1x) = 2ν(y′−1) + ν(Uy−1x)

= ν ◦ Uy−1(x),

whence νy = νy′ . Using 2.5c), it is now easily checked that the assignments
µ 7−→ µ+, ν 7−→ νy yield inverse bijections of the desired kind. ¤

2.8 Proposition. Let J be a Jordan division ring and put V = (J, J). For
µ = (µ+, µ−) to be a separated valuation of V with values in 4 it is necessary
and sufficient that there exist a valuation ν : J −→ 4∞ and y ∈ J× satisfying
µ+ = ν(y), µ− = ν(y−1) in the sense of 1.2. In this case, ν and y are unique;
moreover, the isomorphism

(1J , Uy) : (J (y), J (y)) −̃→ (J, J) = V

of [7, 1.11] is actually one of valued Jordan pairs in the sense that µ ◦
(1J , Uy) = (ν(y), ν(y)) and hence canonically induces isomorphisms

(O(J (y), ν(y)), O(J (y), ν(y))) ∼= O(V, µ),

(P(J (y), ν(y), P(J (y), ν(y))) ∼= P(V, µ),

(κ(J (y), ν(y)), κ(J (y), ν(y))) ∼= κ(V, µ).

Proof. Sufficiency being straightforward to check, let us suppose that
µ : V −→ 4∞ is a separated valuation. Then, for some invertible element
y ∈ J, µ+ : J (y) −→ 4∞ is a valuation (2.7), forcing µ+(y) = 0 = µ−(y−1)
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by 2.3a). Choose ν ∈ Val(J,4) satisfying ν(y) = µ+ (1.3). Since µ− =
µ+ ◦ Uz, z = y−1, again by 2.7, we conclude, for all v ∈ J :

µ−(v) = ν(y)(Uzv) = ν(Uzv) + ν(y)

= 2ν(z) + ν(v) + ν(y) = ν(v) + ν(z) = ν(z)(v),

i.e., µ− = ν(z). Uniqueness of ν, y as well as the relation µ ◦ (1J , Uy) =
(ν(y), ν(y)) are obvious; by 2.2a), the rest follows. ¤

2.9 Extensions of valuations. Let V be a Jordan division pair over a
field K. We assume that Γ is a subgroup of 4 and λ : K −→ Γ∞ is a
valuation. In keeping with (1.4.1), a valuation µ : V −→ 4∞ is said to be
an extension of λ if

(2.9.1) µε(ax) = λ(a) + µε(x) (a ∈ K, x ∈ V ε).

Note that all the previous constructions preserve the property of being an
extension of a fixed valuation of K.

2.10 r-finitedimensionality for Jordan pairs. Generalizing on 1.5, a
Jordan pair V over a field is said to be locally finitedimensional of level r
(or r-finitedimensional for short) (r ∈ Z, r > 0) if all subpairs on r gen-
erators of the form (x1, y), . . . , (xr, y) or (x, y1), . . . , (x, yr) (x, x1, . . . , xr ∈
V +; y, y1, . . . , yr ∈ V −) are finitedimensional.

2.11 Extension Theorem for Jordan division pairs. Let (K, Γ, λ) be
a Henselian field and V a 2-finitedimensional Jordan division pair over K.
Then λ extends to a valuation of V with values in 4 = Γ ⊗Z Q. Moreover,
this extension is unique up to translates by elements of 4.

Proof. For 0 6= y ∈ V −, V +
y is a 2-finitedimensional Jordan division algebra

over K. Hence 1.7 applies and, together with 2.5d), completes the proof. ¤
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2.12 Corollary. In the situation of 2.11, let V ′ be another 2-
finitedimensional Jordan division pair over K and η : V −→ V ′ a nonzero
homomorphism. If µ : V −→ 4∞, µ′ : V ′ −→ 4∞ are valuations extending
λ, then there exists an element δ ∈ 4 such that µ′ ◦ η = µ + δ. ¤

2.13 Corollary. Notations being as in 2.11, let c be a nontrivial idempotent
of V . Then there exists a unique extension of λ to a valuation µ of V with
values in 4 satisfying µε(cε) = 0.

Proof. By 2.11, there exists a unique element µ ∈ Val(V,4) extending λ and
satisfying µ+(c+) = 0. But this implies µ−(c−) = 0 by 2.3a). ¤

2.14 Remark. If µ ∈ Val(V,4) extends λ as in 2.11, its translate µ′ =
µ + µ−(c−) for a nontrivial idempotent c ∈ V has µ′ε(cε) = 0 and hence does
not depend on the choice of µ (2.13).

2.15 The triple product inequality. Given a Jordan division pair V and
a valuation µ : V −→ 4∞, it seems difficult to decide whether

(TPI) µε({xyz}) ≥ µε(x) + µ−ε(y) + µε(z)

holds for all x, z ∈ V ε, y ∈ V −ε. Observe, however, that (TPI) is translation
invariant, i.e., if µ ∈ Val(V,4) satisfies (TPI), so does µ+ δ for every δ ∈ 4.
Hence we may combine 2.5 with the proof of [20, Lemma 1] to derive (TPI)
under the assumption that 4 has height 1 [1, VI §4 Definition 2], i.e., may be
regarded as a totally ordered subgroup of the additive group of real numbers
equipped with the natural ordering [1, VI §4 Proposition 8]. Further sufficient
conditions for the validity of (TPI) will be discussed in Section 4 below.

3. Grids.

Our approach to the arithmetics of Jordan pairs relies heavily on Neher’s
theory of grids, whose principal features, in so far as they are needed to un-
derstand the subsequent development, will be summarized and, occasionally,
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expanded in this section. The main references are [12] (most notably §§1-4 of
Chap.I) and [13] (regarding Jordan pairs as polarized Jordan triple systems
[7, 1.14] in both cases) as well as [14]. Throughout this section, we let V be
a Jordan pair over any commutative associative ring of scalars. As before,
Rad V stands for the Jacobson radical of V .

3.1 Elementary relations of idempotents. For elements r, s, t ∈ V + ×
V − with V ε-components rε, sε, tε, respectively, we use the conventions

Q(r)s = (Q(r+)s−, Q(r−)s+), {rst} = ({r+s−t+}, {r−s+t−}).
These extend in a straightforward manner to pairs X,Y, Z of subsets
Xε, Y ε, Zε, respectively, of V ε. Idempotents c, d ∈ V are called associated
(in V ) (written as c ≈ d) if they have the same Peirce components. They
are called collinear (written as c>d) if c ∈ V1(d) and d ∈ V1(c). We say
that c governs (or dominates) d (written as c ` d or d a c) if c ∈ V1(d) and
d ∈ V2(c). As usual, we write c ⊥ d in case c and d are orthogonal.

3.2 Lemma. Let U be a subpair of V .
a) If U ε ∩ V ε× 6= ∅ for some ε = ±, then U ε× ⊂ V ε×.
b) Idempotents c, d of U are associated in U if and only if they are so in V .

Proof. a) Let z ∈ U ε be invertible in V . Given x ∈ U ε×, there exists
y ∈ U−ε such that Q(x)y = z. Since Q(z) = Q(x)Q(y)Q(x) is a bijective
map V −ε −→ V ε, so is Q(x).
b) If c, d are associated in U , we have U2(d) = U2(c) ⊂ V2(c), and cε ∈ U2(d)ε

is invertible in V2(c). Hence so is dε by a), forcing c, d to be associated in V
[12, I.2.3]. The converse is obvious. ¤

3.3 Cogs. A nonempty subset E of V is called a cog in V if it consists of
nontrivial idempotents and any two distinct elements c, d ∈ E satisfy one of
the relations c ⊥ d, c>d, c ` d, d ` c.Then the Peirce projections of arbitrary
elements of E commute by pairs, forcing a direct sum decomposition

(3.3.1)
⊕

I∈ZE

VI(E) ⊂ V,
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where, for each I ∈ ZE, the corresponding Peirce component relative to E is
given by

VI = VI(E) =
⋂
c∈E

VI(c)(c),

adopting the convention Vi(c) = 0 for c ∈ E, i ∈ Z unless i ∈ {0,1,2}. The
ordinary Peirce decomposition relative to a single idempotent immediately
implies

(3.3.2) Q(VI)VJ ⊂ V2I−J , {VIVJVK} ⊂ VI−J+K

for I, J,K ∈ ZE. Note that we have equality in (3.3.1) if E is finite but not
in general. Also, every c ∈ E is contained in exactly one VI(E), I ∈ ZE,
and conversely, for every I ∈ ZE, VI(E) contains at most one element of E.
Calling

(3.3.3) supp E = {I ∈ ZE : VI(E) ∩ E 6= ∅}

the support of E, the cover of E in V is defined by

(3.3.4) CV (E) =
∑

I∈suppE

VI(E)

and we say that E covers V if CV (E) = V . If all Peirce components VI(E), I∈
supp E, are division (resp. local) pairs, we call E a division (resp. local) cog
in V .

3.4 Closed cogs and 3-graded root systems. Let E be a cog in V . For
c, d ∈ E satisfying c ` d, Q(c)d is a nonzero idempotent in V , as is {e1e2e3}
for e1, e2, e3 ∈ E satisfying e1>e2>e3 ⊥ e1 or e1 ` e2 a e3>e1. If each one
of the idempotents thus constructed is associated with some element of E,
then E is said to be closed. We recall from [13, 2.22, 3.2] the fundamental
fact that closed cogs are in a one-to-one correspondence with 3-graded root
systems and refer to [13, §1] for a summary on this concept. Accordingly,
let (R,R1) be the 3-graded root system associated with a closed cog E in V .
Then each α ∈ R1 uniquely determines an element cα ∈ E and conversely
[13, 2.7], which in turn uniquely determines I ∈ ZE such that cα ∈ VI(E)
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(3.3). We are therefore allowed to write Vα(E) = VI(E). Hence, if E covers
V , the Peirce decomposition of V relative to E (3.3.4) attains the form

(3.4.1) V =
∑
α∈R1

Vα(E)

Setting Vα(E) = 0 for α ∈ X − R1, X being the ambient real vector space
of (R,R1), and abbreviating Vα = Vα(E) for α ∈ X, the multiplication rules
(3.3.2) may be rewritten as

(3.4.2) Q(Vα)Vβ ⊂ V2α−β, {VαVβVγ} ⊂ Vα−β+γ

for α, β, γ ∈ R1.

3.5 Quadrangles, triangles, diamonds. A quadrangle in V is a quadru-
ple (e1, e2, e3, e4) of idempotents satisfying

(3.5.1) ei>ei+1, ei ⊥ ei+2 (i mod 4),

(3.5.1′) {eiei+1ei+2} = ei+3 (i mod 4).

A triangle in V is a triple (e0, e1, e2) of idempotents satisfying

(3.5.2) e1 a e0 ` e2 ⊥ e1,

(3.5.2′) {e1e0e2} = e0, Q(e0)ei = e3−i (i = 1, 2).

A diamond in V is a quadruple (e0, e1, e2, e3) of idempotents satisfying

(3.5.3) e1 ` e0 a e3, e0 ⊥ e2, e1>e2>e3>e1,

(3.5.3′) {e0e1e2} = e3.

Following [13, 2.1, 3.1] we speak of root quadrangles (resp. root triangles, root
diamonds) if only (3.5.1) (resp. (3.5.2), (3.5.3)) is fulfilled.
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3.6 Grids and standard grids. A grid G in V is a closed cog satisfying
the following two conditions, for all e1, e2, e3 ∈ G.

(3.6.1) If e1, e2, e3 are mutually collinear having {e1e2e3} 6= 0, there exists
c ∈ G such that e1 ` c a e3 and c ⊥ e2.

(3.6.2) If e1 a e2 ` e3>e1, then {e1e2e3} = 0.

A grid G in V is said to be standard if

(SG1) every root triangle in G is a triangle,
(SG2) every root diamond in G is a diamond,
(SG3) every root quadrangle (e1, e2, e3, e4) in G satisfies {e1e2e3} = ±e4.

The following elementary observation is already implicit in the work of Neher
[12].

3.7 Proposition. Every covering cog is a grid.

Proof. Let E ⊂ V be a covering cog and denote by Ec the closure of E,
which is a closed cog containing E and having the same Peirce components
as E [12, I.4.11]. But since E covers V , this is easily seen to imply E = Ec,
i.e., E is closed and hence a grid [12, I.4.14]. ¤

3.8 Ortho-collinear systems and root lengths. Let E ⊂ V be a cog.
We denote by E(2) the set of elements c ∈ E dominating some d ∈ E and
put E(1) = E − E(2). For i = 1, 2, E(i) is an ortho-collinear system, i.e.,
any two distinct members of E(i) are either orthogonal or collinear. If E is
closed, the elementary configurations ⊥,>,` of E correspond to elementary
configurations, also denoted ⊥,>,`, respectively, of the associated 3-graded
root system (R, R1). Suppose in addition that E is connected, so any two
elements of E can be joined by a finite chain in E no two successive members
of which are orthogonal. Then the elements of R1 have at most two different
lengths, which occur both if and only if E(2) is not empty, E(2) canonically
matching with the short roots of R1 in this case.
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3.9 Lemma. Let G be a covering grid of V and c ∈ G(1). Then V2(c) is a
Peirce component of V relative to G.

Proof. Write (R, R1) for the 3-graded root system associated with G, put
Vβ = Vβ(G) for β ∈ R1 and let α ∈ R1 satisfy c = cα. As G covers V,

V2(c) = Vα +
∑
β∈R1
βaα

Vβ,

and c ∈ G(1) implies that the second term on the right vanishes. ¤

3.10 Connected components. Let G ⊂ V be a covering grid and G′ a
connected component, i.e., a maximal connected subcog, of G. It is easy to
see that G′ is a grid whose cover in V is an ideal and that V is the direct
sum of these ideals as G′ varies over the connected components of G.

3.11 Theorem. Let G be a covering grid of V and (R, R1) the correspond-
ing 3-graded root system. Then

Rad V =
∑
α∈R1

Rad Vα(G).

Note. 3.11 in particular implies

Rad Vα(G) = Vα(G) ∩ Rad V (α ∈ R1).

Observe, however, for any cog E ⊂ V that the relations

Rad VI(E) = VI(E) ∩ Rad V (I ∈ ZE),

though valid if E is finite [12, I.6.1], fail to hold in general [12, I.6.5].

Proof. Setting Vα = Vα(G) for α ∈ R1, we have

Rad V =
∑
α∈R1

(Vα ∩ Rad V )
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since Rad V is an ideal in V . As the Bergman operator B(x, y) for (x, y) ∈ Vα

stabilizes the Peirce components relative to G, Vα ∩ Rad V is contained in
Rad Vα. Hence it remains to prove

(1) Rad Vα ⊂ Rad V (α ∈ R1).

To this end, we may assume that G is connected (3.10). If cα ∈ G(1), then
Vα = V2(cα) (3.9), and (1) follows from [7, 5.8]. Hence we may assume
cα ∈ G(2), forcing

Gα = {c ∈ G : cα ` c}
to be a nonempty orthocollinear systems [12, I.4.9]. Then there is an invo-
lutorial map c 7−→ c∗ of Gα such that c, d ∈ Gα are orthogonal if and only if
d = c∗ (loc. cit.). This implies c a cα ` c∗⊥ c and c∗ ≈ Q(cα)c, cα ≈ c + c∗

[12, I.2.5], hence

(2) V ′ = V2(cα) = V2(c) + (V1(c) ∩ V1(c
∗)) + V2(c

∗).

Suppose first that Gα = {c, c∗} consists of two elements. Then V1(c)∩V1(c
∗)

is a Peirce component of G [12, I.4.9] which contains cα and so agrees with
Vα. Hence, by (2) and [7, 5.8],

Rad Vα = Rad V ′
1(c) ⊂ Rad V ′ ⊂ Rad V.

We are left with the case that Gα contains more than two elements, forcing
G = {cα} ∪ Gα since G is connected [12, I.4.9]. Let F ⊂ Gα be a maximal
collinear system, which exists by Zorn’s Lemma. Then

Gα = F ∪ F ∗, F ∩ F ∗ = ∅,

and, by 3.9, the Peirce decomposition relative to G reads

(3) V = Vα +
∑

f∈F

(V2(f) + V2(f
∗)).

For arbitrary F ′ ⊂ F we now claim

(4) that

VF ′ = Vα +
∑

f∈F ′
(V2(f) + V2(f

∗))
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is a subpair of V .

To see this, one checks that G′ = {cα} ∪ F ′ ∪ F ′∗ is a closed cog in V , uses
[12, I.3.9, I.4.14] to establish CV (G′) as a subpair of V , and proves

VF ′ = CV (G′) ∩
⋂

f∈F−F ′
(V1(f) ∩ V1(f

∗));

details are left to the reader. Returning to the proof of (1), we note that
quasi-invertibility in a subpair extends to quasi-invertibility in all of V [7,
3.2] and that every element of V belongs to VF ′ for some finite subset F ′

of F . It therefore suffices to prove Rad VF ′ ⊂ Rad VF ′′ for all finite sets
F ′ ⊂ F ′′ ⊂ F (observe V∅ = Vα). Arguing by induction on |F ′′−F ′|, we may
assume F ′′ = F ′ ∪ {g} for some g /∈ F ′, forcing

VF ′′ = V2(g) + VF ′ + V2(g
∗)

by (4), hence VF ′ = (VF ′′)1(g), and the assertion follows from [7, 5.8]. ¤

3.12 Simple Cogs. A cog E ⊂ V is said to be simple if each Peirce compo-
nent VI(E) (I ∈ supp E) is a simple Jordan pair. There is a useful elementary
connection between simplicity of a grid and simplicity of the ambient Jordan
pair.

3.13 Proposition. Let G be a covering simple grid of V . Then V is simple
if and only if G is connected.

Proof. If V is simple, G is connected, by [12, IV.1.1] or 3.10. Conversely,
suppose G is connected and let U be a nonzero ideal of V . Writing (R,R1)
for the 3-graded root system associated with G and putting Vα = Vα(G) for
α ∈ R1, we obtain

U =
∑
α∈R1

(Vα ∩ U).

Hence it suffices to show G ⊂ U . To do so, we pick α ∈ R1 such that
cα ∈ U and let β ∈ R1, β 6= α. To prove cβ ∈ U , we may assume, as G
is connected, that one of the relations cα>cβ, cα a cβ, cα ` cβ holds. The

18



first two of these yield cβ = {cαcαcβ} ∈ U , whereas the last one implies
cε
β = Q(cε

α)Q(c−ε
α )cε

β ∈ U ε. ¤

3.14 Example. A covering grid of a simple Jordan pair need not be simple:
Let A be a simple unital associative algebra, n ∈ Z, n > 1, and Mn(A) the
algebra of n-by-n matrices with entries in A. Writing eij ∈ Mn(A) (1 ≤
i, j ≤ n) for the ordinary matrix units and V = (Mn(A), Mn(A)op)J for the
simple Jordan pair associated with Mn(A), we put G = {cij; 1 ≤ i ≤ j ≤ n},
where cii = (eii, eii) (1 ≤ i ≤ n), cij = (eij + eji, eij + eji) (1 ≤ i < j ≤ n).
Then G is a covering grid of V but not simple since the Peirce-12-component
of V relative to the standard diagonal frame is a Peirce component of G and
isomorphic to the direct sum of two copies of (A, Aop)J .

4. Norms.

Given a Jordan pair V (not necessarily division or finitedimensional) over
a Henselian field (K, Γ, λ) as in 1.6, we will describe here certain o(K, λ)-
subpairs of V derived from 2-finitedimensional covering standard division
grids and the concept of a norm. These subpairs will turn out in the next
section to be maximal orders in the sense of [19] if V has finite dimension
and (K, Γ, λ) is a local field.

4.1 The concept of a norm. Let (K, Γ, λ) be a valued field, so K is a field,
Γ is a totally ordered additive abelian group, and λ : K −→ Γ∞ is a valuation.
In dealing with Jordan pairs over K containing zero divisors, the concept of a
valuation is no longer appropriate and has to be replaced by that of a norm.
Let V be a Jordan pair over K and4 a totally ordered additive abelian group
containing Γ as a totally ordered subgroup. By a λ-norm (or just a norm) of
V with values in4 we mean a pair ρ = (ρ+, ρ−) of mappings ρε : V ε −→ 4∞
satisfying the following conditions for all x, x′ ∈ V ε, y ∈ V −ε, a ∈ K:

(N1) ρε(x) = ∞⇐⇒ x = 0.

(N2) ρε(x + x′) ≥ min(ρε(x), ρε(x′)).
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(N3) ρε(Q(x)y) ≥ 2ρε(x) + ρ−ε(y).

(N4) ρε(ax) = λ(a) + ρε(x).

See Bruhat-Tits [2, 1.1] for a related concept. Given a norm ρ of V with
values in 4 as above, O(V, ρ), where

O(V, ρ)ε = {x ∈ V ε : ρε(x) ≥ 0},
is an o(K, λ)-subpair of V , called the norm pair of (V, ρ). Notice that P(V, ρ),
where

P(V, ρ)ε = {x ∈ V ε : ρε(x) > 0},
need not be an ideal in O(V, ρ). If it is, however, we call it the norm ideal
and κ(V, ρ) = O(V, ρ)/P(V, ρ) the residue class pair of (V, ρ).

4.2 Example. Notations being as in 4.1, let λ be discrete (so we may
assume Γ = Z) and O be an o-order [19, §4 4.] in a finitedimensional Jordan
pair V oder K. Since Oε ⊂ V ε is a full o-lattice, we obtain a filtration

. . . ⊂ pm+1O ⊂ pmO ⊂ . . . ⊂ O ⊂ . . . ⊂ p−mO ⊂ p−m−1O ⊂ . . .

for m ∈ N such that ⋂

m∈Z
pmO = 0,

⋃

m∈Z
pmO = V

This filtration induces maps ρε : V ε −→ Z∞ by setting

ρε(x) = sup {m ∈ Z : x ∈ pmO } (x ∈ V ε),

and it is readily checked that ρ = (ρ+, ρ−) is a norm of V with values in Z
satisfying O(V, ρ) = O, P(V, ρ) = pO and κ(V, ρ) = O ⊗o κ. Moreover, ρ
satisfies the triple product inequality (cf. 2.15)

(TPI) ρε({xyz}) ≥ ρε(x) + ρ−ε(y) + ρε(z)

for all x, z ∈ V ε, y ∈ V −ε.

We are now prepared to state the most difficult result of the paper, whose
proof will occupy the better part of this section. As a matter of terminology,
a cog in a Jordan pair over a field is said to be r-finitedimensional (r ∈
Z, r > 0) if all its Peirce components are r-finitedimensional Jordan pairs in
the sense of 2.10.
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4.3 Norm Theorem. Let (K, Γ, λ) be a Henselian field, V a Jordan pair
over K and G a 2-finitedimensional covering standard division grid of V .
Write (R,R1) for the 3-graded root system associated with G and denote by
µα, for each α ∈ R1, the unique extension of λ to a valuation of Vα(G) with
values in 4 = Γ⊗Z Q satisfying µε

α(cε
α) = 0 (2.13). Then

a) ρ = (ρ+, ρ−), with ρε : V ε −→ 4∞ given by

ρε(
∑
α∈R1

xα) = infα∈R1 µε
α(xα) (xα ∈ Vα(G)ε, α ∈ R1),

is a λ-norm of V .
b) If every connected component of G contains more than one element, ρ
satisfies the triple product inequality

(TPI) ρε({xyz}) ≥ ρε(x) + ρ−ε(y) + ρε(z)

for all x, z ∈ V ε, y ∈ V −ε.

Comments. If G is any grid in any Jordan pair V , there exists a standard
grid G1 in V associated with G [13, 3.8], i.e., some bijection ϕ : G −→ G1

(necessarily unique) satisfies ϕ(c) ≈ c for all c ∈ G. In particular, G and
G1 have isomorphic 3-graded root systems [13, 3.4] and the same Peirce
components. Hence, if G is a covering (resp. a division) grid, so is G1. We
also recall from [14, 2.8] that if V is nondegenerate, it admits a finite covering
division grid if and only if it is nondegenerate and has dcc on inner ideals.
In particular, if V as in 4.3 is finitedimensional and semi-simple, covering
standard division grids exist.

Before turning to the proof of the Norm Theorem, we establish an easy
corollary.

4.4 Corollary. Notations being as in 4.3, P = P(V, G) = P(V, ρ) is an
ideal in O = O(V,G) = O(V, ρ); more precisely, we have

(4.4.1) G ⊂ O =
∑
α∈R1

O(Vα(G), µα), P =
∑
α∈R1

P(Vα(G), µα)

and P = Rad O. Furthermore, the natural map from O to O/P maps G as
an abstract closed cog isomorphically onto a covering standard division grid
G′ of O/P. In particular, O/P is simple if and only if V is simple.

21



Proof. By 4.3, P is an ideal in O and (4.4.1) holds. Each µα, α ∈ R1, being
a separated valuation of Vα = Vα(G), forcing P(Vα, µα) = Rad O(Vα, µα) by
2.3e), we deduce P = Rad O from (4.4.1) and 3.11. The assertion that G
canonically induces G′ as indicated is obvious and by 3.13 implies the rest.

¤

4.5 We now turn to the proof of the Norm Theorem 4.3, which consists
of two parts, the first (and shorter) one being purely algebraic in nature.
For the time being, we therefore let V be an arbitrary Jordan pair over any
commutative associative ring of scalars. An idempotent c ∈ V is said to be
invertible if V = V2(c).

4.6 Lemma. Suppose x ∈ V +, y ∈ V − are invertible in V and put v =
x−1 − y. Then (x, v) is quasi-invertible in V , with quasi-inverse xv = y−1.
Furthermore,

β(x, v) = (B(x, v), B(−v, y−1)).

Proof. This follows immediately from [7, 2.12, 3.2 and JP35]. ¤

4.7 Lemma. Let c be an idempotent in V and put U = V2(c), W = V1(c).
a) For all x ∈ U ε×, y ∈ U−ε, we have

D(Q(x)y, x−1) = D(x, y).

b) For all x ∈ U ε, y ∈ U−ε, y′ ∈ U−ε×, we have

D(Q(x)y, y′) = D(x, y′)D(y′−1, y)D(x, y′) on W ε

and
D(y′, Q(x)y) = D(y′, x)D(y, y′−1)D(y′, x) on W−ε.

c) For all x ∈ U ε×, y ∈ U−ε×, the linear map D(x, y) is bijective on W ε with
inverse D(y−1, x−1) on W ε.
d) Let x ∈ U+×, y ∈ U−× and put v = x−1 − y ∈ U− (cf. 4.6). Then

β(x, v) = (D(x, y), D(x−1, y−1)) on W ;
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in particular, the right-hand side gives an automorphism of W .

Proof. Throughout we may assume ε = +. Observe in a) (resp. b)) that
(x, x−1) (resp. (y′−1, y′)) is an idempotent of V associated with c [12, I.2.3].
a) Linearizing [7, JP2] yields

D(Q(x)y, x−1) + D(x, y) = D(Q(x)y, x−1) + D(Q(x)x−1, y)

= D(x, {yxx−1}) = 2D(x, y),

as claimed.
b) We may assume y′ = c− and conclude, using [7, 8.1 (2)],

D(Q(x)y, c−) = D(x, c−)D(Q(c+)y, c−)D(x, c−)

on W ε. Applying a), the first relation of b) follows, which in turn yields the
second:

D(y′, Q(x)y) = D(Q(y′)Q(x)y, y′−1) (by a))

= D(Q(Q(y′)x)Q(y′−1)y, y′−1)

= D(Q(y′)x, y′−1)D(y′, Q(y′−1)y)D(Q(y′)x, y′−1)

= D(y′, x)D(y, y′−1)D(y′, x)

on W−ε.
c), d) By 4.6, (x, v) is quasi-invertible in U , hence in V [7, 3.2], and
B(x, v) : V + −→ V + is bijective. For z ∈ W+ we obtain

B(x, v)z = z − {x, x−1 − y, z}+ Q(x)Q(v)z = {xyz}

by the Peirce rules, so B(x, v) = D(x, y) on W+, giving the first part of c).
From a similar computation we deduce B(−v, y−1) = D(x−1, y−1) on W−,
giving d) by 4.6. Finally, [7, JP35] and 4.6 yield B(x, v)−1 = B(xv,−v) =
B(y−1,−v), which is easily seen to agree with D(y−1, x−1) on W+ and so
gives the second part of c) as well. ¤
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4.8 Lemma. Let c ∈ V be an idempotent and U,U ′ ⊂ V2(c), W,W ′ ⊂ V1(c)
be subpairs satisfying

c ∈ U, {UU ′W} ⊂ W ′, {U ′UW ′} ⊂ W.

Suppose x ∈ U ε×, y′ ∈ U ′−ε× make D(x, y′) : W ε −→ W ′ε injective. Then

D(y′−1, x−1)D(x, y′) = 1 on W ε.

Proof. By 3.2a), x is invertible in V2(c). Hence 4.7b) yields

D(x, y′) = D(x,Q(y′)y′−1) = D(x, y′)D(y′−1, x−1)D(x, y′)

on W ε, and the assertion follows. ¤

4.9 Lemma. Let G ⊂ V be a covering grid with associated 3-graded root
system (R, R1), write Vα = Vα(G) for α ∈ R1 and suppose α, β, γ ∈ R1 are
distinct such that {VαVβVγ} 6= 0. Then one of the following configurations is
fulfilled.

(4.9.1) cα>cβ>cγ ⊥ cα.

(4.9.2) cα>cβ>cγ>cα.

(4.9.3) cα a cβ>cγ ⊥ cα.

(4.9.4) cα>cβ ` cγ ⊥ cα.

(4.9.5) cα a cβ ` cγ ⊥ cα.

(4.9.6) cα ` cβ a cγ>cα.

Moreover, α− β + γ ∈ R1 and {cαcβcγ} ∈ Vα−β+γ is a nontrivial idempotent
unless we are in configuration (4.9.2).

Proof. By [12, I.3.6b)], cα, cβ, cγ fall into one of the cases 2, 8, 9, 13, 21, 24
- 27 of [12, I.3.5]. The final statement of the lemma being a consequence of
[12, I.3.6c)], it therefore suffices to show that the configurations 24 - 26 are
impossible. Arguing indirectly, we may invoke [12, I.3.9] to assume cα a cβ `
cγ>cα. Thanks to the No-Tower-Lemma [12, I.3.4] we then have cα, cγ ∈ G(1),
forcing them to bei rigid collinear by 3.9 and [12, I (1.32)]. But this implies
{VαVβVγ} = 0 by [12, I.3.9c)], a contradiction. ¤
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4.10 Returning now to the arithmetic setting, we let (K, Γ, λ) be a
Henselian field with valuation ring o = o(K, λ), valuation ideal p = p(K, λ)
and residue class field κ = κ(K,λ). For the time being, we let V be an
arbitrary Jordan pair over K. If V is division, a valuation of V taking values
in 4 = Γ⊗Z Q and extending λ will be called a λ-valuation for short.

4.11 Proposition. Let c ∈ V be an idempotent and U ⊂ V2(c), W ⊂ V1(c)
be 2-finitedimensional division subpairs satisfying c ∈ U and {UUW} ⊂ W.
Then

(4.11.1) νε({xyz}) = µε(x) + µ−ε(y) + νε(z)

for all λ-valuations µ of U, ν of W and for all x ∈ U ε, y ∈ U−ε, z ∈ W ε.

Proof. Since (4.11.1) is invariant under translates of valuations (cf. 2.4), it
suffices to show that, given a λ-valuation ν of W , there exists a λ-valuation µ
of U satisfying (4.11.1). To do so, observe U× ⊂ V2(c)

× by 3.2a), fix v ∈ U−×

and let x ∈ U+×. Then (D(x, v), D(x−1, v−1)) determines an automorphism
of W (4.7d)), so 2.12 produces an element µ+(x) ∈ 4 satisfying

ν+({xvz}) = µ+(x) + ν+(z) (z ∈ W+),

ν−({x−1v−1z′}) = −µ+(x) + ν−(z′) (z′ ∈ W−).

We now put v+ = v−1, v− = v, µ+(0) = µ−(0) = ∞, µ−(x′) = −µ+(x′−1) for
x′ ∈ U−×, and thus obtain maps µε : U ε −→ 4∞ satisfying

(1) νε({xv−εz}) = µε(x) + νε(z) (x ∈ U ε, z ∈ W ε),

(2) ν−ε({x−1vεz′}) = −µε(x) + ν−ε(z′) (x ∈ U ε×, z′ ∈ W−ε).

We claim that (2) implies

(3) νε({vεyz}) = µ−ε(y) + νε(z) (y ∈ U−ε, z ∈ W ε).

To see this, we may assume y 6= 0 and conclude

νε(z) = νε({y−1v−ε{vεyz}) (by 4.7c))
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= −µ−ε(y) + νε({vεyz}),

as desired. Using 4.7b) and (1), (3) above, it is now readily checked that
µ = (µ+, µ−) is a λ-valuation of U ; observe, however, that µ = µv depends
on v. In order to prove (4.11.1), we may assume y 6= 0 and have

(4) νε({xyz}) = µε
y(x) + νε(z) (x ∈ U ε, z ∈ W ε)

by (1) (applied to V op for ε = −). Hence 2.11 implies µy = µ + δ for some
δ ∈ 4, and putting x = y−1 in (4) gives εδ = −µε(y−1) = µ−ε(y) by 2.3a).
Returning to (4) yields (4.11.1). ¤

4.12 Proposition. Let F = (e1, e2) be an orthogonal system of idempo-
tents in V. Suppose for i, j = 1, 2 that Ui ⊂ Vii(F ), Wj ⊂ V12(F ) are 2-
finitedimensional division subpairs satisfying ei ∈ Ui as well as the relations

{U1WjU2} ⊂ W3−j.

If fj ∈ Wj (j = 1, 2) are nontrivial idempotents, then so are {e1fje2} ∈ W3−j,
and

(4.12.1) νε
3−j({x1yx2}) + ν−ε

3−j({e−ε
1 f ε

j eε
2}) =

µε
1(x1) + ν−ε

j (y) + µε
2(x2) + µ−ε

1 (e1) + νε
j (fj) + µ−ε

2 (e2)

for all λ-valuations µi of Ui, νj of Wj and all xi ∈ U ε
i , y ∈ W−ε

j . Further-
more,

(4.12.2) νε
1(f

ε
1 ) + νε

2({eε
1f
−ε
1 eε

2}) = νε
2(f

ε
2 ) + νε

1({eε
1f
−ε
2 eε

2}).

Proof. We have U ε×
i ⊂ Vii(F )ε× by 3.2a). Given u+

i ∈ U+×
i with inverse

u−i = (u+
i )−1 ∈ U−×

i , this is easily seen to imply that

(1) η = (Q(u+
1 + u+

2 ), Q(u−1 + u−2 )) : W op
j −̃→W3−j (j = 1, 2)

is an isomorphism with inverse

(2) η−1 = (Q(u−1 + u−2 ), Q(u+
1 + u+

2 )) : W3−j−̃→W op
j
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(notice η+(y) = {u+
1 y u+

2 } for y ∈ W−
j etc.). In particular, specializing u+

i

to e+
i yields an isomorphism W op

j −→ W3−j sending f op
j to {e1fje2}, which

therefore is a nontrivial idempotent in W3−j. Hence, if some λ-valuations
µi, νj (i, j = 1, 2) satisfy (4.12.1,2), all do (2.14). It therefore suffices to
prove that, given λ - valuations µ2 of U2, νj of Wj (j = 1, 2), there exists a
λ-valuation µ1 of U1 satisfying

(3) νε
3−j({x1yx2}) = µε

1(x1) + ν−ε
j (y) + µε

2(x2)

for all xi ∈ U ε
i , y ∈ W−ε

j (i, j = 1, 2). Indeed, (3) easily implies (4.12.1,2)
by using the specializations xi = eε

i , y = f−ε
j and 2.3a). Now fix u+

2 ∈ U+×
2

with inverse u−2 ∈ U−×
2 as above. Given x+

1 ∈ U+×
1 with inverse x−1 ∈ U−×

1 ,
the isomorphism η of (1) (with j = 1 and xε

1 replacing uε
1) together with 2.12

yields an element µ+
1 (x+

1 ) ∈ 4 satisfying ν2 ◦η = νop
1 +µ+

1 (x+
1 )+µ+

2 (u+
2 ), i.e.,

ν+
2 ({x+

1 yu+
2 }) = µ+

1 (x+
1 ) + ν−1 (y) + µ+

2 (u+
2 ) (y ∈ W−

1 ),

ν−2 ({x−1 yu−2 }) = −µ+
1 (x+

1 ) + ν+
1 (y)− µ+

2 (u+
2 ) (y ∈ W+

1 ).

Setting µ+
1 (0) = µ−1 (0) = ∞ and µ−1 (z−1 ) = −µ+

1 ((z−1 )−1) for z−1 ∈ U−×
1 , we

thus obtain mappings µε
1 : U ε

1 −→ 4∞ such that

νε
2({xε

1yuε
2}) = µε

1(x
ε
1) + ν−ε

1 (y) + µε
2(u

ε
2) (xε

1 ∈ U ε
1 , y ∈ W−ε

1 ).

Assuming here xε
1 6= 0 and replacing y by {x−ε

1 y u−ε
2 } (x−ε

1 = (xε
1)
−1, y ∈ W ε

2 ),
we obtain the same equation with −ε instead of ε and the indices j = 1, 2
interchanged. Hence

(4) νε
3−j({xε

1yuε
2}) = µε

1(x
ε
1) + ν−ε

j (y) + µε
2(u

ε
2) (xε

1 ∈ U ε
1 , y ∈ W−ε

j )

for j = 1, 2. Using (4) and the fundamental formula, it is now straightforward
to check that µ1 is a λ-valuation of U1. This allows us to prove (3) for
the valuations thus constructed. Indeed, we may assume xε

1 = x1 6= 0 and,
putting x−ε

1 = x−1
1 , apply the previous considerations with e1, e2 interchanged

to obtain a λ-valuation µ′2 of U2 satisfying

(5) νε
3−j({xε

1yxε
2}) = µε

1(x
ε
1) + ν−ε

j (y) + µ′ε2 (xε
2) (xε

2 ∈ U ε
2 , y ∈ W−ε

j )

for j = 1, 2. By 2.11, µ′2 = µ2 + δ for some δ ∈ ∆. Specializing xε
2 to uε

2 in
(5) and comparing the result with (4), we conclude δ = 0, and (3) follows. ¤
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4.13 Proposition. In the situation of 4.12, assume W1 = W2 = W, f1 =
f2 = f and let µi (resp. ν) be arbitrary λ-valuations of Ui (resp. W ) (i =
1, 2).
a) If the relations

(4.13.1) Q(W )Ui ⊂ U3−i, {UiUiW} ⊂ W

hold for i = 1, 2, then

(4.13.2) µε
3−i(Q(y)x) + µ−ε

3−i(e
−ε
3−i) = 2νε(y) +

µ−ε
i (x) + ν−ε(f−ε) + ν−ε({e−ε

1 f εe−ε
2 }) + µε

i (e
ε
i )

(4.13.3) µε
3−i({yxz}) + µ−ε

3−i(e
−ε
3−i) ≥ νε(y) +

µ−ε
i (x) + νε(z) + ν−ε(f−ε) + ν−ε({e−ε

1 f εeε
2}) + µε

i (e
ε
i )

for all y, z ∈ W ε, x ∈ U−ε
i .

b) If the relations (4.13.1) and

(4.13.4) {WWUi} ⊂ Ui

hold for i = 1, 2, then

(4.13.5) µε
i ({yzx}) ≥ νε(y) + ν−ε(z) + µε

i (x)

for all y ∈ W ε, z ∈ W−ε, x ∈ U ε
i .

Proof. By the usual argument involving (2.14), it suffices to exhibit λ-
valuations µi, ν as above satisfying the asserted conditions. For this purpose,
we may assume µε

i (e
ε
i ) = νε(f ε) = 0 for i = 1, 2 by (2.13).

a) Setting xi = x and choosing x3−i ∈ U−ε
3−i, [7, JP1] yields

{Q(y)xi, x3−i, y} = Q(y){x1yx2},

and we obtain

µε
3−i(Q(y)xi) + µ−ε

3−i(x3−i) + νε(y)

= νε({Q(y)xi, x3−i, y}) (by 4.11)

= νε(Q(y){x1yx2}) = 2νε(y) + ν−ε({x1yx2})
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= 2νε(y) + µ−ε
i (x) + νε(y) + µε

3−i(x3−i)−
νε({eε

1f
−εeε

2}) (by (4.12.1)),

hence (4.13.2). In order to deduce (4.13.3), we compute

{{yxiz}x3−iz} = Q(z, {yxiz})x3−i

= D(y, xi)Q(z)x3−i + Q(z)D(xi, y)x3−i (by [7, JP12]),

which implies

{{yxiz}x3−iz} = {y, xi, Q(z)x3−i}+ Q(z){x1yx2}.

Hence

µε
3−i({yxiz}) + µ−ε

3−i(x3−i) + νε(z)

= νε({{yxiz}x3−iz} (by 4.11)

= νε({y, xi, Q(z)x3−i}+ Q(z){x1yx2})
≥ min (νε({y, xi, Q(z)x3−i}), νε(Q(z){x1yx2}))
= min(νε(y) + µ−ε

i (xi) + µε
i (Q(z)x3−i), 2ν

ε(z) + ν−ε({x1yx2})) (by 4.11)

= min(νε(y) + µ−ε
i (xi) + 2νε(z) + µ−ε

3−i(x3−i) + ν−ε({e−ε
1 f εe−ε

2 }),
2νε(z) + µ−ε

1 (x1) + νε(y) + µ−ε
2 (x2)

− νε({eε
1f
−εeε

2})) (by (4.13.2), (4.12.1))

= νε(y) + µ−ε
i (x) + νε(z) + ν−ε({e−ε

1 f εe−ε
2 }) + µ−ε

3−i(x3−i) + νε(z),

which yields (4.13.3).
b) Putting xi = x and choosing x3−i ∈ U ε

3−i, we use [7, JP7] to compute

{{yzxi}zx3−i} = D({yzxi}, z)x3−i

= D(xi, Q(z)y)x3−i + D(y, Q(z)xi)x3−i

= {x1, Q(z)y, x2}+ {y, Q(z)xi, x3−i}.
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Hence

µε
i ({yzxi}) + ν−ε(z) + µε

3−i(x3−i)

= νε({{yzxi}zx3−i}) + ν−ε({e−ε
1 f εe−ε

2 }) (by (4.12.1))

= νε({x1, Q(z)y, x2}+ {y, Q(z)xi, x3−i}) + ν−ε({e−ε
1 f εeε

2})
≥ min(νε({x1, Q(z)y, x2}) + ν−ε({e−ε

1 f εe−ε
2 }),

νε({y, Q(z)xi, x3−i}+ ν−ε({e−ε
1 f εe−ε

2 }))
= min(µε

i (xi) + 2ν−ε(z) + νε(y) + µε
3−i(x3−i),

νε(y) + µ−ε
3−i(Q(z)xi) + µε

3−i(x3−i) + ν−ε({e−ε
1 f εe−ε

2 }))
(by (4.12.1), (4.11))

= µε
i (xi) + 2ν−ε(z) + νε(y) + µε

3−i(x3−i) (by 4.13.2),

and this is (4.13.5). ¤

4.14 Our next aim is to show that ρ as defined in 4.3 is a λ-norm of
V . Conditions (N1,2,4) of 4.1 being trivially fulfilled, it remains to prove
(N3). To this end, we put Vα = Vα(G) for α ∈ R1, consider the Peirce
decomposition of x, y relative to G and conclude that it suffices to establish
the relations

(4.14.1) µε
2α−β(Q(x)y) ≥ 2µε

α(x) + µ−ε
β (y)

for all α, β ∈ R1, x ∈ V ε
α , y ∈ V −ε

β provided 2α− β ∈ R1, and

(4.14.2) µε
α−β+γ({xyz}) ≥ µε

α(x) + µ−ε
β (y) + µε

γ(z)

for all α, β, γ ∈ R1, x ∈ V ε
α , y ∈ V −ε

β , z ∈ V ε
γ provided α− β + γ ∈ R1, and

α, β, γ are not all equal.

4.15 We wish to derive (4.14.1,2), or, more precisely, modified versions of
these formulae in the spirit of 4.12, 4.13, under the weaker assumption that
G is just a 2-finitedimensional covering division grid of V ; so, until further
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notice, we no longer demand that G be standard. As before, we write (R,R1)
for the 3-graded root system associated with G and let µα, for α ∈ R1, be
any λ-valutation of Vα = Vα(G).

4.16 Proposition. Notations being as in 4.15, suppose α, β ∈ R1 satisfy
cα ` cβ. Then γ = 2α − β ∈ R1 and (cα, cβ, cγ) is a root triangle; more
precisely,

(4.16.1) cβ a cα ` cγ ⊥ cβ, cγ ≈ Q(cα)cβ.

Furthermore, the relations

(4.16.2) µε
α({uvw}) + µ−ε

α (c−ε
α ) =

µε
γ(u) + µ−ε

α (v) + µε
β(w) + µ−ε

γ (Q(c−ε
α )cε

β) +

µε
α(cε

α) + µ−ε
β (cε

β),

(4.16.3) µε
γ(Q(x)y) + µ−ε

γ (Q(c−ε
α )cε

β) =

2µε
α(x) + µ−ε

β (y) + 2µ−ε
α (c−ε

α ) + µε
β(cε

β),

(4.16.4) µε
γ({xyz}) + µ−ε

γ (Q(c−ε
α )cε

β) ≥
µε

α(x) + µ−ε
β (y) + µε

α(z) + 2µ−ε
α (c−ε

α ) + µε
β(cε

β),

(4.16.5) µε
β({xvy}) ≥ µε

α(x) + µ−ε
α (v) + µε

β(y)

hold for all u ∈ V ε
γ , v ∈ V −ε

α , w ∈ V ε
β , x, z ∈ V ε

α , y ∈ V −ε
β .

Proof. [12, I.3.6a)] implies γ ∈ R1. From [12, I.2.5] combined with [12, I.3.3]
we conclude (4.16.1) and that (cα, cβ, Q(cα)cβ) is a triangle; in particular,
{cβ, cα, Q(cα)cβ} = cα. Hence the hypotheses of 4.12, 4.13 are fulfilled by
setting e1 = cβ, e2 = Q(cα)cβ, U1 = Vβ, U2 = Vγ, W = W1 = W2 = Vα, f =
f1 = f2 = cα, µ1 = µβ, µ2 = µγ, ν = ν1 = ν2 = µα, and (4.16.2-5) follow. ¤

4.17 Proposition. Notations being as in 4.15, suppose α, β ∈ R1 satisfy
cα>cβ or cα a cβ. Then

µε
β({xyz}) = µε

α(x) + µ−ε
α (y) + µε

β(z)
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for all x ∈ V ε
α , y ∈ V −ε

α , z ∈ V ε
β .

Proof. Put c = cα, U = Vα, W = Vβ, µ = µα, ν = µβ in 4.11 and apply
(4.11.1). ¤

4.18 Using 4.16 we can derive (4.14.1). To do so, we may assume cα ` cβ

[12, I.3.6a)]. But then (cα, cβ, cγ), γ = 2α − β, is a root triangle (4.16),
hence a triangle since G is standard (3.6.(SG1)); in particular Q(cα)cβ = cγ,
and the assertion follows from (4.16.3). Similarly, (4.16.4) implies (4.14.2) for
α = γ 6= β. On the other hand, if α = β 6= γ and without loss {VαVαVγ} 6= 0,
then cα>cγ or cα a cγ or cα ` cγ. In the first two cases, (4.14.2) follows from
4.17. In the third, we may apply 4.16 with the roles of β, γ interchanged to
deduce (4.14.2) from (4.16.5).
To complete the proof of (4.14.2), we may therefore assume from now on that
α, β, γ ∈ R1 are distinct. In order to establish (4.14.2) under this additional
hypothesis, we will apply 4.9 to assume without loss that cα, cβ, cγ satisfy one
of the configuration (4.9.1-6), which will now be treated separately under the
more general circumstances described in 4.15.

4.19 Proposition. Notations being as in 4.15, suppose α, β, γ ∈ R1 are
distinct and one of the following configurations holds.
(i) cα>cβ>cγ ⊥ cα,
(ii) cα a cβ>cγ ⊥ cα,
(iii) cα>cβ ` cγ ⊥ cα,
(iv) cα a cβ ` cγ ⊥ cα,
(v) cα ` cβ a cγ>cα.
Then α− β + γ ∈ R1, and

(4.19.1) µε
α−β+γ({xyz}) + µ−ε

α−β+γ({c−ε
α cε

βc−ε
γ }) =

µε
α(x) + µ−ε

β (y) + µε
γ(z) + µ−ε

α (c−ε
α ) + µε

β(cε
β) + µ−ε

γ (c−ε
γ )

for all x ∈ V ε
α , y ∈ V −ε

β , z ∈ V ε
γ .

Proof. By 4.9, α − β + γ ∈ R1, and {cαcβcγ} is a nontrivial idempotent.
Suppose first that (i) - (iv) hold. Then (4.19.1) follows from (4.12.1) by spe-
cializing e1 = cα, e2 = cγ, U1 = Vα, U2 = Vγ, W1 = Vβ, W2 = Vα−β+γ, f1 =
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cβ, f2 = {cαcβcγ}, µ1 = µα, µ2 = µγ, ν1 = µβ, ν2 = µα−β+γ. The case (v)
is more troublesome. Observing symmetry in α, γ and setting c = {cαcβcγ},
we conclude from [12, I.2.7b)] that (cβ, cγ, c, cα) is a diamond; in particular,
the defining equations [12, I (2.11,12)] yield

(1) cβ a cγ>c ⊥ cβ, {cβcγc} = cα.

Observe now that replacing cα−β+γ by c converts G into a 2-finitedimensional
covering division grid G1 ≈ G and cβ, cγ, c ∈ G1 satisfy configuration (ii)
above. Hence (4.19.1) applies and, when combined with (1), gives

(2) µ−ε
α ({yzw}) + µε

α(cε
α) = µ−ε

β (y) + µε
γ(z) +

µ−ε
α−β+γ(w) + µε

β(cε
β) + µ−ε

γ (c−ε
γ ) + µε

α−β+γ(c
ε)

for y ∈ V −ε
β , z ∈ V ε

γ , w ∈ V ε
α−β+γ. In order to prove (4.19.1) for α, β, γ

(rather than β, γ, α − β + γ), we may of course assume that x, y, z are in-
vertible in their respective Peirce components, with inverses x−1, y−1, z−1,
respectively. Hence they give rise canonically to nontrivial idempotents
eα ∈ Vα, eβ ∈ Vβ, eγ ∈ Vγ satisfying (v), so {zyx} = {xyz} 6= 0 by [12,
I.3.6c)]. This amounts to D(z, y) : V ε

α −→ V ε
α−β+γ being injective and allows

us to apply 4.8. We conclude

µε
α−β+γ({xyz}) = µε

α−β+γ({zyx})
= µε

α({y−1z−1{zyx}}) + µ−ε
α (c−ε

α )− µε
β(y−1)− µ−ε

γ (z−1)

−µ−ε
β (c−ε

β )− µε
γ(c

ε
γ)− µ−ε

α−β+γ(c
−ε) (by (2))

= µε
α(x) + µ−ε

β (y) + µε
γ(z) + µ−ε

α (c−ε
α ) + µε

β(cε
β) + µ−ε

γ (c−ε
γ )

−µ−ε
α−β+γ(c

−ε) (by 2.3a)),

and (4.19.1) follows. ¤

4.20 Proposition. Notations being as in 4.15, suppose α, β, γ ∈ R1 are
distinct such that cα>cβ>cγ>cα and Vα−β+γ 6= 0. Then α − β + γ ∈
R1, {cβcαcβ−α+γ} is a nontrivial idempotent and
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(4.20.1) µε
α−β+γ({xyz}) + µ−ε

α−β+γ(c
−ε
α−β+γ) ≥

µε
α(x) + µ−ε

β (y) + µε
γ(z) + µ−ε

α (c−ε
α ) + µε

β(cε
β) + µ−ε

γ ({c−ε
β cε

αc−ε
α−β+γ})

for all x ∈ V ε
α , y ∈ V −ε

β , z ∈ V ε
γ .

Proof. The relation α − β + γ ∈ R1 being obvious, it follows easily that
cα−β+γ fits into the configurations

(1) cβ>cα ` cα−β+γ ⊥ cβ, cγ ` cα−β+γ.

Hence {cβcαcα−β+γ} ∈ Vγ, {cβcγcα−β+γ} ∈ Vα are nontrivial idempotents
[12, I.3.6c)]. Setting e1 = cβ, e2 = cα−β+γ, U1 = Vβ, U2 = Vα−β+γ, W1 =
Vα,W2 = Vγ, f1 = cα, f2 = cγ, µ1 = µβ, µ2 = µα−β+γ, ν1 = µα, ν2 = µγ in
4.12, we conclude

(2) µ−ε
α ({yzw}) + µε

α({cε
βc−ε

γ cε
α−β+γ}) =

µ−ε
β (y) + µε

γ(z) + µ−ε
α−β+γ(w) + µε

β(cε
β) + µ−ε

γ (c−ε
γ ) + µε

α−β+γ(c
ε
α−β+γ),

(3) µ−ε
γ ({yxw}) + µε

γ({cε
βc−ε

α cε
α−β+γ}) =

µ−ε
β (y) + µε

α(x) + µ−ε
α−β+γ(w) + µε

β(cε
β) + µ−ε

α (c−ε
α ) + µε

α−β+γ(c
ε
α−β+γ),

(4) µ−ε
α (c−ε

α ) + µ−ε
γ ({c−ε

β cε
αc−ε

α−β+γ) = µ−ε
γ (c−ε

γ ) + µ−ε
α ({c−ε

β cε
γc
−ε
α−β+γ})

from (4.12.1,2) for w ∈ V −ε
α−β+γ and x, y, z as above. Next we claim

(5) {{xyz}wz} = {x{yzw}z}+ Q(z){yxw}.
To prove this, we compute

{{xyz}wz} = Q(z, {xyz})w
= D(x, y)Q(z)w + Q(z)D(y, x)w (by [7, JP12])

= {x, y, Q(z)w}+ Q(z){yxw}

and

{x, y, Q(z)w} = D(Q(z)w, y)x
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= D(z, {wzy})x−D(Q(z)y, w)x (by [7, JP8])

= {x{yzw}z}

since Q(z)y = 0 by [12, I.3.6a)]. Combining we arrive at (5). From 4.17 we
deduce

(6) µε
γ({xx′z}) = µε

α(x) + µ−ε
α (x′) + µε

γ(z),

(7) µε
γ({w′wz}) = µε

α−β+γ(w
′) + µ−ε

α−β+γ(w) + µε
γ(z)

for x′ ∈ V −ε
α , w′ ∈ V ε

α−β+γ. Hence

µε
α−β+γ({xyz}) + µ−ε

α−β+γ(w) + µε
γ(z)

= µε
γ({{xyz}w}z}) (by (7))

= µε
γ({x{yzw}z}+ Q(z){yxw}) (by (5))

≥ min(µε
γ({x{yzw}z}), µε

γ(Q(z){yxw}))
= µε

α(x) + µ−ε
β (y) + 2µε

γ(z) + µ−ε
α−β+γ(w) + µε

β(cε
β) + µ−ε

α (c−ε
α )

+µε
α−β+γ(c

ε
α−β+γ) + µ−ε

γ ({c−ε
β cε

αc−ε
α−β+γ}) (by (6), (2)-(4)),

which implies (4.20.1). ¤

4.21 We can now finisch the proof of (4.14.2), where we may assume
that α, β, γ ∈ R1 we distinct and cα, cβ, cγ satisfy one of the configurations
(4.9.1-6) (cf. 4.18). Then, since G is standard, we apply [13, 3.5.(2’.a)] to
derive (4.14.2) from 4.19, 4.20. Summing up, ρ as defined in 4.3 is therefore
a λ-norm of V .

4.22 To complete the proof of the Norm Theorem 4.3, it remains to
show that ρ satisfies the triple product inequality (TPI) if every connected
component of G contains more than one element. For this purpose, we may
assume that G itself is connected (3.10). In view of (4.14.2), 4.21, it evidently
suffices to establish (TPI) for each µα, α ∈ R1. To this end, let x, z ∈ V ε

α , y ∈
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V −ε
α . Since G is connected, there exists a β ∈ R1, β 6= α, such that cα and

cβ are not orthogonal, leaving us with the following cases.

Case 1 cβ ` cα.
Then γ = 2β − α ∈ R1 and (cβ, cα, cγ) ist a root triangle (4.16), hence a
triangle since G is standard (3.6(SG1)), giving Q(cβ)cγ = cα by (3.5.2′).
Furthermore, Q(cε

β) : V −ε
γ −→ V ε

α is bijective, so z = Q(cε
β)w for some

w ∈ V −ε
γ . This implies

{xyz} = D(x, y)Q(cε
β)w

= Q(cε
β, {xycε

β})w −Q(cε
β)D(y, x)w (by [7, JP12])

= {cε
βw{xycε

β}} −Q(cε
β){yxw},

hence

µε
α({xyz}} ≥ min(µε

α({cε
βw{xycε

β}}), µε
α(Q(cε

β){yxw}))
≥ 2µε

β(cε
β) + µ−ε

γ (w) + µε
α(x) + µ−ε

α (y) (by (4.16.3,4), 4.17)

= µε
α(x) + µ−ε

α (y) + µε
α(Q(cε

β)(w)) (by (4.16.3))

= µε
α(x) + µ−ε

α (y) + µε
α(z).

Case 2 cα>cβ.
Then we consider the McCrimmon-Meyberg automorphism ϕ = β(c+

α +
c+
β , c−α + c−β ) of V (cf. [12, I.1.13]), which has order 2, interchanges cα, cβ

and permutes the Peirce spaces of G [12, I.3.12]. More specifically,

(1) ϕε(x) = {cε
βc−ε

α x} (x ∈ V ε
α ).

Writing ϕαβ for the isomorphism Vα −→ Vβ induced by ϕ, µβ ◦ ϕαβ agrees
with µα up to a translate (2.12), which must be trivial since ϕαβ(cα) = cβ.
Hence µβ ◦ ϕαβ = µα. Putting x′ = ϕε(x) ∈ V ε

β , we therefore obtain

(2) µε
α(x) + µ−ε

α (y) + µε
α(z) = µε

β(x′) + µ−ε
α (y) + µε

α(z)

= µε
β({x′yz}) (by 4.17)

= µε
β({{cε

βc−ε
α x}yz}) (by (1))
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= µε
β({cε

βc−ε
α {xyz}} − {xy{cε

βc−ε
α z}}+ {x{c−ε

α cε
βy}z}})
(by [7, JP14])

= µε
β({cε

βc−ε
α {xyz} − {xy{cε

βc−ε
α z}})

since {c−ε
α cε

βy} = 0 by the Peirce rules. On the other hand, we have

(3) µε
β({cε

βc−ε
α {xyz}}) = µε

β(ϕε
αβ({xyz})) (by (1))

= µε
α({xyz}),

(4) µε
β({xy{cε

βc−ε
α z}}) = µε

α(x) + µ−ε
α (y) + µε

β(ϕε
αβ(z)) (by 4.17)

= µε
α(x) + µ−ε

α (y) + µε
α(z).

Hence the assumption

µε
α({xyz}) < µε

α(x) + µ−ε
α (y) + µε(z)

combined with (2) - (4) would imply the contradiction

µε
α({xyz}) = µε

α(x) + µ−ε
α (y) + µε

α(z).

Case 3 cα ` cβ.
Setting γ = 2α− β, we have Q(cα)cβ = cγ, which implies

2µε
α({xyz}) = µε

α(Q({xyz})c−ε
β ) (by (4.16.3))

= µε
α(Q(x)(Q(y)Q(z)c−ε

β + Q(z)Q(y)Q(x)c−ε
β +

{x,Q(y){xc−ε
β z}, z} − {Q(x)y, c−ε

β , Q(z)y})
(by [7, JP20])

≥ 2(µε
α(x) + µ−ε

α (y) + µε
α(z)) (by (4.16.3,4)),

as claimed.

This completes the proof of the Norm Theorem 4.3. ¤
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4.23 The triple product inequality revisited. Strangely enough, the
Norm Theorem 4.3 combined with structure theory implies the triple product
inequality (2.15) for 2-finitedimensional Jordan division pairs over Henselian
fields. We merely sketsch the details. Let (K, Γ, λ) be a Henselian field
and V a 2-finitedimensional Jordan division pair over K. Since (TPI) is
translation invariant, one easily reduces to the case V = (J, J) where J is
a finitedimensional Jordan division algebra on two generators over K. But
then, by structure theory, there exist a finitedimensional simple nondivision
Jordan pair W over K and a covering standard division grid G of W such
that V identifies with a Peirce component of W relative to G. Hence (TPI)
follows from 4.3b).

5. Saturated Orders.

In this section, the norm theorem will be applied to an arithmetic setting.
We fix a Dedekind domain o with quotient field K and a finitedimensional
Jordan pair V over K. Recall from [19] that an order in V is an o-subpair
O ⊂ V such that Oε ⊂ V ε is a full o-lattice, i.e., a finitely generated o-
module spanning V ε as a vector space over K; maximal orders are defined in
the obvious way. We say an order in V is saturated if it contains a covering
division grid of V . By 3.11 or [14, Lemma 2.4], for saturated orders to exist
it is necessary that V be semi-simple.

5.1 Until further notice, the preceding set-up will be specified to the case
of a local field K, its complete, discrete and surjective valuation λ : K −→
Z∞ being understood. o = o(K,λ) is a discrete valuation ring containing
p = p(K, λ) as its unique nonzero (principal) prime ideal; we put κ = o/p.

5.2 Proposition. Let V be a finitedimensional Jordan division pair over
the local field K. Then every order is contained in a maximal order. O ⊂ V is
a maximal order if and only if there exists a separated valuation µ : V −→ Q∞
extending λ and satisfying O = O(V, µ); in particular, maximal orders of V
are saturated.
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Proof. We may assume V = (J, J) for some finitedimensional Jordan division
algebra J over K. By 2.8, the separated valuations V −→ Q∞ are exactly
the objects of the form µ = (ν(y), ν(y−1)), where ν : J −→ Q∞ is a valuation
of J and y ∈ J×; also µ extends λ if and only if ν does. Hence the asserted
description of maximal orders follows from [19, Proposition 6], whose proof
also shows that every order is contained in a maximal one. The final state-
ment now easily derives from 2.3a),e) and the fact that the covering division
grids of V have the form {(x, x−1)}, x ∈ J×.

5.3 Theorem. Let V be a finitedimensional Jordan pair over the local field
K. Then every saturated order is contained in a saturated maximal order.
O ⊂ V is a saturated maximal order if and only if there exists a covering
standard division grid G in V satisfying O = O(V, G).

Proof. Suppose first that G ⊂ V is a covering standard division grid satisfying
O = O(V, G). Write (R, R1) for the corresponding 3-graded root system and
put Vα = Vα(G) for α ∈ R1. Then O is obviously a saturated order, and G
is a covering standard grid of every order O′ ⊂ V containing O, with Peirce
components O′

α = O′ ∩ Vα ⊃ O ∩ Vα = O(Vα, µα) ((4.4.1)) for α ∈ R1. Here
5.2 gives equality, and the covering property of G implies O′ = O, i.e., O

is a maximal order of V . Conversely, let O be any saturated order in V , so
G′ ⊂ O for some covering division grid G′ of V . Hence O contains a covering
standard division grid G of V associated with G′ [13, 3.8]. Adopting the
previous notation, we obtain cα ∈ Oα = O∩Vα ⊂ O(Vα, µ′α) (α ∈ R1) where
µ′α : Vα −→ Q∞ is a separated valuation extending λ (5.2). This implies
µ′εα(cε

α) = 0 by (2.1.2) and 2.3a), forcing µ′α = µα in the sense of 4.3. Thus
O ⊂ O(V,G), which completes the proof. ¤

5.4 Corollary. In finitedimensional semi-simple Jordan pairs over a local
field, saturated maximal orders exist. ¤

Note. Even if the property of being saturated is ignored, maximal orders
were previously known to exist only for finitedimensional Jordan pairs with
nonsingular generic trace forms [19, Proposition 3]. These Jordan pairs are
separable but not conversely. Hence it seems worth pointing out that the
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argument used in the proof of 7.12 below leads to the following conclusion:
Every finitedimensional separable Jordan pair over the quotient field of a
Dedekind domain contains maximal orders.

5.5 Example. Notations being as in 5.3, we show that a maximal order in
V need not be saturated. Let C be composition algebra without zero divisors
over K having ramification order 1 [18], and let r > 1 be an integer with
r ≤ 3 unless C is associative. Write V for the Jordan pair belonging to the
Jordan algebra Hr(C) of r-by-r hermitian matrices with entries in C and
scalars down the diagonal. We assume that κ contains at least r elements
and pick a prime element π ∈ o. Working with the customary hermitian
matrix units [5], we claim that the partially twisted diagonal idempotents

cj = (ejj, ejj), cr = (πerr, π
−1err) (1 ≤ j < r)

all belong to a single maximal order O ⊂ V . Indeed, combining a Van-
dermonde argument with the fact that integral pairs always imbed in an
order [19, Satz 2], we first find an order O′ ⊂ V containing every cj for
1 ≤ j ≤ r. But then, the generic trace of V being nonsingular, O′ can
be enlarged to a maximal order O of V [19, Proposition 3]. We claim that
O is not saturated. Otherwise, 5.3 yields a covering standard division grid
G ⊂ V satisfying O = O(V,G). Applying [14, Lemma 1.5b)] and its proof,
we find a frame F = {d1, . . . , dr} of O which is entirely contained in G(1).
But F0 = {c1, . . . , cr} is a frame of O as well, and any two frames of O are as-
sociated up to conjugation by elementary automorphisms of O [9, Corollary
2 of Theorem 2]. Hence we may assume F ≈ F0. In particular, relabeling
the d′s if necessary, there are a1, ar ∈ o× satisfying

d1 = (a1e11, a
−1
1 e11), dr = (arπerr, a

−1
r π−1err).

Up to conjugation by elementary automorphisms of V, G is associated with
the grid of standard hermitian matrix units [14, 1.9]. Hence G is con-
nected and satisfies G(2) 6= ∅. In particular, d1, dr imbed into a root triangle
(d0; d1, dr) of G [12, I.4.7b)], which is actually a triangle since G is standard
(3.6.(SG1)). From

d0 ∈ V1(d1) ∩ V1(dr) = V1(e11) ∩ V1(err)
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we conclude d+
0 = u[1r] for some u ∈ C×, and the relation Q(d0)d1 = dr

((3.5.2)) gives n(u) = a1arπ, n being the norm of C. But this is a contradic-
tion since C has ramification order 1. ¤

5.6 Weak separability. Let k be a commutative associative ring of scalars.
Following Loos [8], a Jordan paar W over k whose underlying k-modules W ε

are finitely generated projective is said to be separable if, for all p ∈ Spec k,
the finitedimensional Jordan pairs W (p) = W⊗k κ(p) over κ(p) (the quotient
field of k/p) are separable in the classical sense. If these Jordan pairs are
merely required to be semi-simple, W will be called weakly separable. The
importance of this notion derives from the fact that it leads to a class of
orders which are automatically saturated. This is an unpublished result due
to Neher which will be reproduced here with his kind permission. We begin
with a few elementary preliminaries.

5.7 Lemma. Let W be a Jordan pair over k whose underlying k-modules
are finitely generated. Then (Rad k)W ⊂ Rad W .

Proof. For a ∈ Rad k and α ∈ Endk(M), M a finitely generated k-module,
1M − aα is surjective by Nakayama’s Lemma, hence bijective by [28, 38.15].
For all x ∈ W ε, y ∈ W−ε,

B(ax, y) = 1− a(D(x, y)− aQ(x)Q(y))

in therefore bijective as well, forcing (ax, y) to be quasi-invertible and ax ∈
(Rad W )ε. ¤

5.8 Proposition. o being a discrete valuation ring with maximal ideal p

and quotient field K, let V be a finite-dimensional Jordan pair over K.
a) An order O ⊂ V is weakly separable if and only if V is semi-simple and
Rad O = pO.
b) Let O ⊂ V be a weakly separable order. An idempotent c ∈ O is a division
idempotent of V if and only if č = c⊗1 is a division idempotent of Ǒ = O(p).

Proof. a) By definition, O is weakly separable iff V = O ((0)) and Ǒ ∼= O/pO

are semi-simple. Now a) follows from 5.7.
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b) O2(c) = O ∩ V2(c) is an order in V2(c) satisfying O2(c)̌ = Ǒ2(č) since
Peirce components are compatible with base change. By a) combined with
[7, 5.8], O2(c) is weakly separable, and we are reduced to the case V = V2(c).
Up to nonzero scalar factors, all nonzero elements x ∈ V ε belong to Oε−pOε.
Clearly, α = Q(x)Q(c−ε) : Oε −→ Oε is bijective iff α̌ = α(p) is, so V is a
division pair iff Ǒ is. ¤

Remark. 5.8 b) was derived in [19, Satz 4b)] for the more special case of a
local field and selfdual orders.

5.9 Proposition. (Neher). Notations being as in 5.8, suppose O ⊂ V is an
o-subpair and E ⊂ O is a cog. Then O is a (weakly) separable order in V if
and only if OI(E), for every I ∈ ZE, is a (weakly) separable order in VI(E).

Proof. Setting VI = VI(E),OI = OI(E) (I ∈ ZE), the decompositions

V =
∑

VI , Rad V =
∑

Rad VI ,

O =
∑

OI , Rad O =
∑

Rad OI , pO =
∑

pOI ,

summation always being taken over all of ZE, hold either trivially or by virtue
of [12, I.6.1]; the assertion follows from 5.8a). ¤

5.10 Lemma. (Neher). Let E be a cog in a Jordan pair W such that no
Peirce component WI = WI(E), I ∈ supp E, has zero divisors. If J ∈ ZE

and d ∈ WJ is a nontrivial idempotent, then
a) every c ∈ E belongs to a Peirce component of d;
b) WJ ∩ E = ∅ implies that E ∪ {d} is a cog in W .

Note. This generalizes a result of McCrimmon [12, I.1.12]

Proof. a) We have c ∈ WI for some I ∈ supp E. Since d belongs to a Peirce
component of c, the idempotents c, d are compatible [12, I.1.8], forcing

cε = cε
2 + cε

1 + cε
0, cε

i ∈ W2(c)
ε ∩Wi(d)ε
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for i = 0, 1, 2 (loc. cit.). In fact, the relations

cε
2 = Q(dε)Q(d−ε)cε ∈ Q(W ε

J )Q(W−ε
J )W ε

I ⊂ W ε
I (by (3.3.2)),

cε
1 = {dεd−εcε} − 2cε

2 ∈ W ε
I (loc. cit.)

show, more specifically,

ci ∈ WI ∩ Vi(d) (i = 0, 1, 2).

Since WI has no zero divisors, we now deduce from Q(cε
2)c

−ε
1 = Q(cε

0)(c
−ε
2 +

c−ε
1 ) = 0 that either c0 6= 0, forcing c1 = c2 = 0 (i.e., c ∈ V0(d)), or c0 = 0,

forcing c2 = 0 (i.e., c ∈ V1(d)) or c1 = 0 (i.e., c ∈ V2(d)).
b) By hypothesis, d and any c ∈ E belong to distinct Peirce components of
E, so they are not associated [12, I.3.3]. Hence E ∪ {d} is a cog. ¤

5.11 Theorem. (Neher). Let V be a finitedimensional Jordan pair over
the local field K. Then every weakly separable order in V is saturated.

Proof. Let O ⊂ V be a weakly separable order. By 5.8a), V is semi-simple.
We write E for the totality of division cogs of V that are contained in O.
Then E is not empty ([19, Proposition 5] combined with 5.8b)), and the
cardinality of each member is bounded by the dimension of V . Letting G ∈ E
be maximal with respect to inclusion, it suffices to show that G covers V (3.7).
Otherwise, setting VI = VI(G), OI = OI(G) for I ∈ ZG, some J ∈ ZG would
satisfy OJ 6= 0 and VJ ∩ G = ∅. Since OJ is a weakly separable order in
VJ (5.9), combining [19, Proposition 5] with 5.8b) again produces a division
idempotent d of VJ contained in OJ . But then, by 5.10b), G ∪ {d} ⊂ O is a
cog in V which strictly exceeds G and is division since its Peirce components
are contained in those of G, a contradiction. ¤

5.12 Proposition Let V be a finitedimensional Jordan pair over the local
field K. Then every weakly separable order in V is maximal.

Note. This is a variant of a result of Loos [8, Proposition 3].

Proof. Let O ⊂ V be a weakly separable order. Then V is semisimple.
In fact, as we proceed to show now, we may assume that V is simple. To
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do so, we write V = V (1) ⊕ . . . ⊕ V (n) as a direct sum of simple ideals
V (j) ⊂ V (1 ≤ j ≤ n). Then O(j) = O ∩ V (j) is an ideal in O, and the short
exact sequence

0 −→ O(j)ε −→ Oε −→ Oε/O(j)ε −→ 0

of o-modules splits since Oε/O(j)ε is easily seen to be torsion-free, hence free,
as an o-module. Therefore O(j)(p) canonically imbeds into O(p) as an ideal
and, since O(p) is semi-simple, so is O(j)(p). It follows that O(j) ⊂ V (j) is a
weakly separable, hence maximal order. If O′ ⊂ V is any order containing
O, then O(j), sitting inside the natural projection of O′ to V (j), agrees with
that projection, which implies O′ ⊂ O(1) ⊕ . . . ⊕ O(n) ⊂ O ⊂ O′, and O is
indeed maximal. We may therefore assume from now on that V is simple.
Let F ′ be a frame of O(p). Thanks to [19, Proposition 5] and 5.8b), F ′ lifts
to a frame F in V belonging to O. Since V is simple, the off-diagonal Peirce
components of F are nontrivial. This property being inherited by F ′ = F (p),
the semisimple Jordan pair O(p) must in fact be simple. Now the proof of
[8, Proposition 3] carries over and shows that O is a maximal order in V . ¤

5.13 Remark. a) In connection with the above reduction to the simple
case, the following trivial observation is sometimes useful: If V (1), . . . V (n)

are finitedimensional Jordan pairs over K = Quot o, o a Dedekind domain,
then O ⊂ V = V (1) ⊕ . . . ⊕ V (n) is a maximal order if and only if O =
O(1)⊕ . . .⊕O(n) with maximal orders O(j) ⊂ V (j), 1 ≤ j ≤ n. The argument
of [24], p. 12, to prove this for Jordan algebras rather than pairs carries over
verbatim.

b) In the proof of 5.12 we have shown that, if O is a weakly separable order in
a finitedimensional simple Jordan pair over a local field, then O(p) is simple
as well.

6. The anisotropic part of a Jordan pair.

Without recourse to structure theory, we define in this section the anisotropic
part of a nondegenerate simple Artinian Jordan pair V , generalizing uni-
formly classical notions in Witt’s theory of quadratic forms and the
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Wedderburn-Artin theory of associative algebras; connections with algebraic
groups will be discussed elsewhere. Our approach relies on results due to Loos
[9] and Loos-Neher [10], which we shall briefly recall for convenience. Until
further notice, we let V be an arbitrary Jordan pair over k, a commutative
associative ring of scalars.

6.1 Elementary automorphisms. Let e be an idempotent of V . For
all x ∈ V1(e)

+, y ∈ V1(e)
−, the pairs (e+, y), (x, e−) are quasi-invertible

[7, 5.7], forcing β(e+, y), β(x, e−) to be inner automorphisms of V . Follow-
ing Loos [9], the subgroup of Inn(V ) generated by these elements as x, y
vary over V1(e)

+, V1(e)
−, respectively, is called the group of e-elementary

automorphisms of V and will be denoted here by Elte(V ). The elementary
automorphism group of V , written as Elt(V ), is then defined to be the sub-
group of Inn(V ) generated by all the Elte(V ), e ∈ V an arbitrary idempotent.
The elements of Elt(V ) are called elementary automorphisms. It is a trivial
but crucial observation that elementary automorphisms of a subpair always
extend to elementary automorphisms of V .

6.2 Fact. [9, Corollary 3 of Theorem 2]. Suppose V contains a frame and is
connected (i.e., any two orthogonal local idempotents in V are connected in
the usual sense). Then any two ordered sets of orthogonal local idempotents in
V having the same cardinality are conjugate up to association under Elt(V ).

¤

6.3 Capacity and length. The capacity of V , which we denote here by
cap V , is defined as the infimum of cardinalities of all finite sets of orthogonal
division idempotents in V whose common Peirce-0-component vanishes. If V
is nondegenerate of finite capacity, all frames F ⊂ V are strong (i.e., consist
of division idempotents and satisfy V00(F ) = 0) and have cardinality cap V
[9, Theorem 3]. Following Loos-Neher [10, 4.6], we define the length of V ε,
denoted by l(V ε), as the supremum of cardinalities of all properly ascending
finite chains of nonzero inner ideals in V ε. If V is nondegenerate, we have
l(V +) = l(V −) [10, 4.8], which we write as l(V ) and call the length of V . A
Jordan pair is said to be Artinian if it satisfies the dcc on all inner ideals. The
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property of being (nondegenerate resp. simple) Artinian is trivially inherited
by Peirce-i-spaces of idempotents for i = 0, 2 [10, 10.2]. A nondegenerate
Jordan pair is Artinian if and only if it has finite length [10, 5.2], in which
case it has finite capacity as well [7, §10].

6.4 Fact. [10, 4.1, 4.7]. Suppose V is simple nondegenerate and e ∈ V is a
division idempotent. Then V1(e) is nondegenerate, and V is Artinian if and
only if V1(e) is Artinian. In this case,

l(V1(e)) = l(V )− 1. ¤

6.5 Fact. [10, 5.10]. Suppose V is simple nondegenerate and e ∈ V is a
division idempotent. Then there are the following mutually exclusive possi-
bilities for V ′ = V1(e).
(0) V ′ = 0.
(1) cap V ′ = 1, and every nonzero idempotent of V ′ is rigidly collinear to e.
(2) cap V ′ = 1, and every nonzero idempotent of V ′ governs e.
(3) cap V ′ = 2, and V ′ is the direct sum of two simple ideals of capacity 1.
(4) cap V ′ = 2, and V ′ is simple.
A division idempotent of V ′ remains a division idempotent in V and is rigidly
collinear to e except in case (2). Also, cap V = 1 in cases (0), (1), and
cap V ≥ 2 in the other cases. ¤

6.6 Anisotropic subpairs. From now on we assume that V is nondegen-
erate, simple and Artinian. We proceed to define by induction on the length
l = l(V ) a certain collection of subpairs of V , written as An(V ), in the
following way. For l = 1, i.e., if V is a division pair [10, 4.12(i)], we put
An(V ) = {V }. For l > 1, we pick a division idempotent e ∈ V and consider
the following cases. If V1(e) is not simple, we define An(V ) as the totality
of all subpairs V2(c) ⊂ V where c varies over the division idempotents of V .
On the other hand, if V1(e) is simple, necessarily of length l − 1 (6.4), so is
V1(c) for every division idempotent c ∈ V (6.2), and we define An(V ) as the
union of all An(V1(c)) where c again varies over the division idempotents of
V . In what follows, it will be important to view the elements of An(V ) not
just as Jordan pairs in their own right but, more accurately, in their capacity
as subpairs of V ; see 6.16 below for examples.
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Note. My original definition of An(V ) proceeded by induction on the di-
mension, performing the induction step by looking at off-diagonal Peirce
components relative to a frame rather than the subpairs V1(e) above, and
thus was confined to the finitedimensional case. The idea of using the length
instead and thus extending to the Artinian case is due to Neher.

The following statement is an immediate consequence of 6.1, 6.2 and the
definition.

6.7 Proposition. Let V be a nondegenerate simple Artinian Jordan pair.
a) Every element of An(V ) is a division subpair of V .
b) An(V ) is stable under isomorphisms: If ϕ : V

∼−→ W is an isomor-
phisms of Jordan pairs, then ϕ(U) ∈ An(W ) for all U ∈ An(V ).
c) Any two members of An(V ) are conjugate under the elementary automor-
phisms group of V . ¤

6.8 The anisotropic part. In view of 6.7, we are allowed to call any
element of An(V ) the anistropic part of V and to denote it by Van. Thus Van is
a division subpair of V , uniquely determind up to conjugation by elementary
automorphisms. Given a division (resp. nondegenerate simple Artinian)
subpair W of V , we write Van =̂ W (resp. Van =̂ Wan) for W ∈ An(V ) (resp.
An(W ) ⊂ An(V )).

6.9 Proposition. Let V be a nondegenerate simple Artinian Jordan pair
of capacity 1 and e a division idempotent in V . Then Van =̂ V2(e).

Proof. By induction on l = l(V ). For l = 1 there is nothing to prove. For
l > 1, we may assume that V ′ = V1(e) is simple. Then we are in case (1) of
6.5, so a division idempotent d of V ′ continues to be one of V and satisfies
V2(d) = V ′

2(d). Hence, by the induction hypothesis, Van =̂ V ′
an =̂ V2(d), and

6.2, 6.7b) imply Van =̂ V2(e). ¤
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6.10 Lemma. Let V be a nondegenerate simple Jordan pair with dcc on
principal inner ideals and F = (e1, e2) a connected orthogonal system of
idempotents in V . Then V ′ = V1(e1) contains a maximal idempotent f satis-
fying V12(F ) = V ′

2(f); in particular, V12(F ) has the same capacity as V ′ and
is simple if and only if V ′ is simple.

Proof. Put Vij = Vij(F ) for i, j ∈ Z and choose an element f+ ∈ V +
12 which

is invertible in V2(e1 + e2), with inverse f− ∈ V −
12 . Then f = (f+, f−) is an

idempotent of V satisfying f ≈ e1 + e2 [12, I.2.3]. Hence the Peirce rules
give V ′ = V12 + V01, V

′
2(f) = V12, V

′
1(f) = V01. In particular, f is a maximal

idempotent of V ′, and since V ′ inherits nondegeneracy as well as principal
dcc from V [10, 4.1], the assertion follows from [7, 10.14a),10.17]. ¤

6.11 Proposition. Let V be a nondegenerate simple Artinian Jordan pair
and F = (e1, e2) an orthogonal system of division idempotents in V . If V12(F )
is not simple, then Van =̂ V2(e1). If V12(F ) is simple, then Van =̂ V12(F )an.

Proof. By induction on l = l(V ). For l = 1 the statement is empty. For
l > 1, we choose f as in 6.10, allowing us to assume that W = V12(F ) and
V ′ = V1(e1) are both simple. If W is division pair, then V ′ has capacity
1 (6.10), which implies Van =̂ V ′

an =̂ V ′
2(f) (by 6.9) = W =̂ Wan. Hence

we may assume that W is not a division pair, forcing it and V ′ to have
capacity 2 (6.5). Let F ′ = (e′1, e

′
2) be a frame in W , hence in V ′. Since we

are not in case (2) of 6.5, F ′ is an orthogonal system of division idempotents
in V whose Peirce-2-components in V ′ and V are the same; also V ′

12(F
′) =

W12(F
′) = W1(e

′
1). If V ′

12(F
′) is not simple, the induction hypothesis implies

Van =̂ V ′
an =̂ V ′

2(e
′
1) =̂ V2(e

′
1), hence Van =̂ V2(e1). Now suppose that V ′

12(F
′) =

W12(F
′) is simple. Since W = V ′

2(f) satisfies l(W ) ≤ l(V ′) (by [7, 10.2])
= l(V )−1 (by 6.4), we may apply the induction hypothesis twice to conclude

Van =̂ V ′
an =̂ V ′

12(F
′)an = W12(F

′)an =̂ Wan. ¤

6.12 Corollary. Let V be a nondegenerate simple Artinian Jordan pair,
c an idempotent in V and i ∈ {0, 2}. If Vi(c) has capacity > 1, then
Van =̂ Vi(c)an. ¤
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6.13 Corollary. Let V be a nondegenerate simple Artinian Jordan Pair
and e a maximal idempotent in V . Then Van =̂ V2(e)an.

Proof. If V has capacity 1, e is a division idempotent, and the assertion
follows from 6.9. If V has capacity > 1, so has V2(e), and the assertion
follows from 6.12. ¤

6.14 Remark. Let V be a nondegenerate simple Artinian Jordan pair
and c an idempotent in V . The connection expressed in 6.12 between the
anisotropic part of V and that of its Peirce-i-component (i = 0, 2) relative to
c can be extended to the case i = 1. We state the result but omit the proof.
If c is not maximal, then V1(c) is simple if and only if V1(e) is simple, e being
any division idempotent of V ; in this case, Van =̂ V1(c)an. If V1(c) is not
simple, then V1(c) = W (1) ⊕W (2) with simple ideals W (j) ⊂ V1(c) satisfying
Van =̂ (W (j))an for j = 1, 2. Finally, for c maximal, V1(c) is either simple or
zero; in the former case, Van =̂ V1(c)an.

6.15 Examples. We briefly describe up to isomorphism the anisotropic
part for the standard examples of nondegenerate simple Artinian Jordan
pairs V (cf. [7, 12.12, 12.13]). The following statements are easily deduced
from the definition, 6.9 and 6.11.
(I) V = (Mpq(D),Mpq(D

op))J where D is an associative division algebra and
p, q ≥ 1 are integers. Then Van

∼= (D, Dop)J .
(II) V = (An(K), An(K)) where K is an extension field of k and n ≥ 4. Then
Van

∼= (K,K)J .
(III) V = (Hn(D,D0), Hn(D,D0)) where D is an associative division algebra
with involution and D0 is an ample subspace of the symmetric elements.
Then Van

∼= (D, D)J for n ≥ 2 and Van
∼= (D0, D0) for n = 1.

(IV) V = Jord(q), the Jordan pair of a nondegenerate quadratic form q,
for simplicity assumed to be finitedimensional, over an extension field K of
k. If qan denotes the anisotropic part of q, then Van

∼= Jord(qan) unless q is
hyperbolic, in which case Van

∼= (K,K).
(V), (VI) V = (M12(C),M12(C

op)) or V = (H3(C), H3(C)) where C is an
octonion algebra over an extension field K of k. Then Van

∼= (C, C)J if C is
a division algebra and Van

∼= (K, K)J if C is split. ¤
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6.16 Remark. Let k be a field, n ∈ Z, n ≥ 2 and V = (Symn(k), Symn(k))
the Jordan pair of symmetric n-by-n matrices over k. Then 6.11 yields
Van=̂(k1[12], k1[12]), hence Van

∼= (k, k)J ∼= (ke11, ke11). However, we do
not have Van =̂ (ke11, ke11) since this would imply by 6.7c) that the idempo-
tents c = (e11, e11) and d = (1[12], 1[12]) up to association are conjugate by
elementary automorphisms, which is impossible because d governs c. We are
thus lead to conclude that, in dealing with the anisotropic part of a Jordan
pair, its subpair structure plays a very significant role. ¤

6.17 The anisotropic part and grids. In dealing with the anisotropic
part of Jordan pair, we have so far avoided the theory of grids. For our
subsequent applications, however, it will be vitally important to bring the
two together. Recall from [10, 5.2] that a Jordan pair is nondegenerate
Artinian if and only if it can be covered by a finite division grid. With this
in mind we can now prove the following central result.

6.18 Theorem. Let V be a nondegenerate simple Artinian Jordan pair and
G ⊂ V a finite covering division grid. Write (R,R1) for the 3-graded root
system associated with G.
a) If the roots of R1 all have the same length, then Van =̂ Vα(G) for every
α ∈ R1.
b) If the roots of R1 have (two) different lengths, then Van =̂ Vα(G) for every
short root α ∈ R1, and V1(e) is simple for every division idempotent e ∈ V .

Proof. Setting Vα = Vα(G) for α ∈ R1, suppose α is a long root (this
being automatic in case a) by convention). Then cα is a division idempotent
satisfying V2(cα) = Vα (3.9), and V ′ = V1(cα) has

G′ = G ∩ V ′ = {cβ; β ∈ R1, α>β or α a β}

as a finite covering division grid whose Peirce components agree with certain
Peirce components of V relative to G [14, Lemma 1.5 and its proof]. Hence
(R′, R′

1), the 3-graded root system corresponding to G′, may be viewed as a
subsystem of (R, R1) in such a way that

(1) R′
1 = {β ∈ R1 : α>β or α a β}.
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This being so, wo now proceed by induction on l = l(V ). For l = 1 there is
nothing to prove. For l > 1 we pick α as above and first treat case a), allowing
us to assume that V ′ is simple. Because R′

1 satisfies a) as well, the induction
hypothesis implies Van =̂ V ′

an =̂ V ′
β =̂ Vβ for every β ∈ R′

1. But since α>β, Vα

and Vβ are conjugate under Aut(V ) [12, I.3.12], forcing Van =̂ Vα by 6.7b).
We are left with case b). Given a short root β ∈ R1, we conclude β ` α for
some α ∈ R1, to which our preliminary remark applies. Assuming cβ ⊥ cγ for
some γ ∈ R′

1 would yield cα ∈ V2(cβ) ⊂ V0(cγ) and hence cα ⊥ cγ, which is
impossible by (1). This contradiction shows that G′ is connected. Therefore
V ′ is simple (3.13), proving the second part of b) (6.2). Suppose now that R′

1

satisfies a). Then V ′
2(cβ) = Vβ by 3.9, forcing cβ to be a division idempotent

in V ′ governing cα. Therefore V ′ has capacity 1 (6.5) and, using 6.9, we
conclude from the induction hypothesis Van =̂ V ′

an =̂ V ′
2(cβ) = Vβ. Finally

suppose R′
1 satisfies b). Then β must be a short root of R′

1 as well since,
otherwise, γ ` β for some γ ∈ R′

1 [12, I.4.5], contradicting the no-tower-
lemma [12, I.3.4]. Now the induction hypothesis implies Van =̂ V ′

an =̂ Vβ.
¤

6.19 Split versus reduced Jordan pairs. Let k be a field and V a non-
degenerate simple Artinian Jordan pair over k. Following [21], we say that
V is reduced if V2(c) has dimension 1 for every (equivalently (by 6.2): for
some) division idempotent c ∈ V . On the other hand, we say that V is split
if Van has dimension 1; see 6.22 below for the connection with Neher’s notion
of splitness [15]. Observing 3.9, the first of the following two propositions
becomes obvious.

6.20 Proposition. Let V be a nondegenerate simple Artinian Jordan pair
over the field k and (R, R1) the 3-graded root system associated with a finite
covering division grid G ⊂ V .
a) If the roots of R1 all have the same length, then V is reduced if and only
if Vα(G) has dimension 1 for every α ∈ R1.
b) If the roots of R1 have (two) different lengths, then V is reduced if and
only if Vα(G) has dimension 1 for every long root α ∈ R1. ¤

51



6.21 Proposition. Let V be a nondegenerate simple Artinian Jordan pair
over the field k.
a) If V is split, then V is reduced.
b) For V to be separable it is necessary and sufficient that Van be separable.

Proof. Up to a point, we treat a), b) simultaneously and let (R, R1) be the
3-graded root system associated with a finite covering division grid G ⊂ V .
By 3.11, 6.18, 6.20 we may assume that the roots of R1 have different lengths.
Letting α be any long root of R1, there exists a short root β ∈ R1 governing
α [12, I.4.5]. At this stage we need the following standard fact:

(1) The natural action of V ε
α on V ε

β via (x, z) 7→ {xyz}, y = c−ε
α , gives an

injective algebra homomorphism from (Vα)ε
y to Endk(V

ε
β )J .

a) We know that V ε
β has dimension 1 (6.18) and must show the same for V ε

α

(6.20). But this follows immediately from (1).
b) Let k′/k be an arbitrary field extension, put V ′ = V ⊗k k′, V ′

γ = Vγ⊗k

for γ ∈ R1 and identify V ⊂ V ′ canonically. We know that V ′
β is semi-simple

(6.18) and must show the same for V ′
α (3.11). Let x′ ∈ (Rad V ′

α)ε ⊂ (Rad V ′)ε

and assume x′ 6= 0. Then {x′ycε
β} belongs to (Rad V ′

β)ε and hence must zero.
Writing x′ =

∑
a′ixi, 0 6= xi ∈ Vα, a′i ∈ k′ linearly independent over k, we

conclude
∑

a′i{xiycε
β} = 0 and {xiycε

β} 6= 0 for all i, according to the standard
fact (1) above. This is a contradiction and completes the proof. ¤

6.22 Remark. Let V be a a nondegenerate split simple Artinian Jordan
pair over a field. By 6.18, 6.20, 6.21a), the Peirce components of V relative to
a finite covering division grid all have dimension 1, showing that our notion
of splitness is compatible with the one introduced by Neher [15] in another
context.

We conclude this section with an auxiliary result that relates the concept of
anisotropic part to the Norm Theorem 4.3.

6.23 Proposition. Let (K, Γ, λ) be a Henselian field, V a finite-
dimensional simple Jordan pair over K and G a covering standard division
grid of V . Then the anisotropic part of the simple finitedimensional Jor-
dan pair O(V,G)/P(V, G) over the residue class field κ(K,λ) is isomorphic
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to κ(Van, µ) for some separated valuation µ : Van −→ ∆∞ (∆ = Γ ⊗Z Q)
extending λ.

Proof. The image G′ of G in O′ = O(V, G)/P(V, G) is a covering standard
division grid whose 3-graded root system canonically identifies with that
of G (4.4). Also, in the terminology of 4.3, 4.4, O′

α(G′) = κ(Vα(G), µα)
is finitedimensional over κ(K,λ) for each α ∈ R1. Hence so is O′. The
remaining assertion now follows from 6.18. ¤

7. Ramification.

We now return to the arithmetic setting of Section 5 to discuss the following
question: When does a finitedimensional, say: simple, Jordan pair over a
local field contain a (weakly) separable order. We will answer this question
purely in terms of the anisotropic part and its ramification properties. We
also present a global version of this result that works over arbitrary nonsin-
gular schemes of dimension 1 (e.g., algebraic curves). For the time being, we
let K be a local field as in 5.1. All algebras, pairs etc. over K are tacitly
assumed to be finite-dimensional.

7.1 (Weakly) unramified Jordan division algebras. We slightly mod-
ify the terminology of [17], bringing it into line with the established usage.
A Jordan division algebra J over K is said to be weakly unramified if it has
ramification order 1 in the sense of [17, §5 3.]. Writing ν : J −→ Q∞ for the
unique valuation of J extending λ (1.7), this means that P(J, ν) = pO(J, ν).
If, in addition, the residue class algebra κ(J, ν) is separable over κ, J is said
to be unramified.

7.2 Lemma. If J is a (weakly) unramified Jordan division algebra over K,
so is every isotope of J .

Proof. The ramification order does not change when passing to an isotope
[17, Satz 6.3]. Hence the property of J being weakly unramified is inherited
by J (y), y ∈ J×. Also, y ≡ y′ mod K× for some y′ ∈ O(J, ν)× (ν being as in
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7.1), whence κ(J (y)) ∼= κ(J)(z) (where z stands for the canonical image of y′

in κ(J)) is separable over κ if κ(J) is. 7.2 follows. ¤

7.3 Proposition. Let V be a Jordan division pair over K. Then the fol-
lowing statements are equivalent.
(i) V contains weakly separable orders.
(ii) All maximal orders in V are weakly separable.
(iii) There exists a separated valuation µ : V −→ Q∞ extending λ such that
P(V, µ) = pO(V, µ).
(iv) P(V, µ) = pO(V, µ) for all separated valuations µ : V −→ Q∞ extending
λ.
(v) V ∼= (J, J) where J is a weakly unramified Jordan division algebra over
K.

Proof. Weakly separable orders are maximal (5.12), and the maximal orders
of V have precisely the form O(V, µ) where µ varies over the separated valu-
ations of V extending λ (5.2). Hence 5.8a) shows the equivalence of (i) and
(iii), (ii) and (iv), respectively. The implication (iv) ⇒ (iii) being obvious, it
remains to establish (iii) ⇒ (v) ⇒ (iv).
(iii) ⇒ (v). We may assume V = (J, J) for some Jordan division algebra J
over K. Then 2.8 yields an element y ∈ J× such that J (y) is weakly unrami-
fied. Hence so is J by 7.2.
(v) ⇒ (iv). We may identify V = (J, J) as above. Given a sepa-
rated valuation µ : V −→ Q∞ extending λ, we conclude from 2.8 that
µ+ = ν(y), µ− = ν(y−1) for some y ∈ J×. Since J (y) continues to be weakly
unramified (7.2), (iv) follows. ¤

An analogous criterion for the existence of separable orders can be derived
in exactly the same manner; we record the result without proof. Notice that
a Jordan pair over K admits separable orders only if it is itself separable.

7.4 Proposition. Let V be a separable Jordan division pair over K. Then
the following statements are equivalent.
(i) V contains separable orders.
(ii) All maximal orders in V are separable.
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(iii) There exists a separated valuation µ : V −→ Q∞ extending λ such that
O(V, µ) is a separable order in V .
(iv) O(V, µ) is a separable order in V for every separated valuation µ : V −→
Q∞ extending λ.
(v) V ∼= (J, J) where J is an unramified Jordan division algebra over K. ¤

7.5 (Weakly) unramified Jordan pairs. Observing 6.21b), a separable
simple (resp. simple) Jordan pair over K is said to the unramified (resp.
weakly unramified) if its anisotropic part satisfies the equivalent conditions
of 7.4 (resp. 7.3). An arbitrary Jordan pair over K is said to be unramified
(resp. weakly unramified) if it is separable (resp. semi-simple) and all its
simple summands are unramified (resp. weakly unramified).

7.6 Theorem. Let V be a Jordan pair over K. Then the following state-
ments are equivalent.
(i) V contains separable (resp. weakly separable) orders.
(ii) V is separable (resp. semi-simple), and all saturated maximal orders in
V are separable (resp. weakly separable).
(iii) There exists a covering standard division grid G ⊂ V such that O(V, G)
is a separable (resp. weakly separable) order in V .
(iv) V is separable (resp. semi-simple) and O(V, G) is a separable (resp.
weakly separable) order in V for every covering standard division grid G ⊂ V .
(v) V is unramified (resp. weakly unramified).

Proof. Just as in the beginning of the proof to 7.3 one shows, appealing to 5.3
rather than 5.2 and to 5.11, that it suffices to establish the implications (iii)
⇒ (v) ⇒ (iv). These in turn will be implied by the following proposition.

7.7 Proposition. Let V be a Jordan pair over K and G a covering standard
division grid of V . Writing (R,R1) for the 3-graded root system associated
with G, the following statements are equivalent.
(i) O(V, G) is a separable (resp. weakly separable) order in V .
(ii) Vα(G) is unramified (resp. weakly unramified) for every α ∈ R1.
(iii) V is unramified (resp. weakly unramified).
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Proof. As in 4.3, let µα, α ∈ R1, be the unique valuation of Vα = Vα(G)
extending λ and satisfying µε

α(cε
α) = 0; put Oα = O(Vα, µα), Pα = P(Vα, µα).

(i) ⇒ (ii). Suppose O = O(V, G) is weakly separable. Then Rad O = pO

implies Rad Oα = pOα for each α ∈ R1 by 3.11 and 4.4, so Oα is weakly
separable and Vα is weakly unramified. Also, Oα(p) is a Peirce component of
the Jordan pair O(p) over κ relative to the covering standard division grid
G(p). Hence if O is separable, so ist Oα, forcing Vα to be unramified (7.4).
(ii) ⇒ (iii). Follows from 6.18.
(iii) ⇒ (i). Suppose first V is weakly unramified. We may assume that V
is simple and, by 6.18, that the roots of R1 have different lengths, the short
roots posing no problem whatsever. Let α ∈ R1 be a long root. Then [12,
I.4.5] yields a β ∈ R1 satisfying cα a cβ, and from 4.17 we conclude

(1) µε
β({xc−ε

α cε
β}) = µε

α(x)

for all x ∈ V ε
α . Now let π be a prime element of o. Given x ∈ Pε

α, we
obtain {xc−ε

α cε
β} = Pε

β (by (1)) = pOε
β (since Vβ =̂ Van is weakly unramified).

Replacing x by π−1x in (1) now implies x ∈ pOε
α, hence that each Oα, α ∈ R1,

is weakly separable. This property trivially extends to O. If V is unramified,
so is its anisotropic part, and combining 6.21b) with 6.23 we see that O is
separable. ¤

7.8 Corollary. Let V be an unramified Jordan pair over K. Then every
weakly separable order in V is separable.

Proof. By Neher’s Theorem 5.11, weakly separable orders are saturated, and
by 5.12 they are maximal. Hence 7.6 applies. ¤

7.9 Corollary. Let V be a split simple Jordan pair over K. Then V is
unramified, and any two separable orders in V are conjugate under the auto-
morphism group of V .

Proof. Since Van
∼= (K,K)J is trivially unramified, so is V . Let O,O′ be

separable orders in V . Then there exist covering standard division grids
G,G′ in V such that O = O(V, G),O′ = O(V,G′) (5.11, 5.3). Since V splits,
[13, 3.10] (cf. also [14, p. 467]) yields an automorphism ϕ of V satisfying
ϕ(G) = ±G′. Hence ϕ(O) = O′. ¤
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7.10 Remark. Example 5.5 shows that a maximal order in a (weakly) un-
ramified Jordan pair over K need not be saturated, so in 7.6(ii) the restriction
to saturated maximal orders is essential.

7.11 Regular integral schemes of dimension 1. Let X be a scheme.
The definition of (weak) separability (5.6) being local in nature, it makes
sense for Jordan pairs over X: A Jordan pair V over X whose underlying
OX-modules are locally free of finite rank is said to be separable (resp. weakly
separable) at p ∈ X if V(p) = V ⊗ κ(p) is separable (resp. semi-simple) over
κ(p). If this is so for all p ∈ X, we say that V is separable (resp. weakly
separable).

Now suppose X is integral regular of dimension 1 and let K be the function
field of X. For p ∈ X, the local ring op = Op,X of X at p is a discrete valua-
tion ring with quotient field K, valuation ideal mp = mp,X and residue class
field κ(p); we write λp : K → Z∞ for the corresponding discrete valuation.

The process of completion leads to a local field K̂p = (K̂p, λ̂p), with valuation
ring ôp, valuation ideal m̂p and residue class field κ(p). Let V be a finitedi-

mensional Jordan pair over K. If V̂p = V ⊗K K̂p is (weakly) unramified over

K̂p, we say that V is (weakly) unramified at p.

7.12 Theorem. Let X be a regular integral scheme of dimension 1 and V
a finitedimensional Jordan pair over the function field K of X. Then the
following statements are equivalent.
(i) V is unramified at each point of X.
(ii) V extends to a separable Jordan pair spread over all of X, i.e., there
exists a separable Jordan pair over X whose generic fibre is isomorphic to V .

Proof. (ii) ⇒ (i). Let O be a separable Jordan pair over X whose generic
fibre identifies with V . For p ∈ X, Ôp = Op ⊗op ô is a separable order in V̂p,
whence V must be unramified at p (7.6).
(i) ⇒ (ii). Letting (eε

i ) be a basis of V ε over K and putting O′ε =∑OXeε
i , O′ = (O′+,O′−) will become a Jordan pair over some dense open

subscheme U ⊂ X and, by shrinking U even further if necessary, we may
assume that O′ is separable over U [8, Theorem 1]. For p ∈ X − U, V̂p is
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unramified over K̂p, so 7.6 produces a separable order O′′
p in V̂p. By [25,

(4.22)], the separable Jordan pairs O′ over U and O′′
p = Ô′′

p ∩ V over each
p ∈ X − U glue to give a separable Jordan pair over all of X whose generic
fibre brings us back to V . ¤

7.13 Example. Assume for simplicity that in 7.12 all fields κ(p), p ∈ X,
have characteristic not two, let q : M −→ K be a nondegenerate quadratic
form and V the corresponding Jordan pair. By 7.2 and [17, §7 4.] V is
unramified at p ∈ X if and only if ∂pq, the second residue class form of q in
the sense of Springer, vanishes in the Witt ring of κ(p). On the other hand,
for V to extend to a separable Jordan pair over all of X it is necessary and
sufficient that there exist a selfdual OX-lattice in M relative to q. Thus, in
the totally nondyadic situation, 7.12 may be regarded as a generalization of
[11, IV Theorem 3.1].

7.14 Remark. 7.12 applies in particular to (complete smooth algebraic)
curves over a field k. For example, if X is such a curve of genus zero,
results due to Van den Bergh-Van Geel [30] and Van Geel [31] for associative
algebras and quadratic forms, to Harder [4] for algebraic groups and to the
author [22] for composition algebras suggest the following question: Suppose
a finitedimensional Jordan pair V over the function field K of X is unramified
everywhere. Does this imply that V is extended from k, i.e., that there exists
a Jordan pair V0 over k satisfying V ∼= V0⊗kK? We will take up this question
in another paper.
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