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Introduction

The existence of a new invariant for central simple exceptional Jordan algebras
(nowadays called Albert algebras) over an arbitrary base field k of characteristic
not 2 or 3, following a suggestion of Serre [Se], has recently been established by
Rost [Ro1]. In fact, Serre (loc. cit.) has raised the question as to whether this new
invariant, called the invariant mod 3, together with the ordinary trace form already
employed in the work of Springer [Sp], classifies Albert algebras over k.

The invariant mod 3 belongs to H3(k, Z/3Z) and so ties up nicely with results and
techniques from Galois cohomology. Serre (loc. cit.) has also supplied an analogous
cohomological characterization for the trace form by means of two decomposable
elements in H3(k, Z/2Z) and H5(k, Z/2Z), respectively, called the invariants mod
2, provided the underlying Albert algebra is reduced. It is of course desirable to
define the invariants mod 2 also in the case of an Albert division algebra. In order
to accomplish this, one must deal with the following question, raised by Serre in a
private communication to the second author of this paper: If k′/k is a cubic field
extension reducing a given Albert algebra J over k (so that J ⊗k k′ is reduced and
hence isomorphic to the algebra of twisted 3-by-3 hermitian matrices with entries
in an octonion algebra C ′ over k′), does it follow that C ′ is uniquely extended from
k, i.e., that there exists a unique octonion algebra C over k satisfying C⊗k k′ ∼= C ′?

As Serre himself has pointed out in another communication to the second author,
this question has an affirmative answer thanks to a descent property for Pfister
forms established by Rost [Ro2]. This approach, however, does not reveal any,
even remotely explicit, description of the octonion algebra C in terms of the Albert
algebra J .

1While a substantial part of this work was being prepared, the first author was visiting the
University of Ottawa. He would like to thank this institution for its hospitality.

2The second author’s research is supported in part by a grant from NSERC.
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The purpose of the present paper is twofold. First we answer Serre’s original ques-
tion in a somewhat more general form (1.8) by using only elementary properties
of the generalized second Tits construction (1.4). Our main concern, however, will
be to derive an explicit description, valid in all characteristics, if not of C itself
but at least of its norm form. The description presented here (4.2) depends on the
constituents used to build up J by means of the generalized second Tits construc-
tion and requires certain elementary manipulations of quadratic forms, expanding
earlier ones developed in [PR1] and revolving around the notion of the pseudo-
discriminant (section 2). In addition, certain results on separable commutative-
associative algebras of dimension 3 have to be separated from the rest of the argu-
ment in section 3. The proof of 4.2 will then be carried out in section 5. Ignoring
certain technical adjustments necessary to include characteristics 2 and 3, the idea
is to exhibit, in any reduced Albert algebra realized by means of the generalized
second Tits construction, a complete orthogonal system of three absolutely primi-
tive idempotents and to compute the quadratic trace (1.1) on the corresponding
Peirce-(2,3)-component.

During the preparation of this work, the authors benefitted greatly from nume-
rous contacts with Jean-Pierre Serre, who generously shared with them his novel
approach to Albert algebras. Without his patience, constant enthusiasm and en-
couragement, this paper would never have come into being. For all this, the authors
would like to express their appreciation to him. Finally, a number of sugestions by
the referee to improve upon the presentation of the subject are gratefully acknow-
ledged.

1. Albert Algebras and their Coordinate Algebras

1.1 Albert algebras are best treated in the more general set-up of Jordan algebras
arising from cubic forms with adjoint and base point [M1]. For the convenience of
the reader we recall the definition.

Let k be an arbitrary field, remaining fixed throughout this paper. By a cubic form
with adjoint and base point we mean a triple (N, #, 1) consisting of a cubic form N
on a finite-dimensional vector space V over k, a quadratic mapping x 7→ x# from
V to V and a distinguished element 1 ∈ V such that the following identities hold
under all scalar extensions.
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(1) x## = N(x)x, (“adjoint identity”)

N(1) = 1, (“base point identity”)

(2) T (x#, y) = (DN)(x)y,

(3) 1# = 1,

(4) 1× y = T (y)1− y;

here T = −(D2 log N)(1) is the associated trace form (“D” indicating the total
derivative of a rational map), × is the bilinearization of # and T (y) = T (1, y).
Then the operation

(5) Uxy = T (x, y)x− x# × y

together with the base point 1 gives V the structure of a unital quadratic Jordan
algebra over k, written as J = J (N, #, 1) [M1, Theorem 1]. In addition to the
norm N = NJ and the trace T = TJ , extensive use will be made of the quadratic
trace S = SJ of J , i.e., the quadratic form defined by

(6) S(x) = T (x#).

Its bilinearization satisfies

(7) S(x, y) = T (x)T (y)− T (x, y) = T (1× x, y)

by [M1, (16)] and (4). From [M1] we finally recall the identities

(8) T (1) = 3

(9) x# = x2 − T (x)x + S(x)1,

(10) x× x# = [T (x#)T (x)−N(x)]1− T (x#)x− T (x)x#,

(11) T (x× y, z) = T (x, y × z),

(12) x# × (x× y) = N(x)y + T (x#, y)x,

(13) (x× y)# = T (x#, y)y + T (x, y#)x− x# × y#.

1.2 Examples Let R be a finite-dimensional unital associative k-algebra and
suppose R has degree 3. Then R+, the associated Jordan algebra (with cubic ope-
ration Uxy = xyx and identity element 1R+ = 1R) agrees with J (N, #, 1) where
1 = 1R, N is the reduced norm of R (i. e., the exact denominator of the inver-
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sion map, normalized by N(1) = 1) and # is the adjoint (i.e., the corresponding
numerator). Notice that this implies

(14) xx# = N(x)1 = x#x.

1.3 Returning to 1.1, let us assume that u ∈ J is invertible (i.e., satisfies N(u) 6=
0). Then the u-isotope J (u) of J again arises from a cubic form with adjoint and
basepoint [M1, Theorem 2]:

J (u) = J (N (u), #(u), 1(u)),

where N (u) = N(u)N, #(u) = N(u)U−1
u ◦# and 1(u) = u−1 = N(u)−1u#. Writing

T
(u)
J for the trace and S

(u)
J for the quadratic trace of J (u), we have

(15) T
(u)
J (x, y) = TJ (Uux, y),

(16) T
(u)
J (x) = TJ (u, x),

(17) S
(u)
J (x) = TJ (u#, x#)

for all x, y ∈ J . Indeed, (15) may be found in [M1, p. 500] and easily implies the
rest.

1.4 By [PR4, Theorem 3.1], all Albert algebras over k may be obtained from
a slight generalization of the second Tits construction [M1, Theorem 7], which
we now proceed to describe [PR3, Theorem 3.4]. Let (B, ∗) be a central simple
associative algebra of degree 3 with involution of the second kind over k, write K
for the center of B (which is either a separable quadratic field extension of k or
isomorphic to k⊕ k), N for its (reduced) norm, T for its (reduced) trace, # for its
adjoint and put

A = H(B, ∗) = {a ∈ B : a∗ = a}
(which is a k-subalgebra of B+). Suppose further that we are given invertible
elements u ∈ A, β ∈ K satisfying N(u) = ββ∗. Extending N, #, 1 = 1B = 1A as
given on B and A to the k−vector space

V = A⊕B

according to the rules
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N((a, b)) = N(a) + βN(b) + β∗N(b)∗ − T (a, bub∗),

(18) (a, b)# = (a# − bub∗, β∗b∗#u−1 − ab),

(19) 1 = (1A, 0)

for a ∈ A, b ∈ B, we obtain a cubic form (N, #, 1) with adjoint and base point
over k. The ensuing Jordan algebra structure will be written as J = J (B, ∗, u, β)
and is in fact an Albert algebra. The associated trace form is given by

(20) T (x, y) = T (a, c) + T (bu, d∗) + T (du, b∗)

for x = (a, b), y = (c, d) ∈ J , which implies

(21) T (x) = T (x, (1, 0)) = T (a).

For future reference, we also record the bilinearization of the adjoint:

(22) x× y = (a× c− bud∗ − dub∗, β∗(b∗ × d∗)u−1 − ad− cb).

Finally, J is a division algebra if and only if β is not a norm of B [PR3, Theorem
5.2]. The following result combines [PR3, Propositions 3.7 and 3.9].

1.5 Proposition Let J = J (B, ∗, u, β) be an Albert algebra over k, realized by
means of the gereralized second Tits construction as in 1.4.
a) Given an invertible element w ∈ B the rule (a, b) 7→ (a, bw) determines an
isomorphism from J onto J (B, ∗, wuw∗, N(w)β).
b) Given an invertible element y ∈ A = H(B, ∗) and writing ∗(y) for the involution
b 7→ yb∗y−1 of B, the rule (a, b) 7→ (y−1a, b) determines an isomorphism from
J (B, ∗(y), uy#, N(y)β) onto the y-isotope J (y).

1.6 An Albert algebra J over k is either a division algebra or it is reduced. In the
latter case, there exists a unique octonion algebra C over k and a diagonal matrix
g ∈ GL3(k) such that J ∼= H3(C, g), the Jordan algebra of 3-by-3 matrices x which
have diagonal entries in k, off-diagonal entries in C and are g-twisted hermitian, i.e.,
satisfy x = g−1txg, − being the canonical involution of C. We call C the coordinate
algebra and its norm the coordinate norm of J . The Jordan algebra structure of
H3(C, g) is again derived from a cubic form (N, #, 1) with adjoint and base point
[M1, Theorem 3]. Noting that an arbitrary element of H3(C, g) has the form
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(23) x =
3∑

i=1

αieii +
3∑

i=1

ai[jl], αi ∈ k, ai ∈ C,

where (ijl) are cyclic permutations of (123) and a[ij] = gjaeij + giāeji in terms of
the matrix units eij, we set, n and t being the norm and trace, respectively, of C,

N(x) = α1α2α3 −
3∑

i=1

gjglαin(ai) + g1g2g3t(a1a2a3),

x# =
3∑

i=1

{αjαl − gjgln(ai)}eii +
3∑

i=1

{giajal − αiai}[jl],

1 = e11 + e22 + e33.

The associated trace form is given by

T (x, y) =
3∑

i=1

{αiβi + gjgln(ai, bi)},

y ∈ H3(C, g) being represented in a form analogous to (23). For the quadratic trace,
this implies the relation

(24) S(x) =
3∑

i=1

{αjαl − gjgln(ai)}.

1.7 Let A be an absolutely simple Jordan algebra of degree 3 and dimension 9
over k. By structure theory, there exists a central simple associative algebra (B, ∗)
of degree 3 over k with involution of the second kind, unique up to isomorphism,
satisfying A ∼= H(B, ∗). Then we define the octonion algebra of A, written as
Oct A, to be the coordinate algebra (1.6) of the reduced Albert algebra J (B, ∗, 1, 1)
(1.4). The relationship of this notion to an earlier construction of Faulkner’s [F2]
will be taken up in another paper. Calling a field extension k′/k a reducing field of
an Albert algebra J over k if the extended algebra J ⊗k k′ over k′ is reduced, we
can now prove the following result.

1.8 Theorem (Serre, Rost) Let J be an Albert algebra over k. Then there exists
an octonion algebra C over k, unique up to isomorphism, such that, given any
reducing field k′/k of J , C ⊗k k′ is the coordinate algebra of J ⊗k k′. Moreover,
realizing J = J (B, ∗, u, β) by means of the generalized second Tits construction
as in 1.4 and setting A =H(B, ∗), C is isomorphic to the octonion algebra of A(u).

Proof We may assume that J = J (B, ∗, u, β) is reduced, and must then show
it has the coordinate algebra Oct A(u). Writing β = N(t) for some invertible
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element t ∈ B (1.4) and w = t−1, J and J (B, ∗, wuw∗, 1) are isomorphic by
1.5 a), as are A(u) and A(v), v = wuw∗, since the map a 7→ waw∗ belongs to
the structure group of A. Hence we may assume β = 1. But then, by the Albert-
Jacobson-Faulkner Theorem [F1, Theorem 1.8], J and J (u) ∼= J (B, ∗(u), 1, 1) (1.5
b)) have the same coordinate algebra, which by definition agrees with Oct A(u).

1.9 According to 1.8, we are allowed to talk about the coordinate algebra and
the coordinate norm of an Albert algebra J even if J is not reduced. Using
this terminology, we will be concerned in the rest of the paper with an explicit
description of the coordinate norm of J realized by means of the generalized
second Tits construction as in 1.4. In order to understand this description, a few
preparations are required that will be taken up in the next section.

2. Associates of quadratic forms and the pseudo-discriminant

2.1 In this section, we modify and expand certain notions introduced in [PR1].
Writing k• for the multiplicative group k× = k − {0} if char k 6= 2 and for the
additive group k otherwise, we define ℘ : k• −→ k• by ℘(α) = α2 in the first case
and by ℘(α) = α + α2 in the second (α ∈ k•). In contrast to [PR1], the group
Γ(k) = k•/℘(k•) will be written additively even if the characteristic is not two.
Notice that Γ(k) canonically identifies with H1(k, Z/2Z) and also with the group
of isomorphism classes of separable quadratic k-algebras in the sense of Knus [K,
III §4].

2.2 Let V be a (finite-dimensional) vector space over k and q : V −→ k a
quadratic form. As in (7), the symmetric bilinear form induced by q will also be
written as q, so

q(u, v) = q(u + v)− q(u)− q(v)

for u, v ∈ V . If this symmetric bilinear form is nondegenerate in the usual sense, we
call q nonsingular. By contrast, q is said to be nondegenerate if q(u) = q(u, v) = 0
for all v ∈ V implies u = 0. These two notions agree for char k 6= 2 but are distinct
in general. For example, nonsingularity of q in characteristic two forces V to have
even dimension. By Witt cancellation [Sc, (7.9.2)], the following classical result of
Springer, being well known for char k 6= 2 [Sc, (2.5.3), (2.5.4)], easily extends to
arbitrary characteristics as follows.
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2.3 Springer’s Theorem Let k′/k be a finite field extension of odd degree.
a) If q is a quadratic form over k such that q ⊗k k′ is isotropic, then q is isotropic.
b) If q1, q2 are nonsingular quadratic forms over k and q′2 is a nonsingular quadratic
form over k′ such that

q ⊗k k′ ∼= (q1 ⊗k k′) ⊥ q′2

then there exists a nonsingular quadratic form q2 over k, uniquely determined up
to isometry, satisfying

q′2 ∼= q2 ⊗k k′ , q ∼= q1 ⊥ q2.

In particular, q ⊗k k′ ∼= q1 ⊗k k′ implies q ∼= q1.

2.4 Let q : V −→ k be a nonsingular quadratic form representing 1 and e ∈ V be
a basepoint of q, so q(e) = 1. Fixing d ∈ k•, we define a quadratic form qd : V −→ k
by

qd(v) = dq(v)+ 1−d
4

q(e, v)2 (v ∈ V )

for char k 6= 2 and by

(25) qd(v) = q(v) + dq(e, v)2 (v ∈ V )

for char k = 2. Writing q0 for the restriction of q to the orthogonal complement of
e, we conclude

(26) qd
∼= < 1 > ⊥ dq0 (char k 6= 2),

whereas, for char k = 2, q and qd induce the same symmetric bilinear form on V .
Hence, in all characteristics, qd is a nonsingular quadratic form representing 1 (in
fact, qd(e) = 1). Finally, by Witt’s Theorem [Sc,(7.9.1)], qd up to isometry does
not depend on the base point e.

2.5 Remark For char k 6= 2, qd as defined in 2.4 differs from qd as defined in
[PR1, 3.1] by a factor d. If one is interested only in similarity of quadratic forms
(as happens, for example, in [PR1, 3.2]), this difference may therefore be safely
ignored.

2.6 Arguing as in the proof of [PR1,3.1b)], it now follows easily that, given a
nonsingular quadratic form q representing 1 and d ∈ k•, the quadratic form qd up to
isometry only depends on the class of d modulo ℘(k•). Hence, for any δ ∈ Γ(k), the
notion qδ is unambiguous and refers to a nonsingular quadratic form representing 1,
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called the δ-associate of q. Obviously , q0
∼= q , i. e., the 0-associate of q is isometric

to q. The following lemma is an immediate consequence of the definitions.

2.7 Lemma Let q be a nonsingular quadratic form representing 1 and δ ∈ Γ(k).
a) For all δ′ ∈ Γ(k) we have (qδ)δ′

∼= qδ+δ′ .
b) If q′ is a strongly nondegenerate quadratic form, then

(q ⊥ q′)δ
∼= qδ ⊥ δ′q′,

where δ′ = δ for char k 6= 2 and δ′ = 1 for char k = 2.

2.8 By a torus of rank n we mean as in [PR1] a separable commutative-associative
algebra E/k of dimension n, which we usually identify with its corresponding
Jordan algebra E+. If E has rank 2 or 3 it comes along with an important invariant
attached, written as δ(E/k) ∈ Γ(k) and called its pseudo-discriminant because it is
the usual discriminant in characteristic not two. For the convenience of the reader,
we recall the definition in characteristic two.

So assume char k = 2, let K/k be a torus of rank 2, with norm n and trace t, and
write K = k[θ] for some θ ∈ K having t(θ) = 1. Then K has discriminant 1 and
δ(K/k) is the class of n(θ) in Γ(k) (easily seen to be independent of the choice of
θ). On the other hand, if E/k is a torus of rank 3, one of the following cases occurs.

(i) E/k is not a field, so E = k ⊕ K for some torus K/k of rank 2. Then we set
δ(E/k) = δ(K/k).
(ii) E/k is a cyclic field extension. Then we set δ(E/k) = 0.
(iii) E/k is a noncyclic field extension, so its Galois closure contains a unique torus
K/k of rank 2. Then we set δ(E/k) = δ(K/k).

In arbitrary characteristic, given any δ ∈ Γ(k), we write k{δ} for the unique torus
of rank 2 over k having pseudo-discriminant δ (2.1). Clearly, k{δ} is a composition
algebra, so it makes sense to talk about its norm and its trace, written as nk{δ} and
tk{δ}, respectively, the former being a nonsingular binary quadratic form represen-
ting 1. The following lemma is an adaptation of [PR2, Lemma 2] to the present
set-up.

2.9 Lemma Let δ, δ′ ∈ Γ(k). Then

(nk{δ})δ′
∼= nk{δ+δ′}.
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3. Tori of rank three

3.1 Let E/k be a torus of rank 3 containing zero divisors. Then E = k ⊕ C ,
where C is a torus of rank 2 over k, necessarily of the form C = k{δ} for some
δ ∈ Γ(k); in fact δ = δ(E/k) (2.8). Write n,− , t for the norm, canonical involution,
trace, respectively, of C and N, #, T, S for the norm, adjoint, trace, quadratic trace,
respectively, of E. For a, b ∈ k, u, v ∈ C, [PR2, Example 2.2] implies

N((a, u)) = an(u),

(a, u)# = (n(u), aū),

(27) T((a, u), (b, v)) = ab + t(uv),

forcing

T((a, u)) = a + t(u),

(28) S((a, u)) = n(u) + at(u).

Hence E0, the space of trace zero elements in E, is the same as C under the
identification u = (−t(u), u), and S0, the restriction of S to E0, becomes the
binary quadratic form S0 : C −→ k given by

(29) S0(u) = n(u)− t(u)2.

Now choose θ ∈ C satisfying θ + θ̄ = t(θ) = 1 and θ − θ̄ ∈ C×. Then it is easily
checked that

(30) d = 1− 4n(θ)

is the discriminant of C/k and E/k. Also, setting

(31) h+ = (1, 0), h− = (−n(θ), θ), w = (−d, 1− 2θ),

an equally straightforward computation, involving (28) and its linearization, shows
that

(32) S(w) = −d

and (h+, h−) is a hyperbolic pair of the quadratic space (E, S) satisfying
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(33) S(h±, w) = 0.

We are now in a position to establish the following results.

3.2 Proposition Assume char k = 2 , let E be a torus of rank 3 over k and
write S for the quadratic trace of E. Then E has discriminant 1, the radical of
the symmetric bilinear form induced by S is k1 and S0 , the restriction of S to the
space of trace zero elements in E , is given by

S0 ∼= nk{δ(E/k)+1}.

Proof Because of (7), the radical of the bilinear form induced by S agrees with
kernel of the map x 7→ 1 × x = T (x)1 − x (by (4)), hence with k1 since we are
in characteristic 2. Therefore, as T (1) = 3 6= 0 by (8), S0 is nonsingular, so by
Springer’s Theorem 2.3 we may assume that E has zero divisors. But then d = 1
by (30), and (25), (29) as well as 2.9 imply

S0 ∼= (nk{δ(E/k)})1
∼= nk{δ(E/k)+1},

as desired.

In what follows, we write h for the hyperbolic plane in the theory of quadratic
forms.

3.3 Proposition Let E be a torus of rank 3 and discriminant d over k and let
S be its quadratic trace. Then

S ∼= h ⊥ < −d > .

Proof If E has zero divisors this follows immediately from (32), (33), so let us
assume that E is a field. If char k 6= 2 we are done by Springer’s Theorem 2.3,
so let us assume char k = 2. Because of 3.2, the radical of the bilinear form
induced by S agrees with k1. Also, S(1) = 1 = −d by (3), (6) and (30). Finally,
S becoming isotropic after extending scalars from k to E, it must have been so all
along ((2.3a)). Hence there exists a hyperbolic plane in the quadratic space (E, S),
which is automatically orthogonal to 1, and the assertion follows.

3.4 The pseudo-discriminant of a torus of rank 3 is an important invariant since,
for example, it characterizes Galois extensions. On the other hand, the original de-
finition reproduced in 2.8 is not particularly explicit. To get around this deficiency
in characteristic not two, we can always fall back on the ordinary discriminant,
whose determination is quite straightforward. That such an explicit characteriza-
tion exists also in characteristic two is the content of our next theorem.
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3.5 Theorem Assume char k = 2 and let E/k be a torus of rank 3, with trace
T and quadratic trace S. Then, given any hyperbolic pair (h+, h−) of the quadratic
space (E, S) (cf. 3.3), the pseudo-discriminant of E/k is given by

δ(E/k) = T (h+, h−) mod ℘(k•).

Proof Our first aim is to show that the class of T (h+, h−) in Γ(k) does not depend
on the choice of (h+, h−). So let (h′+, h′−) be another hyperbolic pair of (E, S)
and assume first that {h+, h−} ∩ {h′+, h′−} 6= ∅, hence without loss of generality
h′+ = h+. Notice that 1, h+, h− is a basis of E over k and that k1 is the radical
of the symmetric bilinear form induced by S (3.2). Choosing scalars α, β+, β− ∈ k
such that h′− = α1 + β+h+ + β−h−, the relations S(h+, h′−) = 1, S(h′−) = 0 imply
β− = 1, β+ = α2, forcing h′− = α1+α2h++h−. On the other hand, 0 = S(h+, h+) =
T (h+)2 − T (h+, h+) (by (7)), and we obtain T (h+, h+) = T (h+)2, hence

T (h′+, h′−) = T (h+, α1 + α2h+ + h−)

= T (h+, h−) + αT (h+) + α2T (h+)2

≡ T (h+, h−) mod ℘(k•),

as claimed. We are left with the case {h+, h−} ∩ {h′+, h′−} = ∅. This time we write
h′+ = α1 + β+h+ + β−h− with α, β± ∈ k. If α = 0, S(h′+) = 0 implies β+β− = 0,
so without loss β− = 0, β+ = 1 (since T is invariant under the action of k× on
hyperbolic pairs of (E, S) given by α.(h+, h−) = (αh+, α−1h−) ), forcing h′+ = h+,
a contradiction. If α 6= 0 we may assume α = 1, and S(h′+) = 0 implies β+β− = 1.
Arguing as before, we may even assume β+ = β− = 1. Then (h+, h′+) is a hyperbolic
pair of (E, S), so applying the previous case twice establishes our first aim. In
order to complete the proof of the theorem, we note that, given any odd degree
field extension k′/k, the natural map Γ(k) −→ Γ(k′) is injective, so extending
scalars from k to E if necessary we may assume that E has zero divisors. Then the
invariance property just established allows us to further assume h+ = (1, 0), h− =
(−n(θ), θ) as in (31), which implies T (h+, h−) = n(θ) (by (27)) and finishes the
proof by 2.8.

3.6 Corollary In the situation of 3.5, let a be a primitive element of E, so
E = k[a] is generated by a as a unital commutative-associative k-algebra. Then
T (a)S(a) + N(a) 6= 0 and

δ(E/k) = 1 +
(T (a)2 + S(a))3

(T (a)S(a) + N(a))2
mod ℘(k•)

Proof Replacing a by T (a)1 + a if necessary we may assume T (a) = 0. Then we
must first show N(a) 6= 0. Otherwise, the relations S(a, 1) = 0 (by 3.2), S(a, a) =
2S(a) = 0, S(a, a#) = T (a, a#) (by (7)) = 3N(a) (by (2) and Euler’s Differential
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Equation) = 0 would imply a ∈ k1 (again by 3.2), hence a = 0, a contradiction.
Thus N(a) 6= 0 and, by (1), h+ = a# is an isotropic vector of (E, S), extending to
the hyperbolic pair (h+, h−) where h− = N(a)−1a + N(a)−2S(a)h+. Now

T (h+, h−) = N(a)−1T (a#, a) + N(a)−2S(a)T (a#, a#)

= 1 + N(a)−2S(a)3

since 0 = 2S(a#) = S(a#, a#) = S(a)2 − T (a#, a#) (by (7)). Comparing with 3.5
completes the proof.

For char k 6= 2, there is a more technical result, in a sense complementary to 3.5,
which reads as follows.

3.7 Lemma Assume char k 6= 2 and let E/k be a torus of rank 3, with trace T
and quadratic trace S. Then there exists a hyperbolic pair (h+, h−) of the quadratic
space (E, S) (cf. 3.3) satisfying

T (h+, h−) = −1

4
and 1 = 1E ∈ kh+ + kh−.

Proof We first assume char k = 3. Then S(1) = T (1) = 3 = 0, so 1 extends to a
hyperbolic pair (h+, h−) of (E, S), and we obtain

T (h+, h−) = −(T (h+)T (h−)− T (h+, h−))

= −S(h+, h−) (by (7))

= −1 = −1

4
,

as claimed. Now let char k 6= 3 and put S ′ = 1
3
S. Then S ′ ∼= h ⊥ < −3d > by 3.3,

d being the discriminant of E/k. By Witt’s Theorem, we can find a hyperbolic pair
(h′+, h′−) of (E, S ′) satisfying h′+ + h′− = 1, so (h+, h−) = (h′+, 1

3
h′−) is a hyperbolic

pair of (E, S) satisfying h+ + 3h− = 1. We further contend

(34) T (h−) = 1
2
, T (h−, h−) = 1

4
.

Indeed, this follows from T (h−)2 − T (h−, h−) = S(h−, h−) (by (7)) = 0 and

1 = S(h+, h−) = T (1− 3h−)T (h−)− T (1− 3h−, h−)

= 3T (h−)− 3T (h−)2 − T (h−) + 3T (h−, h−)

= 2T (h−).

Equation (34) implies

T (h+, h−) = T (1− 3h−, h−) = T (h−)− 3T (h−, h−)

=
1

2
− 3

4
= −1

4
,
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as claimed.

4. The coordinate norm of a generalized second Tits construction

4.1 Returning to 1.9, we can now state the main result of the paper.

4.2 Main Theorem Let J = J (B, ∗, u, β) be an Albert algebra over k, realized
by means of the generalized second Tits construction as in 1.4, and write n for the
coordinate norm of J (cf. 1.9). Then the following holds.
(i)

S
(u)
A

∼= < −1 > ⊥ nδ,

where δ = δ(K/k) for char k 6= 2 and δ = δ(K/k) + δ(E/k) for char k = 2,
E ⊂ A(u) being any maximal torus.
(ii)

n ∼= nk{δ(K/k)+δ(E/k)} ⊥ (dS
(u)
A |E⊥),

where E ⊂ A(u) is any maximal torus, E⊥ ⊂ A(u) stands for the orthogonal com-
plement of E relative to T

(u)
A and d is the discriminant of K/k.

(iii)

S
(u)0
A

∼= nδ(K/k)+1

for char k = 2, where S
(u)0
A is the restriction of S

(u)
A to the space of trace zero

elements in A(u) (i.e., to the kernel of T
(u)
A ).

4.3 The proof of 4.2 will be postponed to the next section. For the time being,
we settle with the following explanatory comments.

To begin with, 4.2 is nontrivial even when J is reduced; in fact, the reduced case
lies at the heart of the matter.

Secondly, without going into the details, it is worth recording that our proof of 4.2
with only quite minor changes works equally well for a ninedimensional absolutely
simple Jordan algebra J of degree 3 (rather than an Albert algebra) realized by
means of the toral Tits process as defined in [PR2]. Then we necessarily have
E⊥ = 0 in 4.2 (ii), forcing nk{δ(K/k)+δ(E/k)} to be the coordinate norm of J and
thus leading to a new proof of [PR2, Theorems 1,2].
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Thirdly, for char k 6= 2, the isometry 4.2 (i) determines n uniquely; in fact, we have

S
(u)
A
∼= h ⊥ d n0 by 2.4, forcing

dS
(u)
A
∼= h ⊥ n0 ∼= < −1 > ⊥ n

and thus recovering [PR5, Theorem 2] also in characteristic 3. For char k = 2, in
addition to 4.2 (i) being awkwardly dependent on the choice of a maximal torus

E ⊂ A(u), all this is no longer true since S
(u)
A induces a degenerate symmetric

bilinear form, whose radical in fact agrees with k1(u) (cf. 1.3), and S
(u)
A (1(u)) =

1 = −1. By contrast, 4.2 (ii), though still dependent on E as above, describes
the coordinate norm of J as explicitly as one could possibly wish. It should be
noted here that maximal tori in Albert algebras need not be isomorphic (in fact,
they may have distinct pseudo-discriminants), and if they are they need not be
conjugate under the automorphism group [AJ, Theorem 9]. Yet, even though the
orthogonal constituents of

nk{δ(K/k)+δ(E/k)} ⊥ (dS
(u)
A |E⊥),

vary with E, the quadratic form as a whole by 4.2 (ii) only depends on the isotopy
class of J .

Finally, 4.2 (iii), supplementing 4.2 (i) in as much as it determines n uniquely
in characteristic 2, is a peculiarity (reminiscent of 3.2) which doesn’t stand much
chance of being extendable to arbitrary characteristics. For example, if char k =
3, S

(u)0
A , being degenerate, can never be isometric to an associate of n.

4.4 In 4.2, the various descriptions of n in terms of the parameters realizing J
by means of the generalized second Tits construction are strongly interdependent.
In fact, we shall establish the following set of implications:

(35) (i) ⇐= (ii) =⇒ (iii),

(36) (i) =⇒ (ii) (char k 6= 2).

To see this, we let E ⊂ A(u) be a maximal torus and note first that, because of (7),

A(u) = E ⊥ E⊥ is an orthogonal splitting relative to S
(u)
A . Hence

(37) S
(u)
A

∼= SE ⊥ (S
(u)
A |E⊥)

∼= h ⊥ < −d′ > ⊥ (S
(u)
A |E⊥) (by 3.3),

d′ being the discriminant of E/k. For char k 6= 2, this implies
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(38) S
(u)
A

∼= < −1 > ⊥ < 1,−d′ > ⊥(S
(u)
A |E⊥)

∼= < −1 > ⊥ nk{δ(E/k)} ⊥ (S
(u)
A |E⊥)

∼= < −1 > ⊥
(
nk{δ(K/k)+δ(E/k)} ⊥ (dS

(u)
A |E⊥)

)
δ

by 2.7, 2.9, whereas, for char k = 2, we have d′ = 1 by 3.2, forcing

(39) S
(u)
A

∼= < −1 > ⊥ nk{0} ⊥
(
S

(u)
A |E⊥

)

∼= < −1 > ⊥
(
nk{δ(K/k)+δ(E/k)} ⊥ (dS

(u)
A |E⊥)

)
δ
.

Now one reads off (36) and the left-hand implication in (35) by consulting (38),
(39). It remains to establish (ii) =⇒ (iii) in characteristic 2. Starting from the

orthogonal splitting A(u)0 = ker T
(u)
A = E0 ⊥ E⊥ relative to S

(u)
A , we conclude

S
(u)0
A

∼= S0
E ⊥ (S

(u)
A |E⊥)

∼= nk{δ(E/k)+1} ⊥ (S
(u)
A |E⊥) (by 3.2)

∼= (nk{δ(K/k)+δ(E/k)} ⊥ (dS
(u)
A |E⊥))

δ(K/k)+1

again by 2.7, 2.9, and the assertion follows; actually, we also get (iii) =⇒ (ii).

5. Proof of the Main Theorem

5.1 In order to establish 4.2, we proceed in several steps. The first step consists
in showing that it suffices to deduce 4.2 (ii) in the special case u = y#, β = N(y),
for some invertible element y ∈ A = H(B, ∗) satisfying TA(y) = 1. Indeed, by 1.8
we may assume u = β = 1. Then the assertion follows by picking y as above and
passing to the y-isotope J (y) ∼= J (B, ∗(y), y#, N(y)) (1.5 b)) which, in view of [F1,
Theorem 1.8], leaves the coordinate norm unaffected.

5.2 According to 5.1, we assume from now on that J agrees with J (B, ∗, u, β)
as in 1.4, where u = y#, β = N(y) for some invertible element y ∈ A satisfying
T (y) = 1. Then

e = (y, 1) ∈ J
by (21), (18), (14) satisfies T (e) = T (y) = 1 as well as

e# = (y# − u, β∗u−1 − y) = 0.

Hence e is an absolutely primitive idempotent in J , so, writing Ji = Ji(e)
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(i = 0, 1, 2) for the Peirce–i–component of J relative to e in the labelling of Loos
[L], we have J2 = ke.

(Remark By passing from an arbitrary generalized second Tits construction
J (B, ∗, u, β) to an Albert algebra of the form J (B, ∗, y#, N(y)) as above, we have
thus explicitly produced an absolutely primitive idempotent. For char k 6= 3, this
is much easier to accomplish since we are always allowed to assume u = β = 1
(1.8) and then obtain the absolutely primitive idempotent e′ = 1

3
(1, 1) [PR5].)

The second step now consists in computing J0 = J0(e). To this end, we require the
following auxiliary result.

5.3 Lemma Let J be a reduced Albert algebra over k, e ∈ J an absolutely
primitive idempotent (so e# = 0, T (e) = 1) and f = 1 − e. Then, setting J0 =
J0(e), we have:

a) f# = e.

b) x# = S(x)e for all x ∈ J0.

c) Writing S0 for S = SJ restricted to J0, (S0, f) is a quadratic form with base
point whose associated Jordan algebra agrees with J0 viewed as a subalgebra of
J : J0 = J (S0, f).

d) J0 = {x ∈ J : e× x = T (x)f − x}.

Proof a) - c) are well known and due to Faulkner [F1, pp. 16 - 17], see also [Ra,
pp. 96 - 97].

d) First of all, suppose x ∈ J satisfies T (e, x) = 0. Then

Ufx = T (f, x)f − f# × x (by (5))

= T (e + f, x)f − e× x (by a))

= T (x)f − e× x,

and we conclude that T (e, x) = 0 implies (40) x ∈ J0 ⇐⇒ Ufx =
x ⇐⇒ e × x = T (x)f − x. Now let x ∈ J0. Then 0 = Uex = T (e, x)e − e# × x =
T (e, x)e yields T (e, x) = 0, hence e× x = T (x)f − x by (40). Conversely, suppose
x ∈ J satisfies e× x = T (x)f − x. Then
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T (x)− T (e, x) = T (e)T (x)− T (e, x)

= T (e× x) (by (7) and (6) linearized)

= T (x)T (f)− T (x)

= T (x) (since T (f) = 2),

so T (e, x) = 0. This implies x ∈ J0, again by (40).

5.4 Returning to 5.2, recall from 1.4 that K is the center of B and pick an
element θ ∈ K satisfying (41) θ + θ∗ = 1, θ− θ∗ ∈ K×. Then we claim
(42) J0 = k(y#,−θy) ⊕ {(y × a,−a); a ∈ A}. Since the sum on the
right-hand side is direct (assuming (y#,−θy)) = (y× a,−a) for some a ∈ A would
imply y# = 2θy#, hence 2θ = 1, contradicting (41)), so the right-hand side has the
correct dimension (ten), it suffices to show that it is contained in the left. To see
this, we first note

f = 1− e = (1− y,−1)

and then linearize bb# = N(b)1 = b#b (b ∈ B, cf. (14)) to obtain (43)
db# + b(b× d) = T (b#, d)1 = (b× d)b + b#d for b, d ∈ B (by (2)). Now

put x = (y#,−θy). Observing T (x) = T (y#) (by (21)), we must show by 5.3 d)
that both components of

e× x− T (x)f + x = (y, 1)× (y#,−θy)− T (y#)(1− y,−1) + (y#,−θy)

are zero. Computing the first yields

y × y# + y#θ∗y + θyy# − T (y#)(1− y) + y# (by (22)) =

[T (y#)−N(y)]1− T (y#)y − y# + N(y)1− T (y#)(1− y) + y#

(by (10), (14), (41)) = 0,

whereas computing the second yields

N(y)(1× (−θ∗y))y#−1 + θy2 − y# + T (y#)1− θy (by (22)) =

−θ∗y + θ∗y2 + θy2 − y# + T (y#)1− θy (by (4), (14)) =

−y# + y2 − T (y)y + S(y)1 (by (41)) = 0 (by (9)).

Hence x ∈ J0. Now let a ∈ A and put x = (y × a, −a). Then T (x) = T (y × a),
and again by 5.3 d) we must show that both components of

e× x− T (x)f + x = (y, 1)× (y × a,−a)− T (y × a)(1− y,−1) + (y × a,−a)
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are zero. Computing the first yields

y × (y × a) + y#a + ay# − T (y × a)(1− y) + y × a (by (22)) =

y(y × a) + (y × a)y − y × a− T (y × a)y + T(y × (y × a))1+

y#a + ay# − T (y × a)(1− y) + y × a (by (9) linearized) =

T (y#, a)1 + T (y#, a)1 + T (y × a)1− T (y, y × a)1− T (y × a)1 (by (43)) =

2T (y#, a)1− T (y × y, a)1 (by (11)) = 0,

whereas computing the second yields

N(y)(1× (−a))y#−1 + ya− y × a + T (y × a)1− a (by (22)) =

−T (a)y + ay + ya− y × a + T (y × a)1− T (y)a (by (4)) =

0 (by (9) linearized) .

Hence x ∈ J0, and the proof of (42) is complete.

5.5 To simplify notation, we put u = y# (as in 5.2), (44) u’ =
N(y)−1(y#,−θy), a′ = (y × a,−a) (a ∈ A), A′ = {a′; a ∈ A}, whence (42)

reads (45) J0 = ku′ ⊕ A′. Also, we put A1 = A(u) and write T1 = T
(u)
A

for the trace, S1 = S
(u)
A for the quadratic trace and c1 = 1(u) for the unit element

of A1. The third step now consists in computing the quadratic form S ′0 = N(y)S0

where S0 denotes the restriction of the quadratic trace S = SJ of J to J0. Writing
nK for the norm of the torus K/k of rank 2, we claim that the following relations
hold for all a ∈ A:

(46) S ′0(u
′) = 1− nK(θ),

(47) S ′0(u
′, a′) = T1(a),

(48) S ′0(a
′) = S1(a).

Indeed,
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S ′0(u
′) = N(y)−1T((y#,−θy)#) (by (44), (6))

= N(y)−1T
(
y## − θyy#θ∗y

)
(by (18), (21))

= N(y)−1T(N(y)y −N(y)nK(θ)y) (by (1), (14))

= 1− nK(θ) (since T (y) = 1),

S ′0(u
′, a′) = T

(
(y#,−θy)× (y × a,−a)

)
(by (44), (6))

= T
(
y# × (y × a)− θyy#a− ay#θ∗y

)
(by (22), (21))

= T
(
N(y)a + T (y#, a)y −N(y)a

)
(by (11), (14))

= T (y#, a) = T1(a) (by (16)),

S ′0(a
′) = N(y)T

(
(y × a,−a)#

)

= N(y)T
(
(y × a)# − ay#a

)
(by (18), (21))

= N(y)T(T (y#, a)a + T (y, a#)y − y# × a# − Uay
#) (by (13), (14))

= T (N(y)y, a#) (by (5))

= T (u#, a#) (by (1))

= S1(a) (by (17)),

and the proof of (46) – (48) is complete.

5.6 The standard procedure to determine the coordinate norm n of a reduced Al-
bert algebra is to pick a complete orthogonal system c1, c2, c3 of absolutely primitive
idempotents and to restrict the quadratic trace to the corresponding Peirce–(2,3)–
component. Indeed, this yields a quadratic form S23 which, by (21), is similar to
n, forcing γS23

∼= n for any γ ∈ k× represented by S23. This procedure requires a
refinement in order to become applicable in our situation. The refinement we have
in mind is spelled out in the following lemma.

5.7 Lemma Let J be a reduced Albert algebra over k, e ∈ J an absolu-
tely primitive idempotent and S0 the restriction of S = SJ to J0 = J0(e). Let
γ ∈ k×, (h+, h−) be a hyperbolic pair relative to S ′0 = γS0, H⊥ the orthogonal
complement of H = kh+ + kh− in (J0, S

′
0) and S⊥0 the restriction of S ′0 to H⊥.

Then γ0 S⊥0 is isometric to the coordinate norm of J for any γ0 ∈ k× repesented
by S⊥0 .

Proof Setting f = 1 − e, we have J0 = J (S0, f) by 5.3 c); also, (h+, γh−) is
a hyperbolic pair relative to S0, and H⊥ agrees with the orthogonal complement
of H in (J0, S0). Now write v for the inverse of h+ + γh− in J0 and Ĵ0 for the
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v-isotope of J0. Then (c2, c3), where c2 = h+, c3 = γh−, is a complete orthogonal
system of absolutely primitive idempotents in Ĵ0 whose corresponding Peirce–
(1,2)–component agrees with H⊥. Setting w = e+v, [PR3, Example 2.2] applies to
ke⊕J0 and yields (49) N(w) = S0(v) = 1, w# = e+v = e+h+ +γh−,
where − refers to the canonical involution of J0 = J (S0, f). Now (c1, c2, c3), where
c1 = e, becomes a complete orthogonal system of absolutely primitive idempotents
in Ĵ = J (w). Hence, adopting the terminology of 5.6 and putting Ŝ = SĴ , Ŝ23

is similar to the coordinate norm of Ĵ , hence to that of J . On the other hand,
the Peirce–(2,3)–component of Ĵ relative to (c1, c2, c3) agrees with H⊥, and for all
x ∈ H⊥ we obtain

Ŝ(x) = T (w#, x#) (by (17))

= T (e + h+ + γh−, S(x)e) (by (49), 5.3 b))

= S(x),

since the Peirce decomposition is always an orthogonal splitting relative to the
generic trace. Hence Ŝ23 and S⊥0 are similar quadratic forms, which completes the
proof.

5.8 We now return to 5.5 and let E ⊂ A1 be any maximal torus. By 3.3, 3.7, E
contains a hyperbolic pair (h+, h−) relative to S1 satisfying (50) c1 ∈
kh+ + kh− and T1(h+, h−) = −1

4
if char k 6= 2, which, via (44), translates into

a hyperbolic pair (h+, h−) = (h′+, h′−), belonging to A′, of the quadratic space
(J0, S

′
0). Writing V for the orthogonal complement of kh+ + kh− in (A1, S1) and

adopting the terminology of 5.5 with γ = N(y), the fourth step consists in compu-
ting H⊥ and S⊥0 : Setting

v′ = u′ − T1(h+)h− − T1(h−)h+ ∈ J0

and V ′ = {a′; a ∈ V } = H⊥ ∩ A′, we claim

(51) H⊥ = kv′ ⊕ V ′

(52) S⊥0 (v′) = −nK(θ)− T1(h+, h−),

(53) S⊥0 (v′, a′) = T1(a),

(54) S⊥0 (a′) = S1(a)

for all a ∈ V . Indeed, for σ = ± we get
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S ′0(v
′, hσ) = S ′0(u

′ − T1(hσ)h−σ − T1(h−σ)hσ, hσ)

= S ′0(u
′, hσ)− T1(hσ) = 0 (by (47)),

showing v′ ∈ H⊥, hence (51). Furthermore,

S ′0(v
′) = S ′0(u

′ − T1(h+)h− − T1(h−)h+)

= S ′0(u
′)− T1(h+)S ′0(u

′, h−)− T1(h−)S ′0(u
′, h+) + T1(h+)T1(h−)

= 1− nK(θ)− T1(h+)T1(h−) (by (46), (47))

= −nK(θ) + S1(h+, h−)− T1(h+)T1(h−)

= −nK(θ)− T1(h+, h−) (by (7)),

yielding (52), whereas (53) follows immediately from (47) and the fact that, for
each a ∈ V, a′ is perpendicular to h± relative to S ′0. Finally, (54) is simply a
restatement of (48).

5.9 We can now complete the proof of 4.2 (ii) and first treat the case char k 6= 2.
Then (52), in view of (50), (30), reduces to

S⊥0 (v′) = −nK(θ) +
1

4
= d.

Also, for a ∈ V ,

2S⊥0 (v′, a′) = 2T1(a) (by (53))

= T1(c1 ×(u) a) (by (4) applied to A1 = A(u)),

= S1(c1, a) = 0 (by (50)).

Hence (51) is an orthogonal splitting relative to S⊥0 , giving rise to the decomposition
S⊥0 ∼= < d > ⊥ (S1|V ). In particular, S⊥0 represents d, so 5.7 implies

n ∼= dS⊥0 ∼= < 1 > ⊥ (d S1|V ),

which in turn yields

< −1 > ⊥ nδ
∼= h ⊥ (S1|V ) ∼= S1,

and we have established 4.2 (i), hence 4.2 (ii) as well, by (36).

5.10 We are left with the case char k = 2. Since S⊥0 (c′1) = S1(c1) = 1, we may
identify n = S⊥0 by 5.7. Furthermore, setting ε = δ(K/k) + δ(E/k), 2.8 and 3.5
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yield
ε = (nK(θ) + T1(h+, h−)) mod ℘(k•).

Setting w′ = v′ + c′1, this implies

nε(v
′) = n(v′) + εn(c′1, v

′)2 (by (25))

= ε + εT1(c1)
2 (by (52), (53))

= 0,

nε(w
′) = nε(v

′) + n(c′1, v
′) + nε(c

′
1) = 1 + 1 = 0,

nε(v
′, w′) = n(v′, v′ + c′1) = 1.

Hence h = kv′+kw′ is a hyperbolic plane relative to nε, and one easily checks that
the corresponding orthogonal complement is given by

h⊥ = {a′; a ∈ E⊥}.

This yields nε
∼= h ⊥ (S1|E⊥), hence

n ∼=
(
nk{0} ⊥ (S1|E⊥)

)
ε

(by 2.7a))
∼= nk{ε} ⊥ (dS1|E⊥) (by 2.7 a), 2.9),

and the proof of 4.2. (ii) is complete.
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Se J. – P. Serre. Résumé des cours de l’année 1990 – 91. Annuaire du
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