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Introduction

Let J be an Albert (= central simple exceptional Jordan) algebra over a field k.
By results due to Serre [25], Rost [22] and the authors [18], there exists a reduced
Albert algebra over k, uniquely determined up to isotopy, that becomes isotopic
to J whenever scalars are extended to an arbitrary reducing field of J . In the
present paper, we go one step further by investigating reduced models of J , i. e.,
reduced Albert algebras over k that become isomorphic to J whenever scalars are
extended to an arbitrary reducing field of J . Our principal aim is to establish the
following result.

Main Theorem. Every Albert algebra has a reduced model which is unique up to
isomorphism.

The notion of a reduced model makes sense not just for Albert algebras but for
arbitrary absolutely simple Jordan algebras of degree 3 as well (but is nontrivial
only if the Jordan algebra in question happens to be a division algebra, forcing it
to be an Albert algebra or of dimension 9). In fact, the main theorem continues
to hold under these more general circumstances (2.8). As to the proof, uniqueness
immediately follows from Springer’s Extension Theorem for quadratic forms (1.2).
Existence, on the other hand, will be obtained in two steps. In the first step, we
establish an intimate relationship between the (still hypothetical) reduced model
of an Albert algebra and the one of any of its nine-dimensional absolutely simple
subalgebras (2.5) whereas, in the second step, we prove the existence of a reduced
model for any nine-dimensional absolutely simple Jordan algebra A of degree 3
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(2.7) by drawing a connection to the octonion algebra, Oct A, of A as defined in
[18, 1.7]. The paper then proceeds to derive explicit descriptions of Oct A in terms
of the parameters used to build up A by means of the toral Tits process [14], which
had been done previously for the norm of Oct A [18, 4.2]. The approach adopted
here uses the Scharlau transfer of quadratic forms and yields the algebra structure
of Oct A via the Cayley-Dickson doubling process (3.7). Alternately, we describe
Oct A by means of an appropriate ternary hermitian form (3.9). In summary, we
thus obtain not only a proof of the main theorem but at the same time an explicit
description of the reduced model of J once J has been realized by an iterated
application of the Tits process [16, 3.1].

There are various applications. For one thing, reduced models provide a conve-
nient way of defining the invariants mod 2 introduced by Serre [25] and Rost [22]
using different methods (2.10). We also obtain several characterizations of those
absolutely simple Jordan algebras of degree 3 and dimension 9 whose octonion
algebras are split (2.11). Furthermore, the explicit description we have derived for
the reduced model leads to a (comparatively) straightforward construction of Al-
bert division algebras with nonzero invariants mod 2 (4.11), forcing them to be
pure second Tits constructions in the sense of [17].

Most results of this paper have been announced in [20]. The authors are indebted
to M.-A. Knus and E. Neher for useful conversations on the subject.

1. Prerequisites

Let k be an arbitrary base field, remaining fixed throughout. All vector spaces,
algebras etc. over k are supposed to be finite-dimensional. For the convenience of
the reader we collect here a few results scattered in the literature that are important
for understanding the subsequent development.

1.1. Let q be a quadratic form on a vector space V over k. q is said to be
nonsingular if its induced symmetric bilinear form is nondegenerate in the usual
sense. We denote by h, ⊥, < a > the hyperbolic plane, the orthogonal sum of
quadratic forms, the onedimensional quadratic form determined by a ∈ k, res-
pectively. Writing k• for the mulitplicative group k× = k − {0} if char k 6= 2,
for the additive group k otherwise, we define ℘ : k• −→ k• by ℘(α) = α2

in the first case, ℘(α) = α + α2 in the second (α ∈ k•). In all characteris-
tics, we view Γ(k) = coker ℘ = H1(k,Z/2Z) as an additive group. Suppose q
is nonsingular and e ∈ V is a base point of q, so q(e) = 1. Given δ ∈ Γ(k)
and choosing d ∈ k• representing δ, the quadratic form qδ : V −→ k given by
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qδ(v) = dq(v) + 1−d
4

q(e, v)2 (char k 6= 2), qδ(v) = q(v) + dq(e, v)2 (char k = 2) up
to isometry only depends on δ and not on the choice of d, e [18, 2.6]. We call qδ the
δ-associate of q and have

(1.1.1) (qδ)ε
∼= qδ+ε ,

(1.1.2) (q ⊥ q′)δ
∼= qδ ⊥ δ′q′

for δ, ε ∈ Γ(k) and any nonsingular quadratic form q′ over k, where δ′ = δ (char k 6=
2), δ′ = 1 (char k = 2) [18, 2.7]. For a more general set-up for associates of qua-
dratic forms, see a forthcoming paper by Loos [8]. We will also need the following
well known result.

1.2. Springer’s Extension Theorem. Let k′/k be a field extension of odd degree.
If q, q1 are nonsingular quadratic forms over k and q′2 is a nonsingular quadratic
form over k′ such that

q ⊗k k′ ∼= (q1 ⊗k k′) ⊥ q′2,

then there exists a nonsingular quadratic form q2 over k, uniquely determined up
to isometry, such that

q′2 ∼= q2 ⊗k k′, q ∼= q1⊥q2.

In particular, q ⊗k k′ ∼= q1 ⊗k k′ implies q ∼= q1.

1.3. Let C be a composition algebra over k. Its norm will be denoted by nC , its
trace by tC and its canonical involution by − unless stated otherwise. We will
always tacitly assume that nC is nonsingular (1.1).

1.4. A separable commutative associative k-algebra (of dimension n) is called a
torus (of rank n). A torus is said to be split if it is isomorphic to a direct sum
of copies of the base field. The discriminant of a torus E/k, uniquely determined
up to squares, will be noted by dE/k. Tori of rank 2 are classified by Γ(k) [18,
2.8]. We write K = k{δ} for the torus of rank 2 corresponding to δ ∈ Γ(k) and
call δ = δ(K/k) the pseudodiscriminant of K since it is the usual discriminant for
char k 6= 2. On the other hand, dK/k = 1 for char k = 2. Finally, by [18, 2.9], we
have

(1.4.1) (nk{δ})ε
∼= nk{δ+ε}

for δ, ε ∈ Γ(k).
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1.5. Let (N, #, 1) be a cubic form with adjoint and base point over k, so for
some k-vector-space V, N : V −→ k is cubic, # : V −→ V is quadratic and
1 ∈ V is a point such that, writing T = −(D2 log N)(1), the relations x## =
N(x)x, N(1) = 1, T (x#, y) = (DN)(x)y, 1# = 1, 1 × y = T (y)1 − y (× the
bilinearization of #, T (y) = T (1, y)) hold under all scalar extensions. Then the
U -operator Uxy = T (x, y)x− x# × y and the base point 1 give V the structure of
a unital quadratic Jordan algebra, written as J = J (N, #, 1). Conversely, given
any Jordan algebra J of degree 3 over k, with generic norm N = NJ and identity
element 1 = 1J , we define the adjoint # to be the numerator of the inversion
map and obtain a cubic form (N, #, 1) with adjoint and base point satisfying
J = J (N, #, 1). We write T = TJ for the associated trace form, which agrees
with the generic trace of J , S = SJ for the quadratic form x 7−→ T (x#), which is
called the quadratic trace of J , and have

(1.5.1) S(x, y) = T (x)T (y)− T (x, y) (x, y ∈ J )

by [9, (16)]. We also denote by J 0 = ker T the space of trace zero elements in
J and by S0

J the restriction of SJ to J 0. Finally, W⊥ stands for the orthogonal
complement relative to TJ of any subspace W ⊂ J .

1.6. A torus E/k of rank 3 may be viewed canonically as a Jordan algebra of
degree 3. We write δ(E/k) ∈ Γ(k) for the pseudodiscriminant of E and recall that
δ(E/k) = 0 if and only if E/k splits or is a cyclic field extension [18, 2.8]. As in
1.4 we have dE/k = 1 for char k = 2, and [18, 3.3, 3.2] yield

(1.6.1) SE
∼= < −dE/k > ⊥ h,

(1.6.2) S0
E
∼= nk{δ(E/k)+1} (char k = 2).

1.7. Let J be a Jordan algebra of degree 3 over k which is absolutely simple in
the sense that it stays simple under all base field extensions. Then J is either
a division algebra or it is reduced [21, Theorem 1]; in the latter case, J can be
coordinatized, so there exist a composition algebra C over k and a diagonal matrix
g = diag (g1, g2, g3) ∈ GL3(k) such that J ∼= H3(C, g), the Jordan algebra of 3-by-
3 matrices x having diagonal entries in k, off-diagonal entries in C and satisfying
x = g−1 tx̄g. The diagonal of J = H3(C, g) is a torus E/k of rank 3, and [18, (24)]
yields

(1.7.1) SJ |E⊥ ∼= − [(g2g3nC)⊥(g3g1nC)⊥(g1g2nC)] .

As already observed in [10, p. 594], Springer’s isomorphism criterion for reduced
Albert algebras [21, Theorem 3] extends to absolutely simple reduced Jordan al-
gebras of degree 3 and shows that two such algebras are isomorphic if and only if
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they have isomorphic coordinate algebras and isometric quadratic traces. Also, J
contains nilpotent elements other than zero if and only if it can be coordinatized as
above, with g = diag (1,−1, 1).

1.8. We now describe a special case of the Tits process [15] which yields the most
important examples of cubic forms with adjoint and base point. Let K/k be a
torus of rank 2, B a separable associative K-algebra of degree 3 (with the obvious
meaning if K ∼= k⊕ k splits) and ∗ a K/k-involution of B. Write N for the generic
norm, T for the generic trace, # for the adjoint of B and put

A = H(B, ∗) = {a ∈ B : a = a∗}.

Suppose further that we are given invertible elements u ∈ A, β ∈ K satisfying
N(u) = ββ∗. Extending N, #, 1 = 1B = 1A as given on B and A to the k-vector
space V = A⊕B according to the rules

N((a, b)) = N(a) + βN(b) + β∗N(b)∗ − T (a, bub∗),

(a, b)# = (a# − bub∗, β∗b∗#u−1 − ab),

1 = (1A, 0)

for a ∈ A, b ∈ B, we obtain a cubic form (N, #, 1) with adjoint and base point
over k. The ensuing Jordan algebra will be written as J = J (K,B, ∗, u, β). It has
the associated trace form given by

T (x, y) = T (a, c) + T (bu, d∗) + T (du, b∗)

for x = (a, b), y = (c, d) ∈ J , forcing T (x) = T (a) and then

(1.8.1) S(x) = T (a# − bub∗)

for the quadratic trace of J . Recall that J is a division algebra if and only if β is
not a generic norm of B [15, 5.2, 5.3].

In particular, if (B, ∗) is a central simple associative k-algebra of degree 3 with
involution of the second kind (central simplicity always being unterstood in the
context of algebras with involution), the preceding construction applies to K =
Cent (B), the center of B, and J (B, ∗, u, β) = J (K,B, ∗, u, β) is an Albert algebra.

1.9. Let A be a separable associative k-algebra of degree 3 and α ∈ k×. Then we
may specialize 1.8 to B = A ⊕ Aop, ∗ the exchange involution, K = k ⊕ k, u =
(1A, 1A), β = (α, α−1). By [15, 3.5] the ensuing Jordan algebra J (K,B, ∗, u, β)
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identifies with the first Tits construction J (A,α) which is defined as follows: We
have J (A,α) = J (N, #, 1) where (N, #, 1) is the cubic form with adjoint and base
point on V = A⊕ A⊕ A given by

N(x) = NA(a0) + αNA(a1) + α−1NA(a2)− TA(a0a1a2),

x# = (a#
0 − a1a2, α

−1a#
2 − a0a1, αa#

1 − a2a0),

1 = (1A, 0, 0)

for x = (a0, a1, a2). We also have relation

(1.9.1) SJ (A,α)(x) = SA(x)− TA(a1, a2)

by [15, (3.2),(3.3)].

1.10. Let L/k, E/k be tori of rank 2,3, respectively. In 1.8 we put K = L, B =
E⊗k L, ∗ = 1E⊗− (cf. 1.3). Then A = H(B, ∗) canonically identifies with E and,
given v ∈ E, γ ∈ L invertible such that NE(v) = γγ̄, we may form the Jordan
algebra

J = J (E, v, γ, L) = J (L,E ⊗k L, 1E⊗−, v, γ),

called a toral Tits process [14], which is absolutely simple of degree 3 and dimension
9. Conversely, every absolutely simple Jordan algebra of degree 3 and dimension 9
arises in this way [16, 3.1]. If L splits, some invertible element α ∈ k× allows the
identification of J with the first Tits construction J (E,α) (1.9). In the general
situation, we have A ∼= H(B′, ∗′) for some central simple associative k-algebra
(B′, ∗′) of degree 3 with involution of the second kind, and, setting K = Cent(B′),
[14, Theorem 1] yields

(1.10.1) δ(K/k) = δ(E/k) + δ(L/k)

in Γ(k), forcing

(1.10.2) dK/k ≡ dE/k dL/k mod k× 2

since both sides are trivial in characteristic 2.

1.11. Let A be an absolutely simple Jordan algebra of degree 3 and dimension 9
over k. Then there exists a unique central simple associative k-algebra (B, ∗) of
degree 3 with involution of the second kind satisfying A ∼= H(B, ∗). As in [18, 1.7],
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we define the octonion algebra of A, written as Oct A, to be the coordinate algebra
of the reduced Albert algebra J (B, ∗, 1, 1). Setting K = Cent(B) and choosing any
maximal torus E ⊂ A, [18, 1.9, 4.2, 4.3] yield

(1.11.1) nOct A
∼= nk{δ(E/k)+δ(K/k)} ⊥ (dK/kSA|E⊥),

(1.11.2) dK/kSA
∼= < −1 > ⊥ nOct A (char k 6= 2),

(1.11.3) S0
A
∼= (nOct A)δ(K/k)+1 (char k = 2).

2. Reduced models

2.1. Let J be an absolutely simple Jordan algebra of degree 3 over k. By a reducing
field of J we mean a field extension k′/k such that J ⊗kk′ is reduced. For example,
any cubic subfield of J has this property. An absolutely simple Jordan algebra Jred

of degree 3 over k is said to be a reduced model of J if it is reduced and satisfies
the relation J ⊗k k′ ∼= Jred ⊗k k′ for any reducing field k′/k of J .

Our aim in this paper is to establish existence and uniqueness of reduced models
and to provide an explicit description in terms of the Tits process. Uniqueness
immediately follows from Springer’s isomorphism criterion for Jordan algebras of
degree 3 (1.7) combined with his extension theorem for quadratic forms (1.2). To
establish existence, we start with the following lemma.

2.2. Lemma. Let J be an absolutely simple Jordan algebra of degree 3 over k.
Then there exists a nonsingular quadratic form QJ over k, uniquely determined up
to isometry, such that

SJ ∼= < −1 > ⊥ h ⊥ QJ (char k 6= 2),

S0
J ∼= nk{1} ⊥ QJ (char k = 2).

Furthermore , if J is reduced, given in the form J = H3(C, g) for some composi-
tion algebra C over k and some g = diag(g1, g2, g3) ∈ GL3(k), we have

QJ ∼= −[(g2g3nC) ⊥ (g3g1nC) ⊥ (g1g2nC)].

Proof. The uniqueness of QJ follows frome Witt’s Theorem. To establish its exis-
tence, we may assume that J is reduced (1.2) and hence has the form J = H3(C, g)
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as above. Writing E for the (split) diagonal torus in J , we have δ(E/k) = 0, and
(1.6.1), (1.6.2), (1.7.1) lead to the desired conclusion.

2.3. Proposition. Let A be an absolutely simple Jordan algebra of degree 3 and
dimension 9 over k, written as A = H(B, ∗) for some central simple associative
k-algebra (B, ∗) of degree 3 with involution of the second kind. Then K = Cent (B)
is a subalgebra of Oct A. More precisely, we have

(1) nOct A
∼= nK ⊥ (dK/k QA).

Proof. It suffices to establish (1) since this implies that K splits Oct A and so
must be a subalgebra of it ([4, Lemma 5] and [12, Proposition 4.3]). Let us first
assume char k 6= 2. Then

< −1 > ⊥ h⊥ QA
∼= SA (by 2.2)

∼= SE ⊥ (SA|E⊥)

∼= < −dE/k > ⊥ h ⊥ (SA|E⊥) (by (1.6.1)),

which, by cancelling h and adding < 1 >, yields

h ⊥ QA
∼= nk{δ(E/k)} ⊥ (SA|E⊥) .

Here we pass to the δ(K/k)-associates and observe (1.1.1), (1.1.2) to conclude

nK ⊥ (dK/kQA) ∼= nk{δ(E/k)+δ(K/k)} ⊥
(
dK/kSA|E⊥

)
∼= nOct A (by (1.11.1)).

We are left with the case char k = 2. Then

nk{1} ⊥ QA
∼= S0

A (by 2.2)

∼= S0
E ⊥ (SA|E⊥)

∼= nk{δ(E/k)+1} ⊥ (SA|E⊥) (by (1.6.2)).

This time we pass to the (δ(K/k)+1)-associates and observe dK/k = 1 to conclude

nK ⊥ (dK/kQA) ∼= nK ⊥ QA

∼= nk{δ(E/k)+δ(K/k)} ⊥
(
dK/k SA|E⊥

)
∼= nOct A,

as claimed.
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2.4. Clearly, the (hypothetical) reduced model of A = H(B, ∗) as in 2.3 must have
the form H3(K, g) for some diagonal matrix g ∈ GL3(k). Similary, the coordinate
algebra of the (hypothetical) reduced model of an Albert algebra J , given as J =
J (B, ∗, u, β) by means of the generalized second Tits construction, agrees with
the coordinate algebra of J itself in the sense of [18, 1.9], i.e., with Oct A(u)

[18, 1.8]. Keeping this in mind, we can now show that there exists an intimate
relationship between the reduced model of an Albert algebra and the one of an
arbitrary absolutely simple 9-dimensional subalgebra.

2.5. Proposition. Let J be an Albert algebra over k and A an absolutely simple
9-dimensional subalgebra of J . Suppose that, for some torus K/k of rank 2 and
some g = diag (g1, g2, 1) ∈ GL3(k), Ared = H3(K, g) is a reduced model of A. Then,
writing C for the coordinate algebra of J ,Jred = H3(C, g) is a reduced model of
J .

Proof. We realize J as J = J (B, ∗, u, β) by means of the generalized second Tits
construction in such a way that A = H(B, ∗). Then C ∼= Oct A(u) (2.4) and A(u) ∼=
H(B, ∗(u)), where ∗(u) is the u-twist of ∗ : b 7−→ ub∗u−1. Hence K ∼= Cent(B) (2.4)
is a subalgebra of C (2.3). Setting J1 = H3(C, g), we must show J ⊗k k′ ∼= J1⊗k k′

for any reducing field k′/k of J . To this end we choose a maximal torus E ⊂ A
and put E ′ = E ⊗k k′ if this is a field, E ′ = k′ otherwise. Then E ′/k′ is a field
extension of degree 1 or 3, and E ′/k is a reducing field of A satisfying

J ′ = J ⊗k E ′ ⊃ A⊗k E ′ ∼= Ared ⊗k E ′ ∼= H3(K ⊗k E ′, g).

We now argue as in the proof of [3, Theorem 8] by choosing an isomorphism
ψ : A⊗k E ′ ∼−→ H3(K ⊗k E ′, g) and using, in standard notation for the hermitian
matrix units [6], the quantities

ci = ψ−1(1[ii]) (1 ≤ i ≤ 3),

uij = ψ−1(1[1j]) (j = 2, 3),

to obtain a coordinatization J ′ ∼−→ H3(C ⊗k E ′, h) for some h = diag(h1, h2, 1) ∈
GL3(E

′). From this we easily conclude h = g and then

(J ⊗k k′) ⊗k′ E
′ ∼= (J1 ⊗k k′)⊗k′ E

′.

But since J ⊗k k′ and J1⊗k k′ are both reduced, they must be isomorphic by 1.7,
1.2.

2.6. In our search for reduced models, 2.5 allows us to focus attention on absolutely
simple Jordan algebras of degree 3 and dimension 9. In this special case, we can not
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only solve the existence problem but also provide an explicit description. Notice
that

(2.6.1) dK/k nK
∼= −nK

for any torus K/k of rank 2. In what follows, the symbol “Cay” refers to the
(iterated) Cayley-Dickson doubling process.

2.7. Theorem. Let A be an absolutely simple Jordan algebra of degree 3 and
dimension 9 over k, written as A = H(B, ∗) for some central simple associative k-
algebra (B, ∗) of degree 3 with involution of the second kind. Then, given arbitrary
elements g1, g2 ∈ k× and setting g = diag (g1, g2, 1), K = Cent (B), the following
statements are equivalent.

(i) A′ = H3(K, g) is a reduced model of A.

(ii) Oct A ∼= Cay (K;−g1,−g2).

Proof. We put C = Cay (K;−g1,−g2) and compute

nC
∼= nK ⊥ (g1nK) ⊥ (g2nK) ⊥ (g1g2nK)

∼= nK ⊥ dK/k [− ((g1nK) ⊥ (g2nK) ⊥ (g1g2nK))] (by (2.6.1))

∼= nK ⊥ dK/kQA′ (by 2.2).

Suppose first that (i) holds. Then QA
∼= QA′ (1.2), which implies

nC
∼= nK ⊥ dK/k QA

∼= nOct A (by 2.3)

and then C ∼= Oct A. Conversely, if (ii) holds, Witt cancellation and 2.3 yield
QA

∼= QA′ . Hence 1.7 gives A⊗k k′ ∼= A′ ⊗k k′ for any reducing field k′/k of A, as
desired.

Combining 2.7 with 2.3, 2.5, we obtain the following final result.

2.8. Theorem. Let J be an absolutely simple Jordan algebra of degree 3 over k.
Then J has a reduced model, uniquely determined up to isomorphism and written
as Jred .

2.9. The reduced model of an Albert algebra J over k looks like this. Realize J
by means of the generalized second Tits construction as J = J (B, ∗, u, β) and
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put A = H(B, ∗). Then K = Cent (B) is a subalgebra of Oct A(u) (2.3), so some
g1, g2 ∈ k× have Oct A(u) ∼= Cay (K; g1, g2). Now 2.4, 2.5, 2.7 yield

Jred
∼= H3(Oct A(u), g), g = diag (−g1,−g2, 1).

2.10. We close this section by two applications. First, assume char k 6= 2 and let
J be an Albert algebra over k. We define the invariants mod 2 of J to be the
invariants mod 2 of Jred in the sense of Serre [25], Rost [22] or Petersson-Racine
[19]. This definition is equivalent to the one given by Serre [25] and Rost [22] since,
for any reducing field k′/k of J whose degree is odd, the restriction map

H i(k,Z/2Z) −→ H i(k′,Z/2Z) (i ≥ 0)

as injective.

Next, we characterize absolutely simple Jordan algebras of degree 3 and dimension
9 whose octonion algebra is split.

2.11. Theorem. Let A be an absolutely simple Jordan algebra of degree 3 and
dimension 9 over k. Then the following statements are equivalent.

(i) Ared contains nilpotent elements other than zero.

(ii) Oct A splits.

(iii) SA has maximal Witt index.

(iv) If A ∼= H(B, ∗) for some central simple associative k-algebra (B, ∗) of degree

3 with involution of the second kind and K = Cent (B), then

SA
∼= < −dK/k > ⊥ h4 .

Moreover, all these conditions are fulfilled if A is a first Tits construction.

Proof. (i) ⇐⇒ (ii). Ared contains nilpotent elements other than zero iff it is
isomorphic to H3(K, gnil), gnil = diag (1,−1, 1) (1.7) iff Oct A is isomorphic to
Cay (K;−1, 1) (2.7) iff Oct A splits.

(ii) =⇒ (iv). We first consider the case char k 6= 2. Then (1.11.2) implies

dK/k SA
∼= < −1 > ⊥ nOct A

∼= < −1 > ⊥h4,

forcing SA
∼= < −dK/k > ⊥ h4, and we are left with the case char k = 2. Since

Oct A splits, we conclude, abbreviating n = nOct A:

S0
A
∼= nδ(K/k)+1 (by (1.11.3))
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∼= (h4)δ(K/k)+1
∼=

(
nk{0} ⊥ h3

)
δ(K/k)+1

∼= nk{δ(K/k)+1} ⊥ h3 (by (1.1.1), (1.1.2)).

Setting E = k ⊕K, this implies

SA
∼= < 1 > ⊥ S0

A

∼= < 1 > ⊥ nk{δ(K/k)+1} ⊥ h3

∼= < 1 > ⊥ S0
E ⊥ h3 (by (1.6.2))

∼= SE ⊥ h3

∼= < −dK/k > ⊥ h4 (by (1.6.1)).

(iv) =⇒ (iii). Obvious.
(iii) =⇒ (ii). SA having maximal Witt index implies that SA|E⊥ , for any maximal
torus E ⊂ A, is isotropic. This property carries over to nOct A by 1.11.1, so Oct A
splits.

It remains to show that all four conditions are fulfilled if A is a first Tits construc-
tion (1.9), i. e., A = J (E, α) for some torus E/k of rank 3 and α ∈ k×. But then,
by 1.6.1 and 1.9.1, SA has Witt index 1, 3 on E, E⊥, respectively, and (iii) follows.

2.12. If A as in 2.11 (iv) is a reduced first Tits construction, we combine 2.11
with 1.7 to conclude A ∼= H3(K, diag (1,−1, 1)) and thus recover [14, Theorem 3].
Finally, one may ask whether the property of an absolutely simple Jordan algebra
of degree 3 and dimension 9 to be a first Tits construction is actually equivalent to
conditions (i) – (iv) in 2.11. We have been unable to settle this question.

3. Octonions and Jordan algebras of degree 3

3.1. In this section we fix an absolutely simple Jordan algebra A of degree 3 and
dimension 9 over k, written as A = H(B, ∗) for some central simple associative
k-algebra (B, ∗) of degree 3 with involution of the second kind. As before, we put
K = Cent (B).

Our aim is to characterize internally the octonion algebra of A in terms of A itself.
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This has been done previously for the octonion norm (cf. 1.11) but doing it for the
octonion algebra is a different matter.

3.2. We begin by recalling some facts from the theory of quadratic forms that are
well known over fields of characteristic not 2 but, when properly phrased, retain
their validity over an arbitrary ring R. Let M,N be R-modules and q : M −→ R
(resp. b : N ×N −→ R) a quadratic (resp. symmetric bilinear) form over R. Then
there exists a unique quadratic form

q ⊗ b : M ⊗N −→ R

satisfying

(q ⊗ b)(v ⊗ w) = q(v) b (w, w),

(q ⊗ b)(v ⊗ w, v′ ⊗ w′) = q(v, v′) b (w,w′)

for all v, v′ ∈ M, w, w′ ∈ N [23].

3.3. Example. For a symmetric n × n−matrix S over R (n ∈ N) we denote by
< S >bil the symmetric bilinear form on Rn determined by

< S >bil (x, y) = txS y

for x, y ∈ Rn. Given a1, . . . , an ∈ R and abbreviating

< a1, . . . , an >bil = < diag (a1, . . . , an) >bil,

one obtains, for any quadratic form q : M −→ R over R, an isometry

q ⊗ < a1, . . . , an >bil
∼= (a1q) ⊥ . . . ⊥ (anq)

via the canonical identification M ⊗Rn ∼= Mn.

3.4. Let R be a ring, R′ a (unital commutative associative) R-algebra and λ :
R′ −→ R an R-linear form. For a quadratic (resp. symmetric bilinear) form q′ :
M ′ −→ R′ (resp. b′ : N ′×N ′ −→ R′) over R′ we denote by λ∗q′ = λ◦q′ : M ′ −→ R
(resp. λ∗b′ = λ ◦ b′ : N ′ ×N ′ −→ R) the Scharlau transfer of q′ (resp. b′) relative
to λ [24, p. 47], which is a quadratic (resp. symmetric bilinear) form over R. Just
as in [24, Chap. 2, 5.6] one checks the following result.

3.5. Theorem. (Scharlau). Let R be a ring, R′ an R-algebra and λ : R′ −→ R an
R-linear form. Then, given a quadratic form q : M −→ R over R and a symmetric
bilinear form b′ : N ′ ×N ′ −→ R′ over R′, there exists a canonical isometry

λ∗((q ⊗R R′)⊗R′ b
′) ∼= q ⊗R (λ∗b′).
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In particular, we have

λ∗(q ⊗R R′) ∼= q ⊗R (λ∗ < 1 >bil) .

3.6. We now return to the situation described in 3.1 and pick any maximal torus
E ⊂ A. Excluding finite base fields of certain low cardinalities, Lemmata 3.4 – 3.9
in [16] show that A may be obtained from E by means of the toral Tits process:
There exist a torus L/k of rank 2 (with canonical involution −) as well as invertible
elements v ∈ E, γ ∈ L satisfying NE(v) = γγ̄ and A ∼= J(E, v, γ, L) (cf. 1.10).
Conversely, if A is realized by means of the toral Tits process as above, which can
always be achieved by working with an appropriate E [16, 3.1], we are able to
express its octonion algebra in terms of the parameters involved. To see this, we
recall that, over a field of characteristic 2, every nondegenerate symmetric bilinear
form is either alternating or diagonalizable [1], the former possibility of course
being excluded if the dimension is odd.

3.7. Theorem. Let L/k, E/k be tori of rank 2, 3, respectively, and v ∈ E, γ ∈ L
be invertible elements satisfying NE(v) = γγ̄, where − stands for the canonical
involution of L. Setting A = J (E, v, γ, L) in the sense of the toral Tits process
(1.10) and choosing any diagonalization

T (v) ∼= < h1, h2, h3 >bil (hi ∈ k×)

of the symmetric bilinear form T (v) on E given by

T (v)(w, w′) = TE(vww′) (w, w′ ∈ E),

the octonion algebra of A may then be derived from L via

Oct A ∼= Cay (L;−dE/k h1,−dE/kh2)

as a twofold application of the Cayley-Dickson doubling process.

Proof. Setting n = nOct A, (1.10.1) and (1.11.1) yield

(1) n ∼= nL ⊥
(
dK/kSA|E⊥

)
.

Next observe
det T (v) = NE(v)(det TE) = dE/knL(γ),

whence

(2) h3 ≡ dE/kh1h2nL(γ) mod k×2.
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Finally, by the precise nature of the toral Tits process, E⊥ identifies with L⊗k E
under (0, b) = b for b ∈ L⊗k E, and (1.8.1) shows

(3) SA|E⊥ = λ∗nL⊗kE,

where λ is the linear form on E given by

λ(w) = −TE(vw) (w ∈ E).

Summing up, we therefore have

n ∼= nL ⊥
(
dK/k λ∗(nL ⊗k E)

)
(by (1), (3))

∼= nL ⊥
(
dK/k nL ⊗k λ∗ < 1 >bil)

)
(by 3.5)

∼= nL ⊥
(−dK/k nL ⊗k T (v)

)

∼= nL ⊥
(−dK/k h1nL

) ⊥ (−dK/k h2nL

) ⊥(−dK/k dE/kh1h2nL

)
(by 3.3, (2))

∼= nL ⊥
(
dK/k dL/k h1nL

) ⊥ (
dK/k dL/k h2nL

) ⊥(
dK/k dE/k dL/k h1h2nL

)
(by (2.6.1))

∼= nL ⊥
(
dE/k h1nL

) ⊥ (
dE/k h2nL

) ⊥ (
d2

E/k h1h2nL

)
(by (1.10.2))

∼= nC ,

where C = Cay (L;−dE/kh1,−dE/kh2). Since an octonion algebra is uniquely de-
termined by its norm, the assertion follows.

3.8. The Cayley-Dickson doubling process is not the only way to construct octo-
nions. Another approach, recently employed by Knus-Parimala-Sridharan [7] and
already implicit in [5], works with ternary hermitian spaces. We sketch the details.
Let K/k be a torus of rank 2 and (V, h) a ternary K/k-hermitian space, so V is a
projective K-module of rank 3 and h : V × V −→ K is a nondegenerate hermitian
form, linear in the first variable, antilinear in the second. We assume that (V, h)
has trivial determinant, i.e., ∧3(V, h) ∼= (K, < 1 >) where < 1 > stands for the
hermitian form ab̄ on K. Choosing an isomorphism α : ∧3(V, h)

∼−→ (K, < 1 >),
we obtain an induced hermitian vector product on V associating with any two
v, w ∈ V the unique element v × w ∈ V determined by

h(u, v × w) = α(u ∧ v ∧ w) (u ∈ V ).

Then the vector space K ⊕ V over k under the multiplication

(a⊕ v)(b⊕ w) = (ab− h(v, w))⊕ (aw + b̄v + v × w)
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for a, b ∈ K, v, w ∈ V becomes an octonion algebra C over k whose norm is given
by

(3.8.1) nC((a, v)) = nK(a) + h(v, v).

Notice that nC does not depend on α. Hence, up to isomorphism, neither does C,
and we are allowed to write C = Cay (K; V, h).

3.9. Theorem. Let A = J (E, v, γ, L) be a toral Tits process as in 3.7. Viewing
V = E ⊗k L as an L-module, setting T = TE⊗kL/L and defining h : V × V −→ L
by

h(w, w′) = −dE/k dL/k T (wvw′∗) (w, w′ ∈ V ),

(V, h) is a ternary hermitian L/k-space with trivial determinant, and we have

Oct A ∼= Cay (L; V, h).

Proof. We choose a basis of E/k and compute mod. nL(L×) to obtain

det h ≡ −dE/k dL/k NE(v) dE/k

≡ −dL/k nL(γ)

≡ 1 mod nL(L×) (by (2.6.1)).

Thus C = Cay (L; V, h) exists (3.8). Writing Q for the k-quadratic form w 7−→
h(w, w) on V and identifiying E⊥ = V canonically in A, we apply (1.10.1), (1.10.2)
and (1.11.1) to conclude

nOct A
∼= nL ⊥

(
dE/k dL/K SA|V

)

∼= nL ⊥ Q (by (1.8.1))
∼= nC (by (3.8.1)),

as desired.
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4. Examples: The unital Tits process

4.1. Returning to 1.8, we let K/k be a torus of rank 2, B a separable associative
K-algebra of degree 3, with norm N , trace T and adjoint #, ∗ a K/k-involution
of B and u ∈ A = H(B, ∗), β ∈ K invertible elements satisfying N(u) = ββ∗.

In the special case u = 1 the relation ββ∗ = 1 amounts to β = θ/θ∗ for some
θ ∈ K×. We then refer to

J (K,B, ∗, 1, θ/θ∗)

as the unital Tits process. The unital Tits process is not too far removed from the
ordinary Tits process. Indeed, [15; 3.7, 3.9] (see also [18, 1.5]) are easily seen to
imply

J (K, B, ∗, u, β)(u) ∼= J (K,B, ∗(u), 1, θ/θ∗),

where θ = β∗ and ∗(u) stands for the u-twist b 7−→ ub∗u−1 of ∗. In particular, we
have

4.2. Propositon. Up to isotopy, all Albert algebras are obtained by the unital Tits
process.

4.3. We wish to construct Albert division algebras by means of the unital Tits
process. This will be accomplished in two steps, the first one yielding examples
of absolutely simple 9-dimensional Jordan division algebras of degree 3 by the
same method. We begin by deriving an expanded version of 3.7 for the unital Tits
process.

4.4. Lemma. Let E/k be a torus of rank 3. Then

TE
∼=





< 1, 2, 2dE/k >bil for char k 6= 2,

< 1, 1, 1 >bil for char k = 2.

Proof. For char k 6= 2, we need only apply Springer’s Extension Theorem (1.2)
to reduce to the case that E contains zero divisors, and then the assertion is
straightforward to check. For char k = 2, we set T = TE, S = SE, have the
orthogonal splitting E = k1 ⊥ E0 relative to T and conclude from (1.5.1) that
T 0 = S0 (the right-hand side viewed as a symmetric bilinear form) is alternating
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on E0×E0. Hence we can find a hyperbolic pair (u, v) of (E0, T 0), and one checks
easily that the basis

e1 = 1 + u, e2 = 1 + v, e3 = 1 + u + v

of E/k satisfies T (ei, ej) = δij (1 ≤ i, j ≤ 3), as claimed.

4.5. Theorem. Let L/k, E/k be tori of rank 2, 3, respectively, and θ ∈ L×. Write
− for the canonical involution of L/k and put

K = k{δ(L/k) + δ(E/k)}.

Then the octonion algebra and the reduced model of the unital toral Tits process

A = J (E, 1, θ/θ, L)

may be described as follows. For char k 6= 2, we have

Oct A ∼= Cay(L;−2,−dE/k),∼= Cay(K;−2,−dE/k), Ared
∼= H3(K, diag(2, dE/k, 1))

whereas, for char k = 2, Oct A splits and

Ared
∼= H3(K, diag(1,−1, 1)).

Proof. We first treat the case char k 6= 2. Then 3.7 for v = 1 combined with 4.4
yields

Oct A ∼= Cay(L;−dE/k,−2dE/k) ∼= Cay(L;−2,−dE/k).

Using (1.10.2) we conclude that

nOct A
∼=< 1,−dL/k, 2,−2dL/k, dE/k,−dK/k, 2dE/k,−2dK/k >

up to isometry is symmetric in K and L. Hence Oct A ∼= Cay(K;−2,−dE/k), and
the formula for the reduced model drops out of 2.7, 2.4 and (1.10.1). We are left
with the case char k = 2. Arguing as before, we obtain Oct A ∼= Cay(L; 1, 1), which
is obviously split. The rest now follows from 2.11. and 1.7.

4.6. Example. Put k = R, L = C, E = R⊕R⊕R. Then A as in 4.5 is reduced,
Oct A ∼= O is the real octonion division algebra and A ∼= Ared

∼= H3(C).

4.7. Returning to 4.3, we consider an arbitrary base field F , char F 6= 2, and
denote by − the F -involution given on the polynomial ring F [s, t] as well as on
the rational function field L = F (s, t) by

s̄ = t, t̄ = s.
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Setting
k = H(L, −),

the elementary symmetric funtions

s1 = s + t, t1 = st

are algebraically independent over F and satisfy

F [s, t] ∩ k = F [s1, t1], k = F (s1, t1).

Furthermore, L/k is a separable quadratic extension, with non trivial Galois auto-
morphism −, whose discriminant is easily seen to be given by

(4.7.1) dL/k ≡ (s2
1 − 4t1) mod k×2 ≡ (s− t)2 mod k×2.

4.8. Theorem. In the situation of 4.7, let E0/F be a separable cubic field extension
and put E = E0 ⊗F k. Then the unital toral Tits process

A = J (E, 1, s/t, L)

is a division algebra over k. Writing (B, ∗) for the central simple associative k-
algebra of degree 3 with involution of the second kind satisfying A ∼= H(B, ∗), K =
Cent(B) is a field, and, putting

C0 = Cay (F ;−2,−dE0/F ),

we have
Oct A ∼= Cay (C0 ⊗F k, s2

1 − 4t1).

Moreover, Oct A splits over k if and only if C0 splits over F .

Proof. We have E ⊗k L ∼= E0 ⊗F F (s, t), and one checks easily that s/t is not a
generic norm of E ⊗k L/L. Hence A is a division algebra. Furthermore,

dK/k ≡ dE/kdL/k mod k×2 (by (1.10.2))

≡ dE0/F (s2
1 − 4t1) mod k×2 (by (4.7.1)),

and an elementary discussion shows that this cannot be a square in k. Thus K is
a field. Setting d0 = dE0/F , 4.4 implies

nOct A
∼= nL ⊥ 2nL ⊥ d0nL ⊥ 2d0 nL

∼= < 1, 2, d0, 2d0 > ⊥ [−(s2
1 − 4t1) < 1, 2, d0, 2d0 >

]
(by (4.7.1))

∼= nC′ , C ′ = Cay (C0 ⊗F k, s2
1 − 4t1),
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hence Oct A ∼= C ′. Finally, if C0 splits so obviously does Oct A. Conversely, suppose
Oct A splits but C0 doesn’t. Then n0, the norm of C0, is anisotropic and represents
s2
1 − 4t1 over k = F (t1)(s1), hence over F (t1)[s1] [24, Chap. 4, 3.2]. Relative to

some F -basis (ei) of C0 we can therefore find a family (ϕi) of elements in F (t1)[s1]
satisfying

n0

(∑
ei ⊗ ϕi

)
= s2

1 − 4t1.

Here the specialization s1 −→ 0, t1 −→ t1/4s1 is allowed and shows that n0

represents s1/t1 over k, which just as before is seen to be a contradiction. This
completes the proof.

4.9. We now start from a central simple associative algebra of degree 3 with in-
volution of the second kind as in 4.8, pass to a rational function field over k and
perform the unital Tits process again to arrive at the following result.

4.10. Theorem. Let (B, ∗) be a central associative division algebra of degree 3 over
k with involution of the second kind and K = Cent (B). Then, for every θ ∈ K−k,
the unital second Tits construction

J = J
(

B ⊗K K(X), ∗, 1, X − θ

X − θ∗

)

is an Albert division algebra over the rational function field k(X). Moreover, setting
A = H(B, ∗), the coordinate algebra of J is

(Oct A)⊗k k(X).

Proof. One checks easily that the generic norm of B does not represent (X −
θ) / (X − θ∗) over K(X). Hence J is a division algebra. By [18, 1.8] it has the
coordinate algebra (Oct A) ⊗k k(X).

4.11. Example. Let F be a field of characteristic not 2 and E0/F a seperable
cubic field extension such that the quaternion algebra

C0 := Cay
(
F ;−2,−dE0/F

)

doesn’t split. (For instance, suppose E0 is a cubic Galois extension of F = Q;
this implies C0 ⊗Q R ∼= H so, indeed, C0 doesn’t split.) Then 4.8 yields a central
associative division algebra (B, ∗) of degree 3 with involution of the second kind
over k = F (s1, t1) (cf. 4.7) such that, setting A = H(B, ∗), the octonion algebra of
A doesn’t split. Applying 4.10, we thus obtain an Albert division algebra J over
the rational function field k(X) whose octonion algebra is isomorphic to (Oct A)⊗k

k(X) and hence doesn’t split, either. In particular, J must be a pure second Tits
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construction. Summing up, we have arrived at an example of a pure second Tits
construction Albert division algebra which is arguably more accessible than the
one given by Albert [2] as well as the Albert algebra of generic matrices [11].

Note added in proof. In the mean time, Haile, Knus, Rost, and Tignol have
answered question 2.12 affirmatively. For this and related results, see their
joint paper Algebras of odd degree with involution, trace forms and dihedral
extensions (Theorem 16), to appear in Israel J. Math.
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