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0. Introduction

The étale Tits process, which was called the toral Tits process by Petersson-Racine [12],
may be viewed as a Jordan-theoretical method to construct associative algebras with
involution. More specifically, starting from a cubic étale algebra E and a quadratic
étale algebra L, both over an arbitrary base field, as well as from invertible elements
u ∈ E, b ∈ L having the same norms, the étale Tits process produces an absolutely
simple Jordan algebra J = J(E, L, u, b) of degree 3 and dimension 9, which, by structure
theory, must be the symmetric elements of a central simple associative algebra of degree
3 with involution of the second kind. In addition, E identifies canonically with a
subalgebra of J .

Our first objective in the present paper is to prove the converse of this result: Given a
cubic étale algebra E and a central simple associative algebra (B, τ) of degree 3 with
involution of the second kind, every isomorphic embedding ι from E to J = H(B, τ), the
Jordan algebra of τ -symmetric elements in B, will be shown in the extension theorem
below to allow data L, u, b as above such that ι extends to an isomorphism from the
étale Tits process J(E,L, u, b) onto J . Over fields of characteristic different from two
and three, this result is due to Knus, Merkurjev, Rost and Tignol [4, (39.5), (6)].
Their proof rests on [4, (36.38)] and hence on certain generic choices which seem to
require an ample supply of invertible elements, this being automatic only if the base
field is big enough and hence, in particular, if J is a division algebra. Under the very
last restriction, the extension theorem also derives quite easily from the classification
theory of the Tits process [14, Theorem 3.1 (ii)]. On the other hand, as we shall see
below, a unified proof working in full generality turns out to be surprisingly delicate.



The idea is to mimic McCrimmon’s classical approach [7] to the enumeration of Albert
algebras over arbitrary base fields.

The extension theorem will be applied in two different ways. The first application
(3.2) is concerned with cubic étale algebras E, E′ giving rise to étale Tits processes
J, J ′, respectively, and spells out necessary and sufficient conditions for an isomorphism
E′ ∼−→ E to be extendable to an isomorphism J ′ ∼−→ J . The second application
(4.2) is concerned with attaching invariants to (isomorphic) embeddings from E to
J = H(B, τ), where E is a cubic étale algebra and (B, τ) is a central simple associative
algebra of degree 3 with involution of the second kind. These invariants, called norm
classes, are analogues of the invariants that under the same name were attached by
Albert-Jacobson [2, §9] to “ordered basic sets of idempotents in exceptional simple
Jordan algebras”. In analogy to [2, Theorem 9] we show that two embeddings from E
to J have the same norm class if and only if they are equivalent, i.e., can be transformed
into one another by an automorphism of J . Thus the presence of distinct norm classes
my be viewed as an obstruction to the validity of the Skolem-Noether Theorem.

1. The étale Tits process and the extension theorem

Throughout this paper we fix an arbitrary base field k. All algebras considered in
the sequel (as well as subalgebras and homomorphisms thereof) are supposed to be
unital. We write A× for the set of invertible elements in an algebra A whenever this
makes sense. The bilinearization of a quadratic map Q will be denoted by Q(x, y) =
Q(x + y)−Q(x)−Q(y).

1.1 Cubic norm structures. Following McCrimmon [6] and Petersson-Racine [13],
a cubic norm structure over k is a quadruple (V, N, ], 1) consisting of a vector space V
over k, a cubic form N : V −→ k (the norm), a quadratic map ] : V −→ V, x 7−→ x],
(the adjoint) and a distinguished element 1 ∈ V (the base point) such that the relations

x]] = N(x)x (“adjoint identity”),(1)

N(1) = 1, T (x], y) = (DN)(x)y, 1] = 1, 1 × y = T (y)1 − y hold under all scalar
extensions, where T = −(D2 log N)(1): V × V −→ k is the associated trace form,
x× y = (x+ y)]−x]− y] is the bilinearization of the adjoint and T (y) = T (1, y). Then
the U -operator Uxy = T (x, y)x − x] × y and the base point 1 give V the structure of
a unital quadratic Jordan algebra denoted by J(V,N, ], 1). From [6, (15), (21) and p.
501] we recall the equations

T (x× y, z) = T (x, y × z),(2)

x] = x2 − T (x)x + T (x])1,(3)

N(x× y) + N(x)N(y) = T (x], y)T (x, y]).(4)

From [6, Theorem 2] we know that x ∈ J is invertible if and only if N(x) 6= 0, in which
case

x−1 = N(x)−1x].(5)
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1.2 Étale algebras. Quadratic étale k-algebras are classified by H1(k,Z/2Z). The
element of H1(k,Z/2Z) corresponding to a quadratic étale algebra L over k will be
denoted by δ(L/k); it is basically the ordinary discriminant if k has characteristic not
two. Conversely, we write k{δ} for the quadratic étale k-algebra corresponding to
δ ∈ H1(k,Z/2Z).

Let E be a cubic étale k-algebra. Then E carries a natural Jordan algebra structure
(with U -operator Uxy = x2y) which, in fact, agrees with J(V, N, ], 1) as in 1.1, where
V is the underlying vector space, N is the norm, ] is the adjoint (i.e., the numerator of
the inversion map), and 1 is the unit of E. By abuse of notation, we do not distinguish
carefully between E as a cubic étale k-algebra and its induced Jordan algebra structure.
The element of H1(k,Z/2Z) corresponding to the discriminant algebra of E [4, §18]
will be denoted by δ(E/k).

1.3 The étale Tits process. Referring to [13] for details, we briefly recall the main
ingredients of the étale Tits process, called the toral Tits process in [12]. Let L,E be
étale k-algebras of dimension 2,3, respectively. We write NE , ], TE both for the norm,
adjoint, trace, respectively, of E and for their natural extensions to the cubic étale
L-algebra E ⊗ L, unadorned tensor products always being taken over k. Analogous
conventions apply to the norm NL, the trace TL and the nontrivial k-automorphism
σ of L,E ⊗ L this time being viewed as a quadratic étale E-algebra. Notice that E
identifies naturally as E ⊗ 1 with H(E ⊗ L, σ), the fixed points of E ⊗ L under the
involution σ.

Now let u ∈ E, b ∈ L be invertible elements having the same norms, so NE(u) =
NL(b) = bσ(b) 6= 0. Extending NE , ], 1 as given on E/k and E ⊗ L/L to the vector
space V = E × (E ⊗ L) over k according to the rules

N
(
(v, x)

)
= NE(v) + bNE(x) + σ(b)σ

(
NE(x)

)− TE

(
v, xuσ(x)

)
,(6)

(v, x)] =
(
v] − xuσ(x), σ(b)σ(x)]u−1 − vx

)
,(7)

1 = (1, 0)(8)

for v ∈ E, x ∈ E ⊗ L, we obtain a cubic norm structure (V, N, ], 1) as in 1.1 whose
associated trace form is given by

T
(
(v, x), (w, y)

)
= TE(v, w) + TE

(
xu, σ(y)

)
+ TE

(
yu, σ(x)

)
(9)

for v, w ∈ E, x, y ∈ E ⊗ L. The ensuing Jordan algebra will be denoted by J =
J(E,L, u, b) = J(V, N, ], 1); it is said to arise from E, L, u, b by the étale Tits process.
Following [14, Corollary 4.3], J is an absolutely simple Jordan algebra of degree 3 and
dimension 9, hence by structure theory (cf., e.g., [8, (15.7)] and [16, Theorem 1]) must
be the symmetric elements of a central simple associative algebra of degree 3 with
involution of the second kind. In particular, N = NJ is the generic norm and T = TJ

is the generic trace of J . Clearly, E identifies with a subalgebra of J through the first
factor. The relation

v × (0, x) = (0,−vx)(10)

follows immediately by linearizing (7). Since the trace form of J is nondegenerate
(by (9)), we deduce from [6, p. 507] that a linear map between étale Tits processes
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preserving norms and units is necessarily an isomorphism. By [13, Theorem 5.2], J
is a division algebra (i.e., all nonzero elements in J are invertible) if and only if b 6∈
NE((E ⊗ L)×).

The following result has been proved in [12]; see also [4, (39.5) (5)] for char k 6= 2, 3.

1.4 Theorem. ([12, Theorem 1]) Let L,E be étale k-algebras of dimension 2, 3, re-
spectively, and suppose u ∈ E, b ∈ L are invertible elements satisfying NE(u) = NL(b).
If (B, τ) is a central simple associative algebra of degree 3 over k with involution of the
second kind such that the étale Tits process J(E,L, u, b) becomes isomorphic to the Jor-
dan algebra over k of τ -symmetric elements in B, then the centre of B as a quadratic
étale k-algebras corresponds to the element

δ(E/k) + δ(L/k) ∈ H1(k,Z/2Z). ¤

1.5 The étale first Tits construction. Let E be a cubic étale k-algebra and α ∈
k×. Following [13, Theorem 3.5], we may form the étale first Tits construction J =
J(E,α) = J(V, N, ], 1), where NE , ], 1 as given on E extend to the vector space V =
E × E × E over k according to the rules

N
(
(v0, v1, v2)

)
= NE(v0) + αNE(v1) + α−1NE(v2)− TE(v0v1v2),(11)

(v0, v1, v2)] = (v]
0 − v1v2, α

−1v]
2 − v0v1, αv]

1 − v2v0),(12)
1 = (1, 0, 0)

for v0, v1, v2 ∈ E. The associated trace form of J is given by

T (x, y) = TE(v0, w0) + TE(v1, w2) + TE(v2, w1)(13)

for x = (v0, v1, v2), y = (w0, w1, w2) ∈ J . Clearly, E identifies with a subalgebra of
J(E,α) through the zeroeth factor. The relations

v0 × (0, v1, 0) = (0,−v0v1, 0), v0 × (0, 0, v2) = (0, 0,−v2v0)(14)

are well known and follow easily from linearizing (12). Finally, we conclude from [13,
Theorem 3.5 and Proposition 3.81] that there are natural identifications of étale Tits
processes J(E, L, u, b) as in 1.3, with L ∼= k × k split, and étale first Tits construc-
tions J(E,α) as above which respect the identifications of E in J(E, L, u, b), J(E,α),
respectively. More specifically we have

J(E, α) = J(E, k × k, (1, 1), (α, α−1)).

In particular, J(E, α) is a division algebra if and only if α 6∈ NE(E×).

We are now ready to state the first main result of the paper.
1In the proof there is a misprint: µ−1 should be replaced by u−1.
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1.6 Extension Theorem. Let E be a cubic étale k-algebra, (B, τ) a central simple
associative algebra of degree 3 with involution of the second kind over k and suppose
ι is an isomorphic embedding from E to J = H(B, τ), the Jordan algebra over k of
τ -symmetric elements in B. Writing K for the centre of B and L for the quadratic
étale k-algebra corresponding to the element

δ(K/k) + δ(E/k) ∈ H1(k,Z/2Z),(15)

there are invertible elements u ∈ E, b ∈ L satisfying NE(u) = NL(b) such that ι extends
to an isomorphism from the étale Tits process J(E,L, u, b) onto J .

1.7 Remarks. The proof of the extension theorem will occupy the next section. The
specific choice of L is forced upon us by 1.4. We may clearly assume that E ⊂ J is a
subalgebra and ι is the inclusion.

1.8 Special cases. a) If k is an infinite (or a sufficiently big finite) field of character-
istic not 2 or 3, the extension theorem follows from [4, (39.5), (5), (6) and (36.38)].
b) More specially, if J is a division algebra, the extension theorem is also implied by
the general theory of the Tits process. Indeed, [14, Theorem 3.1 (ii)] shows that some
Tits process J ′ starting from E is still a subalgebra of J . Hence J ′ is a Jordan division
algebra of degree 3 and dimension 6 or 9 (see 2.1 below). But in dimension 6, such
creatures do not exist since, otherwise, we would obtain a central associative division
algebra of degree 3 with involution of the first kind, which is impossible ([4, (3.1)] and
[1, V Theorem 17]). Hence J ′ = J , and the extension theorem follows.

2. Proof of the extension theorem

Before starting with the proof, we require a few additional technicalities most of which
are well known.

2.1 Springer forms. Let J = J(V, N, ], 1) be the Jordan algebra of a cubic norm
structure over k as in 1.1. Given a cubic étale subalgebra E ⊂ J , we obtain an
orthogonal decomposition J = E ⊕ E⊥ relative to T , and the assignment

(v, x) 7−→ v.x := −v × x (v ∈ E, x ∈ E⊥)(16)

endows E⊥ with the structure of a left E-module [11, Proposition 2.1 a)]. Furthermore,
for x ∈ E⊥ we are allowed to write

x] = −qE(x) + rE(x)
(
qE(x) ∈ E, rE(x) ∈ E⊥)

,(17)

and the map qE : E⊥ −→ E is a quadratic form over E [11, Proposition 2.1 b)], called
the Springer form of E in J . Notice that our definition of qE differs from the one in
[11], [14] by a sign, bringing us back to the original normalization due to Springer, cf.
Springer-Veldkamp [17, (6.5)]. Thanks to (2), (16) we have

T (v.x, y) = T (x, v.y) = −T (v, x× y)(18)
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for all v ∈ E, x, y ∈ E⊥. Furthermore, (4) implies

N(v.x) = NE(v)N(x).(19)

Finally, by [14, Lemma 3.3, (ii): d), e), h) and (vi)],

rE(v.x) = v].rE(x),(20)
qE

(
x, rE(x)

)
= N(x)1,(21)

rE

(
rE(x)

)
= N(x)x− qE(x).rE(x),(22)

rE

(
x, v.rE(x)

)
=

(
v × qE(x)

)
.x.(23)

2.2 Lemma. Notations being as in 2.1, we obtain

rE

(
v.x + w.rE(x)

)
=

(
N(x)w] + [w × (

vqE(x)
)
]
)

.x +
(
v] − w]qE(x)

)
.rE(x)

for all v, w ∈ E, x ∈ E⊥.

Proof. For v = 1, the assertion follows by expanding the left-hand side and applying
(20), (22), (23). In general, we may extend scalars if necessary and invoke Zariski
density to assume v ∈ E×. But then the special case v = 1 yields

rE

(
v.x + w.rE(x)

)
= rE

(
v.[x + (v−1w).rE(x)]

)

= v].rE

(
x + (v−1w).rE(x)

)
(by (20))

= v].[
(
N(x)(v−1w)] + (v−1w)× qE(x)

)
.x

+
(
1− (v−1w)]qE(x)

)
.rE(x)].

Here we apply the identity (st)] = s]t] and its linearization (st1)× (st2) = s](t1 × t2),
both valid in E, to arrive at the desired conclusion. ¤

2.3 Associates of quadratic forms with base point. Let q : V −→ k be a
quadratic form over k which is nonsingular in the sense that its induced symmetric
bilinear form is nondegenerate, and suppose e ∈ V is a base point for q, so q(e) = 1.
Denote by k• the multiplicative group k× for char k 6= 2 and the additive group k
for char k = 2. Given δ ∈ H1(k,Z/2Z), choose any representative d ∈ k• of δ to
define qδ : V −→ k by qδ(x) = dq(x) + 1−d

4 q(e, x)2 (char k 6= 2), qδ(x) = q(x) +
dq(e, x)2(char k = 2). Then qδ is a nonsingular quadratic form with base point e whose
isometry class neither depends on d nor on e. This follows from Witt’s Theorem and
the proof of [11, Proposition 3.1], although for char k 6= 2, qδ as defined here differs
from the corresponding notion in [11] by a factor d. We call qδ the δ-associate of q.
This concept applies in particular to the norm of a quadratic étale algebra. From [15,
2.9] we recall

(Nk{δ})δ′ ∼= Nk{δ+δ′}(24)

for δ, δ′ ∈ H1(k,Z/2Z).
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2.4 We are now ready to prove the extension theorem 1.6, making the adjustments
described in 1.7, and begin by reducing to the case that L is split. So let us assume for
the time being that this case has been settled and suppose L/k is a separable quadratic
field extension, with nontrivial k-automorphism σ. Extending scalars from k to L, we
then conclude from 1.5 that, for some b ∈ L×, the inclusion E ⊗ L ⊂ J ⊗ L extends to
an isomorphism ϕ over L from the étale first Tits construction J(E⊗L, b) onto J ⊗L.
Using ϕ, the natural action of σ on J ⊗L through the second factor will be transferred
to J(E⊗L, b), making ϕ : J(E⊗L, b) −→ J⊗L into a σ-equivariant map. Adapting the
notations of 1.5 to the present set-up, we first observe that, since E ⊗L ⊂ J(E ⊗L, b)
is stable under σ, so is its orthogonal complement

(E ⊗ L)⊥ = {(0, w1, w2) | w1, w2 ∈ E ⊗ L} ⊂ J(E ⊗ L, b)

relative to T (cf. (13)). Hence

σ
(
(0, 1, 0)

)
= (0, u1, u2), σ

(
(0, 0, 1)

)
= (0, v1, v2)(25)

for some u1, u2, v1, v2 ∈ E ⊗ L. Applying the norm to the first equation of (25) and
using (11), we obtain

σ(b) = bNE(u1) + b−1NE(u2).(26)

Similarly, applying the adjoint to the first equation of (25) and using (12), we obtain

u1u2 = 0, v1 = NL(b)−1u]
2, v2 = bσ(b)−1u]

1.(27)

Finally, applying σ to the relation σ
(
(0, 1, 0)

)
= −u1× (0, 1, 0)−u2× (0, 0, 1) (by (25),

(14)) and using (25), (27), we obtain

u1σ(u1) + NL(b)−1σ(u2)u
]
2 = 1, σ(u1)u2 + bσ(b)−1u]

1σ(u2) = 0.(28)

Next we show that u2 ∈ E⊗L is invertible. Arguing indirectly, let us assume NE(u2) =
0. Then (26) reduces to σ(b) = bNE(u1), forcing u1 ∈ (E⊗L)×. Therefore (27) implies

u2 = v1 = 0, v2 = u−1
1 .(29)

Moreover, NL(u1) = 1 by (28), so Hilbert’s Theorem 90 yields an element y ∈ (E⊗L)×

satisfying

u1 = yσ(y)−1.(30)

Now (26), (29), (30) imply that α := NE(y)b ∈ L× remains fixed under σ and hence
belongs to k. Furthermore, the map

ψ : J(E, α)⊗ L −→ J(E ⊗ L, b)

sending (w0, w1, w2) to (w0, w1y, y−1w2) is an isomorphism over L. Letting σ act on
J(E, a)⊗ L through the second factor, we deduce from

σ
(
ψ

(
(w0, w1, w2)

))
= σ

(
(w0, w1y, y−1w2)

)

= σ
(
w0 − w1y × (0, 1, 0)− y−1w2 × (0, 0, 1)

)
(by (14))

= σ(w0)− σ(w1)σ(y)× (0, u1, 0)− σ(y)−1σ(w2)× (0, 0, u−1
1 )

(by (25), (29))

=
(
σ(w0), σ(w1)y, y−1σ(w2)

)
(by (14), (30))

= ψ
(
σ
(
(w0, w1, w2)

))
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for all w0, w1, w2 ∈ E ⊗ L that ψ is σ-equivariant. Hence so is ϕ ◦ ψ : J(E, α)⊗ L −→
J⊗L, and restricting to the fixed points of σ gives an isomorphism J(E, a) −̃→ J . From
1.4, 1.5 and (15) we therefore conclude δ(L/k) = 0, so L is split. This contradiction
shows that u2 ∈ E ⊗ L is indeed invertible. Hence (27), (26) collapse to

u1 = v2 = 0, NE(u2) = NL(b), v1 = u−1
2 .(31)

Now (28) implies 1 = NL(b)−1σ(u2)u
]
2 = σ(u2)u−1

2 , so u := u2 belongs to E and satisfies
NE(u) = NL(b). Furthermore, by (25), (31), σ

(
(0, 1, 0)

)
= (0, 0, u), σ

(
(0, 0, 1)

)
=

(0, u−1, 0). From this and (14) one easily concludes

σ
(
(w0, w1, w2)

)
=

(
σ(w0), σ(w2)u−1, uσ(w1)

)

for w0, w1, w2 ∈ E ⊗ L. Identifying E ⊂ E ⊗ L, J ⊂ J ⊗ L canonically and argu-
ing as in the proof of [7, Theorem 9], it now follows that the assignment (w, x) 7−→
ϕ
(
(w, x, uσ(x)

)
for w ∈ E, x ∈ E⊗L gives an isomorphism from the étale Tits process

J(E,L, u, b) onto J extending the inclusion E ⊂ J .

2.5 In order to complete the proof, the reduction carried out in 2.4 allows us to
assume that L ∼= k × k is split, which, by (15), implies

δ := δ(K/k) = δ(E/k) ∈ H1(k,Z/2Z).(32)

In view of 1.5, we must show that, for some α ∈ k×, the inclusion E ⊂ J extends to
an isomorphism from the étale first Tits construction J(E, α) onto J . To do so, we
employ the following specializations of results obtained in [11].

2.6 Proposition. ([11, Proposition 2.2]) Notations being as in 1.6, there exists a
nonzero element α ∈ k such that the inclusion E ⊂ J extends to an isomorphism from
the étale first Tits construction J(E, α) onto J if and only if some x ∈ E⊥∩J× satisfies
qE(x) = 0. ¤

2.7 Theorem. ([11, Theorem 3.2]) Notations being as in 1.6 and setting δ := δ(E/k),
the Springer form of E in J is similar to (NK⊗E/E)δ or (NK)δ ⊗ E according as E is
a field or not. ¤

2.8 Returning to 2.5, we now argue indirectly and assume that no α ∈ k× allows an
isomorphism J(E, α) −̃→ J extending the inclusion E ⊂ J . Then 2.6 implies

qE(x) 6= 0 for all x ∈ E⊥ ∩ J×.(33)

Moreover, it follows from 2.7, (24) and (32) that the binary quadratic space (E⊥, qE)
over E is the hyperbolic plane. Accordingly, we choose a hyperbolic pair (x1, x2) of
(E⊥, qE), so E⊥ is a free E-module of rank 2 with basis (x1, x2) and

qE(x1) = qE(x2) = 0, qE(x1, x2) = 1.(34)

In particular, x1, x2 cannot be invertible in J (by (33)), and (21) implies

qE(xi, rE(xi)) = N(xi)1 = 0 (i = 1, 2).(35)
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Furthermore, (17), (34) imply x]
i = rE(xi) = ui.xi + vi.x3−i for some ui, vi ∈ E, forcing

vi = 0 by (34), (35). Hence

x]
i = rE(xi) = ui.xi (i = 1, 2).(36)

We now claim

(v.xi)] = rE(v.xi) = uiv
].xi (v ∈ E, i = 1, 2),(37)

NE(ui) = 0 (i = 1, 2),(38)

N(v1.x1 + v2.x2) = TE(u1v
]
1v2 + u2v1v

]
2) (vi ∈ E, i = 1, 2).(39)

The first relation of (37) follows from qE(v.xi) = v2qE(xi) = 0, the second one from
(20), (36). Hence 0 = N(xi)xi (by (35)) = x]]

i (by (1)) = (ui.xi)] (by (36)) = (uiu
]
i).xi

(by (37)) = NE(ui)xi, giving (38). This allows us to expand the left-hand side of (39):

N(v1.x1 + v2.x2) = N(v1.x1) + T
(
(v1.x1)], v2.x2

)
+ T

(
v1.x1, (v2.x2)]

)
+ N(v2.x2)

= NE(v1)N(x1) + T (u1v
]
1.x1, v2.x2) + T (v1.x1, u2v

]
2.x2)

+ NE(v2)N(x2) (by (19), (37))

= −T (u1v
]
1v2 + u2v1v

]
2, x1 × x2) (by (18), (35))

= TE

(
u1v

]
1v2 + u2v1v

]
2, qE(x1, x2)

)
(by (17)),

and (39) follows from (34).

Special Case. E ∼= k × k × k splits.
Then δ = 0, and K ∼= k × k splits as well (by (32)). Hence J ∼= M3(k)+, and we may
assume that E sits diagonally in J under this identification. But then

y :=




0 1 0
0 0 1
1 0 0


 ∈ E⊥ ∩ J×

satisfies y] ∈ E⊥, forcing qE(y) = 0 and contradicting (33).

Returning to the general case, let us assume u1 = u2 = 0. Then (39) shows that N
vanishes on E⊥ even after extending scalars to the algebraic closure. On the other hand,
this extension brings us back to special case, where we have just produced invertible
elements belonging to E⊥. This is a contradiction, so by symmetry we may assume

u1 6= 0.(40)

Combining with (38), we conclude that E is not a field, forcing E ∼= k × K by (32).
Hence we can find αi ∈ k, ai ∈ K satisfying ui = (αi, ai) (i = 1, 2). Now recall from
[13, Example 2.2] that the adjoint of E is given by

(β, b)] = (NK(b), βτ(b)) (β ∈ k, b ∈ K)(41)

and consider the idempotent c = (1, 0) ∈ E. From (34) we conclude qE(c.x1 + (1 −
c).x2) = 0, and the relations c] = 0, (1− c)] = c (by (41)) combine with (39) to imply
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N(c.x1 + (1 − c).x2) = α2. Hence α2 = 0 by (33). Interchanging x1, x2, we obtain
α1 = 0 as well, so

ui = (0, ai) (i = 1, 2).(42)

For vi ∈ E, we next expand the expression rE(v1.x1 + v2.rE(x1)) in two different ways.
On the one hand,

rE

(
v1.x1 + v2.rE(x1)

)
= v]

1.rE(x1) (by 2.2, (34), (35))

= u1v
]
1.x1 (by (36)),

on the other

rE

(
v1.x1 + v2.rE(x1)

)
= rE

(
(v1 + u1v2).x1

)
(by (36))

= u1(v1 + u1v2)].x1 (by (37))

=
(
u1v

]
1 + u1(v1 × u1v2)

)
.x1

since u1(u1v2)] = u1u
]
1v

]
2 = 0 by (38). Hence u1(v1×u1v2) = 0. Using (41) to compute

this explicitly for v1 = c = (1, 0), v2 = 1 − c = (0, 1), we obtain NK(a1) = 0. But
a1 6= 0 by (40), (42), so K is not a field, and we are back again to the special case, a
contradiction. ¤

3. An Isomorphism criterion

3.1 The general set-up. In this section we fix two étale Tits process algebras
J = J(E, L, u, b), J ′ = J(E′, L′, u′, b′) as in 1.3, where E, E′ and L,L′ are cubic and
quadratic étale algebras, respectively, over our base field k and u ∈ E, u′ ∈ E′, b ∈
L, b′ ∈ L′ are invertible elements satisfying NE(u) = NL(b), NE′(u′) = NL′(b′). We
denote by σ, σ′ the nontrivial k-automorphism of L,L′, respectively. All conventions
of 1.3 remain in force. Letting ϕ : E′−̃→E be any isomorphism, we will be concerned
with the question as to when ϕ can be extended to an isomorphism from J ′ onto J . A
partial answer to this question may be found in the following result.

3.2 Theorem. Notations being as in 3.1, let η : J ′ −→ J be an arbitrary map. Then
the following statements are equivalent.

(i) η is an isomorphism extending ϕ.

(ii) There exist an isomorphism ψ : L′−̃→L and an invertible element y ∈ E⊗L such
that

ϕ(u′) = NL(y)u, ψ(b′) = NE(y)b(43)

and

η
(
(v′, x′)

)
=

(
ϕ(v′), y(ϕ⊗ ψ)(x′)

)
(44)

for all v′ ∈ E′, x′ ∈ E′ ⊗ L′.
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3.3 Proof of 3.2, (ii) =⇒ (i). This is the easy part. Since η obviously preserves
units, it suffices to show that it preserves norms as well. But this follows directly from
(6), (43), (44) and the fact that the isomorphism ϕ ⊗ ψ : E′ ⊗ L′ −→ E ⊗ L satisfies
the relations

NE ◦ (ϕ⊗ ψ) = ψ ◦NE′ , σ ◦ (ϕ⊗ ψ) = (ϕ⊗ ψ) ◦ σ′,
TE ◦

(
(ϕ⊗ ψ)× (ϕ⊗ ψ)

)
= ψ ◦ TE′

on E′ ⊗ L′, (E′ ⊗ L′)× (E′ ⊗ L′), respectively.
The converse implication (i) =⇒ (ii) requires a bit more work. First we have to deal
with a side-issue.

3.4 Quadratic étale algebras over rings. Let R be a commutative associative
ring of scalars. Although we are mostly concerned here with algebras over fields, the
following digression to algebras over R cannot be avoided. So let A be a quadratic
étale R-algebra with norm n, trace t and standard involution σ (cf. Knus [5, I (1.3),
especially (1.3.6)]. Observe for the constant group scheme Z/2Z over Z (cf. Waterhouse
[18, 2.3] that (Z/2Z)(R) identifies canonically with the group of idempotents in R under
the composition (c, c′) 7−→ c + c′ − 2cc′ [5, III (4.1)]. Also, for c ∈ (Z/2Z)(R), the map

ψc : A −→ A, x 7−→ ψc(x) = cx + (1− c)σ(x),

is an automorphism of A [5, III (4.1.2)].

3.5 Proposition. ([5, III (4.1.2)]) Notations being as in 3.4, the assignment c 7−→ ψc

determines an isomorphism from (Z/2Z)(R) onto the automorphism group of A. ¤

3.6 Lemma. ([5, III (4.1.1)]) Notations being as in 3.4, suppose R is a local ring.
Then A has a basis (1, θ) over R such that θ2 − θ + r1 = 0 for some r ∈ R satisfying
1− 4r ∈ R×. ¤

3.7 Lemma. Notations being as in 3.4, let ψ : A −→ A be an R-linear map preserving
n and 1. Then ψ is an automorphism of A.

Proof. Since the question is local on R, we may assume that R is a local ring. Then A
is generated by a single element (3.6), so it suffices to show that ψ preserves squares.
But this follows immediately from n ◦ ψ = n, ψ(1) = 1, t ◦ ψ = t and the equation
x2 − t(x)x + n(x)1 = 0 for all x ∈ A [5, I (1.3.3)]. ¤

3.8 Proof of 3.2, (i) =⇒ (ii). We proceed in several steps.
10. Let (B, τ), (B′, τ ′) be central simple associative algebras of degree 3 with involution
of the second kind satisfying J ∼= H(B, τ), J ′ ∼= H(B′, τ ′). Since (B′, τ ′) is perfect
(cf. Jacobson [3, Theorem 5]), η induces a unique isomorphism (B′, τ ′)−̃→(B, τ) of
algebras with involution. In particular, the centres of B,B′ are isomorphic, forcing
δ(L/k) = δ(L′/k) by 1.4. Hence there exists an isomorphism ψ0 : L′−̃→L. The étale
Tits process being functorial in the obvious sense, we now obtain an isomorphism

η0 := ϕ× (ϕ⊗ ψ0) : J ′−̃→ J(E,L, ϕ(u′), ψ0(b′)),
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and after replacing η by η ◦ η−1
0 , we may assume E′ = E, ϕ = 1E , L′ = L.

20. By 10, η induces the identity on E and hence matches the orthogonal complements
of E relative to the trace forms of J, J ′, repectively, which both identify canonically
with E⊗L through the second factor (by (9)). We therefore obtain a k-linear bijection
ψ : E ⊗ L −→ E ⊗ L satisfying

η
(
(v, x)

)
=

(
v, ψ(x)

)
(v ∈ E, x ∈ E ⊗ L).(45)

Using this an expanding η
(
v × (0, x)

)
= v × η

(
(0, x)

)
by means of (10), we conclude

that ψ is in fact E-linear. Similarly, expanding η
(
(0, x)]

)
= η

(
(0, x)

)] by means of (7)
yields

NL

(
ψ(x)

)
u = NL(x)u′,(46)

ψ
(
σ(b′)σ(x)]u′−1

)
= σ(b)σ

(
ψ(x)

)]
u−1(47)

for all x ∈ E ⊗ L.
30. We put y := ψ(1⊗ 1) ∈ E ⊗ L and specialize x = 1⊗ 1 in (46) to conclude

u′ = NL(y)u.(48)

In particular, y is invertible. Also, by 3.3, the assignment (v, x) 7−→ (v, y−1x) gives an
isomorphism

η1 : J −→ J(E, L, u1, b1)

where u1 = u′, b1 = NE(y)b.
40. Using 30 and replacing η by η1 ◦ η if necessary, we may assume ψ(1 ⊗ 1) = 1 ⊗ 1.
Then (48) reduces to

u′ = u,(49)

and (46) yields NL ◦ ψ = NL. Hence, by 3.7, ψ is an automorphism of the quadratic
étale E-algebra E⊗L. (Notice that E need not be a field, so we do require the generality
provided for by 3.4.) Now 3.5 yields an idempotent e ∈ E satisfying

ψ(x) = ex + (1− e)σ(x) (x ∈ E ⊗ L).(50)

On the other hand, since ψ is E-linear, we obtain

u′−1
ψ

(
1⊗ σ(b′)

)
= ψ

(
u′−1 ⊗ σ(b′)

)

= ψ
(
σ(b′)σ(1⊗ 1)]u′−1

)

= σ(b)σ
(
ψ(1⊗ 1)

)]
u−1 (by (47))

= u−1
(
1⊗ σ(b)

)
,

and (49) implies

σ(1⊗ b) = 1⊗ σ(b) = ψ(1⊗ σ(b′))
= e(1⊗ σ(b′)) + (1− e)(1⊗ b′) (by (50))
= σ

(
e⊗ b′ + (1− e)⊗ σ(b′)

)
.
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Summing up, we have

1⊗ b = e⊗ b′ + (1− e)⊗ σ(b′).(51)

50. By (50), (51), the proof will be complete once we have shown e = 0, 1. We argue
indirectly and assume e 6= 0, 1. Then (41) shows either e] = 0 or (1−e)] = 0. Since the
assignment (v, x) 7−→ (

v, σ(x)
)

determines an automorphism η2 of J by 3.3, we may
replace η by η2 ◦ η if necessary to obtain

e] = 0, (1− e)] = e.(52)

Since e⊗ 1, (1− e)⊗ 1 ∈ E ⊗ L are free over L by assumption, the relation

b′(e⊗ 1) + σ(b′)
(
(1− e)⊗ 1

)
= e⊗ b′ + (1− e)⊗ σ(b′)
= 1⊗ b (by (51))
= b(e⊗ 1) + b

(
(1− e)⊗ 1

)

implies

b = b′ ∈ k.(53)

Given a ∈ L, we now to expand, using (52),

NE

(
e⊗ a + (1− e)⊗ σ(a)

)
= NE

(
a(e⊗ 1) + σ(a)

(
(1− e)⊗ 1)

))

= a3NE(e) + a2σ(a)TE(e], 1− e) + aσ(a)2TE

(
e, (1− e)]

)
+ σ(a)3NE(1− e)

= aσ(a)2

to obtain

NE

(
e⊗ a + (1− e)⊗ σ(a)

)
= NL(a)σ(a).(54)

Next observe that η, being an isomorphism, preserves norms and hence satisfies NJ ◦η =
NJ ′ . Applying both sides to (0, 1⊗ a), and using (45), (50), (6), (53), (54) we deduce

NJ ◦ η
(
(0, 1⊗ a)

)
= NJ

((
0, e⊗ a + (1− e)⊗ σ(a)

))

= b
[
NE

(
e⊗ a + (1− e)⊗ σ(a)

)
+ σ

(
NE

(
e⊗ a + (1− e)⊗ σ(a)

))]

= TL(a)NL(a)b

on the one hand,

NJ ′
(
(0, 1⊗ a)

)
= b

[
NE(1⊗ a) + σ

(
NE(1⊗ a)

)]

= TL(a3)b

=
(
TL(a)3 − 3TL(a)NL(a)

)
b

on the other. Comparing we conclude TL(a)3 = 4TL(a)NL(a) for all a ∈ L. But 3.6
yields an element θ ∈ L satisfying TL(θ) = 1, 1 − 4NL(θ) 6= 0, a contradiction. This
completes the proof of 3.2. ¤
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4. Isomorphic embeddings

4.1 Norm classes. In this section, we fix a central simple associative algebra (B, τ) of
degree 3 with involution of the second kind over k and a cubic étale k-algebra E. As in
1.6, we write K for the centre of B, J = H(B, τ) for the Jordan algebra of τ -symmetric
elements in B and L for the quadratic étale k-algebra corresponding to the element
δ(E/k) + δ(K/k) ∈ H1(k,Z/2Z). Given an isomorphic embedding ι : E −→ J , the
extension theorem 1.6 yields invertible elements u ∈ E, b ∈ L satisfying NE(u) = NL(b)
such that ι extends to an isomorphism form J(E,L, u, b) onto J . Applying 3.2 to
ϕ = 1E , it follows that

[ι] := umod NL((E ⊗ L)×) ∈ E×/NL((E ⊗ L)×)

is independent of all choices made. We call [ι] the norm class of ι. Our main objective
in this section is to prove the following result.

4.2 Theorem. Given isomorphic embeddings ι, ι′ : E −→ J , the following statements
are equivalent.

(i) ι and ι′ have the same norm class, i.e., [ι] = [ι′].

(ii) ι and ι′ are equivalent, i.e., there exists an automorphism ϕ of J moving ι to ι′,
so ϕ ◦ ι = ι′.

Since the norm class by 4.1 is well defined, (ii) obviously implies (i). To establish the
converse, we argue similarly to the proof of the Skolem-Noether Theorem for ninedi-
mensional subalgebras of Albert algebras due to Parimala-Sridharan-Thakur [9], see [4,
(40.15)]. We begin by examining the étale first Tits construction 1.5.

4.3 Proposition. For α, α′ ∈ k× the following statements are equivalent.

(i) J(E, α) and J(E, α′) are isomorphic.

(ii) J(E, α) and J(E, α′) are isotopic.

(iii) α ≡ α′ε mod NE(E×) for some ε ∈ {±1}.
(iv) The identity of E can be extended to an isomorphism from J(E,α) to J(E, α′).

Proof. The implications (iv) =⇒ (i) =⇒ (ii) are clear.
(iii) =⇒ (iv). We have α = α′εNE(v) for some ε ∈ {±1} and v ∈ E×. Hence, if ε = 1,
the assignment (w0, w1, w2) 7−→ (w0, w1v, v−1w2) gives an isomorphism of the desired
kind. On the other hand, if ε = −1, the assignment (w0, w1, w2) 7−→ (w0, w2v

−1, vw1)
gives an isomorphism of the desired kind (since E is commutative).
(ii) =⇒ (iii). We distinguish the following cases.

Case 1. δ(E/k) = 0.
Then E is either a cyclic cubic field extension or it splits. Furthermore, 1.4 yields central
simple associative algebras A,A′ of degree 3 over k satisfing J(E, α) ∼= A+, J(E, α′) ∼=
A′+, and (ii) allows us to assume A ∼= A′. Let Ψ : A′ ∼−→ A be an isomorphism. Then
we may either apply the classical Skolem-Theorem to E,Ψ(E) ⊂ A if E is a field or
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use standard facts about complete orthogonal systems of primitive idempotents in full
matrix algebras otherwise to conclude (iv). Using the indentifications

J(E,α) = J(E, k × k, (1, 1), (α, α−1)), J(E, α′) = J(E, k × k, (1, 1), (α′, α′−1))

guaranteed by 1.5, we may therefore apply 3.2 to ϕ = 1E and obtain (iii).

Case 2. δ(E/k) 6= 0.
Changing scalars from k to M = k{δ(E/k)} brings us back to Case 1, so some ε ∈ {±1}
has αα′ε ∈ NE((E⊗M)×), forcing the norm of J(E, αα′ε) to become isotropic over M
(1.5). Hence it must have been isotropic to begin with [17, 4.2.11], and (iii) follows. ¤

4.4 Remark. For char k 6= 2, 3, the preceding result can also be derived by using the
cohomological invariants attached to associative algebras of degree 3 [4, §30.C]. Indeed,
given E,α as in 4.3, E for simplicity assumed to be a field, write J(E, α) = H(Bα, τα)
for some central simple associative algebra (Bα, τα) of degree 3 with involution of the
second kind. Then the centre of Bα agrees with the discriminant algebra of E (1.4),
so f1(Bα, τα) ∈ H1(k,Z/2Z) is independent of α. Furthermore, τα is distinguished [4,
(39.5)(3)], forcing f3(Bα, τα) = 0. Finally, if K is a field and ρ denotes a fixed nontrivial
K-automorphism of E ⊗K, we obtain Bα

∼= (E, ρ, α) or Bα
∼= (E, ρ, α−1) as cyclic K-

algebras of degree 3, and g2(Bα, τα) is uniquely determined by the Brauer class of Bα; on
the other hand, if K ∼= k × k splits, E is cyclic, so fixing a nontrivial k-automorphism
ρ of E, we obtain Bα

∼= Aα × Aop
α where Aα

∼= (E, ρ, α) or Aα
∼= (E, ρ, α−1), and

g2(Bα, τα) is uniquely determined by the Brauer class of Aα. Summing up, 4.3 now
follows from the fact that central simple associative algebras of degree 3 with involutions
of the second kind are classified by their invariants f1, f3, g2 [4, (30.21)]. ¤

The following technicality is a variant of [4, (40.13)] over fields of arbitrary character-
istic. We keep the notational conventions of 1.3.

4.5 Lemma. Let L,E be étale k-algebras of dimension 2, 3 respectively. Given y ∈
E⊗L such that c := NE(y) ∈ L satisfies NL(c) = 1, there exists an element y′ ∈ E⊗L
satisfying NE(y′) = c,NL(y′) = 1.

Proof. By Hilbert’s Theorem 90, we have c = dσ(d)−1 for some d ∈ L×. If E is not
a field, NE is surjective, so some z ∈ E ⊗ L has NE(z) = d, and y′ = zσ(z)−1 does
the job. Hence we may assume that E is a field. Choose θ ∈ L− k, κ ∈ L× satisfying
θ + σ(θ) = 1, σ(κ) = −κ. Then the map F : E × k −→ k defined by

F ((x, ξ)) := κ
(
σ(d)NE(x + ξθ1)− dNE(x + ξ(1− θ)1)

)

for x ∈ E, ξ ∈ k is a cubic form. We now distinguish the following cases.

Case 1. L ∼= k × k splits.
Then E ⊗ L = E × E, y = (y1, y2), yi ∈ E×(i = 1, 2) and c = (γ, γ−1), γ = NE(y1), so
the lemma follows by setting y′ = (y1, y

−1
1 ). We also claim that F is isotropic. To see

this, we may assume d = (γ, 1) and have θ = (α, 1− α) for some α ∈ k, 2α 6= 1. Since
y1 = 1 implies d = (1, 1), hence F ((1, 0)) = 0, we may assume y1 6= 0. Then a direct
computation shows that x := (y1 − 1)−1(α1 + (α − 1)y1) ∈ E satisfies F ((x, 1)) = 0,
proving our claim.
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Case 2. L is a field.
Since by Case 1, the cubic form F becomes isotropic after changing scalars from k to
L, it must have been so all along [17, 4.2.11]. Hence there exists a nonzero element
(x, ξ) ∈ E × k satisfying

σ(d)NE(x + ξθ1) = dNE(x + ξ(1− θ)1).

This implies x + ξθ1 ∈ (E ⊗ L)×, and the lemma follows by setting

y′ := (x + ξθ1)σ(x + ξθ1)−1. ¤

4.6 Remark. A similar argument will give a proof of [4, (40.13)] in all characteristics,
see [10].

4.7 Proof of 4.2, (i) =⇒ (ii). Keeping the notations of 4.1, we apply 1.6 to obtain
invertible elements u, u′ ∈ E, b, b′ ∈ L satisfying NE(u) = NL(b), NE(u′) = NL(b′) such
that ι, ι′ extend to isomorphisms

η : J1 := J(E, L, u, b) ∼−→ J, η′ : J ′1 = J(E, L, u′, b′) ∼−→ J,

respectively; in particular, J1
∼= J ′1 under η′−1 ◦ η. We now distinguish the following

cases.

Case 1. L ∼= k × k splits.
Then we may identfy J1 = J(E, α), J ′1 = J(E, α′) for some α, α′ ∈ k×, and 4.3 yields an
isomorphism φ : J1

∼−→ J ′1 which is the identity on E. Hence ϕ := η′ ◦φ◦η−1 ∈ Aut(J)
satisfies ϕ ◦ ι = ι′, forcing ι, ι′ to be equivalent.

Case 2. L is a field.
Changing scalars from k to L, J1⊗L ∼= J(E⊗L, b) and J ′1⊗L ∼= J(E⊗L, b′) [13, 3.5, 3.8]
continue to be isomorphic, so 4.3 yields b = b′εNE(z) for some ε ∈ {±1}, z ∈ (E⊗L)×.
Applying 3.2 for E = E′, L = L′, ϕ = 1E , ψ = σ, u = u′−1, b = b′−1, y = u′

we may in fact assume ε = 1, so b = b′NE(z). Applying 3.2 again, this time for
E = E′, L = L′, ϕ = 1E , ψ = 1L, y = z−1 we even reduce to the case z = 1, so b = b′.
Now we use the fact that ι and ι′ have the same norm class, so u′ = NL(y)u for some
invertible element y ∈ E ⊗ L. This implies NL(c) = 1 for c = NE(y) ∈ L, and by
4.5 we obtain an element y′ ∈ E ⊗ L such that NE(y′) = NE(y), NL(y′) = 1. Hence
the assignment (v, x) 7−→ (v, y′−1yx) gives an isomorphism φ : J1

∼−→ J ′1 which is the
identity on E (3.2), so ϕ := η′ ◦ φ ◦ η−1 ∈ Aut(J) moves ι to ι′, and the proof is
complete. ¤

4.8 Remark. If K is isomorphic to the discriminant algebra of E, then L ∼= k×k must
be split, forcing the norm class of group E×/NL((E⊗L)×) to be trivial. Hence, thanks
to 4.2, any two embeddings from E to J are equivalent. According to the discussion of
Case 1 in the preceding proof, this statement amounts to exactly the same as 4.3. ¤

4.9 Example. We now specialize 4.1 to the case that E = k × k × k is split. Giving
an isomorphic embedding ι : E −→ J amounts to the same as giving a complete
orthogonal system (e1, e2, e3) of absolutely primitive idempotents in J . This in turn
leads to a matrix g = diag(γ1, γ2, γ3) ∈ GL3(k) and an identification J = H3(K, g), the
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Jordan algebra g-hermitian 3-by-3 matrices x having entries in K (so x = g−1x∗g, x∗

the conjugate thranspose of x), which matches e1, e2, e3 with the diagonal idempotents
in H3(K, g). We may clearly assume det g = 1, so u = (γ1, γ2, γ3) ∈ E has norm 1. It
now follows easily that the linear bijection

φ : J(E,K, u, 1) −→ J = H3(K, g)

defined by

φ((v, y)) :=




α1 γ3γ2a3 γ2γ3σ(a2)
γ3γ1σ(a3) α2 γ1γ3a1

γ2γ1a2 γ1γ2σ(a1) α3




for v = (α1, α2, α3) ∈ E, y = (a1, a2, a3) ∈ E ⊗K = K ×K ×K, preserves norms and
units, hence is an isomorphism extending ι. Making the obvious identifications and
writing [α] for the coset of α ∈ k× in k×/NK(K×), we conclude

[ι] = ([γ1], [γ2], [γ3]) = ([γ−1
2 γ3], [γ−1

3 γ1], [γ−1
1 γ2]).

Hence the norm classes of isomorphic embeddings from E to ninedimensional absolutely
simple Jordan algebras of degree 3 are exactly analogous to the norm classes of complete
orthogonal systems of absolutely primitive idempotents in Albert algebras [2].

4.10 Example. We close the paper by constructing isomorphic embeddings that have
distinct norm classes and hence are not equivalent (4.2). Let k0 be a field, for simplicity
assumed to be of characteristic not two, and K0/k0 a quadratic field extension. Given
an indeterminate X, we put k = k0(X), K = K0(X),

g = diag(1, X,X−1), g′ = diag((X + 1)−1, X, X−1(X + 1)),

and J = H3(K, g), J ′ = H3(K, g′). Since X + 1 is represented by the 2-fold Pfister
form NK⊥ < X > NK , we conclude that

NK⊥ < X−1 > NK⊥ < X > NK

and
< X + 1 > NK⊥ < X−1 > NK⊥ < (X + 1)−1X > NK

are isometric, forcing J and J ′ to have isometric trace forms [6, p. 502]. Hence they
are isomorphic [4, (19.6)]. Now let φ : J ′ ∼−→ J be any isomorphism, put E = k×k×k
and denote by ι (resp. ι′) the isomorphic embedding E −→ J corresponding to the
diagonal idempotents in J (resp. the image under φ of the diagonal idempotents in J ′).
Then 4.9 implies

[ι] = ([1], [X], [X]), [ι′] = ([X + 1], [X], [X(X + 1)]).

In particular, [ι] 6= [ι′] since, otherwise, we would obtain X + 1 ∈ NK(K×), which is
easily seen to be impossible (for example, K is unramified at X). A similar argument
shows X 6≡ (X+1)mod NK(K×), so no embedding E −→ J arising from ι by composing
it with an automorphism of E can be equivalent to ι′.
It would be interesting to have an example of this kind where E or even J as in 4.1 are
division algebras. ¤
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