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Abstract

We describe a new solution approach for order sequencing which
reflects the build-to-order strategy of the European automobile indus-
try. Therefore, it has to cope with a variety of customer orders that
change daily.

Each order consists of a set of commodities which are implemented
while the order sequence passes through a body shop, a paint shop,
and an assembly shop. Existing solution approaches usually focus on
the computation of an order sequence optimized to fit the needs of the
assembly shop where the most significant savings can be achieved. We
propose a solution approach that generalizes known approaches and
covers the complete production process.

The resulting rule-based solution algorithm has been implemented
in cooperation with Ford Motor Company and is currently success-
fully used in all plants across Europe. We illustrate its efficiency by
computational results on real-world data.

∗corresponding author (phone:+49-2331-9872658, fax:+49-02331-9874269)
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1 Motivation

There exists a huge variety of order sequencing problems in practice and,
therefore, just as much literature on this topic. However, each problem vari-
ant has its specific background that often prevents a generalization of ideas
and algorithms and successful solution approaches are often kept as company
secrets (see [1] for an overview of accessible reports).

Frequently, solution approaches to an automobile order sequencing prob-
lem are based on local search strategies (see [4, 6]). Other approaches em-
ploy constraint programming (see [1]), while a classical approach is the well-
known goal chasing algorithm (see [5]). The basic idea, however, which all
approaches have in common is the support of just-in-time production. The
automobile industry is a leading user of this concept (see [7]) that focuses on
a smooth production flow.

Although plants have a more complex structure, known approaches con-
centrate on a single part of the production process only, which is usually the
assembly shop. Figure 1 shows a sketch of a typical automobile production
plant.

Paint shop Trim lines and final assemblyPress and body shop

Entry Offline

Figure 1: Sketch of an automobile production plant. Squares denote split
points of the production sequence, while triangles denote interim storage
systems.

We present an extension of these known models by dealing with the en-
tire production plant and a larger variety of requirements. In particular, we
provide means for the reduction of the number of color changes within the
enamel booths of the paint shop to respect the required properties of a se-
quence. The restrictions are formulated in terms of rules and a production
sequence that violates as few of these rules as possible is computed. Note
that, as the number of rules is usually large, it is in general not possible to
arrange the orders in a production sequence that incurs no violation of rules
at all.
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2 Framework and basic concepts

The production process is essentially a probabilistic process. The main reason
for this are lots of eventualities for manufacturing errors which make the
production process difficult to control. Our major goal is to develop concepts
that model the production process in a deterministic and thereby controllable
way. These concepts include a suitable representation of the plant, a sensible
handling of manufacturing errors, and a suitable set of rules for the evaluation
of the quality of a production sequence. For convenience, Appendix A lists
the meaning of the most frequently used abbreviations.

2.1 Orders, commodities, and combinations

We assume that each customer request is specified by a set of commodities.

Definition 2.1 Let C be a finite set. We refer to the elements of C as com-
modities. A subset of C is called an order and the set of orders for a specific
production day is denoted by O. We assume that |O| = n and |C| = m.

Each order o ∈ O can be interpreted as a vector o ∈ {0, 1}m, where

oi :=

{

1 if o has commodity i
0 otherwise

for i = 1, . . . , m. For convenience, we say that c ∈ o or o has commodity c if
oc = 1.

The interpretation of orders as binary vectors assigns identical vectors to
orders with identical commodity sets and yields a straightforward partition
of O.

Definition 2.2 Let C ⊆ C be a not necessarily non-empty set of commodi-
ties. We call two orders a, b ∈ O equivalent, if and only if ac = bc for all
c ∈ C. For a commodity set C ⊆ C we denote by O(C) the set of orders that
have the commodities C. The corresponding partition is denoted by

P(C) :=
˙⋃

C′⊆C

O(C ′).

We call each set O := O(C ′) ∈ P(C) a commodity combination. Thus,
orders of the same commodity combination correspond with respect to all
commodities of C. We will write c ∈ O = O(C) if c ∈ C.
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2.2 Plant layout

A plant consists of consecutive production shops and each production shop
is split up into several lines which we call zones . Each zone, again, is split
into stations . At least one commodity of some order is installed at each zone
and exactly one commodity is applied at each station. Stations, however, are
ignored in our model of the plant layout as the production process within a
zone can not be influenced in any way.

Definition 2.3 We denote the set of zones of the plant by Z. The first zone
of the plant is called master zone. We denote the master zone by zm ∈ Z and
call the order sequence in the master zone (which is the production sequence
that has to be computed) the master sequence. Each position in the master
sequence is an integer p ∈ {1, . . . , n}.

A suitable representation of a plant is given by a directed graph G =
(Z, A) which is a directed path with a “multiplied” stable set of vertices (see
[3]). Each zone corresponds to a vertex and arcs correspond to the production
flow between zones (see Figure 2).

Press and body shop Paint shop Trim lines and final assembly

Entry Offline

Figure 2: Representation of the plant of Figure 1 as a directed graph.

We assume that Z contains exactly one zone without predecessor (the
master zone) and exactly one zone without successor (the last zone of the
plant). If two zones have the same in-neighbor, they are called parallel . A
zone which is not parallel is called non-parallel . Parallel zones of a plant
may differ in their length and speed. Therefore, each zone may have another
proportion of production, which we call the quota of the zone.

Definition 2.4 We denote the quota of a zone z ∈ Z by

q(z) ∈ {k/n : 1 ≤ k ≤ n}
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and extend our plant representation to a vertex-weighted directed graph G =
(Z, A; p), where q(z) = 1 if z is non-parallel. For any maximal set Z of
parallel zones

∑

z∈Z q(z) = 1 must hold.

Zone quotas of parallel zones are used for the generation of deterministic
patterns for the storage and retrieval of orders in the zones. Given a maximal
set Z of parallel zones, a pattern is a sequence of integers pi ≥ 1, where each
entry pi is interpreted as the storage resp. retrieval of pi orders on and from
zone i mod |Z|. Consequently, we have

∑

i pi = n for each pattern.

Example 2.1 Let Z = {z1, z2, z3} be a maximal set of parallel zones. Both
the pattern P1 = (1, 1, 1, 1, 1, 2, . . .) and the pattern P2 = (2, 2, 3, 2, 2, 3, . . .)
describe the storage and retrieval of orders for zone quotas q(z1) = q(z2) =
2/7 and q(z3) = 3/7. The proportion of production is therefore 2n/7 for
both z1 and z2, and 3n/7 for z3. In practice, P1 is preferred over P2 as it
distributes orders more evenly on the zones and supports a smooth production
flow in a better way.

2.3 Commodity delays

Following our goal to model the production process in a deterministic way,
we emphasize a correlation between commodities and manufacturing errors,
i. e. some commodities are more susceptible to manufacturing errors than
others. Each manufacturing error leads to a production re-run that delays
an order within the production sequence with respect to its original position.
We model (and anticipate) the occurrence of manufacturing errors by the
introduction of commodity delays . A commodity delay can be imposed on
each zone of the plant.

Definition 2.5 A commodity delay is a mapping d : C ×Z → N≥0, and the
delay of a commodity c ∈ C in a zone z ∈ Z is denoted by d(c, z).

Note that commodity delays may cause gaps in the order sequence of
zones, which can be represented by dummy orders that act as wild-cards and
can, for example, be filled by orders of preceding or succeeding production
days.

To our knowledge, there does not exist any other solution approach for
an order sequencing problem that employs commodity delays.
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2.4 Sequence index routing

Zones and patterns as introduced in Section 2.2 are used to compute a routing
of master sequence order positions through the plant. The routing assigns to
each order position i of the master sequence a set of zones through which an
order passes if sequenced to position i. Likewise, the routing assigns to each
zone z of the plant a set of order positions that pass through z. Note that
this yields either a permutation (for non-parallel zones) or a partition into
sequences (for parallel zones) of the order positions in the master sequence.

Definition 2.6 A routing is a mapping R : {1, . . . , n} → 2Z that satisfies
|R(i) ∩ Z| = 1 for each maximal set of parallel zones and z ∈ R(i) for any
non-parallel zone z. R(i) ⊆ Z denotes the set of zones through which an
order passes if sequenced to position i of the master sequence, and R−1(z) :=
{i ∈ {1, . . . , n} : z ∈ R(i)} denotes the set of master sequence order positions
that pass through a zone z ∈ Z.

We assume that the set R(i) is not affected by commodity delays, i. e.
commodity delays do not change the set of zones through which an order
passes. Consequently the delay of an order (induced by the delay of its com-
modities) in a zone can be calculated as the sum of its maximal commodity
delays in preceding zones. Note that zone quotas have to be respected and
that two different orders can be delayed to the same position in a zone.

Definition 2.7 Let o ∈ O be sequenced to position i of the master sequence.
We denote by P (i, z0) the position of the master sequence position i in zone
z0 as given by the routing. Then with increasing i the position of o in any
zone z0 succeeding the master zone zm is given by

P (o, i, z0) := P (i, z0) +
∑

z∈Zp

⌊max
c∈o

{d(c, z)} · q(z)⌉ + ∆,

where ∆ ∈ N≥0 denotes a shift to the next position not already used by an
order with smaller master sequence index. Zp ⊆ R(i) denotes the set of zones
preceding z0 and ⌊x⌉ is the value of x rounded to an integer.

2.5 Sequence slots

Despite of the impossibility to control the production process entirely, interim
storage systems can provide a production sequence that is at least similar to
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the intended one. However, even a small perturbation of the original pro-
duction sequence generally leads to a significant increase of the number of
color changes in the paint shop. It is not sensible to focus on large subse-
quences of orders with the same enamel color before they reach the paint
shop. Instead, we try to cope with unavoidable perturbations of the original
production sequence by clustering enamel colors. The idea is to increase the
probability that identical colors are sequenced close to each other by allowing
a specified color to occur in specified intervalls of the sequence only. This
in turn increases the probability that, by the use of interim storage systems
prior and next to the paint shop for short-term order interchanges, larger
blocks of the same color can be built.

The master zone and, with respect to zone quotas, all other zones of
the plant are therefore divided into slots of equal size, i. e. position i of the
master sequence is contained in slot s if and only if position i is contained in
slot s of any zone z ∈ R(i). Note, however, that sufficiently large commodity
delays may cause an order sequenced to slot s of the master zone to appear
in a slot s′ > s of a succeeding zone.

The introduction of slots is one of the key concepts for enamel color
clustering, as enamel colors can be advised to appear in a specified number
of slots only. Furthermore, the master sequence is computed slot by slot
which significantly decreases the running time of our solution algorithm. In
practice, each slot usually corresponds to a working shift.

We denote the number of slots of the master zone by S and assume that
the size n

S
of each slot is an integer.

2.6 Rules

Each zone of the plant accepts rules. Each rule must state the zone, the
commodity it applies to, and a priority. The priority of a rule is an integer
p ∈ {1, . . . , 10}, where p = 1 denotes the highest and p = 10 the lowest
priority.

Each rule specifies a constraint on a zone of the plant and the quality of a
sequencing of an order o to a position i of the master sequence is rated by the
number of resulting rule breaks. Note that, as we use a deterministic routing
of order positions through the plant, it is in principle possible to evaluate
each rule in the master zone instead of the zone it applies to.

The suggested distinction between paint shop and assembly shop rules is
not strict. Rather, any rule can apply to other shops as well. For a given
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commodity c ∈ C and a zone z ∈ Z any of the following rules can be defined:

Paint shop rules

Clustering: c is allowed to occur in a specified number of slots only.

Assembly shop rules

Banning: c is not allowed to occur in a specified interval of the zone.
Ratio: At most x out of y consecutive orders should have commodity

c.
Spacing: Orders with commodity c should occur with a minimum dis-

tance.
Grouping: Orders with commodity c should occur in groups of given

minimum and maximum size, where two groups must keep a
specified minimum distance.

Spreading: Orders with commodity c should be evenly spread.

Table 1: Possible rules for a commodity c on zone z

Most of the rules presented above are typical of automobile production.
While they can be used to support a smooth production flow and just-in-
time production, they provide opportunities to respect particular technical
restrictions of plants as well. To our knowledge, the clustering rule is a new
supplement in this context.

We may assume that the commodity set C contains only commodities for
which at least one rule holds. Note that there is no emphasis of any of the
rules to be an objective function, i. e. a high-quality order sequence is any
order sequence that incurs a minimal violation of these rules with respect to
their priorities.

In the following sections we present a two-stage solution approach that
covers the entire rule set for any zone, no matter which shop it belongs to.
The solution approach divides into two main stages:

1. Compute an order clustering that supports the subsequent computation
of a master sequence slot by slot.

2. Compute a master sequence that violates as few rules as possible.

The computation of an order clustering will be considered in Section 4. At
first we will deal with the construction of a master sequence, assuming that
an order clustering has been computed already.
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3 Master sequence construction

After each order is assigned to a slot, the master sequence is being con-
structed slot by slot in a straightforward greedy fashion. We iterate through
all sequence positions i = 1, . . . , n of the master sequence and temporarily
assign each unsequenced order to the current position i. The effect on the
quality of the master sequence arising from the current assignment is rated
by an evaluation of the rule set with respect to the commodities of the order
(see Section 3.1). The order whose assignment is rated best is sequenced
to position i and we proceed to position i + 1. Note that it is sufficient to
evaluate rules only for one order of each commodity combination and that
commodity combinations may change from slot to slot.

3.1 Rule evaluation

Due to the deterministic model of the production process described by the
framework in Section 2, the master sequence determines the order sequence
in all zones of the plant. Whenever an order is assigned to a position of the
master sequence, we can therefore check the quality of the assignment with
respect to the given rule set. Note that we rate only a single assignment
rather than a set of assignments.

Definition 3.1 Let o ∈ O be an order sequenced to position i of the master
sequence. The resulting numbers of rule breaches are collected in a vector
b = b(o, i) ∈ N10

≥0, where bp = r if and only if the sequencing of order o to
position i of the master sequence causes r rules of priority p to be broken.
Likewise, a vector v = v(o, i) ∈ R10 of penalty values is created, where vp = r
if and only if the sequencing of order o to position i of the master sequence
causes the resulting penalty values for all rules of priority p to sum up to the
value r.

Each rule can be broken at most once for each commodity. For each
broken rule of priority p, either the number of rule breaches bp or the penalty
value vp or both are updated.

In the following, we specify all rules in more detail and describe how to
obtain the number of rule breaches and penalty values resulting from broken
rules, assuming that an order o ∈ O is sequenced to position i ∈ {1, . . . , n}
in slot s ∈ {1, . . . , S} of the master sequence and that c ∈ C resp. z ∈ Z
denotes the commodity resp. the zone affected by a rule of priority p. Recall
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the notation introduced in Section 2.6 and that P (o, i, z) denotes the position
of o in z (see Definition 2.7). We express rule breaks and penalty values in
terms of commodity distances to keep them comparable.

The clustering rule is not evaluated, as the order clustering computed in
Section 4 is not allowed to be changed. The rule specification is therefore
moved to Section 4.

Banning rule Commodities may be banned from parts of zones. There-
fore, it is possible to specify at most one interval, i. e. a set

B(c, z) = {lc,z, . . . , uc,z} ⊆ {1, . . . , n}

of consecutive integers, for any commodity c ∈ C and any zone z ∈ Z,
meaning that an order with commodity c should not occur at any position i ∈
B(c, z) in zone z. Using the deterministic sequence index routing described
in Section 2.4, we can deduce banned order sequence positions for each slot
of the master zone. If c ∈ o and lc,z ≤ P (o, i, z) ≤ uc,z, the number of rule
breaches bp is increased by 1 and the penalty value is increased by

vp = 1 + min{P (o, i, z) − lc,z, uc,z − P (o, i, z)}.

Ratio rule The maximal number of occurrences of a commodity c ∈ C
within a consecutive subsequence of the production sequence can be specified
by a rational number R(c, z) = x/y ∈ Q≥0 which means that at most x
occurrences of c are allowed within any consecutive subsequence of length
y of the order sequence in zone z. Note that R(c, z) = x/y and R(c, z) =
(kx)/(ky) for k ∈ N>0 do not formulate identical constraints in general. Let

x′ := |{j ∈ {0, . . . , y − 1} : P (o, i, z) − j holds an order o′ with c ∈ o′}|

denote the number of orders within a consecutive subsequence of orders of
length y in z that have commodity c. If x′ > x, the number of rule breaches
bp is increased by 1 and the penalty value is increased by vp = (x′ − x)2.

Spacing rule A minimal distance between orders with a commodity c ∈ C
can be specified by an integer D(c, z) = d ≤ 1 which means that between
any two orders in the order sequence in zone z ∈ Z that have commodity c
there should be at least d orders that do not have commodity c. Let

d := min{j : P (o, i, z) − j holds an order o′ with c ∈ o′}
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denote the minimal distance of o to an order that has commodity c. If c ∈ o
and d < D(c, z), the number of rule breaches bp is increased by 1 and the
penalty value is increased by vp = (D(c, z) − d)2.

Grouping rule Integers gmin(c, z) ≥ 2 and gmax(c, z) ≥ gmin(c, z) can be
used to specify that a commodity c ∈ C should occur in zone z in a consecutive
subsequence which has a minimal length gmin(c, z) and a maximal length
gmax(c, z). Moreover, it is possible to specify a minimal distance D(c, z) ≥ 1
between consecutive subsequences of orders that contain c. Let

g := max{j : P (o, i, z) − k holds an order o′ with c ∈ o′ for all k = 1, . . . , j}

denote the maximal length of a consecutive sequence of orders in z that have
commodity c, starting from P (o, i, z) − 1. The rule is assumed to be broken
if

g + 1 > gmax(c, z) (for g > 0 and c ∈ o)

g < gmin(c, z) (for g > 0 and c 6∈ o)

d < D(c, z) (for g = 0 and c ∈ o)

where

d := min{j : P (o, i, z) − j holds an order o′ with c ∈ o′}

denotes the minimal distance of o in z to an order that has commodity c.
For any rule break, the number of rule breaches bp remains unchanged

and the penalty value is increased by vp = (g + 1 − gmax(c, z))2, or vp =
(g − gmin(c, z))2, or vp = (D(c, z)− d)2, respectively. Note that the grouping
rule is the only rule which is evaluated regardless whether c ∈ o or c 6∈ o.

Spreading rule An even spreading of a commodity c ∈ C within the order
sequence of a zone z ∈ Z can be specified. Evenly spread commodities are
essential for a smooth production flow. Given a clustering of orders, we can
easily deduce the number of occurrences s(c) of any commodity c ∈ C within
each slot s ∈ {1, . . . , S} of the master zone, which we use to prepare the
evaluation of spreading rules. Recall that we may always evaluate spreading
rules in the master zone instead of the zone specified by the spreading rule.
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Definition 3.2 We denote the desired average spreading distance for a com-
modity c ∈ CSpr in the master zone by A(c, zm; s) := n/(S · s(c)) for each slot
s = 1, . . . , S.

Note that A(c, zm; s) is in general not an integer. Therefore, both ⌊A(c, zm; s)⌋
and ⌈A(c, zm; s)⌉ are the actually desired spreading distances. Let

p := |{j : P (o, i, zm) − j is contained in slot s}|

denote the number of orders in slot s up to position i and let se := p/A(c, zm; s)
denote the expected number of orders with commodity c in slot s up to po-
sition i. Furthermore, let

sf := |{j : P (o, i, zm) − j holds an order o′ in slot s with c ∈ o′}|

denote the number of orders with commodity c in slot s up to position i. If
c ∈ o and se 6= sf , the number of rule breaches bp remains unchanged and
the penalty value is increased by vp = sf − se.

A similar way of spreading rule evaluation is also used in the well-known
goal chasing algorithm (see [5]), which is a standard algorithm for smooth
production sequencing. Note that there is only little information for a sensi-
ble evaluation of the spreading rule at the start of each slot. This drawback
can be overcome and the transition between slots can be improved by intro-
ducing suitable distance adjustments.

We emphasize that grouping and spreading rules do not affect the number
of rule breaches because both rules are very restrictive and their violation
would dominate other rules. Moreover, the intention of these rules is to
tendentiously move the orders to spread positions or into groups.

Note that it is sufficient to consider only orders sequenced to positions
p ∈ {1, . . . , P (o, i, z)} resp. p ∈ {1, . . . , P (o, i, zm)} for all rule evaluations,
as the master sequence is constructed order by order within each slot.

We complete the description of the master sequence construction algo-
rithm by a description of our strategy to rate the quality of two different
order assignments to the same master sequence position, using the resulting
number of rule breaches and penalty values.

Definition 3.3 Let o1 resp. o2 be orders sequenced to position i of the master
sequence and let b1 = b(o1, i) and b2 = b(o2, i) resp. v1 = v(o1, i) and v2 =
v(o2, i) denote the vector of numbers of rule breaches resp. penalty values
resulting from the evaluation of all rules that affect o1 and o2.
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1. If b1 < b2 with respect to lexicographical ordering, o1 is rated better than
o2.

2. If b1 = b2, o1 is rated better than o2 if
∑10

p=1(11 − p)(v1p − v2p) < 0
holds.

3. If o1 and o2 are still rated equally, we rate o1 better than o2 if more
rules apply to o1 than to o2. Otherwise, we resolve the tie between o1

and o2 arbitrarily.

4 Order clustering

We now turn to the computation of an order clustering which has to be
done prior to constructiong the master sequence as described in the previous
section. At first we have to specify the clustering rule as it has been outlined
in Section 2.6.

Clustering rule For each commodity c ∈ C can be specified by an integer
S(c, z) ≥ 1 that c should occur in at most S(c, z) slots in zone z ∈ Z. How-
ever, if CClu ⊆ C is the set of commodities which are affected by a clustering
rule, any order o ∈ O is allowed to have at most one commodity c ∈ CClu.
Furthermore, if z is a parallel zone for which a clustering rule holds, we
assume that the clustering rule holds for all zones which are parallel to z.
Although this rule is intended to support enamel color clustering only, it can
in principle be applied to other commodities as well.

Since the master sequence is computed slot by slot, we assign each order
to exactly one slot of the master sequence. Additionally, we have to focus on
an even distribution of non-clustering commodities among the slots, so that
the orders of each slot can be treated as a smaller copy of the original order
set.

The order clustering step is divided into two parts.

1.1 Compute a preferred slot of the master zone for each order.

1.2 Assign each order to a slot of the master zone.

Rules which basically can prevent an even spreading of commodities
among the slots of the master zone are clustering and banning rules. We

13



therefore consider banning, clustering, and spreading rules during the order
clustering step.

Definition 4.1 We denote the set of commodities affected by a banning,
clustering, spreading rule by CBan, CClu, CSpr, respectively.

4.1 Computation of preferred order slots

Our aim is to support an even spreading of commodities with respect to
clustering and banning rules. We therefore try to distribute weighted pro-
portions of commodity combinations representing these rules on each slot in
a suitable way, i. e. the sum of weighted proportions assigned to each slot
should approximate the desired slot contents as well as possible. As identical
commodity combinations may appear in different slots and each commodity
combination corresponds to a set of orders, this yields a set of preferred order
slots for each order.

The problem of computing preferred order slots is related to a multidi-
mensional version of the well-known bin packing problem (see [2]). In our
case, however, the number of bins is fixed, the desired bin content is known,
and bins are thus allowed to be overloaded.

Problem 4.1 Best Vector Packing into Bins Problem (BVPBP)

Instance A set B of bins, a desired bin content w∗
b ∈ Rd

≥0 for each b ∈ B, a
set I and a vector wi ∈ Rd

≥0 for each i ∈ I for which
∑

b∈B w∗
b =

∑

i∈I wi holds.

Task Approximate each w∗
b with elements of {wi : i ∈ I} in an optimal

way, i. e. find a packing P : I → B such that
∑

b∈B ||w∗
b −

∑

i∈P−1(b) wi||2 is minimized.

To our knowledge, the BVPBP is a new combinatorial problem which has
not been discussed in the literature yet. Due to both a tight project schedule
and running time reasons, we had to do without an exact solution algorithm
for the BVPBP. We applied a greedy heuristic instead, which chooses a vector
and a bin at each step so that the vector improves on the bins contents as
much as possible.

An instance of the BVPBP in the context of order clustering consists
of the set of slots B = {1, . . . , S} and vectors for the desired slot contents
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which respect banning rules as well as vectors whose components arise from
commodity combinations which respect clustering and spreading rules. We
consider the partition P(CClu) = O1∪̇ . . . ∪̇Ou of the order set O and set
r := |CSpr| and introduce a vector for each commodity combination in P(CClu).

Definition 4.2 Let O = O(C) ∈ P(CClu). The vector
wi = (wi,1, . . . , wi,r, wi,r+1) ∈ Nr+1

≥0 consists of weights defined by

wi,j :=

{

|Oi ∩ O(cj)| for j = 1, . . . , r
|Oi| for j = r + 1

, cj ∈ CSpr

As P(CClu) is a partition, it holds

∑

Oi∈P(CClu)

wi,j = |O(cj)| for j = 1, . . . , r.

Recall that if O(C) 6= ∅ there is at most one commodity c ∈ C ∩ CClu (see
Section 2.6). If a clustering rule affects a commodity combination Oi and
allows its contents to be clustered in s > 1 slots, the corresponding vector
wi is replaced by s new vectors with weights wi,j/s. For example, the vector
that corresponds to the commodity combination for which no clustering rule
holds is always split into S vectors, i. e. into as many vectors as there are
slots of the master zone.

Definition 4.3 We denote the set of banned order sequence positions for
slot s of the master zone by B(c, zm; s). The corresponding banning factor is
given by

b(c, zm; s) :=
n − S · |B(c, zm; s)|

n − |B(c, zm)|

for s = 1, . . . , S and indicates the banning proportion for each slot s of the
master zone zm.

Note that B(c, zm) =
⋃S

s=1 B(c, zm; s) holds. If B(c, zm) = ∅ or each slot
s has the same number |B(c, zm; s)| of banned order sequence positions, we
have b(c, zm; s) = 1. Otherwise, we have 0 ≤ b(c, zm; s) < 1 if the banning
in slot s is below average and b(c, zm; s) > 1 if the banning in slot s is above
average. In any case,

∑S
s=1 b(c, zm; s) = S holds.
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Definition 4.4 The desired slot contents w∗
s = (w∗

s,1, . . . , w
∗
s,r, w

∗
s,r+1) ∈

Nr+1
≥0 of slot s of the master zone consists of weights defined by

w∗
s,j :=

{

b(cj , zm; s) · |O(cj)|/S for j = 1, . . . , r
n/S for j = r + 1

for s = 1, . . . , S and cj ∈ CSpr.

Note that
∑u

i=1 wi,r+1 =
∑S

s=1 w∗
s,r+1 = n holds, i. e. we introduce the

(r + 1)-th component of each vector to achieve evenly occupied slots. As
each vector wi corresponds to a commodity combination Oi ∈ P(CClu) which
in turn corresponds to a set of orders, a solution to the BVPBP, if applied to
the set of slots and vectors as defined in Definition 4.2 and Definition 4.4, is
an ambiguous suggestion how to assign orders to slots of the master sequence.
Let A(s) denote the set of vectors wi assigned to slot s.

Definition 4.5 We denote the set of preferred slots for a commodity combi-
nation Oi ⊆ O by

S∗(Oi) = {s ∈ {1, . . . , S} : wi ∈ A(s)}.

4.2 Assignment of orders to slots

The preferred slots of a commodity combination yield no usable assignment
of orders to slots in general (as there is no guarantee that all slots are filled
with the same number of orders and there may be more than one preferred
slot for an order), but can be used to compute an actual assignment of orders
to slots by a linear programming approach.

We consider the partition of O induced by the set of banning, clustering,
and spreading commodities C̃ := CBan ∪ CClu ∪ CSpr and assume that P(C̃) =
O1 ∪ . . . ∪ Oq.

Definition 4.6 We denote the set of commodity combinations affected by a
commodity c ∈ C̃ by Pc(C̃) := {O ∈ P(C̃) : c ∈ O}.

We introduce a variable xis for each commodity combination i = 1, . . . , q
and each slot s = 1, . . . , S that counts the number of orders in Oi to be as-
signed to slot s. The value of each xis has to respect the following constraints
and objectives.
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Slot size constraint The number of orders in each slot must clearly not
exceed the maximal slot size. Therefore,

q
∑

i=1

xis = n/S

must hold for all slots s = 1, . . . , S.

Banning constraint Recall that B(c, zm; s) denotes the set of banned
sequence positions for a commodity c ∈ C from the master zone zm ∈ Z in
slot s. As we must not exceed the number of allowed sequence positions for
c in the master zone zm in slot s,

∑

Oi∈Pc(C̃)

xis ≤ n/S − |B(c, zm; s)|

must hold for all slots s = 1, . . . , S and commodities c ∈ CBan.

Clustering objective The occurrence of an order o ∈ Oi within a slot
s 6∈ S∗(Oi) has to be avoided. Therefore, we demand

∑

Oi∈Pc(C̃)

s/∈S∗(Oi)

xis ≥ 0

for all slots s = 1, . . . , S and commodities c ∈ CClu. Our objective is to reach
equality for these constraints.

Spreading objective The spreading of commodities requires the consider-
ation of banning rules. As the number of orders with a spreading commodity
within each slot must therefore be scaled with the banning factor,

∑

Oi∈Pc(C̃)

xis = O(c)/S · b(c, zm; s)

must hold for all slots s = 1, . . . , S and commodities c ∈ CSpr. Our objective
is to keep equality for these constraints.

We derive an integer program from these constraints and objectives by the
introduction of slack variables and solve its relaxation. Note that we assume
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that CClu ∩ CSpr = ∅ holds, as the restrictions arising from clustering and
spreading objectives are inconsistent otherwise. We solve the linear program
successively for all rules from priority p = 1 up to priority p = 10 to achieve
a strict separation of rules of different priorities. The first run considers only
rules of priority p = 1 and its solution yields an initial set of constraints that
are taken over to the next run. The second run includes rules of priority
p = 2 as well and refines the solution of the first run, as the consideration
of additional commodities yields a refinement of commodity combinations.
Again, additional constraints are taken over to the next run, until all rules
and a variety of accumulated constraints of previous runs are considered in
the final run.

The result of these iterations is a set of values xis that suggests to assign
xis orders of Oi to slot s. The actual assignment is in the end computed
by a straightforward greedy picking algorithm that decides which orders of a
commodity combination are assigned to a slot and additionally resolves the
problem of rounding the values xis to suitable integer values. Furthermore, it
has to provide a strategy to cope with situations in which the linear program
is not feasible, although we can almost always assume a reasonable input for
the linear program in practice.

5 Computational results

Our solution approach is currently used for order sequencing in all automobile
plants of Ford Motor Company across Europe. The implementation demands
a careful balancing and monitoring of the rules. But this has led to significant
increases in color batch size. The results vary depending on the order mix to
be sequenced and external factors in the plants, but in one plant specifically
a 50% increase in batch size on average has been achieved. Results for other
European plants vary but have also been significant.

The algorithms presented in Section 3 and Section 4 are embedded in a
graphical user interface provided by Ford Motor Company, which offers an
easy way to specify rules for a forthcoming production day. Additionally, it
includes diagnostic tools for past production days, which in particular allow
the rating of the quality of the corresponding production sequences with
respect to the specified rules. Figures 3 – 4 illustrate the efficiency of our
approach by screen-shots of this interface.

The screen-shots are taken from different sequencer runs on real-world
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data for the plant in Cologne. The order set O contains n = 1712 orders.
The average running time for a complete sequencer run on 1500 orders is
about 3 minutes on a computer with a Sun E4500 processor with 450 MHz
and 1 GB memory. Figure 3 and Figure 4 illustrate that grouping, spreading,
clustering, and banning rules can be expected to work efficiently for high
priorities. Figure 4(d) shows the effect of Definition 3.3, which neglects
commodities with low priorities.
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(a) Report showing how groups of size 2 of commodity KAAAL
are spread equally within the master sequence.

(b) Report showing how commodity KXAAH (an enamel color) is
clustered into the first slot of the master sequence.

Figure 3: Screen-shots (1/2).
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(c) Report showing how commodity KAAAL is being banned from the last
1000 positions of the master sequence. The last occurrence is at position 693.

(d) Report showing how groups of size 10 of commodity DAAAT are spread
within the master sequence. Rules of higher priority prevent

the grouping rule from functioning well.

Figure 4: Screen-shots (2/2).
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A List of abbreviations

Notation Meaning
O, C Order set of size n and commodity set of size m
P(C) Partition of the order set with respect to C ⊆ C
O = O(C) Set of orders which contain each commodity in C ⊆ C
Z Set of zones of the plant
q(z) Quota (proportion of production) of a zone z ∈ Z
zm Master zone of the plant
R(i) Routed zones of master sequence position i
P (o, i, z) Position of o ∈ O in z ∈ Z if sequenced to position i in zm

S Number of slots of the master zone, each of size n/S
S∗(Oi) Set of preferred slots for a commodity combination Oi ⊆ O
d(c, z) Delay of commodity c ∈ C in zone z ∈ Z
b(c, zm; s) Banning factor for c ∈ C in zm ∈ Z in slot s
B(c, zm; s) Banned positions for c ∈ C in zm ∈ Z in slot s
A(c, zm; s) Desired average spreading distance for c ∈ C in zm ∈ Z in slot s
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