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Abstract. Recently Hochstättler and Nešetřil introduced the flow lat-
tice of an oriented matroid as generalization of the lattice of all integer
flows of a digraph or more general a regular matroid. This lattice is
defined as the integer hull of the characteristic vectors of signed circuits.

Here, we characterize the flow lattice of oriented matroids that are
uniform or have rank 3 with a particular focus on the dimension of the
lattice and construct a basis consisting of directed circuits. For gen-
eral oriented matroids we introduce a 2-sum and decompose oriented
matroids into 3-connected parts. We show how to determine the dimen-
sion of the lattice of 2-sums and conclude with some questions based on
extensive experiments on small oriented matroids with connectivity at
least 3.

1. Introduction

A circular flow in a digraph G = (V,A) is a flow f ∈ Z|A| which satisfies
Kirchhoff’s law, i. e. the in-flow of a vertex equals the out-flow:∑

a∈δ+(v)

fa =
∑

a∈δ−(v)

fa ∀v ∈ V.

It is well known that each circular flow must be an integer combination
of characteristic vectors of signed circuits of G and obviously each integer
combination of signed circuits is a circular flow as well (see [1]).

Thus, the lattice of integer flows is generated by the oriented circuits and
this easily generalizes to oriented matroids. Analogous to the flow number of
a digraph (see [19] for a survey), Hochstättler and Nešetřil [14] introduced
the flow number ΦL(O) of an oriented matroid as the smallest number k
for which a nowhere-zero k-flow exists. For co-graphic oriented matroids
this flow number corresponds to the chromatic number of the corresponding
graph.

In this work we characterize the flow lattice of uniform and rank 3 oriented
matroids by computing its dimension, presenting an easy to test membership
condition and constructing a basis of signed circuits. Our observations are
summarized in Table 1.

From this structure the flow number ΦL for the two classes of oriented
matroids is easily derived. While ΦL is invariant for all orientations of a

2000 Mathematics Subject Classification. 52C40, 52B40, 05B35.
Key words and phrases. oriented matroids, flow lattice, nowhere zero flows, neighborly

matroid polytopes.
1
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uniform orientable matroid, the dimension of the flow lattice turns out to
be not. The dimension is either n or n − 1 (where n is the number of
elements) and dimension n− 1 is achieved by the class of realizable oriented
matroids which represent neighborly polytopes (see [10] for an introduction
and [13] and [21] for lectures on neighborly polytopes). Generalizing to non-
realizable matroids, exactly the reorientation classes of neighborly matroid
polytopes come with a flow lattice dimension of n− 1. Note, that not every
neighborly matroid polytope is realizable (Altshuler et al. [2], Bokowski and
Sturmfels [5]).

For uniform or rank 3 oriented matroids the flow number of Hochstättler
and Nešetřil [14] does not depend on the orientation of the underlying ma-
troid, however, different orientations of the same matroid may lead to dif-
ferent flow lattice dimensions. This might indicate that ΦL is not a matroid
invariant (this problem is raised in [14]), yet we have not found orientations
of a matroid where the numbers differ.

Our results about the dimension of the flow lattice solve a research prob-
lem raised in Björner et al. [3, Exercise 4.45(d)*] for rank 3 and uniform
matroids. For general oriented matroids we give an outlook based on the
decomposition into sums and 2-sums of 3-connected oriented matroids and
compute the dimension of the flow lattice of 2-sums from the dimension of
the components. Furthermore we report on computational experiments on
the data of Finschi [8] and standard examples from Oxley [17]. Our numer-
ical results – on examples that still have to be considered as very small –
seem to indicate that the flow lattice dimension of non-regular non-uniform
3-connected oriented matroids might be in {n − 1, n} except for a small
family of examples and furthermore, for a growing number of elements and
fixed rank the flow lattice seems to become trivial.

The latter matches the results for a different approach to define a flow
number Φo of an oriented matroid (see Goddyn et al. [12]). This flow number
is not a matroid invariant even for uniform orientable matroids (Goddyn
et al. [11]) and, in the non-regular case, seems not to be related to the
parameter considered here.

2. Notation

2.1. Oriented Matroids. We use standard notation for oriented matroids
as in [3]. Let E = {1, . . . , n} be an index set and C the set of signed circuits of
an oriented matroid O(E, C). For a signed subset C = (C+, C−) we denote
by ~C its corresponding signed vector and by ~C1 ◦ ~C2 the signed vector of the
composition of C1 and C2 (see [3] for details). A(C) ∈ {0,±1}|C|×n denotes
the circuit matrix holding the signed vectors of circuits as rows (occasionally
we skip one of two alternating rows). We call a circuit C ∈ C balanced if
|C+| = |C−|. If this condition holds for any circuit C ∈ C then we call
O(E, C) to be balanced (note that this definition is dual to that of Sturmfels
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Table 1. Results of the paper concerning the flow lattice of
a connected simple and co-simple oriented matroid O with
more than r + 3 elements

non-regular

non-uniform uniform

rank 3 r even r odd

dimFO |E| |E| |E| − 1 |E|

FO Z|E| Z|E|
{v}⊥ ∩Z|E|

v ∈ {1,−1}|E|
{xT1 even}

ΦL 2 2
2 if |E| even

3 if |E| odd

2 if |E| even

3 if |E| odd

[20] where a balanced oriented matroid of odd rank has balanced co-circuits
only).

2.2. Matroid Polytopes. Consider an acyclic oriented matroid O (i. e.
|C−| > 0 for any circuit C). Then the complements of the positive co-
circuits of O are said to be the facets of O and any intersection of facets is
a face of O. We say that O is a matroid polytope if all one-element subsets
of E are faces of O.

Definition 2.1. A matroid polytope O of rank r on the ground set E =
{1, . . . , n} is called neighborly if any subset F ⊆ E, |F | ≤ b(r − 1)/2c is
a face of O. An oriented matroid is called neighborly if it is reorientation
equivalent to a neighborly matroid polytope.

2.3. Flows in Oriented Matroids. Hochstättler and Nešetřil introduced
the flow lattice of an oriented matroid as the integer hull of its signed vectors:

Definition 2.2. For V = {v1, . . . , vm} ⊂ Zn let

lat (V ) =

{
m∑

i=1

λivi|λi ∈ Z

}
denote the integer lattice of V . The flow lattice of an oriented matroid
O(E, C) and its orthogonal complement are denoted by

FO := lat ({~C : C ∈ C})
F⊥O := {x ∈ Rn : xT y = 0 for all y ∈ FO}.

The flow number ΦL(O) of an oriented matroid O is defined as the smallest
k ∈ N such that there is an x ∈ FO which satisfies 0 < |xe| < k for all
e ∈ E.

This definition of a flow number coincides with the standard definition in
case O is regular. Hochstättler and Nešetřil [14] could show that the flow
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number is a matroid invariant for uniform orientable matroids. Generalizing
to non-uniform orientable matroids they asked:

Problem 2.3. Is there an orientable matroid M so that M has signings
O1,O2 satisfying ΦL(O1) 6= ΦL(O2)?

As obviously, the flow lattices of two oriented matroids from the same re-
orientation class must be isomorphic, we consider how far this might extend
to different reorientation classes. We will show that they even need not have
the same dimension.

3. Uniform Oriented Matroids

Hochstättler and Nešetřil [14] have shown that for a uniform oriented
matroid with even rank r the flow lattice is trivial, i. e. FO = Zn. We will
now deal with the case of odd rank.

Theorem 3.1. Let O be a uniform oriented matroid on E = {1, . . . , n} of
odd rank r ≤ n − 2 and dimFO < n. Then, there is a reorientation IO of
O such that F⊥

IO = 1 ·R. In particular dimFO = n− 1.

Proof. We proceed by induction on n ≥ r + 2.
Let therefore n = r +2. Then, the dual O∗ is the n-point line where each

point corresponds to a co-circuit of O∗ (resp. a circuit of O). An alternating
orientation of the points along the line yields the circuit matrix

A(C) =


0 +1 −1 +1 −1 · · ·

+1 0 −1 +1 −1 · · ·
+1 −1 0 +1 −1 · · ·

...
...

...
...

...
. . .


of O. It can be verified that A(C) has rank n − 1 and, since circuits have
even size r + 1, 1 is orthogonal to any signed circuit.

Now let n > r + 2 and O a uniform oriented matroid on n elements such
that dimFO < n. We choose x ∈ F⊥O\{0} and assume that O is oriented
such that x ≥ 0. Clearly, for an arbitrary e ∈ E, x\e is orthogonal to all
signed circuits of O\e. Thus, by induction xf = xg for all f, g ∈ E\e. Since
e was arbitrarily chosen and |E| ≥ 3 we can conclude x ∈ 1 ·R. �

Corollary 3.2. For the flow lattice of IO as in Theorem 3.1 we have F
IO =

{1}⊥ ∩Zn.

Proof. By Theorem 3.1 the inclusion F
IO ⊆ {1}⊥ ∩ Zn holds. Now let

y ∈ {1}⊥ ∩ Zn be arbitrary. As the circuit matrix of O has even rank and
thus FO/n has full dimension we find signed circuits D1, . . . , Dk ∈ O/n and
integers λ1, . . . , λk such that y \ n =

∑k
i=1 λi

~Di. Now let Ci denote the
signed circuit of O satisfying Ci \ n = Di then necessarily we must have
y =

∑k
i=1 λi

~Ci. �
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Note, that in the reorientation classes considered there is a representative
which is balanced. These oriented matroids are exactly neighborly matroid
polytopes of odd rank, which is an easy consequence using the following
proposition which seems to be folklore.

Proposition 3.3 (see [3, Remark 9.4.10]). A matroid polytope O of rank
2k+1 is neighborly if and only if |C+| = |C−| = k+1 for all circuits C ∈ O.

Theorem 3.4. Let O be a uniform oriented matroid of odd rank. Then
dimFO ≤ n− 1 if and only if O is neighborly.

Proof. By Theorem 3.1 dimFO ≤ n−1 if and only if there is a reorientation
I such that F⊥

IO = {1} · R. This reorientation makes O into a balanced
matroid polytope which is neighborly by Proposition 3.3. �

Next, we analyze the case of FO for odd rank and full dimension. For an
inductive proof we need to avoid that O becomes neighborly after deleting
an element. The next lemma guarantees the existence of such an element.

Lemma 3.5. Let O be a uniform oriented matroid of odd rank r on E =
{1, . . . , n}, where n > r + 3. If O \ i is neighborly for all 1 ≤ i ≤ n then O
is neighborly, too.

Proof. Let O be oriented such that O \ n has balanced circuits only. It
suffices to show that, eventually reorienting n, all circuits in O are balanced.
Assume, there is an unbalanced circuit C. As all circuits have size r +1 and
n > r+3, eventually relabeling the elements, we may assume that n−1 6∈ C.
Now, let I ⊆ {1, . . . , n − 2, n} such that IO \ (n − 1) has balanced circuits
only. Then I ∩ C̃ has to be even for any circuit C̃ ⊆ E \ {n− 1, n}, i. e. for
all r + 1 subsets of {1, . . . , n − 2}. As n − 2 > r + 1 this implies I = {n}
or I = {1, . . . , n− 2}. We will show that there can be no other unbalanced
circuit Ĉ ⊇ {n − 1, n}. Eventually relabeling the elements we may assume
that n − 2 6∈ Ĉ. Now, repeating the above argument for n and n − 1 we
find an Î such that ÎO \ (n − 2) has balanced circuits only and necessarily
Î ∈ {{n}, {1, . . . , n− 3, n− 1}} as well as Î ∈ {{n− 1}, {1, . . . , n− 3, n}},
which is a contradiction. �

Proposition 3.6. The following subsets of Zn are equal:

(1) N1 = {x ∈ Zn : 1T x is even}
(2) N2 = lat ({ei ± ej : i 6= j ∈ E})
(3) N3 = lat ({ei0 − ej : j ∈ E, j 6= i0} ∪ {v}) for v ∈ {2ej0 , ej0 + ek0}

and fixed i0, j0, k0 ∈ E

We now can characterize the full dimensional flow lattices of uniform
oriented matroids of odd rank as follows:
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Theorem 3.7. Let O be a uniform oriented matroid on a finite set E =
{1, . . . , n} of odd rank r and n ≥ r + 3. If dimFO = n and x ∈ Zn then

x ∈ FO ⇐⇒
n∑

i=1

xi is even.

Proof. We proceed by induction on n. If n = r + 3, then O \ e can be
reoriented to be balanced for all e ∈ E. Let O be oriented such that O \ n
is balanced. By Corollary 3.2 FO\n = 1⊥ ∩ Zn−1. Hence, ei − ej ∈ FO
for {i, j} ⊆ {1, . . . , n − 1}. As O is imbalanced we may assume that O \ 1
is imbalanced. Let v ∈ {1,−1}n−1 be the vector such that F⊥O\1 = v · R.
As O \ 1 is imbalanced there is an index j such that v2 = −vj . We may
assume that the orientation of O has been chosen such that v2 = vn and
thus j 6= n. We conclude {e2 + ej , e2 − en} ⊂ FO. By Proposition 3.6 these
vectors generate all integer vectors with even component sum. Finally, as
each of the generators has even component sum the induction is founded.

Now assume n > r+3. By Lemma 3.5 there is i ∈ E such that dimFO\i =
n− 1. By induction we find that all integer vectors with even sum that are
zero in i belong to FO. Now, let C be a circuit containing i. From this
we derive ei + ej or ei − ej in FO for some j ∈ E. We also get 2ei by
subtracting twice the other unit vectors from 2~C and the claim follows by
Proposition 3.6. �

Summarizing we get from [14], Corollary 3.2, and Theorem 3.7:

Theorem 3.8. Let O be a uniform oriented matroid on n ≥ r+2 elements.
Then

FO =


Zn if r is even
{v}⊥ ∩Zn for some v ∈ {1,−1}n if r is odd and O is neighborly
{x ∈ Zn : xT1 is even} otherwise.

Regarding the flow number of a uniform orientable matroid we get the
result of [14] as an easy corollary.

Corollary 3.9.

ΦL(O) =
{

2 if nr is even
3 if nr is odd.

4. Non-uniform Oriented Matroids with Rank 3

While in the last section O was assumed to be uniform we now turn to
general oriented matroids but limit the rank to be 3. In particular, we will
show that any rank-preserving non-regular simple and co-simple extension
of a regular oriented matroid increases the dimension of the flow lattice by
4 (instead of at most two in the uniform case).

While in the uniform case we did not have to deal with loops, co-loops,
parallels or co-parallels, we now have to consider these cases separately. The
following Proposition holds for arbitrary ranks.
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Proposition 4.1. Let O be an oriented matroid on the ground set E and
e ∈ E. Then

dimFO = dimF(O \ e) + 1 if e is a loop,
dimFO = dimF(O \ e) + 1 if e is parallel to some f ∈ E,
dimFO = dimF(O/e) if e is a co-loop,
dimFO = dimF(O/e) if e is co-parallel to some f ∈ E.

The following oriented matroid (which we call O5) is contained in almost
any non-regular and non-uniform oriented matroid of rank 3:

0 + − + +
+ 0 − + +
+ − 0 + +
+ − + 0 0

2
1 3

5

4

Figure 1. The oriented matroid O5 with the signs of its
circuit matrix

O5, being a co-extension of the 4-point line by a co-parallel, has a flow lattice
dimension of 4 and

F(O5) = lat ({e1, e2, e3, e4 + e5}).
At first, we point out that the flow lattice is trivial for any U2,4-free

extension of O5.

Lemma 4.2. Any connected single element extension of O5 which does not
contain a 4-point line has trivial flow lattice.

Proof. Consider a single element extension O6 of O5 which does not contain
a 4-point line. Hence, {1, 2, 3, 6} is not a hyperplane and {4} and {5} are
no longer co-parallel. Consequently, there are circuits C5 and C6 in O6

that contain {4, 6} resp. {5, 6} and not both of 4 and 5. We show that the
circuits of O6 generate {ei}i=1,...,6. Let C1, . . . , C4 be the signed circuits of
O5 as shown in Figure 1. Then e1 = ~C1 − ~C2 + ~C3, e2 = ~C1 − ~C2 + ~C4 and
e3 = ~C1 − ~C3 + ~C4. Since any circuit of O5 is also a circuit in O6, we can
skip the first three coordinates from our considerations (we will fill these
coordinates with ∗).

Assume that there is no circuit containing 4, 5 and 6. Hence, Xτ :=
{τ, 4, 5, 6} is a dependent set for any τ ∈ {1, 2, 3} but not a circuit. Due
to the simplicity of O6 and the absence of co-parallel elements 6 must ei-
ther extend the 3-point line of O5 which is excluded by assumption or
Xτ \ ε is a circuit for ε ∈ {4, 5} \ τ . In other words, there must be cir-
cuits {1, ε1, 6}, {2, ε2, 6}, {3, ε3, 6} with εi ∈ {4, 5}. Assume w.l.o.g. that
ε1 = ε2. By circuit elimination we find a circuit contained in {1, 2, ε1}, a
contradiction.
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Hence, there must be a circuit C7 containing {4, 5, 6}. We may choose a
reorientation so that the rows of

C7 =
C5 =
C6 =

 ∗ ∗ ∗ 1 1 1
∗ ∗ ∗ α 0 1
∗ ∗ ∗ 0 β 1

 =: (∗ |B)

correspond to circuits of O6 where α, β ∈ {+1,−1}. If (α, β) 6= (−1,−1)
the rows of B span Z3 with integer coefficients. Otherwise, applying circuit
elimination between C5 and C6 we find a circuit C ∈ C(O6) containing 4 and
not 6. Since 4 and 5 are co-parallel in O5 and C is also a circuit in O5 we
necessarily must have C(4) = C(5) contradicting signed circuit elimination
which would yield C(4) = −C(5). Consequently, any one-element extension
of O5 has a trivial flow lattice. �

By considering the enumeration of oriented matroids of Finschi [8] we
checked that any 4-line-free connected single element extension of O5 is an
orientation of one of P6, R6, Q6 or W3 which, by the above lemma, has a
trivial flow lattice. On the other hand, any orientation of P6, R6, Q6 or W3

contains a reorientation of O5 as a minor.

Lemma 4.3. Let O be a simple non-uniform oriented matroid on n > 5
elements which does not contain the deletion minors P6, R6, Q6 or W3.
Then O must be either an orientation of M(K4) or contains an (n − 2)-
point line.

Proof. Assume that U2,n−2 is not a deletion minor and O 6∼= M(K4). Then
we can find a deletion minor O6 of O with 6 elements which contains a
3-point line but not a 4-point line and is not isomorphic to M(K4). Note,
that only the non-orientable Fano plane has no other deletion minor than
M(K4) (see Oxley [17]). This matroid must have a non-uniform, non-regular
deletion minor with 5 points. Since up to reorientation O5 is the unique non-
regular, non-uniform oriented matroid on five elements without four point
line, O6 must be an orientation of P6, R6, Q6 or W3. �

Since the lattice of an extension of an oriented matroid with trivial flow
lattice again must be trivial we find that a simple and co-simple rank 3
oriented matroid with more than 5 elements has trivial flow lattice if it
is not isomorphic to M(K4). As a consequence, any simple and co-simple
single element extension of an orientation of M(K4) increases the dimension
of FO by r + 1 = 4 as dimFO = n− r for regular oriented matroids.

Theorem 4.4. Let O be a simple and co-simple non-uniform oriented ma-
troid of rank 3 on a ground set E with n ≥ 6 elements. Then FO = Zn if
and only if O 6∼= M(K4).

In the next section we will construct a basis of FO containing only signed
circuits. Note, that in general a generating set of an integer lattice may not
contain a basis.
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5. Constructing a Basis of Circuits

Before we construct a basis for the flow lattice of a uniform oriented
matroid we briefly discuss the rank 3 case. By Proposition 4.1 we may
assume that O is co-simple. If O is regular the elementary circuits with
respect to an arbitrary basis form a basis of the lattice as well. The uniform
case is discussed below. Otherwise, O either is O5 or contains an orientation
O6 of P6, R6, Q6 or W3 as a deletion minor. Bases for these instances are
easily constructed as in the proof of Lemma 4.2. Now, it suffices to add an
arbitrary circuit in O6 + e for each element in O not contained in O6.

In the uniform case we can usually start with a deletion minor of r + 2
points and construct a basis inductively. The only case which has to be han-
dled with some more care is when the dimension increases by 2. Lemma 3.5
guarantees that we can select an order of our elements such that this increase
happens when we add the (r + 3)rd point.

Theorem 5.1. Let O be a uniform or rank 3 oriented matroid on E =
{1, . . . , n} of rank r. Then the flow lattice FO has a basis consisting of
characteristic vectors of circuits.

Proof. The non-uniform rank 3 case has been considered already. We pro-
ceed by induction on n. The assertion is trivial for n ∈ {r, r + 1}.

n = r + 2: Hochstättler and Nešetřil [14] have shown that for even rank
A(C) has full rank. As it contains an orientation of each circuit, they
must form a basis of the flow lattice. If r is odd, then, by Theorem 3.1
A(C) has rank n− 1 and, by symmetry, there is a vector v ∈ {1,−1}
in the kernel of A(C)>. Thus, deleting an arbitrary circuit from A(C)
yields a basis.

n > r + 2: First, we consider the case that there exists an element j ∈
{1, . . . , n} such that dim(FO) = dim(FO\j) + 1. We may assume
j = n. Let C1, . . . , Ck be such that their characteristic vectors form
a basis of FO\n. Let Ck+1 be an arbitrary circuit containing n. We
have to distinguish the following three sub-cases:

r is even: As FO\n = Zn−1 we have e1, . . . , en−1 as integer combi-
nations of ~C1, . . . , ~Ck and, thus en as an integer combination of
~C1, . . . , ~Ck, ~Ck+1.

r is odd, dim(FO\n) = n− 1: Here, ~C1, . . . , ~Ck by Theorem 3.7 gen-
erate all integer vectors with even component sum. Using this
fact, it is immediate how to get en± ei and 2en as integer com-
binations of ~C1, . . . , ~Ck, ~Ck+1.

r is odd, dim(FO\n) = n− 2 = dim(FO)− 1: We may assume that
O is oriented such that F = {1}⊥∩Zn. Then Ck+1 is balanced
and by induction ei− ej are integer combinations of ~C1, . . . , ~Ck

for {i, j} ⊆ {1, . . . , n−1}. Subtracting suitable (r−1)/2 of these
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vectors from ~Ck+1 we generate en − ei0 for some 1 ≤ i0 ≤ n− 1
as integer combination of ~C1, . . . , ~Ck, ~Ck+1.

We are left with the case that n > r + 2 and

dim(FO) 6= dim(FO\j) + 1

for all j ∈ {1, . . . , n}. As obviously dim(FO) > dim(FO\j) Theo-
rem 3.1 implies that O is not neighborly, but O \ j is neighborly
for all j ∈ {1, . . . , n}. Therefore, by Lemma 3.5 n = r + 3. Let
~C1, . . . , ~Cn−2 be a basis of O \ n. We may assume that O is ori-
ented such that all circuits in O \ n are balanced. As n = r + 3,
the dual of O is a rank 3 matroid and, thus has a representation
as an oriented pseudo-line configuration. O \ n is represented by
some pseudo-line n and, as the vertices on that line correspond to
co-circuits of (O \ n)∗ they have to be balanced. Accordingly, the
orientation of the pseudo-lines has to alternate along n (see Fig-
ure 2). Since dim(F) = n it must not be possible to orient line n
such that all co-circuits in O∗ are balanced. Therefore, there have to
be pseudo-lines i, j, k ∈ {1, . . . , n− 1} such that the co-circuits C∗

i,j ,
C∗

i,k formed by the intersections of i and j resp. by i and k share
an edge along i and j and k are oriented in the same direction with
respect to i. Therefore, if we denote by Cn−1 = C∗

i,j and Cn = C∗
i,k

the corresponding circuits in O we have ~Cn−1 − ~Cn = ±(ej + ek).
Using the inductive assumption on FO\n and Proposition 3.6 we get
all integer vectors with even component sum.

�

j k

i

n

Figure 2. Extending an (r + 1)-element basis of O\n to a
basis of O

This finishes the discussion on the flow lattice of uniform and rank 3
oriented matroids. Summarizing our observations on uniform or rank 3
oriented matroids we find that

– if O is co-simple and non-regular then dimFO ∈ {n− 1, n},
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– if O is non-regular and FO is not trivial then FO = v⊥ ∩ Zn or
FO = {x ∈ Zn : k|vT x} for some v ∈ Zn,

– if O is non-uniform and n > |E(Kr)| then FO = Zn,
– C(O) contains a basis of FO.

In the next section we give first ideas how far this might extend to general
matroids.

6. General Oriented Matroids

The surprising fact that among the considered classes no co-simple ori-
ented matroid has a flow lattice of co-dimension 2 led us to the question
what co-dimensions are possible in general. We rule out the trivial cases
first. Almost any gap between dimFO and n is possible by sticking together
regular and non-regular oriented matroids via direct sum and 2-sum. The fa-
mous matroid decomposition theorem into sums and 2-sums of 3-connected
minors almost completely generalizes to oriented matroids and the dimen-
sion of the lattice is closely related to the dimension of the components.
This gives motivation for considering only 3-connected oriented matroids.
We have looked at numerous examples and find that our observations from
uniform and rank 3 instances generalize at least for small general oriented
matroids except for a small family of counterexamples.

6.1. Decomposition of Oriented Matroids. Let O = (E, C). For an
edge f ∈ E we define Cf0

:= {C ∈ C : f /∈ C} and Cf+
:= {C ∈ C : f ∈ C+}.

LetO1 = (E1, C1) andO2 = (E2, C2) be two oriented matroids. If E1∩E2 = ∅
then the direct sum O1 ⊕ O2 = (E1 ∪ E2, C⊕) is defined by the circuits
C⊕ := C1 ∪ C2. Now let {f} = E1 ∩E2 and neither in O1 nor in O2 {f} is a
separator. Then we define the 2-sum O1 ⊕2 O2 with edge set (E1 ∪ E2) \ f
in terms of its circuits

C⊕2 = Cf0

1 ∪ Cf0

2 ∪ {(C1 ∪ C2) \ f : C1(f) = −C2(f) 6= 0, Ci ∈ Ci}.

Proposition 6.1. C⊕2 satisfies the circuit axioms.

Proof. We set C̃ := {(C1 ∪ C2) \ f : C1(f) = −C2(f) 6= 0, Ci ∈ Ci}. Ob-
viously, C⊕2 is antisymmetric and its supports form a clutter. It suffices to
verify oriented circuit elimination. As this is rather straightforward we con-
sider only the case where C1, C2 ∈ C̃. Thus, let Cij , i, j ∈ {1, 2} be circuits
such that Ci = Ci1 ∪ Ci2 \ f, Ci1(f) = −Ci2(f) where Cij is a circuit in Oj

and w.l.o.g. f 6= e ∈ C11 ∩ C21, C11(e) = −C21(e). If C11(f) = −C21(f)
then also C12(f) = −C22(f) and eliminating f between C12 and C22 we find
C3 ∈ Cf0

2 as required. Otherwise, C11(f) = C21(f) and using circuit elimi-
nation fixing f in O1 we find a circuit f ∈ C31 where C+

31 ⊆ (C+
11 ∪ C+

21) \ e
and C−

31 ⊆ (C−
11 ∪ C−

21) \ e. Now C3 = (C31 ∪ C12) \ f settles the case. �

With this construction the decomposition of matroids with low connec-
tivity generalizes to oriented matroids. Surprisingly, this does not seem to
have been considered in the literature yet. At least a parallel connection
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of oriented matroids has been formulated in terms of covectors by Dong [6]
very recently.

Let O be an oriented matroid on a finite set E. Assume the underlying
matroid M has a 2 separation E = E1 ∪ E2. We will use the following
Lemma ([17, 8.3.2], [19]).

Lemma 6.2. Let C and D be circuits of M that meet both E1 and E2.
Then C ∩ E1 is not a proper subset of D ∩ E1.

Also we need a generalization of Lemma 8.3.3 of [17] (see also [19]). We
assume C and D are signed circuits of O such that Ci := C ∩ Ei 6= ∅ 6=
D ∩ Ei =: Di for i = 1, 2.

Lemma 6.3. Either ~C1 ◦ ~D2 or ~C1 ◦ − ~D2 is a signed circuit of O.

Proof. By Lemma 8.3.3 of [17] C1 ∪ D2 is a circuit in M. Let F denote
one of its two orientations in O. Assuming that S(F, ~C1) 6∈ {∅, C1} using
strong circuit elimination between F and C, eliminating one element from
C1 and fixing another one, we derive a contradiction to Lemma 6.2 (S(F, ~C1)
denotes the separation set of F and ~C1). By symmetry the same holds for
D2 and the claim follows. �

Furthermore, we need the following fact about co-lines of oriented ma-
troids, (see Dress and Lovász [7] for the corresponding result in general
matroids).

Proposition 6.4. Let C be a positive signed circuit of O and e an element
in the matroid closure of C. Then there is a partition C ∪{e} = γ1∪̇ . . . ∪̇γk

where k ≥ 3 and {e} is either γ1 or γk and the signed circuits in C ∪ {e}
are exactly those of the form (γ1 ∪ . . .∪ γi−1, γi+1 ∪ . . .∪ γk) for i = 1, . . . , k
and their negatives.

Proof. Consider the dual of the restriction of O to C ∪ {e}. This is a line,
consider its affine representation. As C is a co-circuit in this matroid e is
either the leftmost or the rightmost point in this representation. As e is in
the closure of C in O, clearly C∪{e} does not consist of two disjoint circuits
and the claim follows. �

Now we can prove the main lemma for our decomposition result.

Lemma 6.5. If ~D1 ◦ ~C2 is a circuit then also ~C1 ◦ ~D2 is a circuit.

Proof. We may assume that E = C ∪D and that O is oriented such that C
is positive. We proceed by induction on |E| and consider three cases.

(1) First let D1 = {e}. Eliminating some element from C2 between ~C

and −( ~D1 ◦ ~C2) using Lemma 6.2 we find the signed circuit ~C1 ◦
− ~D1, and eliminating e with D we find the signed circuit ~C1 ◦ ~D2 as
required.
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(2) If |D1| ≥ 2 and there exists an e ∈ D1 such that C1∪{e} is indepen-
dent in M, we may assume that C1 6= {e}. Then we consider O/e.
Here we have the signed circuits ~D \ {e}, ~C \ {e} and ~D1 \ {e} ◦ ~C2.
By inductive assumption also ~C1 \ {e} ◦ ~D2 is an oriented circuit of
O/e. Using Lemma 6.3 the claim follows.

(3) Finally we consider the case where C1 ∪ {e} is dependent for all
e ∈ D1. In particular, this implies C1 ∩ D1 = ∅. Fix e ∈ D1 and
let C ∪ {e} = γ1∪̇ . . . ∪̇γk denote the partition as in Proposition 6.4.
Eventually reorienting e we may assume γ1 = {e}. By Lemma 6.2
there exists an 2 ≤ i0 ≤ k such that C2 ⊆ γi0 . We consider two
subcases:

i0 = 2: Let F denote the positive circuit on γ1 ∪ . . . ∪ γk−1 and
F1 = F ∩ E1. Then we have the signed circuits ~F = ~F1 ◦ ~C2, ~D

and ~D1 ◦ ~C2. Using inductive assumption we find the signed
circuit ~F1 ◦ ~D2. Eliminating e between F and (γ3 ∪ . . . ,∪γk, e)
we find an oriented circuit that conforms to ~C1 ◦ ~D2 and the
claim follows.

i0 > 2: Hence γ2 ∩ C2 = ∅. Let G denote the signed circuit (γ3 ∪
. . . ∪ γk, e) and G1 = G ∩ E1. Again we find signed circuits
~G = ~G1 ◦ ~C2, ~D and ~D1 ◦ ~C2 implying that ~G1 ◦ ~D2 is a signed
circuit. Eliminating e between G and (γ1 ∪ . . . ∪ γi0−1, γi0+1 ∪
. . .∪γk) fixing some element from γi0 we find a circuit in C1∪D2

that conforms to ~D2 and agrees in sign with ~C1 on at least one
element. Thus, the claim follows from Lemma 6.3.

�

Now that the main ingredients have been established the argument for a
decomposition into 3-connected minors is straightforward.

Theorem 6.6. Every oriented matroid O can be decomposed into direct
sums and 2-sums of 3-connected oriented matroids.

Proof. If O is 3-connected we are done. In case O is not connected the
decomposition of O into direct sums of 2-connected matroids is also obvious.
Now assume O to be 2-connected and without loss of generality O = M1⊕2

M2 for 2-connected matroidsM1 andM2 on E1 and E2 satisfying E1∩E2 =
{f}. Note, that if f is a loop in one of M1 or M2 then O was not 2-
connected.

Choose circuits (Ci ∪ f) in Mi (i = 1, 2) which contain f and another
element gi ∈ Ci. Set O1 := O \ (E2 − (C2 ∪ f))/(C2 − {g2}) and identify
g2 with f (and do this symmetrically for O2). Reorient g2 in O2 so that
~C1(g1) = −~C2(g2). Then by [17, Proposition 7.1.19] O1 ⊕2 O2 = M1⊕2M2.
Now, ~C1 ◦ ~C2 is a circuit in O1⊕2O2 and in O. If ~D = ~D1 ◦ ~D2 and (w.l.o.g.)
~C2 ◦ ~D1 are other circuits in O then by Lemma 6.5 so must be ~C2 ◦ ~D1.
Hence, O = O1 ⊕2 O2. �
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A(C1) =
(

N1 0
M1 1

)
A(C2) =

(
0 N2

−1 M2

) A(C⊕2) =



N1 0
0 N2

M1
1 M2

M2
1 M2

...
...

M
|Cf+

1 |
1 M2


Figure 3. Circuit matrices of O1, O2 and O⊕2

Remark 6.7.
– In matroid theory, every matroid can be decomposed into sums and

2-sums of proper minors which is not the case for oriented matroids
and even not for digraphs which can be seen at the example of the
2-sum of two triangles.

– Instead of glueing together circuits with alternating sign in f we
could as well compose our sum from circuits with identical signs in
f .

We now analyze the flow lattice dimension of 1- and 2-sums. While
the dimension of FO1⊕O2 does not depend on the structure of O1 and
O2 (i. e. dimFO1⊕O2 = dimFO1 + dimFO2) there are two possibilities for
dimFO1⊕2O2 :

Lemma 6.8. If i (resp. j) is the column index in A(C1) (resp. A(C2)) cor-
responding to f , then

dimFO1⊕2O2 = dimFO1+dimFO2−
{

2 for ei ∈ lin (C1) and ej ∈ lin (C2)
1 otherwise.

Proof. Without loss of generality let f be the element with largest index in
E1 and smallest index in E2. Let furthermore the matrices Ni, Mi and M j

1

be defined as follows: Ni is obtained by deleting the zero column in A(Cf0

i ),
M1 is obtained from A(Cf+

1 ) by deleting the last column, M2 is obtained
from A(Cf−

2 ) by deleting the first column and M j
1 contains only the jth row

of M1 but |Cf+

2 | times. Then the circuit matrices of O1, O2 and O⊕2 can be
written as in Figure 3.

In order to determine the rank of A(C⊕2) we add a zero column (for the
missing element f) in the middle. Then we add a row, which corresponds to
a signed circuit C ∈ C1 that contains f , say C corresponds to the circuit in
the first row of M1, and get a matrix B satisfying rank B = rankA(C⊕2)+1
(see Figure 4).

By unimodular row operations we get the matrix B. By the dimension
formula of linear algebra we have rankB = rankA(C1)+rankA(C2)−1 if and
only if lin (C1) ∩ lin (C2) 6= ∅. This is the case if and only if the unit vector
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B =



N1 0 0
0 0 N2

M1
1 0 M2

...
...

...

M
|Cf+

1 |
1 0 M2

~C 1 0


 B =


N1 0 0
0 0 N2

0 −1 M2

M1 1 0
0

 
 A(C1) 0

0 A(C2)
0



Figure 4. Matrices used in the proof of Lemma 6.8

corresponding to f is contained in both lin (C1) and lin (C2). Otherwise
rank B = rank A(C1) + rank A(C2). As the rank of B is one more than the
rank of A(C⊕2), the claim follows. �

6.2. 3-connected Oriented Matroids. By the above we will now restrict
our considerations to oriented matroids that must be simple, co-simple, non-
regular, non-uniform, and 3-connected. In the remainder we report on com-
putational results on the entire catalog of small oriented matroids (see Fin-
schi [8]) and orientations of interesting matroids selected by Oxley [17]. On
that data we could verify that

– dimFO ∈ {n− 1, n} for small 3-connected oriented matroids (up to
a single counterexample having dimension n− 2).

– Non-trivial flow lattices seem to vanish for a growing number of
elements.

– In any case FO could be characterized very similarly to the uniform
case by orthogonality conditions and integral modular equations.

We determined the flow lattice for all known isomorphism classes of non-
uniform, non-regular, 3-connected oriented matroids (taken from Finschi
[8]).

Rank 4, 7 elements: The reorientation classes of a special single ele-
ment extension of the prism have a flow lattice that is either
(1, . . . , 1, 0)⊥∩Zn or (1, . . . , 1, 2)⊥∩Zn or {x ∈ Zn : 2|(1, . . . , 1, 0)T x}.
Up to reorientation, the oriented dual non-Fano matroid (F−

7 )∗ yields
FO = (1, 0, 0, 1, 0, 1, 1)⊥ ∩ Zn. The remaining flow lattices are all
trivial.

Rank 4, 8 elements: All flow lattices are trivial except for an amal-
gam of two prisms (the “linear brother” of the Vamós cube) with
FO ∼= {x ∈ Zn : 3|1T x}. Note, that all flow lattices have full dimen-
sion.

Rank 5, 8 elements: We found 81 (1.34%) non-trivial flow lattices
of the form v⊥ ∩Zn or {x ∈ Zn : 2|vT x} for some v ∈ {0, 1, 2}n (up
to reorientation) all having dimension n− 1 or n.
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Rank 6, 9 elements: We found 492 (0.1%) non-trivial flow lattices
of the form v⊥ ∩Zn or {x ∈ Zn : 2|vT x} for some v ∈ {0, 1, 2}n (up
to reorientation) all having dimension n−1 or n. The only exception
is the dual of the Pappus having a flow lattice

FO ∼=
{

x ∈ Zn : 2|(1, 1, 0, 0, 1, 1, 1, 0, 1)T x and
(0, 1, 1, 1, 1, 0, 0, 1, 1)T x = 0

}
.

Rank 7, 10 elements: We found 221045 (0.23%) non-trivial flow lat-
tices which again had a simple characterization by a single orthog-
onality condition or modular equation. Only three matroids had a
characterization involving more than one equation (see the configu-
rations of the duals in Figure 5). Note, that the first matroid has
flow lattice dimension n − 2 and can be generalized to a family of
examples with this property.

Oxley [17] listed some interesting matroids but most of them are already
contained in [8] or are not orientable, regular, not simple, not co-simple, or
not 3-connected. The remaining examples are the whirls Wk. By Lee and
Scobee [16] there are exactly three reorientation classes of the whirl Wk for
k > 3 (the circuits are shown in Figure 6). The matrix A(CW) is non-singular
and has determinant (−1)k(1 − δε + ε)k ∈ {1,−1} for (δ, ε) 6= (−1,+1).
Hence, ei ∈ FO for i = 1, . . . , 2k = n and the flow lattice is trivial.

6.3. Open Questions. What is the dimension of the flow lattice of a gen-
eral non-uniform non-regular 3-connected oriented matroid? Are there other
families of examples having co-dimension 2 or more? Is there a way to char-
acterize FO in terms of a few orthogonality conditions and linear modular
equations? Do more complex flow lattices occur for higher rank and cardi-
nality? What is the behavior of ΦL under 2-sums?

Further investigations could be done on the case of co-rank 3. This would
require to consider the co-circuits of pseudo-line arrangements. Is it possible
to construct a counterexample to the question of Hochstättler and Nešetřil
[14] “Is ΦL a matroid invariant?” by exploiting this geometric instrument?
As we could see above this at least holds for uniform, rank 3, and small
general oriented matroids.

Another interesting question involves the gap in the flow lattice dimension
between regular and non-regular oriented matroids: Does the dimension
always increase rapidly when extending a regular oriented matroid non-
regularly? To be more offensive, is the flow lattice of a simple and co-
simple extension of a maximal regular oriented matroid always trivial (we
considered M(K4) and checked the extensions of M(K5) with a software of
O. Klein [15])? If O is not maximal regular we already know from the single
element extensions of the prism that the dimension might grow only by r
instead of r + 1.

For regular, uniform, and rank 3 oriented matroids one can construct a
basis of FO containing only signed circuits. Is this possible in general and
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10

9

8

7

6

54321

FO∗ ∼=
{

(1, 1, 1, 1, 1, 0, 0, 0, 0, 0),
(1, 0, 0, 0, 0, 1, 1, 1, 1, 0)

}⊥
∩Zn

1

2

3

4

5

6

7

8

9

10

FO∗ ∼=
{

x ∈ Zn : 2|(0, 1, 1, 0, 1, 1, 0, 0, 1, 1)T x and
(0, 1, 0, 1, 1, 0, 1, 1, 0, 1)T x = 0

}

5

10

9 87 6

43 21

FO∗ ∼=
{

x ∈ Zn : 2|(1, 1, 0, 0, 1, 0, 0, 1, 1, 1)T x and
(1, 1, 1, 1, 0, 1, 1, 1, 1, 0)T x = 0

}
Figure 5. Interesting flow lattices for rank 7 and 10 ele-
ments. The figures show a representative of the reorientation
class of the dual rank 3 oriented matroid. The flow lattices
only apply up to reorientation. The first example and any
analogous construction with two lines with an odd number
of 2k + 1 (k ≥ 2) points has flow lattice dimension n− 2.

is there a way to compute the basis without the knowledge of the entire set
C? (The number of circuits rapidly increases with growing cardinality.)

Acknowledgments. We thank Oliver Klein (FU Berlin) for the fruitful
discussion on the topic and for computing the single element extensions
of regular rank four oriented matroids with the software from his diploma
thesis ([15]).
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

+1 +1 +1 +1 . . . +1 +1
+1 δ δ δ . . . δ δ
+1 +1 δ δ . . . δ δ
...

...
. . .

...
...

+1 +1 +1 +1 . . . +1 δ

Ik

Ik

δε −ε
ε −ε

. . . . . .
ε −ε

−ε ε


Figure 6. The circuits of the whirl ((δ, ε) ∈ {(+1,+1), (+1,−1), (−1,−1)})
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