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Abstract

Ordinary colourings of cographs are well understood; we focus on
more general colourings, known as matrix partitions. We show that all
matrix partition problems for cographs admit polynomial time algo-
rithms and forbidden induced subgraph characterizations, even for the
list version of the problems. Cographs are the largest natural class of
graphs that have been shown to have this property. We bound the size
of a biggest minimal M -obstruction cograph G, both in the presence of
lists, and (with better bounds) without lists. Finally, we improve these
bounds when either the matrix M , or the cograph G, is restricted.
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1 Introduction

Cographs are a well understood class of graphs [3, 4, 13, 17]. A recursive
definition is as follows. The one-vertex graph K1 is a cograph; if G′ and G′′

are cographs, then so are the disjoint union G′ ∪G′′ and their join G′ + G′′

(obtained from G′ ∪G′′ by adding all edges joining vertices of G′ to vertices
of G′′). It follows that the complement of a cograph is a cograph, and in
fact the join of G′ and G′′ is the complement of the disjoint union of G′ and
G′′. It is not hard to show that G is a cograph if and only if it contains no
induced path with four vertices [17]. Cographs can be recognized in linear
time [4], and they can be represented, in the same time, by their cotree
[4], which embodies the sequence of binary operations ∪,+, from the recur-
sive definition, used in their construction. Many combinatorial optimization
problems can be efficiently solved on the class of cographs, using the cotree
representation [3, 4, 13]. This includes computing the chromatic number,
and, more specifically, deciding if a cograph G is k-colourable. This suggests
looking at more general colouring problems for the class of cographs. In fact,
such investigations have already begun in [5, 18].

In [2, 6, 9, 10], a framework was developed, which encompasses many
generalizations of colourings. Let M be a symmetric m by m matrix over
0, 1, ∗. An M -partition of a graph G is a partition of the vertex set V (G) into
m parts V1, V2, . . . , Vm such that Vi is a clique (respectively independent set)
whenever M(i, i) = 1 (respectively M(i, i) = 0), and there are all possible
edges (respectively no edges) between parts Vi and Vj whenever M(i, j) = 1
(respectively M(i, j) = 0). Thus the diagonal entries prescribe when the
parts are cliques or independent sets, and the off-diagonal entries prescribe
when the parts are completely adjacent or nonadjacent (with ∗ meaning no
restriction). A graph G that does not admit an M -partition is called an
M -obstruction, and is also said to obstruct M . A minimal M -obstruction is
a graph G which is an M -obstruction, but such that every proper induced
subgraph of G admits an M -partition. If M is a set of matrices, we say
that G is a minimal M-obstruction if it is an M -obstruction for all M ∈M,
but every proper induced subgraph of G admits an M -partition for some
M ∈M.

Given a graph G, we sometimes associate lists with its vertices: a list
L(v) of a vertex v is a subset of {1, 2, . . . ,m}, and it prescribes the parts
to which v can be placed. In other words, a list M -partition of G (with
respect to the lists L(v), v ∈ V (G)) is an M -partition of G in which each
vertex v belongs to a part Vi with i ∈ L(v). Note that the trivial case
when all lists are L(v) = {1, 2, . . . ,m} corresponds to the situation when
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no lists are given. M -obstructions and minimal M -obstructions (as well as
M-obstructions and minimal M-obstructions) for graphs G with lists L are
defined in the obvious way.

In the (list) M -partition problem, we have a fixed matrix M , and are
asked to decide whether or not a given graph G (with lists) does or does not
admit a (list) M -partition (with respect to the given lists).

We shall mostly focus on matrices M which have no diagonal ∗’s. If
M has a diagonal ∗, then every graph G admits an M -partition; however,
if lists are involved we will allow diagonal ∗’s. A matrix without diagonal
∗’s may be written in a block form, by first listing the rows and columns
with diagonal 0’s, then those with diagonal 1’s. The matrix falls into four
blocks, a k by k diagonal matrix A with a zero diagonal, an ` by ` diagonal
matrix B with a diagonal of 1’s, and a k by ` off-diagonal matrix C and
its transpose. We shall say that M is a constant matrix, if the off-diagonal
entries of A are all the same, say equal to a, the off-diagonal entries of B
are all the same, say b, and all entries of C are the same, say c. In this case,
we also say that M is an (a, b, c)-block matrix. Note that we may assume
that a 6= 0 and b 6= 1, or else we can decrease k or `.

Let M be a fixed matrix; if we prove that all cographs that are mini-
mal M -obstructions have at most K vertices, then we can characterize M -
partitionability of cographs by a finite set of forbidden induced subgraphs.

The complement M of a matrix M has all 0’s changed to 1’s and vice
versa. It is clear that G admits an M -partition if and only if G admits an
M -partition, and that this also applies in the obvious way to M -partitions
with lists, and to M-partitions.

If the matrix M is a (∗, ∗, ∗)-block matrix, then an M -partition of G
is precisely a partition of the vertices of G into k independent sets and `
cliques. Such partitions have been introduced in [1] (see also [9, 10, 16]), and
further studied in [14, 15] for the class of chordal graphs (see also [11, 12])
and in [8] for the class of perfect graphs. More recently, they have been
studied (without lists) for the class of cographs in [5, 18].

Suppose M is an m by m matrix; we shall refer to the integers 1, 2, . . . ,m
as parts, since they index the set of parts in any M -partition of a graph.
Given two sets of parts, P,Q ⊆ {1, 2, . . . ,m}, we define MP,Q to be the
submatrix of M obtained by taking the rows in P and the columns in Q.
We also let MP denote MP,P .
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2 List Partition Problems

We first prove that for every matrix M the list M -partition problem for
cographs can be solved in polynomial time, and characterized by finitely
many forbidden induced subgraphs (with lists). By contrast, it is shown
in [11, 12] that there exist matrices M for which the M -partition problem
restricted to chordal graphs is NP-complete, even without lists.

Many of our arguments use the following observation. A disconnected
graph G = G1∪G2 has an M-partition if and only if G1 has an MP -partition
and G2 has an MQ-partition, for some matrix M ∈M and sets P,Q of parts
such that MP,Q contains no 1. Of course the argument applies also with lists,
if we view G1, G2 as inheriting the corresponding lists. We shall state this
in the contrapositive form as follows.

Lemma 2.1 Let M be fixed, and let G = G1 ∪G2 be a disconnected graph,
with lists.

Then G is an M-obstruction if and only if for any matrix M ∈ M and
any two sets P,Q of parts from M such that MP,Q does not contain a 1, the
graph G1 (with the corresponding lists) is an MP -obstruction, or the graph
G2 (with the corresponding lists) is an MQ-obstruction.

Suppose M is fixed, and G = G1 ∪G2 is disconnected.
Let M1 be a set of matrices MP , where M ∈ M and P is a set of

parts in M , such that G1 is an MP -obstruction, and let M2 be a set of
matrices MQ, where M ∈ M and Q is a set of parts in M , such that G2

is an MQ-obstruction. If, for any M ∈ M, and any sets of parts P,Q of
M such that MP,Q does not contain a 1, we have MP ∈ M1 or MQ ∈ M2,
then the lemma ensures that for any subgraphs G′

1 of G1 and G′
2 of G2

which are M1-obstruction and M2-obstruction respectively, the subgraph
G′ = G′

1 ∪G′
2 of G is also an M-obstruction. Thus the minimality of G also

implies the minimality of G1, G2. Such sets M1,M2 can be always chosen -
for instance as the sets of all matrices MP such that G1 is an MP -obstruction,
respectively all matrices MQ such that G2 is an MQ-obstruction.

Corollary 2.2 Let M be fixed, and let G = G1 ∪ G2 be a disconnected
graph, with lists. Let M1 and M2 be chosen as described above.

Then G is an M-obstruction if and only if G1 is an M1-obstruction and
G2 is an M2-obstruction.

Moreover, if G is a minimal M-obstruction, then G1 is a minimal M1-
obstruction, and G2 is a minimal M2-obstruction.
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Let f(m) be the smallest integer such that for every m by m matrix M
and every minimal M -obstruction cograph G with lists, G has at most f(m)
vertices. (In other words, f(m) is the largest size, i.e., number of vertices,
of a minimal M -obstruction cograph, over all m by m matrices M .)

Theorem 2.3 For every integer m, we have

f(m) ≤ amm!

where a = 1
ln(3/2) .

Proof. We apply Corollary 2.2 with M consisting of the single matrix M .
Clearly a minimal M-obstruction has size at most equal to the sum of the
sizes of minimal M ′-obstructions for all M ′ ∈M; thus we have

f(m) ≤ 2
∑
i<m

(
m

i

)
f(i).

By induction, letting a = 1/ln(3/2), we have

f(m) ≤ 2m!am
∑

0<j≤m

1/(j!aj) ≤ 2m!am(e1/a − 1) = amm!.

Lemma 2.1 also yields an efficient algorithm to solve the list M -partition
problem in the class of cographs. We consider the cotree of G, associating
with each node t of the cotree (corresponding to a cograph Gt involved in
the construction of G) a family of matrices Mt. The family Mt consists of
all matrices MX , for X ⊆ {1, 2, . . . ,m}, such that Gt obstructs MX . If t is
a node of the cotree with children t′, t′′ corresponding to Gt = Gt′ ∪Gt′′ , we
know that Gt obstructs MX if and only if for any P ⊆ X, Q ⊆ X with MP,Q

not containing 1, the graph Gt′ obstructs MP or the graph Gt′′ obstructs
MQ. Thus from the families Mt′ ,Mt′′ we can compute the family Mt. If
Gt = Gt′ + Gt′′ , we use complementation, as discussed earlier. Since the
leaves of the cotree are single vertex cographs, each leaf t has Mt = ∅.
Then the given cograph G, is at the root r of the cotree, G = Gr, and we
conclude G has a list M -partition if and only if M 6∈ Mr.

Each set Mt has at most 2m members, since there are at most 2m subsets
of {1, 2, . . . ,m}. Thus we obtain the following bound.

Corollary 2.4 Every list M -partition problem for cographs can be solved in
time 2O(m)n, linear in n.
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We could, of course, proceed similarly, to solve the cograph list M-
partition problem for a family M of matrices.

We note that in [5] there are efficient algorithms solving related partition
problems for cographs, for special matrices M , but not necessarily of fixed
size.

We now derive a lower bound on f(m). The special m by m matrix
Mm has m diagonal zeros, and all off-diagonal entries ∗. Thus a list Mm-
partition of G is precisely a list m-colouring of G. It turns out that there
are very large cograph minimal Mm-obstructions. Since we are dealing with
list colourings, we shall use the corresponding terminology.

Theorem 2.5 For every positive integer m, there exists a minimal Mm-
obstruction cograph G, with lists, of size (e−1−ε(m))m!, where 1 ≥ ε(m) =
o(1).

Proof. We shall construct a cograph G, with lists from the set {1, . . . ,m}
of colours, that does not have a list colouring, but each of its proper induced
subgraphs does. The construction will be done recursively. For each subset
of colours, K ⊆ {1, 2, . . . ,m}, we shall construct a graph G(K), with lists
from {1, . . . ,m}, such that

• G(K) is list colourable with colours from a set S ⊆ {1, . . . ,m} if and
only if |S| ≥ |K| and S 6= K, and,

• for each v ∈ V (G), the subgraph G(K)\v is list colourable with colours
from the set K.

Then G = G({1, 2, . . . ,m}) will be a minimal Mm-obstruction, as de-
sired.

The recursion starts with sets K consisting of a single element i. The
graph G({i}) is a single vertex with list {1, . . . ,m} \ i. This graph clearly
satisfies the above conditions. The graph G(K) with K ⊆ {1, . . . ,m} and
|K| ≥ 2 is recursively defined as the disjoint union of all graphs G(K \ j)
for j ∈ K, together with an additional vertex vK , with list {1, . . . ,m}, that
is adjacent to all other vertices. Note that each G(K) is a cograph, by
induction.

Let S be a set of colours such that G(K) has a list colouring with colours
from S, and let j0 denote the colour of vK in such a colouring. Then each
graph G(K \ j) has a list colouring using the colours from S \ j0, and hence,
by induction, |S \ j0| ≥ |K \ j|, and S 6= K. On the other hand, if we
remove vK , all components G(K \ j) are colourable with colours from K by
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induction, and if we remove any other vertex v ∈ G(K \ j0), then, again by
induction, we can colour G(K \ j0) \ v and all G(K \ j), for j 6= j0, with
colours from K \ j0, and colour vK by j0.

Thus G = G({1, . . . ,m}) is a minimal Mm-obstruction (with lists). Let
g(k) denote the number of vertices of a graph G(K) with |K| = k. Then
g(1) = 1 and g(k) = 1 + kg(k − 1), and hence

g(m) =
m−1∑
i=0

m!
(m− i)!

= m!
∑

1≤i≤m

1/i! = m!(e− 1− ε(m)),

where 1 ≥ ε(m) =
∑∞

i=m+1
1
i! = o(1).

Corollary 2.6 For every integer m, we have

(e− 1− o(1))m! ≤ f(m) ≤ amm!

for a = 1/ln(3/2).

3 Partition Problems Without Lists

For the remainder of the paper, we shall focus on the M -partition problem
without lists. This implies that we now think of M in the block form, having
k diagonal 0’s and ` diagonal 1’s, with m = k + `. Specifically, the parts
1, 2, . . . , k will be independent sets, and the parts k +1, k +2, . . . , k + ` = m
will be cliques.

Given that we have no lists, we can improve the general bounds on the
size of cograph minimal M -obstructions G. This is what we shall do in the
present section. In the following two sections we shall obtain even better
bounds when either the matrices M , or the cographs G, are restricted.

Lemma 3.1 Let M be a collection of matrices, each of size at most m.
If G is a minimal M-obstruction cograph with maximum clique size r,

then G has at most g(m, r) ≤ 2
(
m+r

r

)
+

(
m+r−1

r−1

)
−

(
m+r−2

r−2

)
−m− 1 vertices.

The same conclusion applies if G has maximum independent set size r.

Proof. Suppose G has maximum clique size r. Since G is a cograph,
its vertices can be partitioned into three graphs G0, G1, G2 with no edges
between G0 and G1, G2, and with all edges between G1 and G2, where G1

and G2 are non-empty. We may assume that G′ = G1 +G2 contains a clique
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of r vertices; in particular, there exists an integer 1 ≤ t ≤ r − 1 such that
the maximum clique size in G1 is r − t and in G2 is at most t. We now
consider how many vertices are needed to ensure that G does not admit an
M -partition for any matrix M ∈ M. Note that no matrix M ∈ M can
contain the submatrix Mr (defined above Theorem 2.5), since G is perfect,
and hence r-colourable.

Let g(m, r) denote the maximum number of vertices in a minimal M-
obstruction cograph G with maximum clique size r. We derive a recurrence
on g(m, r) by estimating separately G0, G1, and G2. If G0 is not empty,
then G′ has an M -partition for some M ∈M, and since M does not contain
Mr, each clique of size r in G′ is placed in some set P of t ≤ r parts such
that MP contains a 1. This ensures that G0 cannot use at least one part
of M . Thus G0 can be described as a minimal M′-obstruction where all
matrices in M′ have size at most m − 1, i.e., G0 has at most g(m − 1, r)
vertices. On the other hand, G1 and G2 have at most g(m, r−t) respectively
g(m, t) vertices, as noted above. We obtain the recurrence

g(m, r) ≤ g(m− 1, r) + g(m, r − t) + g(m, t),

g(0, r) = 1, g(m, 1) ≤ m + 1.

In order to bound g(m, r) we consider

h(m, r) := 2
(

m + r

r

)
+

(
m + r − 1

r − 1

)
−

(
m + r − 2

r − 2

)
.

Using the well-known identity
(
n
k

)
−

(
n−1
k−1

)
=

(
n−1

k

)
we find that h(m, r)−

h(m, r − 1) = h(m− 1, r) and thus

(h(m, r)−h(m, r−1))−(h(m, r−1)−h(m, r−2)) = h(m−1, r)−h(m−1, r−1)

= 2
(

m + r − 2
r

)
+

(
m + r − 3

r − 1

)
−

(
m + r − 4

r − 2

)
≥ 0.

So h(m, r− (t+1))+h(m, t+1) ≤ h(m, r− t)+h(m, t) for t+1 ≤ r− t, and
therefore h(m, r − t) + h(m, t) ≤ h(m, r − 1) + h(m, 1). Using the recursion
for g(m, r) we conclude inductively that g(m, r) ≤ h(m, r)−m− 1, namely

g(m, r) ≤ h(m− 1, r)−m− 2 + h(m, r − t)−m− 1 + h(m, t)−m− 1
≤ h(m− 1, r) + h(m, r − 1) + h(m, 1)− 3m− 4
= h(m, r) + 2(m + 1) + 1− 3m− 4 = h(m, r)−m− 1.

The case of maximum independent set size r follows by complementation.
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Theorem 3.2 Any minimal M -obstruction cograph G has at most O(8m/
√

m)
vertices.

Proof. We shall consider a cotree for G, and associate with each node t
of the cotree a set Mt of submatrices of M , obstructed by the graph Gt

corresponding to the node t, and such that Gt obstructs Mt if and only
if the two graphs Gt′ , Gt′′ , corresponding to the two children t′, t′′ of t in
the cotree, obstruct Mt′ and Mt′′ respectively. This is analogous to the
algorithm inherent in Corollary 2.2. The root t0 of our cotree will have
Mt0 consisting of the one (given) matrix M , and the corresponding (given)
graph Gt0 = G. The total number of vertices of G is precisely the number
of leaves in the cotree. If Gt has maximum clique size at most m̃, and if all
matrices in Mt have size at most m̃, then the entire branch of the cotree
rooted at t contains at most ≤ 2

(
2m̃
m̃

)
+

(
2m̃−1
m̃−1

)
−

(
2m̃−2
m̃−2

)
− m̃ − 1 leaves,

by the above lemma. If Gt = Gt′ ∪ Gt′′ , and if both Gt′ and Gt′′ contain a
clique of size greater than k (the number of diagonal 0’s in M), then we can
choose Mt′ and Mt′′ to consist of matrices with maximum size smaller than
the maximum size of a matrix in Mt. Indeed, any M ′-partition of Gt′ (or of
Gt′′), with M ′ ∈Mt, uses a part j of M which is a clique (j > k), and which
therefore cannot be used by Gt′′ (respectively Gt′); thus it suffices to certify
the non-partitionability of Gt′ and Gt′′ for matrices of strictly smaller size.
Similarly, if Gt = Gt′ + Gt′′ , and both Gt′ and Gt′′ contain an independent
set of size greater than `, it suffices to certify their non-partitionability for
matrices of size strictly smaller than the maximum size of a matrix in Mt.

We let g(m̃) denote the maximum size of a minimal M-obstruction co-
graph G, over all sets M consisting of matrices of size at most m̃. Suppose
G = G′ ∪ G′′ (the case G = G′ + G′′ is similar), and the maximum clique
sizes in G′, G′′ are c′, c′′ respectively, with c′ ≥ c′′. We have obseved above
that if c′ ≥ c′′ > k, then G has at most 2g(m̃− 1) vertices. If c′′ ≤ c′ ≤ m̃,
then both G′ and G′′ have size at most 2

(
2m̃
m̃

)
+

(
2m̃−1
m̃−1

)
−

(
2m̃−2
m̃−2

)
− m̃− 1 by

the lemma, whence G has size at most 2[2
(
2m̃
m̃

)
+

(
2m̃−1
m̃−1

)
−

(
2m̃−2
m̃−2

)
− m̃− 1].

If c′ > m̃ and c′′ ≤ k we continue exploring the cotree, obtaining a sequence
of graphs G′

0, G
′
1, . . . , G

′
s, where G′

i = G′
i+1 ∪ G′′

i+1 or G′
i = G′

i+1 + G′′
i+1.

We always assume that if G′
i = G′

i+1 ∪ G′′
i+1, then G′

i+1 has a clique of
size greater than m̃ and G′′

i+1 has maximum clique size at most k, and if
G′

i = G′
i+1 + G′′

i+1, then G′
i+1 has an independent set of size greater than

m̃ and G′′
i+1 has maximum independent set size at most `. We now argue

that the sequence cannot be too long, namely, that s ≤ 2m̃. Indeed, we may
assume that the sets Mt are reduced, in the sense that no MP ,MQ ∈ Mt

have P ⊆ Q (as any graph obstructing MP also obstructs MQ). If we let Ni
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denote the set of all maximal sets P of parts (out of the m parts of M) such
that MP ∈Mt corresponding to G′

i, then we see that Ni+1 6= Ni, otherwise
G′′

i+1 is not needed. Thus one maximal set is dropped in each step from Ni

to Ni+1. This implies that s ≤ 2m̃, and we obtain the general recurrence

g(m̃) ≤ 2m̃+1[2
(

2m̃

m̃

)
+

(
2m̃− 1
m̃− 1

)
−

(
2m̃− 2
m̃− 2

)
− m̃− 2] + 2g(m̃− 1)

≤ O(23m̃/
√

m̃) + 2g(m̃− 1),

which solves to g(m) ≤ O(8m/
√

m).

We now define F (m) to be the size (number of vertices) of a largest
minimal M -obstruction cograph G without lists, for any m by m matrix M .
From the above theorem we have an upper bound on F (m); the following
lower bound will follow from Theorem 5.2.

Corollary 3.3 We have

m2/4 ≤ F (m) ≤ O(8m/
√

m).

4 Constant matrices

In this section we prove that for each constant matrix M with k diagonal
0’s and ` diagonal 1’s, all cograph minimal M -obstructions have size at
most (k + 1)(` + 1). These M -partitions for constant matrices M (i.e., for
(a, b, c)-block matrices M) have been investigated in the classes of perfect
and chordal graphs in [8, 11, 12], and, in the case of (∗, ∗, ∗)-block matrices
(corresponding precisely to partitions into k independent sets and ` cliques),
in [5, 14, 15, 18]. Recall that we do not consider lists in this section.

We illustrate the technique in the special case of (∗, ∗, ∗)-block matrices,
proving the following result; special cases of this result have been proved,
by a different technique, in [5], cf. also [18].

Theorem 4.1 Let M be a (∗, ∗, ∗)-block matrix. Then each minimal M -
obstruction cograph is (k+1)-colourable, and partitionable into `+1 cliques.

Proof. When ` = 0, each minimal M -obstruction is a minimal cograph G
that is not k-colourable. Since cographs are perfect, G = Kk+1, which is
both (k +1)-colourable, and partitionable to (0+1) cliques. The case k = 0
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follows by complementation, and we can proceed by induction on k + `.
Let the cograph G be a minimal M -obstruction; we may assume that G is
disconnected, G = G1 ∪ G2 (or we can consider G instead). We shall now
use Corollary 2.2, with the set M consisting of the single matrix M , and
with all lists equal to {1, 2, . . . ,m} (i.e., without lists); we shall be taking
into account the special form of M to choose particular families M1,M2.

Specifically, let j be the smallest integer such that G1 has a partition into
k independent sets and j cliques. (Note that 0 ≤ j ≤ `, by the minimality of
G.) Since G1 has a partition into k independent sets and j cliques, G2 does
not have a partition into k independent sets and ` − j cliques (otherwise
G is not an M -obstruction). Let M1 be the (∗, ∗, ∗)-block matrix with k
diagonal 0’s and j − 1 diagonal 1’s, and let M2 be the (∗, ∗, ∗)-block matrix
with k diagonal 0’s and ` − j diagonal 1’s. We now let M1 consist of M1

and all its submatrices, and let M2 consist of M2 and all its submatrices.
It is easy to check that these classes M1,M2 satisfy the conditions stated
below Lemma 2.1. Indeed, if P,Q are such that MP 6∈ M1,MQ 6∈ M2, then
MP has at least j diagonal 1’s (parts that are cliques), and MQ has at least
` − j + 1 diagonal 1’s (parts that are cliques). This means that some part
i, i > k, (part that is a clique) lies in both P and Q, whence MP,Q contains
a 1.

We conclude, by Corollary 2.2, that G1 is a minimal M1-obstruction,
and G2 is a minimal M2-obstruction, and hence a minimal M1-obstruction
and a minimal M2-obstruction respectively (because of the special form of
M1,M2).

Now, by the induction hypothesis, G1 is (k + 1)-colourable and parti-
tionable into j cliques, while G2 is (k + 1)-colourable and partitionable into
`−j+1 cliques. It follows that G is both (k+1)-colourable and partitionable
into ` + 1 cliques.

Note that a clique can meet an independent set in at most one vertex.
Thus we have an upper bound on the size of a minimal M -obstruction.
In fact, we can conclude that a minimal M -obstruction cograph G can be
described as follows. The vertices of G are vi,j , i = 0, 1, . . . , k, j = 0, 1, . . . , `,
with any two vi,j , vi′,j adjacent, and no two vi,j , vi,j′ adjacent. (There are
additional constraints on when arbitrary vi,j , vi′,j′ are adjacent, arising from
the fact that G is a cograph. This aspect is examined in [5, 18].)

Corollary 4.2 Let M be a (∗, ∗, ∗)-block matrix. Then each cograph mini-
mal M -obstruction has exactly (k + 1)(` + 1) vertices.
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We shall prove the general result in a form better able to support in-
duction. Instead of obstructions to one single (a, b, c)-block matrix M with
k diagonal 0’s and ` diagonal 1’s, we shall consider collections M consist-
ing of (a, b, c)-block matrices M0,M1,M2, . . . ,Mr, each having ki diagonal
0’s and `i diagonal 1’s. We shall further assume that the collection M is
staircase-like, meaning that ki ≤ kj and `i ≥ `j for all i < j. If we have strict
inequality everywhere, we call the collection strictly staircase-like. Clearly
every collection of (a, b, c)-block matrices N contains a staircase-like subcol-
lection M1 as well as a strictly staircase-like subcollection M2, such that a
graph G is an N -obstruction if and only if it is an M1-obstruction if and
only if it is an M2-obstruction.

For notational convenience we shall allow matrices with ki = −1 or
`i = −1. In this case we view each graph G as obstructing such a matrix.
In particular, we shall set k−1 = `r+1 = −1.

Theorem 4.3 Let a, b, c be fixed. Let M = {Mi}r
i=0 be a staircase-like

collection of (a, b, c)-block matrices.
Then the maximum size of a minimal M-obstruction cograph is at most

f(M) =
r∑

i=0

(ki − ki−1)(`i + 1) =
r∑

i=0

(`i − `i+1)(ki + 1).

Proof. Since the values of a, b, c are fixed, the matrices Mi are fully de-
scribed by their parameters ki, `i. To simplify the discussion, we shall write
each Mi in the more descriptive form M [ki, `i], and also write the bounding
function f(M) in the more descriptive form f({(ki, `i)}r

i=0).
Let G be a minimal M-obstruction. We may again suppose that G is

disconnected, say G = G1 ∪G2, and shall derive an upper bound on G from
upper bounds on G1, G2, using Corollary 2.2. Recall that we may assume
that a 6= 0 and b 6= 1. We shall distinguish two main cases - when c 6= 1 and
when c = 1.

CASE 1: c 6= 1.
We first consider the subcase when a = ∗. Thus a = ∗, b 6= 1, c 6= 1,

and the matrices in M have no 1’s, except those on the main diagonal. As
in the proof of Theorem 4.1, the graph G obstructs M [ki, `i] if and only
if there exists some 0 ≤ ji ≤ `i + 1 such that G1 obstructs M [ki, ji − 1]
and G2 obstructs M [ki, `i − ji] (and, moreover, if G is a minimal M [ki, `i]-
obstruction, then G1 is a minimal M [ki, ji−1]-obstruction, and G2 a minimal
M [ki, `i − ji]-obstruction). As M [ki, d] is a submatrix of M [ki+1, d] we can
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choose ji so that ji ≥ ji+1 and `i − ji ≥ `i+1 − ji+1. Using induction, and
setting jr+1 = 0, we compute

f({(ki, `i)}r
i=0) = f({(ki, ji − 1)}r

i=0) + f({(ki, `i − ji)}r
i=0)

=
r∑

i=0

((ji − ji+1)(ki + 1) + (`i − ji − `i+1 + ji+1)(ki + 1))

=
r∑

i=0

(`i − `i+1)(ki + 1).

Now we consider the other subcase, when a = 1. Here a = 1, b 6= 1, c 6= 1,
and there are off-diagonal ones between any parts j, j′ that are independent
sets (j, j′ ≤ k). Thus any two vertices that are placed in different indepen-
dent sets must be adjacent. We can derive the following conditions from
Corollary 2.2, or by the arguments given below.

The graph G = G1 ∪ G2 has an M [ki, `i]-partition if and only if it has
a partition where all parts i that are independent sets (i ≤ k) are in one of
G1, G2, or a partition in which there is only one part that is an independent
set, and that set intersects both G1 and G2 (for this we must have ki ≥
1). Equivalently, G obstructs M [ki, `i] if and only if the following three
conditions hold:

1. there exists a ui with 0 ≤ ui ≤ `i+1 such that G1 obstructs M [0, ui−1]
and G2 obstructs M [ki, `i − ui],

2. symmetrically, there exists a vi with 0 ≤ vi ≤ `i + 1 such that G2

obstructs M [0, vi − 1] and G1 obstructs M [ki, `i − vi], and

3. if ki ≥ 1, there exists a wi, 0 ≤ wi ≤ `i + 1 such that G1 obstructs
M [1, wi − 1] and G2 obstructs M [1, `i − wi].

Note that we always can choose ui and vi such that

ui + vi ≥ `i + 1 for all 0 ≤ i ≤ r. (1)

If x denotes the largest value such that G1 obstructs M [0, x− 1] we may
actually assume that ui = min{x, `i + 1} and vi = min{y, `i + 1}, where y
denotes the largest value such that G2 obstructs M [0, y − 1]. In particular,
this implies ui ≥ ui+1 and vi ≥ vi+1 for 0 ≤ 1 ≤ r − 1. Similarly, if i0 is the
smallest index such that ki0 ≥ 1 we may assume that wi = min{wi0 , `i0 +1}.

Thus, in order to meet both conditions, it suffices that G1 obstructs
M [0, u0 − 1],M [1, wi0 − 1] and M [ki, `i − vi] for i ≥ 0, and G2 obstructs
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M [0, v0 − 1],M [1, `i0 − wi0 ] and M [ki, `i − ui]. We may assume that the
parameters ki are strictly increasing, for if ki = ki+1 then, as `i > `i+1

any graph that obstructs M [ki, `i] also must obstruct M [ki+1, `i+1] and,
furthermore (ki+1 − ki)(`i+1 + 1) = 0. By Corollary 4.2, we may assume
that r ≥ 1 or k0 ≥ 1.

If k0 = 0 and k1 = 1, we may assume that x = u0 and y = v0 have been
chosen such that u0 + v0 = `0 + 1 (x and y not necessarily maximal). Also
we may assume that w1 = `1 − v1 as well as `1 − w1 = `1 − u1. Thus, also
u0 − 1 = `0 − v0, w1 = `1 − v1 and v0 − 1 = `0 − u0 and using induction we
compute the size of G as the sum of the sizes of G1 and G2, at most

∑r
i=0(ki − ki−1)(`i − vi + 1) +

∑r
i=0(ki − ki−1)(`i − ui + 1)

=
∑r

i=0(ki − ki−1) ((`i + 1)− (ui + vi − `i − 1))
≤

∑r
i=0(ki − ki−1) (`i + 1) = f(M).

In order to complete this case it suffices to additionally consider the first
three summands in the induction step. Assume first, that k0 ≥ 2. Then we
have the first three summands in f(G1) are u0 + w0 + (k0 − 1)(`0 + 1− v0)
and for G2 we have v0 + `0 +1−w1 +(k0− 1)(`0 +1−u0). Adding up these
numbers yields

(k0 + 1)(`0 + 1)− (k0 − 2)(u0 + v0 − `0 − 1) ≤ (k0 + 1)(`0 + 1).

If k0 = 1 similar to the first case we may assume w0 = u0 = `0 + 1− v0

and we compute

u0 + w0 + (k1 − k0)(2`1 + 2− v1 − u1) + v0 + (`0 + 1− w0)
= (k1 − k0)(`1 + 1) + 2(`0 + 1)− (k1 − k0)(u1 + v1 − `1 − 1)
≤ (k0 + 1)(`0 + 1) + (k1 − k0)(`1 + 1).

Finally, if k0 = 0 and k1 ≥ 2 again we may assume x + y = u0 + v0 = `0

and compute

u0 + w1 + (k1 − 1)(2`1 + 2− v1 − u1) + v0 + `1 + 1− w1

= (k0 + 1)(`0 + 1) + (k1 − k0)(`1 + 1)− (k1 − 1)(u1 + v1 − `1 − 1)
≤ (k0 + 1)(`0 + 1) + (k1 − k0)(`1 + 1).

Thus, in any case G has at most f(M) vertices.

CASE 2: c = 1.
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In this case a 6= 0, b 6= 1, c = 1, and a disconnected graph G = G1 ∪G2

has an M [k, `]-partition if and only if it has an M [0, `]-partition, or an
M [k, 0]-partition. It follows from facts proved in [7], and is easy to see
directly, that the only minimal M [k, 0]-obstruction is Kk+1, except in the
case when a = 1 and k ≥ 2, when the disjoint union of K1 and K2 is the
only other minimal M [k, 0]-obstruction. Complements of these graphs are
all the minimal M [0, `]-obstructions, the complement of K1 ∪ K2, i.e., the
path P3 with three vertices, only if ` ≥ 2 and b = 0.

Suppose now G is an M-obstruction. Let k, ` be largest integers such
that G obstructs M [k, 0],M [0, `]; note that kr ≤ k, `0 ≤ `. We claim that G
contains a disconnected induced subgraph H which obstructs M [kr, 0] and
M [0, `0] and has size

kr + `0 + 1 = f({(0, `0), (kr, 0)}) ≤ f({(ki, li)}r
i=0).

We may assume that both kr and `0 are positive, as in case kr = 0 or
`0 = 0 the claim holds trivially using the minimal M [kr, 0]-obstructions and
the minimal M [0, `0]-obstructions.

If G contains Kkr+1 and K`0+1 then, since in cographs any maximum
clique meets any maximum independent set, the union of any two such sets
can serve as H (with kr + `0 + 1 vertices).

Next, we consider the case that G contains Kkr+1 and P3 and `0 ≥ 2. If
these obstructions are in different components, then we let H = Kkr+1∪P3,
of size kr +4 ≤ (`0 +1)+kr, unless `0 = 2. In the latter case we remove the
midpoint v of P3. Then H \ v has the right size and contains K3. If Kkr+1

and P3 are in the same component, then this component is not a clique.
Hence, by connectivity, it contains a clique K of size k0 +1 ≥ 2 and a vertex
w which is adjacent to some vertex of K and non-adjacent to another. Now,
K + w contains a P3 and has kr + 2 < (`0 + 1) + kr vertices.

If G contains K`0+1 and K1 + K2 and kr ≥ 2, then we correspondingly
find an independent set I with `0 + 1 vertices, and a vertex w adjacent to
some vertex in I and non-adjacent to another. Hence I + w also contains
K1 + K2.

Finally, if G contains P3 as well as K1 + K2, then the P3 plus a vertex
from a different component yields an obstruction of size 4 < (`0 +1)+kr.

Corollary 4.4 If M is a constant matrix and G a minimal M -obstruction
cograph, then G has at most (k + 1)(` + 1) vertices.

If c 6= 1 and b = ∗, or if c 6= 0 and a = ∗, the bound from Theorem
4.3 is tight. We give a minimal obstruction of size f(M) for the first case,
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the second follows by taking complements. Let G consist of the disjoint
union of `r + 1 cliques of size kr + 1 and `i − `i+1 cliques of size ki + 1 for
0 ≤ i ≤ r − 1. We show that G cannot be partitioned into ki independent
sets and `i cliques. Assume it had such a partition. There are `i + 1 cliques
of size at least ki + 1. At least one vertex of each of these cliques has to be
mapped to a clique, a contradiction. In order to show that G is minimal let
v be a vertex in a ki +1 clique. Then we have `i cliques of size > ki and the
other cliques can be partitioned into ki independent sets.

Theorem 4.3 also implies efficient algorithms for the M -partition prob-
lem, where M is an (a, b, c)-block matrix. Thus suppose that a, b, c are fixed;
given a cograph G, we can find the strictly staircase-like collection dominat-
ing all the matrices Mi to which G is an obstruction, in time O((k + `)n).
Given a staircase-like collection of matrices M, such that G contains an M-
obstruction, we can find an induced subgraph H of G, such that H has size
at most f(M) and H also contains an M-obstruction, in time O((k + `)n).
(We always assume the cograph G is given by its cotree; note that the
cotree can be found in linear time [4].) The algorithms find all minimal
pairs (k, `) such that a corresponding partition exists (along the boundary
of the staircase) for each node in the cotree, testing each one in constant
time as indicated by the cases in the proof, given the corresponding stair-
cases for the two children in the cotree. Since the length of the boundary
of the staircase is O(k + `), and there are n nodes in the cotree, the time
O((k + `)n) follows.

We remark that the upper bound (k + 1)(` + 1) does not hold in general
even for the class of trees. For instance, in the case k = 1, b = 0, c = ∗,
there is a tree with (`/3)2 vertices that is a minimal M -obstruction [11, 12].
The more general bound f(M) does not hold for trees even in the case
a = b = c = ∗: take the stair-like collection M of two matrices M0,M1 with
k0 = 0, k1 = 1, `0 = 7, `1 = 4 – we have f(M) = 13, but there is a minimal
M-obstruction with 14 vertices which is a tree, namely an edge e = uv plus
four attached paths of length 3, two attached at u and two attached at v.
However, it is shown in [14] that the upper bound (k + 1)(` + 1) does apply
to collections consisting of one matrix, in the case of chordal graphs.

5 Unions of Cliques

In this section we study minimal obstructions that are unions of cliques.
Unions of cliques are an interesting subclass of cographs - while cographs
are precisely those graphs not containing an induced path on four vertices,
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unions of cliques are precisely those graphs not containing an induced path
on three vertices.

Recall that we are no longer considering lists. We start the simplest case
of a non-constant matrix.

Proposition 5.1 Let M be an m × m matrix which has only 0’s on the
main diagonal, one off-diagonal 1 and ∗’s elsewhere. Then M has just two
minimal obstructions that are cographs, namely Km+1 and Km ∪Km−1.

Proof. An M -partition of a graph G is an m-colouring of G, in which
two special colour classes are completely adjacent (each vertex of one is
adjacent to each vertex of the other). Clearly both Km+1 and Km ∪Km−1

are minimal M -obstructions. Suppose G is an M -obstruction cograph not
containing Km+1. Then its maximum clique size must be m, as otherwise
G, as a cograph, and hence a perfect graph, would be m− 1 colourable, and
so would admit an M -partition. Let A be a clique of size m in G.

Suppose e = uv is any edge of A. The graph G−u−v must have a clique
Be of size m− 1, or else G− u− v would be m− 2- colourable, and u and v
could be placed as the only vertices in the two classes that are completely
adjacent, yielding an M -partition of G.

Suppose G is a minimal M -obstruction cograph. We now claim that
the cliques Be can be chosen so that no clique Be can contain a vertex w
adjacent to exactly one vertex of the edge e = uv, say w adjacent to v. (In
other words, each vertex w ∈ Be is adjacent to either both or to neither of
u, v.) Otherwise, let Ge be a smallest induced subgraph of G containing A
and Be without an M -colouring placing u and v as the only vertices in the
special classes that are completely adjacent: indeed, considering the cotree
of Ge we find that the ∪-node where the directed paths from u resp. w to
the root meet must be a descendent of the +-node, where both meet the
path from v to the root. Let U,W be the graphs defined by the children
of that ∪-node such that u ∈ U and w ∈ W and v ∈ S the graph defined
by the child of the +node. The minimality of Ge implies that Ge \ W can
be placed, and the maximality of the clique A in graph G implies that the
largest clique in W is no larger than the clique U ∩A. Given the placement
for Ge \ W , we may then place W in the parts where the clique U ∩ A is
placed, since these parts are joined by ∗, and W can be colored with |U ∩A|
colors, thus placing all of Ge, a contradiction.

We may choose e in A joining two sets S and S′ closest to the root
of the cotree of G. If A and Be are in different components of G then
A ∪ Be = Km ∪Km−1 is an obstruction, while if A and Be are in the same
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component of G then each vertex w in Be is adjacent to at least one endpoint
of e, and thus to both, giving the obstruction Be ∪ {u, v} = Km+1.

For general matrices M (with k diagonal 0’s and ` diagonal 1’s) we derive
the following bounds on possible M -obstructions that are unions of cliques.
Recall that we view M as a block matrix with a diagonal matrix A (having
zero diagonal) and B (having a diagonal of 1s), and an off-diagonal matrix
C and its transpose.

We shall consider the function

f(k, `) =


(k + 1)(` + 1) if k ≤ ` + 2
k(` + 2)− 1 if ` + 2 ≤ k ≤ 2` + 4
b(k + 2` + 4)2/8− 1c if k ≥ 2` + 4.

We note that f(k, `) = max((k + 1)(` + 1),Θ(k2)), i.e., there exists a
function h(k) = Θ(k2) such that f(k, `) = max((k + 1)(` + 1), h(k)).

Theorem 5.2 For each k and ` there exists a matrix M with k 0s and `
1s on the diagonal, which admits a minimal M -obstruction G with f(k, `)
vertices that is a union of cliques.

Proof. The case k ≤ `+2 follows from Corollary 4.2, thus assume k ≥ `+2.

Let 2 ≤ 2r ≤ k and start M with r blocks
(

0 1
1 0

)
on the diagonal. This

is followed by a constant matrix of size k − 2r with 0’s on the diagonal and
1’s off-diagonal. All other off-diagonal entries are ∗’s. Let G be a disjoint
union of `+ r cliques of size k− 2r +2 and one of size k− 2r +1. This is an
obstruction since removing ` of the cliques, we are left with r cliques of size
k−2r+2 that we can partition at best into an edge and a clique of size k−2r.
As the cliques are pairwise non-adjacent each of these edges has to use a
different block, leaving one vertex of the clique of size 2k − 2r + 1 pending.
This already shows how to partition G \ v if v is in the smaller clique. If v
belongs to a clique of size k− 2r + 2 then we can map one vertex of each of
the cliques of size k−r+1 to the same element of one of the small blocks and,
otherwise, proceed as above. Now, choosing r = max{1, d(k − 2(l + 1))/4e}
yields the desired bounds.

Theorem 5.3 Let f be defined as above. If M is any matrix with k 0’s and
` 1’s on the diagonal, then each minimal M -obstruction that is a disjoint
union of cliques has at most f(k, `) + (k + 1)` vertices.
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If the block C of M contains no 1, then each minimal M -obstruction
that is a disjoint union of cliques has at most f(k, `) vertices.

Proof. Suppose a minimal M -obstruction G is the disjoint union of cliques
K1, . . . ,Kt with |Ki| ≥ |Kj | for i ≥ j. Removing v ∈ Kt we have a par-
tition assigning each Ki to a set of parts Si for i < t. The submatrix Mi

corresponding to Si must have at least one 1 since otherwise, each part of
Si must be an independent set, i.e. it contains at most one vertex from Ki

and, since |Kt| ≤ |Ki|, we could additionally assign Kt to parts of Si and
not have an obstruction. If Mi has a 1 on the diagonal, we may assume that
Si = {si} consists of this entry alone. The sets Si, thus, are partitioned
into a collection T of Si’s all having Si = {si} and Mi = (1) and a collec-
tion R of Sj ’s where Mj has 0’s on the diagonal and some 1 off-diagonal
M(rj , cj) = 1. Note, that part Sj must have at least one vertex, that is in
class rj as well as one that is in cj . We may further assume that for Si ∈ T
and Sj ∈ R we always have |Ki| ≥ |Kj |, since si can absorb any clique.
Hence, the clique Kt \v is assigned to parts in R and no pair of cliques from
K1, . . . ,Kt−1,Kt \ v may share the parts si, rj , cj . Since G is minimal the
Ki in T are of size at most k + 1, as this already enforces them to use a 1
on the diagonal of M . Let r = |R|. A set Sj ∈ R must not use rk, ck for
k 6= j, since Kj is non-adjacent to Kk. Hence, such an Sj has size at most
k − 2r + 2 and Kt has size at most k − 2r + 1, for Kt − v avoids all pairs
cj , rj (note, that j < t).

If part C of M has no 1’s, then also the Si = {si} ∈ T correspond to
cliques of size at most k − 2r + 2. For if, say Ki has size ki > k − r + 2 and
v ∈ Ki, then G \ v has an M -partition where we may assume that Ki \ v is
one of the ` cliques, contradicting G being an M -obstruction. Therefore, in
this case, |V (G)| ≤ (`+ r +1)(k− 2r +2)− 1 which is maximized at f(k, `).
If r = 0 we have ` cliques in T of size k + 1 and |Kt| ≤ k + 1 adding up to
(` + 1)(k + 1) = f(k, `). This proves the upper bound for this special case.

Continuing with the general case, the Si = {si} ∈ T correspond to
cliques of size at most k + 1, giving at most (k + 1)` additional vertices, so
|V (G)| ≤ f(k, `) + (k + 1)`.

Theorem 5.4 There exists a matrix M with the k by k block A with 0
diagonal having no off-diagonal 0s, the ` by ` block B with 1 diagonal having
all off-diagonal entries ∗, and the k by ` block C having all entries ∗, such
that M admits a minimal M -obstruction with f ′(k, `) = Θ(k`+k1.5) vertices,
that is a disjoint union of cliques.
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To be more precise, letting

r = max(1, d−1/2− `/3 +
√

(1/2 + `/3)2 + 2(k + 1)/3e),

so that r = Θ(1) if k ≤ `, r = Θ(k/`) if ` ≤ k ≤ `2, and r = Θ(
√

k) if
k ≥ `2, and t = k + 1− (r2 + r)/2, so that t = Θ(k), we have

f ′(k, `) = (t + r)` + tr + (r2 + r)/2.

Proof. We may interpret any matrix A = (k)ij with no 0 off diagonal as
the adjacency matrix of a simple graph A(H) on the k vertices {1, 2, . . . , k},
where two vertices i, j are adjacent if and only if kij = 1, and vice versa
with any simple graph H we have a unique matrix A(H) of the described
type; non-adjacency thus corresponds to * entries.

Let t, r be positive integers, and H be the disjoint union of t isolated
vertices and r − 1 cliques of sizes 2, 3, . . . r respectively. The corresponding
matrix A = A(H) is a k × k-matrix where k = t− 1 + (r2 + r)/2.

Now let G be the graph that is the disjoint union of r cliques of sizes
t+ r, t+ r−1, . . . , t+1 respectively, and an additional ` cliques of size t+ r.
Thus |V (G)| = q = (t + r)` + tr + (r2 + r)/2. First, we show that G is
an obstruction for M with the A part as described above by induction over
r. If G had an M -partition, then each of the ` parts corresponding to a 1
diagonal can be used for a clique of G, and we may put in such parts the
largest cliques possible, that is, the ` additional cliques of size t + r. The
remaining r cliques must go to A, so we reduce the problem to A-partition
after removing the ` additional cliques of size t + r from G. The clique KG

of size t + 1 in G had to use at least one vertex of a non-trivial clique KH

of H. Since G is the disjoint union of cliques, the other cliques of G may
use one and only one vertex of H if and only if KG uses only one vertex
of KH . Let G̃ arise from G by deleting KG and one vertex of each of the
other non-trivial cliques of G. Then G has an M -partition only if G̃ has
an M(H \KH) partition, which is not the case by inductive assumption (G
does not have an M(H̃) partition for any graph H̃ consisting of t isolated
vertices and r − 1 non-trivial cliques; the base case r = 1 has G consisting
of a clique of size t + 1 but H̃ has no non-trivial cliques).

We still have to show that the obstruction G is minimal. Assume v is a
vertex in the clique of size t + r − i, then G \ v has r − i cliques of size at
most t + r − i − 1. These can be mapped to into the t isolated vertices of
H and to one vertex of each of the r − i− 1 cliques of size at most r − i of
H. From each of the remaining cliques Kj of size t + r − j, 0 ≤ j ≤ i − 1
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of G we map t vertices each to the isolated vertices of H and the remaining
r − j vertices of Kj to the clique of size r − j in H.

It remains to choose r to maximize

q = qr = (k + 1− r2/2 + r/2)` + (k + 3/2− r2/2)r.

We note that

qr+1 − qr = −3/2(r2 + 2(1/2 + `/3)r − 2(k + 1)/3),

so the maximum occurs at

r = max(1, d−1/2− `/3 +
√

(1/2 + `/3)2 + 2(k + 1)/3e).

Theorem 5.5 Suppose the block submatrix A with 0 diagonal has no 0 off
diagonal. Let f ′ be defined as above, satisfying f ′(k, `) = Θ(k` + k1.5), and
let

g′(k, `) = f ′(k, `) + (k + 1)`.

If M has k 0’s and ` 1’s on the diagonal, then any minimal M -obstruction
that is a disjoint union of cliques has at most g′(k, `) vertices.

If in addition the block C contains no 1, then any obstruction that is a
disjoint union of cliques has at most f ′(k, `) vertices.

Proof. We proceed as in the proof of Theorem 5.3, and assume a minimal
M -obstruction G is the disjoint union of cliques K1, . . . ,Kt with |Ki| ≥ |Kj |
for i ≥ j. Removing v ∈ Kt we have a partition assigning each Ki to parts
from Si for i < t. The sets Si are partitioned into a collection T of Si’s
having Si = {si} and Mi = (1) and a collection R of Sj ’s where Mj has 0’s
on the diagonal and 1,* off-diagonal. Let Uj be the set of indices that are
used exclusively by Sj ∈ R and D be the set of indices that are used by at
least two Si ∈ R. We may order the sets U1, . . . , Ur−1 nonincreasingly. Then
|Ui| ≥ r + 1− i, since otherwise we may U be a set of size r− i consisting of
one element from each of Ui, . . . , Ur−1, and assign the cliques Ki, . . . ,Kr−1

and Kt to U ∪ D, contrary to the fact that G is an obstruction. If we let
t be the number of parts in A that do not correspond to r + 1 − i chosen
elements out of Ui, then k ≥ t + 2 + 3 + . . . + r = t − 1 + (r2 + r)/2 so
t ≤ k + 1− (r2 + r)/2.

If part C of M has no 1’s, then also the Si = {si} ∈ T correspond
to cliques of size at most t + r. For if, say Ki has size ki > t + r and
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v ∈ Ki, then G \ v has an M -partition where we may assume that Ki \ v
is one of the ` cliques, contradicting G being an obstruction. Therefore
|V (G)| ≤ (t + r)` + tr + (r2 + r)/2 which is maximized at f ′(k, `).

Continuing with the general case, we estimate the largest clique by k+1,
so |V (G)| ≤ (k + 1)` + tr + (r2 + r)/2 ≤ (k + 1)` + f ′(k, `) = g′(k, `).
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