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Abstract. We derive a polynomial time algorithm to compute a sta-
ble solution in a mixed matching market from an auction procedure as
presented by Eriksson and Karlander [5]. As a special case we derive
an O(nm) algorithm for bipartite matching that does not seem to have
appeared in the literature yet.

1 Introduction

In past years scientists from different fields such as game theory, economics,
computer science, and combinatorial optimization have focused on the problem
of two-sided matching markets where there are two finite and disjoint sets of
agents, P and Q, that are to be matched in pairs consisting of one P -agent
and one Q-agent. Two famous models of two-sided matching markets are the
marriage model of Gale and Shapley [9] and the assignment game of Shapley
and Shubik [17].

In the marriage model (see e. g. [13, 11]) the two sets of agents are usually
referred to as the eligible marriage candidates in some small village. Each agent
has preferences over the agents of the opposite set. A marriage is called stable
when there is no pair which is not matched but prefers each other over their
partners. Using the algorithm named “men propose – women dispose” Gale and
Shapley [9] proved the existence of such a stable marriage when the preference
lists are strict.

In the assignment game money plays a prominent role. It is modeled as a
continuous variable. A matching and an allocation of its weight to the players
compose a solution of the assignment game which is called outcome. By a stable
outcome we mean a solution where no pair gets allocated less than the weight of
its connecting edge. Shapley and Shubik [17] observed that stable outcomes coin-
cide with the primal-dual pairs of solutions of the maximum weighted matching
linear program, thereby showing the existence of a stable outcome. However, al-
gorithms and complexity issues of game theoretical solution concepts have raised
attention only recently (see e. g. Deng and Papadimitriou [3], Faigle et al. [6],
Deng et al. [4]) and the classical algorithm for weighted bipartite matching,
namely the Hungarian Method of Kuhn [14], is not as prominent in game theory
as it is in combinatorial optimization.



Quite similar results such as the non-emptiness of the set of stable matchings
and the lattice structure of the core have been established for these two models.
To find a satisfactory explanation for the similarities in behavior between the two
models Roth and Sotomayor [16] themselves offered a first model containing both
the two old models as special cases and showed that its set of stable solutions, if
it is non-empty, also has the lattice property under certain conditions. Eriksson
and Karlander [5] modified this model to the RiFle assignment game, another
common generalization of the two old models, and gave an algorithmic proof of
the non-emptiness of its set of stable solutions. This algorithm computes a stable
solution not in polynomial time but in pseudopolynomial time. For the classical
special cases, it coincides with “men propose – women dispose”, respectively with
the “exact” auction procedure of [2]. The existence of stable solutions in presence
of irrational data is proved by Eriksson and Karlander only via arguments from
non-standard analysis.

We consider the model of Eriksson and Karlander [5]. A careful analysis
of their algorithm reveals that a proper implementation solves the problem in
O(n4). This implementation was developed in parallel with [12] where we derive
another polynomial time algorithm, to compute a stable solution for the same
model, from the key lemma in Sotomayor [18]. Both algorithms run in O(n4),
where 2n is the number of players and n2 is the size of a problem instance.

In the next section we briefly introduce the model and its notion of stability.
Then we design a polynomial time algorithm to compute a stable solution in
Section 3. Finally, we discuss the behavior of the algorithm in the special cases
of Stable Matching, Assignment Game and cardinality matching and summarize
differences from and similarities to the algorithm from [12].

2 Notation

We have two sets of players P (firms indexed by i) and Q (workers indexed
by j) w.l.o.g. satisfying |P | = |Q| =: n. Let furthermore P ∪ Q be partitioned
into flexible players (F ) and rigid players (R). Consider the complete bipartite
graph on P ∪̇Q. An edge (i, j) is called rigid if one of i or j is in R and flexible,
otherwise. For each edge (i, j) there are nonnegative numbers aij and bij . The
sum aij + bij is the productivity of a cooperation between i and j. A pair of
functions u : P → R and v : Q→ R is called a payoff. If i cooperates with j and
(i, j) is a free edge the productivity can be freely divided into payoffs ui and vj

while ui = aij and vj = bij must hold if (i, j) is a rigid edge.

Definition 1. A payoff (u, v) is called stable if for any edge (i, j) ∈ P ×Q we
have

(i) ui + vj ≥ aij + bij if (i, j) is a free edge and
(ii) ui ≥ aij or vj ≥ bij if (i, j) is a rigid edge.

A stable outcome is a stable payoff (u, v) together with a bijective map µ : P → Q
(denoted by (u, v;µ)) so that



(iii) ui ≥ 0 and vj ≥ 0 for all (i, j) ∈ P ×Q.
(iv) ui + vj = aij + bij for µ(i) = j and {i, j} ⊆ F .
(v) ui = aij and vj = bij for µ(i) = j and {i, j} ∩R 6= ∅.

Let µ : P → Q be a map. If µ(i) = j then we say i proposes to j. A proposal is
called free or rigid if the corresponding edge is free resp. rigid. A firm i (a worker
j) is called mapped if i ∈ µ−1(Q) (resp. j ∈ µ(P )) and unmapped, otherwise. If
there are firms i1, i2 so that µ(i1) = µ(i2) = j then j is called doubly mapped.
We denote by

QU the set of unmapped workers,
Q2µ the set of doubly mapped workers,
QR the set of workers that have a rigid proposal, and by

Q2R the set of workers with at least 2 rigid proposals.

Let furthermore

f
(v,µ)
ij :=


aij + bij − vj if (i, j) is a free edge
aij if (i, j) is rigid and vj < bij

aij if (i, j) is rigid and vj = bij and µ(i) = j
0 otherwise

define the possible profit of i from j if j receives vj .
The strategy of the algorithm is the following: The map µ always defines

stable relations but is not necessarily injective. In the course of the algorithm
we will try and increase |µ(P )|, keeping stability of the relations, until the map
is injective. The procedure to increase |µ(P )| acts on the augmentation digraph
G(v,µ) = (P ∪Q,A) with backward arcs (j, i) for µ(i) = j and forward arcs (i, j)
for j ∈ D

(v,µ)
i where

D
(v,µ)
i = {j ∈ Q | f (v,µ)

ij = max
k

f
(v,µ)
ik }

is the set of workers that maximize the potential benefit of firm i. A directed
path P in G(v,µ) that connects a doubly mapped worker j1 ∈ Q2µ with another
worker js is called (µ-)alternating resp. (µ-)augmenting if js is not mapped.

3 An Algorithm to Find a Stable Outcome

Eriksson and Karlander [5] assume integer data and in one step increase a free
payoff by at most one. We modify this approach in such a way that we increase
the payoff by the smallest possible amount that changes the augmentation di-
graph. Our strategy to make the map µ : P → Q bijective is as follows: As in the
classical “men propose – women dispose” algorithm from Gale and Shapley [9]
workers with more than one rigid proposal choose the best one and dispose the
rest. This way some firms become temporarily unmapped. Each of these un-
mapped firms has to place another proposal until every worker has at most one



rigid proposal. Next, we search the graph G(v,µ) for alternating paths that reach
a worker in QU ∪ QR and alternate the map µ along the path. If none of the
above is possible, we increase the payoffs v of workers which are reachable by
an alternating path until G(v,µ) receives a new edge and the process is repeated
until the map becomes injective.

The algorithm uses several sub-procedures:

Propose(i): Places a proposal from i to a worker in D
(v,µ)
i , i. e. chooses µ(i) ∈

D
(v,µ)
i .

Dispose(j, i∗): Disposes all firms i 6= i∗ that made a rigid proposal to j, i. e. sets
µ(i) to be undefined for all i ∈ µ−1(j) \ {i∗}.

Alternate(P): µ is alternated along the alternating path P, i. e. all arcs are
reoriented and µ is modified such that it uses the new backward arcs. If P
is augmenting then the size of the image of µ increases by 1.

BFS(G, Q2µ): Returns all vertices reachable from Q2µ in G.
PlaceRigidProposals: This procedure is the “men propose – women dis-

pose” algorithm of Gale and Shapley [9]. Here, we denote by PU the set of
temporarily unmapped firms. See Algorithm 2.

HungarianUpdate: Increases the payoffs of all workers reachable from a dou-
bly mapped worker. See Algorithm 3 for details.

Algorithm 1 An Algorithm to Find a Stable Outcome

v ← 0
PlaceRigidProposals
while Q2µ 6= ∅

while ∃ µ-alternating path to j ∈ (Q \ µ(P )) ∪QR do
Alternate(P)
PlaceRigidProposals

end while
HungarianUpdate

end while

Theorem 1. Algorithm 1 eventually finishes with a stable outcome and can be
implemented to run in O(n4) time.

Proof. In any iteration of the inner loop of line 4 in Algorithm 1 |µ(P )| is in-
creased or a rigid proposal is disposed. If there is a path to Q\µ(P ) then |µ(P )|
increases. If the path ends in j ∈ QR then PlaceRigidProposals is called
and disposes at least one rigid edge. Note, that a rigid edge once disposed will
never be proposed again. If no path exists at all then v is increased by Hun-
garianUpdate until this is the case and in each call of HungarianUpdate at
least one new arc shows up in G(v,µ). Thus, the procedure is finite.



Algorithm 2 PlaceRigidProposals

while PU 6= ∅ do
for all i ∈ PU do

Propose(i)
end for
for all j ∈ Q2R do

Let i∗ be the favorite proposal in µ−1(j)
Dispose(j, i∗)
vj ← bi∗j

end for
end while

Algorithm 3 HungarianUpdate

P̄ ∪̇Q̄←BFS(G(v,µ), Q2µ)

ui ← maxj f
(v,µ)
ij

∆← min{ui − f
(v,µ)
ik | i ∈ P̄ , k ∈ Q \ Q̄}

for all j ∈ Q̄ do
vj ← vj + ∆

end for

The while-loop in line 4 of Algorithm 1 might be iterated more than once
without finding a path as desired. Anyway, HungarianUpdate can be im-
plemented so that its consecutive calls until a path is found need O(n2) time
in sum including an update of the augmentation graph by reusing the BFS-
structure from the previous call and storing a minimum distance ∆j from un-
mapped vertices and vertices in QR to the current BFS forest (see e. g. Galil [10]
or Hochstättler et al. [12] for details). Hence, after O(n2) time steps we can aug-
ment µ or dispose a rigid edge which can happen at most O(n2) times. Hence,
without considering the complexity of PlaceRigidProposals the algorithm
runs in O(n4).

We also can implement PlaceRigidProposals at a total cost of O(n4)
without any effort. For the first call we have to place n proposals taking O(n2)
time including the time to find a favorite partner for any i ∈ P . Note that the
preference lists may change during the course of the algorithm thus, sorting the
lists in a preprocessing does not suffice to speed up the procedure. For each
discarded rigid edge we have to find a new favorite partner and after each call
of PlaceRigidProposals in the inner while-loop we may freely use O(n2) to
update the augmentation graph which happens at most O(n2) times taking the
number of rigid edges into account. Thus, the overall complexity of PlaceRigid-
Proposals is O(n4). As the total cost of Alternate is bounded by O(n3) we
get a total complexity of O(n4).

Next we will show that the algorithm produces a stable outcome. In any stage
of the algorithm let ūi := maxj f

(v,µ)
ij . Then (ū, v) is stable and (ū, v;µ) satisfies

(iv) and (v) of Definition 1 since µ(i) = j implies j ∈ D
(v,µ)
i . As v monotonically

increases we also have v ≥ 0. A worker with no proposer always has payoff zero



and is therefore of non-negative value to all firms. Hence together with (iv) and
(v) this implies u ≥ 0. When the algorithm terminates µ is bijective and thus,
(ū, v;µ) is a stable outcome. ut

4 Special Cases and Remarks

Cardinality Matching If R = ∅ and aij + bij ∈ {0, 1} for any edge (i, j) the
problem reduces to finding a matching of maximum cardinality among edges with
productivity 1 (referred to as 1-edges). The presented algorithm (see Algorithm 4
for the reduced version) does not seem to have appeared in the literature yet and
differs from the standard approach which starts with an empty matching M and
searches the graph of 1-edges G1

M for an M -augmenting path. The algorithm
presented here starts with a total but not surjective (and therefore not injective)
map µ on the set of nodes in P with at least one 1-edge. A µ-alternating path in
the graph of 1-edges G1

µ is a path from a doubly mapped worker to an unmapped
worker using only 1-edges (forward) and µ-edges (backward) and is used to
modify the map in a similar fashion as the augmentation of matchings is done
in more classical algorithms. Here, the size of the image of µ increases. If no
such µ-augmenting path exists, then the set of doubly mapped workers Q2µ

together with the set of firms which are mapped to a worker not in Q2µ form
a vertex cover of G1

µ with the same cardinality as the image of µ resulting in a
maximum matching constructed from µ as in Algorithm 4 (e. g. [8]). If a perfect
matching exists, we turn a total (not necessarily injective) map into an injective
map instead of making a partial injective map (i. e. a matching) total.

Algorithm 4 Cardinality Matching by Increasing the Image of a Map

for all i ∈ P do
µ(i)← j ((i, j) is a 1-edge)

end for
while ∃ µ-augmenting path in G1

µ to j ∈ (Q \ µ(P )) do
Alternate(P)

end while
for all j ∈ P, µ−1(j) 6= ∅ do

M ←M ∪ {(i, j)} (i ∈ µ−1(j))
end for

While the standard approach is essentially due to Ford and Fulkerson [7] the
approach presented here reminds of the preflow-push algorithm (see e. g. [1]),
as in the first step we send as much flow as possible from nodes in P to nodes
in Q. Then, nodes in Q2µ correspond to excess nodes, i. e. nodes that violate
Kirchhoff’s law. However, the strategy of lifting node potentials in preflow-push
in successive steps does not seem to have anything in common with the aug-
menting path procedure used here.



A naive implementation of Algorithm 4 leads to an O(nm) algorithm. Note,
that the main difference to the classical approach is in the orientation of the
arcs in the search graph. While in the standard approach backward arcs are
matchings, here we have exactly one backward arc ending in each non-isolated
vertex of P . Thus, the ratio of forward to backward arcs decreases and the search
tree in average should be shorter. We wonder if this approach might lead to more
efficient implementations for cardinality matching.

Weighted Bipartite Matching If R = ∅ the algorithm reminds of the Hun-
garian Method. Like the latter our method is a primal-dual algorithm and can
be viewed to start with a weighted vertex cover (u, v) if we set ui ← maxj f

(v,µ)
ij .

We then search for alternating paths or update the payoffs if no such path can
be found. Up to a different notion of an augmenting path (i. e. a different algo-
rithm for cardinality matching) and a different orientation of the search graph
this strategy is identical with that of the Hungarian Method (see e. g. Frank [8]
for a transparent presentation).

Stable Marriage When F = ∅ our model coincides with the Stable Marriage
Model, since the aij at firm i resp. bij at worker j may as well be replaced by
preference lists. The algorithm is identical to the classical “men propose – women
dispose” algorithm of Gale and Shapley [9], that proceeds in rounds.

Comparison with the Algorithm in [12] The algorithm in [12] to find a
stable outcome differs from the algorithm presented here in various ways. In [12]
(especially rigid) proposals are made asynchronously and not in rounds as in the
present implementation. Furthermore, this algorithm is a direct extension of the
Hungarian Method as introduced in Kuhn [15, Variant 2], while the algorithm
presented here is a direct extension of the original “men propose – women dis-
pose” algorithm of Gale and Shapley [9]. Also the concepts of augmenting paths
differ as described above.



Bibliography

[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network
Flows. Prentice Hall, 1993.

[2] Gabrielle Demange, David Gale, and Marilda Sotomayor. Multi-item auc-
tions. Journal of Political Economy, 94(4):863–872, 1986.

[3] Xiaotie Deng and Christos H. Papadimitriou. On the complexity of coopar-
ative game solution concepts. Mathematics of Operations Research, 19:
257–266, 1994.

[4] Xiaotie Deng, Toshihide Ibaraki, and Hiroshi Nagamochi. Combinatorial
optimization games. In Proceedings of the 8th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 720–729, New Orleans, LA, 1997.

[5] Kimmo Eriksson and Johan Karlander. Stable matching in a common gen-
eralization of the marriage and assignment models. Discrete Mathematics,
217(1-3):135–156, 2000.

[6] Ulrich Faigle, Sandor P. Fekete, Winfried Hochstättler, and Walter Kern.
On the complexity of testing membership in the core of min cost spanning
tree games. International Journal of Game Theory, 26:361–366, 1997.

[7] Lester R. Ford and Delbert R. Fulkerson. A simple algorithm for find-
ing maximal network flows and an application to the hitchcock problem.
Canadian Journal of Mathematics, 9:210–218, 1957.

[8] András Frank. On Kuhn’s Hungarian method – A tribute from Hungary.
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