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Abstract

We prove that the chromatic number of an oriented matroid O of rank
r ≥ 3 is at most r+1 with equality if and only if O is the oriented matroid
of an orientation of Kr+1, the complete graph on r + 1 vertices.

1 Introduction

Recently, two competing definitions for a chromatic number or, dually, a flow
number of an oriented matroid have been proposed. The oriented chromatic
number χo of Goddyn et al. [4, 5] is a generalization of the circular chromatic
number and, thus, in general not an integer. Moreover, it is not a matroid in-
variant (see [4]). The latter is open for the chromatic number χ of Hochstättler
and Nešetřil [7] which is always integer. Let O denote a loopless oriented ma-
troid of rank r. It is immediate from its definition that χo(O) ≤ r + 1. A
simple topological argument, given below, shows that the same holds for χ(O).
Moreover, we will show that, if r ≥ 3, the complete graph is the only instance
where this bound is tight. At least in rank 3 this is not the case for χo.

We assume familiarity with oriented matroid theory, the standard reference
is Björner et al. [1]. Given a loopless oriented matroid O of rank r on a finite set
E, we denote by FO∗ the coflow lattice of O, i. e. the integer lattice generated by
the signed characteristic vectors of signed cocircuits D of O, where for a signed
cocircuit D = (D+, D−) ∈ D its signed characteristic vector ~D ∈ Z|E| is defined
for any e ∈ E by

~D(e) :=


1 if e ∈ D+

−1 if e ∈ D−

0 otherwise.

Then FO∗ := lat{ ~D | D ∈ D} ⊆ Z|E|, where

lat{v1, . . . , vk} :=

{
k∑

i=1

λivi | λi ∈ Z

}
⊆ Zn

is the integer lattice generated by {v1, . . . , vk} ⊂ Zn. We call any x ∈ FO∗

a coflow. Such an x is a nowhere zero k-coflow if 0 < |x(e)| < k holds for
any e ∈ E. The chromatic number χ(O) is the minimal k such that there is a

1



nowhere zero k-coflow. It follows from standard results of the theory of nowhere
zero flows (see e.g. [10]) that χ(O) equals the chromatic number χ(G) in case O
is the oriented matroid of some orientation of a graph G. Clearly, the chromatic
number is reorientation invariant. As a result of [8], χ(O) is a matroid invariant
for uniform or corank 3 oriented matroids. It is unknown whether this is the
case in general.

The paper is organized as follows. In the next section we will review the
relevant results from Hochstättler and Nešetřil [7] for the rank 2 case. In Sec-
tion 3 we will found our result in the rank 3 case. Section 4 is devoted to an
infinite class of oriented matroids of rank and chromatic number 3. Finally, in
Section 5 we will prove the result for arbitrary rank r ≥ 3.

2 Rank 2

We summarize some results of [7] concerning the lattice FO∗ of rank 2 oriented
matroids.

Proposition 1 ([7]). Let O be a simple rank 2 oriented matroid on a finite set
E and ei the ith unit vector of Z|E|. Then there is a reorientation IO of O such
that

F
IO∗ =

{
lat{ei ± ej | i, j ∈ E} if |E| is even
lat{ei − ej | i 6= j ∈ E} if |E| is odd

The elements of a general loopless rank 2 oriented matroid are partitioned
into classes e ⊆ E, e ∈ E of elements which are pairwise parallel or antiparallel
to e. Let χe ∈ {0, 1}|E| denote the characteristic vector of e for some e ∈ E and
let E := {e | e ∈ E} be the set of parallel classes of O.

Corollary 2. Let O be a line with parallel classes E. Then there is a reorien-
tation IO of O such that

F
IO∗ =

{
lat{χe ± χf | e, f ∈ E} if |E| is even
lat{χe − χf | e 6= f ∈ E} if |E| is odd.

As a direct consequence, every loopless rank 2 oriented matroid has a
nowhere zero 2-coflow if it consists of an even number of parallel classes and a
nowhere zero 3-coflow, otherwise. Figure 1 shows an orientation of (multiple)
points on a line. The hyperplanes, i. e. points, are oriented in an alternating
manner, which yields an orientation as in Corollary 2.

. . .f 1 f 2 f 3 f 4 f 5

Figure 1: An alternating orientation of a line with parallel classes f i.

3 Rank 3

We start this section on the rank 3 case with a result for arbitrary rank. By
the Topological Representation Theorem of Folkman and Lawrence [3], each
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rank r oriented matroid has a topological representation as an arrangement
of pseudohyperspheres of Sr−1. The maximal cells T of such an arrangement
are called topes, they correspond to signed covectors of full support, and the
minimal cells, the vertices, correspond to the cocircuits of the oriented matroid.
The signed cocircuits to vertices of a fixed tope T are conformal, i. e. for any two
of them, say D1, D2, the separation set S(D1, D2) := (D+

1 ∩D−
2 ) ∪ (D−

1 ∩D+
2 )

is empty. We say that a set of cocircuits {D1, . . . , Dk} spans a tope T , if
T = D1 ◦ . . . ◦Dk, where X ◦ Y denotes the composition of two signed subsets
X, Y (see [1]). By induction it is immediate that a tope T ∈ T of an oriented
matroid of rank r is spanned by at most r cocircuits. For a signed subset X let
supp(X) := {e ∈ E | e ∈ X+ ∪X−} denote its support.

Proposition 3. Let O denote a loopless oriented matroid.

a) If D1, . . . , Dk are cocircuits spanning a tope T , then χ(O) ≤ k + 1.

b) If O is of rank r then χ(O) ≤ r + 1.

Moreover, there is an acyclic reorientation of O with a positive nowhere zero
(k + 1)-coflow in a) resp. a positive nowhere zero (r + 1)-coflow in b).

Proof. a) Reorient O such that T is all positive. Then by conformity,
D1, . . . , Dk are non-negative and, since O is loopless,

0 <

k∑
i=1

~Di < k + 1.

b) Choose a tope T and select D1, . . . , Dr that span T . Then the result
follows by a).

Clearly, this bound is tight for O(K4). In the following we will show that
in the rank 3 case O(K4) is the only worst case example. This will be done by
case checking. We start with two easy cases. An oriented matroid of rank 3 is
triangular if every 2-dimensional face is a triangle. Note that, choosing a horizon,
an oriented matroid of rank 3 is representable by a pseudoline arrangement.

Proposition 4. Let O be a loopless oriented matroid of rank 3.

a) If O is non-triangular, then χ(O) ≤ 3.

b) If O has a pseudoline e ∈ E incident to only two vertices, then χ(O) ≤ 3.

Moreover, in both cases there is an acyclic reorientation with a positive nowhere
zero 3-coflow.

Proof. a) Choose a tope that is not a triangle and two cocircuits D1, D2

corresponding to non-adjacent vertices of that tope. Then D1 and D2

span T and the result follows from Proposition 3.

b) Let T be a tope that is incident to a segment of e. By a) we may assume
that T is a triangle. Let D1, D2, D3 denote the cocircuits corresponding to
the vertices of T such that ~D1(e) = ~D2(e) = 0 6= ~D3(e). Since e has only
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two vertices, supp(D1)∪supp(D2) = E\{e} and supp(D1)∩supp(D2) = ∅.
Reorient O such that T is all positive, then

0 < ~D1 + ~D2 + ~D3 < 3

implying the assertion.

e f

x1

x2

x3

x4

x5

x6

x7

Figure 2: The pseudoline arrangement of O(K4).

Thus, in the following we may restrict our analysis to triangular pseudo-
line arrangements where each pseudoline is incident to at least three vertices.
By Sylvester’s property (see e. g. [6]), each pseudoline arrangement has a sim-
ple vertex, i. e. a vertex x1 which is incident to exactly two pseudolines e and
f . We may choose the horizon of our oriented matroid such that none of the
four edges starting at x1 is unbounded. Let x2 and x3 denote the neighbors
of x1 on e and x4, x5 those on f . Since O is triangular, each of the pairs
(x2, x4), (x2, x5), (x3, x4), and (x3, x5) must lie on a common pseudoline, yield-
ing a configuration of 6 pseudolines isomorphic to the arrangement of K4 (see
Figure 2).

If O is not isomorphic to O(K4), there has to be an additional element.
Before we can finish our analysis we have to consider one more special case.

Proposition 5. If O is the oriented matroid of the non-Fano configuration F−
7

(see Figure 3) then χ(O) = 2 and moreover, there is an acyclic reorientation
IO such that 1 ∈ F

IO∗ .

Proof. Reorient O as in Figure 3 i. e. such that the triangular tope formed by
x1, x2, x4 is all positive. Let Dxi denote cocircuits corresponding to the vertices
xi. Then we have

Dx1 = (0, 0, 1, 1, 1, 1, 1)>

Dx6 = (1, 1, 0,−1, 1, 0, 0)>

Dx8 = (1, 0, 0,−1, 1,−1, 1)>

Dx9 = (0, 1, 0,−1, 1, 1,−1)>
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∼=

x1

x2

6 7
1 2

3

4

5

x2

(a) (b)

x3

x4

x5

x6

x9

x8

x6

x3

x7

x7

x1

x8

x4

x9

x5

1

2 3
6

5

47

Figure 3: The pseudoline arrangement of the non-Fano configuration. Note that
the point configuration in (b) represents a different member of the reorientation
class.

and therefore,

Dx1 + 2Dx6 −Dx8 −Dx9 = (1, 1, 1, 1, 1, 1, 1)>

is a positive nowhere zero 2-coflow.

In the remaining cases the following lemma guarantees the existence of a
simple vertex that forms a triangle with an edge that is on a pseudoline with at
least four vertices.

Lemma 6. Let O be a triangular oriented matroid, with at least three vertices
on each pseudoline such that its simplification is neither O(K4) nor O(F−

7 ) and
x1 a simple vertex. Then O contains a triangle u, v, x1 such that the pseudoline
through u, v contains at least four vertices.

Proof. By our analysis preceding Proposition 5, O contains a K4 deletion minor
with a cocircuit Dx1 corresponding to x1. Let wlog. the lines and vertices of this
minor be labeled as in Figure 2. Since the simplification of O is neither O(K4)
nor O(F−

7 ), O must contain an additional pseudoline that does not contain both
x6 and x7. This line generates an additional vertex either on the pseudolines 4
and 5 or on 6 and 7.

Theorem 7. Every loopless oriented matroid of rank 3 not isomorphic to O(K4)
satisfies χ(O) ≤ 3.

Proof. By Proposition 3 we may assume that O is triangular and (wlog.) simple
and that each pseudoline is incident to at least three vertices. The regular case
is trivial, since O(K4) is maximal regular and any minor is 3-colorable. We
now assume that O is non-regular. The case that O ∼= O(F−

7 ) is covered by
Proposition 5. Otherwise, by Lemma 6, there is a simple vertex u incident
to a triangular tope T spanned by cocircuits Du, Df , Dg such that e ∈ Du,
with e 6∈ Df ∪ Dg, is a pseudoline which is incident to at least 4 vertices.
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Let f ∈ Dg, g ∈ Df be the two pseudolines incident to u and let wlog. O be
reoriented and embedded such that T is a bounded positive tope (see Figure 4).
Since u is simple, we have supp(Du) = E \ {f, g}.

︸ ︷︷ ︸

t

︸ ︷︷ ︸

s
u

e

Du

Df Dg

f \ f
︷ ︸︸ ︷

g \ g
︷ ︸︸ ︷

f g

T

Figure 4: The triangle in the proof of Theorem 7.

Let E be the set of parallel classes of O/e. By the choice of e and since
vertices of e correspond to parallel classes of O/e, there are classes s 6= t ∈
E \ {f, g} and an embedding such that s is the other parallel class next to f
and t the other class next to g on the line O/e. Taking the above reorientation
into account, O/e can be represented as in Figure 5.

. . . . . .s tf g

Figure 5: The oriented line O/e.

~Du is zero on f, g and +1, otherwise. Let y′1 := χs+χf and y′2 := χt+χg and
y1, y2 be the extensions of y′1, y

′
2 to vectors in Z|E| via yi(e) := 0. By Corollary 2

and the chosen embedding and orientation, y′1, y
′
2 ∈ F(O/e)∗ . Since cocircuits of

O/e are the cocircuits of O not containing e, it follows that y1, y2 ∈ FO∗ and
therefore, x := ~Du + y1 + y2 ∈ FO∗ . Then x satisfies

x(h) =

{
2 if h ∈ s ∪ t ∪ (f \ {f}) ∪ (g \ {g})
1 otherwise.

and hence, is a positive nowhere zero 3-coflow.

4 Examples with χ(O) = 3

In this section we present a sufficient condition for a pseudoline arrangement not
to admit a nowhere zero 2-coflow and an infinite family of line arrangements for
which this property holds. A pseudoline arrangement is said to have an m-star
if it has a vertex which is incident to exactly m pseudolines.
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Lemma 8. Let O be a rank 3 oriented matroid such that its pseudoline arrange-
ment has a (2k + 1)-star (k ≥ 3) that is incident to all other vertices. Then
χ(O) ≥ 3.

Proof. Since for F ⊆ E the cocircuits of the restriction minor O(F ) are restric-
tions of cocircuits of O, the coflows of O(F ) are restrictions of coflows of O.
The claim follows from Proposition 1 since the restriction to the (2k + 1)-star
is the (2k + 1)-line.

See Figure 6 for a triangular and a nontriangular example satisfying the
conditions of Lemma 8.

Figure 6: A triangular and a nontriangular example of a non-regular rank 3
oriented matroid with χ(O) = 3. The first example belongs to an infinite family
of triangular line arrangements consisting of the sides of a regular odd n-gon
and all lines of mirror symmetry called R(2n) (see [6]).

5 Higher Rank

We will need the following special case of the Reconstruction Conjecture
(see Kelly [9]) which should be known. Since we did not find a reference, we
give a proof.

Theorem 9. Let M be a simple matroid of rank r ≥ 3 on a finite set E such
that the simplification of any of its contractions M/e is isomorphic to Kr. Then
M is isomorphic to Kr+1.

Proof. If M is non-regular then, as r ≥ 3, it contains an element e such that
M/e still contains a four point line as a minor contradicting our assumptions.
If M is graphic, then the theorem obviously holds. If M is cographic but not
graphic, then M/e must be planar for all e ∈ E. Thus M must be the dual
of either K3,3 or K5, neither of which satisfies the assumptions. If M is the
matroid R10 then the simplification of any contraction has rank 4 and at most
9 elements and, thus, cannot be K5.

Hence, we may assume that M is neither graphic, cographic, nor isomorphic
to R10. Thus, by Seymour’s famous Decomposition Theorem ([11, 13.2.4]), it
is the 2- or 3-sum of two matroids one of which is not graphic. The latter
remains invariant if we contract an element in the other component. The claim
follows.
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Theorem 10. Let O be a loopless oriented matroid of rank r ≥ 3. Then
χ(O) ≤ r + 1. Moreover, χ(O) = r + 1 ⇐⇒ O ∼= O(Kr+1).

Proof. We wlog. assume that O is simple. By Proposition 3 the inequality holds
since every rank r tope is spanned by at most r cocircuits. The reverse direction
of the equivalence is obvious. For the forward implication, we prove a slightly
stronger result:

If O 6∼= O(Kr+1), then O has an acyclic reorientation that admits a
positive nowhere zero r-coflow.

We prove this by induction on r founded by Theorem 7.
Now let r > 3. By Theorem 9, there is an e ∈ E such that O/e 6∼= O(Kr).

By inductive assumption, there is a positive tope T ′ ∈ T (O/e) and a positive
nowhere zero (r − 1)-coflow x′ ∈ F(O/e)∗ = FO∗\e. Let x ∈ Z|E| be defined for
all f ∈ E by

x(f) :=

{
x′(f) for f 6= e

0 otherwise.

Since the cocircuits of O/e are the cocircuits of O that do not contain e, we
have x ∈ FO∗ . Let T be one of the two topes of O with facet T ′. Reorient O
such that T is positive and let De be a cocircuit with e ∈ De that corresponds
to a vertex of T . Then x + ~De ∈ FO∗ is a positive nowhere zero r-coflow of
O.

6 Open Questions

One strategy to prove that χ(O) is a matroid invariant in the rank 3 case
would be to classify the classes with χ(O) = 2 resp. χ(O) = 3. Lemma 8
gives an example of a sufficient condition for χ(O) = 3 that does not depend
on the orientation of a matroid. We can show that χ(O) = 2 holds when
the arrangement has a so-called Gallai triangle (see [2, Section 3.2]), i. e. if
there are three simple vertices that are the intersection of three pseudolines. A
classification that uses the structure of simple vertices might be helpful. In this
context the following question arose that might be of independent interest:

Does there exist a pseudoline arrangement with no two simple ver-
tices on the same pseudoline different from R(2(2k + 1))?
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