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Abstract

We define series/parallel/2-sum connection of two oriented matroids
in terms of various axiom systems and an oriented modular join and sum
operation by means of signed cocircuits and covectors.

1 Introduction

Parallel, series, 2-sum, and generalized parallel connection of two (non-oriented)
matroids are well known operations in matroid theory (see Brylawski [3, Chap-
ter 7]). Although a generalization to oriented matroids is natural and meaning-
ful, it appeared in the literature only partially and very recently in independent
papers [5] and [8].

Dong [5] defined a parallel connection O1⊕PO2 in terms of covectors and
Hochstättler and Nickel [8] defined a 2-sum O1⊕2O2 via the sets of circuits.
The purpose of this paper is to prove that these definitions are compatible, i. e.

O1⊕2O2 = (O1⊕PO2) \ g and
O1⊕2O2 = (O1⊕SO2) / g.

and to work out how 2-sum, series and parallel connection (see Figure 1) act on
the different cryptomorphic axiom systems of oriented matroids. To take a leaf
out of Brylawski’s book [3], we will formulate these operations in terms of cir-
cuits, vectors, cocircuits, covectors, chirotopes, and the convex closure operator.
Finally, we define a modular join and a modular sum of two oriented matroids in
terms of cocircuits and covectors enabling us to glue together oriented matroids
at suitable flats of arbitrary dimension.

2 Definitions and Notation

We assume familiarity with oriented matroid theory and freely use the notation
defined in [1]. Let O1,O2 be two oriented matroids of rank r1 resp. r2 and
element sets E1, E2. Let furthermore χi, Ci, Vi be the chirotope, set of signed
circuits resp. set of signed vectors of Oi and Di and Li the sets of signed co-
circuits resp. covectors for i = 1, 2. We denote by Mi := Oi the underlying
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Figure 1: parallel, series, and 2-sum connection of two digraphs.

matroid of Oi and by Bi, Fi, Di, ri, resp. cli its set of bases, flats, cocircuits,
its rank function resp. matroid closure operator.

In the next section we will introduce the parallel, series, and 2-sum connec-
tion of O1 and O2 denoted by O1⊕PO2 (resp. ⊕S,⊕2). Occasionally, we will
use ⊕∗ as a placeholder for ⊕P,⊕S,⊕2. If we e. g. write C1⊕∗ C2 or C⊕∗ we
actually mean C(O1⊕∗O2) (resp. B,V,L,D).

For an arbitrary signed subset F let F = {e : F (e) 6= 0} be the support
of F , z(F ) := E \ F its zero set, and g−F := (F+∆({g} ∩ F ), F−∆({g} ∩ F ))
the reorientation on g, where ∆ denotes the symmetric difference. For a family
of signed subsets F let F = {F | F ∈ F} be the family of supports and
g−F := { g−F : F ∈ F} the reorientation on g. If T ⊆ E we write F ∩ T :=
(F+ ∩T, F− ∩T ). For two signed subsets F1, F2 of E1, E2 let F1◦F2 denote the
composition defined by

(F1◦F2)e :=

{
F1(e) if F1(e) 6= 0
F2(e) otherwise.

Let T ⊆ E and F1 ∩ T = F2 ∩ T . Then we furthermore define the nonstandard
operation composition with T -deletion by

F1◦\TF2 := (F1◦F2) \ T.

For two families Fi ⊆ 2Ei , i = 1, 2 let

F1 ◦ F2 := {F1◦F2 | F1 ∈ F1, F2 ∈ F2} and
F1 ◦T F2 := {F1◦F2 | F1 ∈ F1, F2 ∈ F2, F1 ∩ T = F2 ∩ T 6= ∅}
F1 ◦\T F2 := {F1◦\TF2 | F1 ∈ F1, F2 ∈ F2, F1 ∩ T = F2 ∩ T 6= ∅}.

If T = {g} for some g ∈ E we write X1◦\gX2, F1◦gF2, resp. F1◦\gF2 instead. If
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F is a family of signed subsets of E and T ⊆ E, then we define

F\T := {F ∈ F | F ∩ T = ∅}
FT := {F ∈ F | F ∩ T 6= ∅}

and, again, write F\g resp. Fg instead of F\{g} resp. F{g}.
We need similar definitions for families X of unsigned subsets of a finite set

E as well:

X\T := {X ∈ X : X ∩ T = ∅}
XT := X \ X\T

X1◦X1 := {X ∪ Y : X ∈ X1, Y ∈ X2}
X1◦TX1 := {X ∪ Y : X ∈ X1, Y ∈ X2, X ∩ T = Y ∩ T 6= ∅}
X1◦\TX1 := {(X ∪ Y ) \ T : X ∈ X1, Y ∈ X2, X ∩ T = Y ∩ T 6= ∅}.

To connect two sets of bases we furthermore define

B1∨–gB2 := {(B1 ∪B2) \ g | B1 ∈ B1, B2 ∈ B2, g ∈ B1∆B2}.

The Convex Closure Operator

The convex closure operator was defined by Folkman and Lawrence [6] and uses
a slightly different notion of an oriented matroid. There, the oriented matroid
acts on a set E with an involution ∗ : E → E. Actually, any element e ∈ E is
contained in E together with its “copy” e∗. With this notation, analog circuit
axioms (see [4, Theorem 3]) characterize entire reorientation classes of oriented
matroids but not single orientations. We use a modified version of this notation
that appears in [7] and makes the convex closure more compatible with standard
notation.

Let ±E := {+e,−e | e ∈ E} and for some A ⊆ ±E let σAτ := {σe | τe ∈ A}
for σ, τ ∈ {+,−} (partitioning E = +E∪̇−E this way chooses a particular
orientation). We will always refer to an element of ±E together with its sign.
For some signed subset F = (F+, F−) of E and a set A ⊆ ±E we write F ⊆ A
if +F+ ∪ −F− ⊆ A and we abbreviate A \ e := A \ {+e,−e}.

Büchi and Fenton [4] explicitly state the definition of an oriented matroid in
terms of a convex closure operator (see also [1, Exercise 3.11]):

Definition 1. A function conv : 2±E → 2±E is called the convex closure oper-
ator of an oriented matroid if it satisfies
(CV1) conv(∅) = ∅.
(CV2) A ⊆ conv(A) = conv(conv(A)).
(CV3) A ⊆ B ⇒ conv(A) ⊆ conv(B).
(CV4) conv(−A) = − conv(A).
(CV5) σe ∈ conv(A ∪ −σe)⇒ σe ∈ conv(A).
(CV6) σe ∈ conv(A ∪ −τf) and σe 6∈ conv(A)⇒ τf ∈ conv(A \ τf ∪ −σe).
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Figure 2: In case of a digraph, an arc f is in conv(A) with the respective sign
iff there is a dipath in A connecting its endpoints. Bold arrows indicate that
an arc is contained in A with the respective sign and thin arrows beside an arc
indicate that the arc is in conv(A) \A.

It is shown in [4, 7] that the convex closure operator yields a cryptomorphic
characterization of oriented matroids. In particular

Cconv := {(A+, A−) |
A = +A+∪̇ −A− is a minimal nonempty set with −A ⊆ conv(A)}

satisfies the circuit axioms of an oriented matroid Oconv and

conv(A) = A ∪ {τf ∈ ±E | ∃C ∈ Cconv : −τf ∈ C ⊆ A ∪ −τf}.

3 Series, Parallel and 2-Sum Connection

In this section let E1∩E2 = {g}. The definition of the connections of O1 and O2

along g will be given in terms of circuits, vectors, cocircuits, covectors, signed
bases (chirotopes), and the convex closure operator.

3.1 Circuits and Vectors

Hochstättler and Nickel [8] introduced a 2-sum O1⊕2O2 via the sets of signed
circuits:

C1⊕2 C2 := C\g1 ∪ C\g2 ∪ (C1◦\g g−C2).

At first we derive compatible series and parallel connection.

Proposition 2.

C1⊕P C2 := C1 ∪ C2 ∪ (C1◦\g g−C2)

C1⊕S C2 := C\g1 ∪ C\g2 ∪ (C1◦g g−C2)

Proof. It is straightforward to verify that C1⊕∗ C2 satisfy the circuit axioms
of oriented matroid theory. We give the details only for C1⊕S C2 (see also [8,
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Proposition 6.1]). Obviously, C⊕S is antisymmetric and its support forms a
clutter. It suffices to verify oriented circuit elimination for C1, C2 ∈ C⊕S with
e ∈ C+

1 ∩ C−2 . This is straightforward if at least one of Ci is in C\gi . Thus,
let C1 = C11◦C12 and C2 = C21◦C22 for circuits Cij ∈ Cgj (i = 1, 2) and
wlog. e ∈ C+

11 ∩ C−21 ⊆ E1. If C11(g) = −C21(g) then also C12(g) = −C22(g)
and eliminating g between C12 and C22 we find C3 ∈ C\g2 ⊆ C⊕S as required.
Otherwise, C11(g) = C21(g) and hence, e 6= g. Using circuit elimination inO1 by
fixing g we find a circuit C31 with C31 ⊆ (C+

11∪C+
21)\e and C−31 ⊆ (C−11∪C−21)\e.

Now, C3 := C31◦C12 is a circuit as required.

Corollary 3.
C1⊕2 C2 = (C1⊕P C2) \ g = (C1⊕S C2) / g.

We will now determine V⊕∗ from C⊕∗ .
Corollary 4.

V1⊕P V2 = V1◦ V2 ∪ V2◦ V1 ∪ (V1◦\g g−V2)

V1⊕S V2 = V\g1 ◦ V\g2 ∪ (V1◦g g−V2)

V1⊕2 V2 = V\g1 ◦ V\g2 ∪ (V1◦\g g−V2)

Proof. We work out details of the parallel connection only, the other cases being
similar. “⊇” is trivial. For “⊆” let V ∈ V⊕P . We know from Proposition 3.1
that V⊕P is the set of vectors of an oriented matroid. Therefore (see [1, Corol-
lary 3.7.6]), V is a conformal composition of circuits, i. e. V = C1◦ . . . ◦Ck with
Ci(e)Cj(e) ∈ {0,+} for all e ∈ E. If g 6∈ V then Ci ∈ C\g1 ∪ C\g2 ∪ (C1◦\g g−C2)
and (since V\g1 ◦ V\g2 ⊆ V1 ◦ V2) V ∈ V1◦ V2 ∪ (V1◦\g g−V2). Otherwise, assume
wlog. V (g) = +. Replacing each circuit Cj ∈ (C1◦\g g−C2) by Ci1j ◦Ci2j with
i1, i2 ∈ {1, 2}, i1 6= i2 such that (Ci1j ◦Ci2j )(g) = +, we may assume that
V = D1◦ . . . ◦ Dl with Di ∈ C1 ∪ C2. Note that this is conformal up to g.
Let i be the first index with Di(g) 6= 0 (hence, Di(g) = +) and wlog. Di ∈ Cg1 .
Then we can rearrange the circuits Dj so that

V = (Di1◦ . . . ◦Dim)◦(Dj1◦ . . . ◦Djm′ )

with Di` ∈ C1 (` ∈ {1, . . . ,m}) and Dj` ∈ C2 (` ∈ {1, . . . ,m′}). Hence, V =
V1◦V2 ∈ V1◦ V2.

3.2 Covectors and Cocircuits

The parallel connection in terms of covectors as proposed by Dong [5]

L1⊕P L2 := L\g1 ◦L\g2 ∪ (L1◦gL2)

is compatible with the 2-sum of Hochstättler and Nickel [8]:

Proposition 5. L1⊕P L2 is the set of covectors of C1⊕P C2.

5



Proof. Dong [5, Proposition 4.2] proved for affine oriented matroids that
O1⊕PO2 is the parallel connection of O1 and O2, but the proof does not use
affinity. To show that the signs are correct, it remains to verify that each co-
vector is orthogonal to each circuit. Obviously, L\g1 ◦L\g2 is orthogonal to C⊕P

and Ci is orthogonal to L⊕P for i = 1, 2.
Now let C = C1◦\gC2 ∈ C1◦\g g−C2 and L = L1◦L2 ∈ L1◦gL2, wlog. C(g) =

L(g) = +, and assume for a contradiction that L 6⊥ C. It follows that

C1(e)L1(e) ∈ {σ, 0} ∀e ∈ E1 \ g and
C2(e)L2(e) ∈ {σ, 0} ∀e ∈ E2 \ g.

for some σ ∈ {+,−}. Because of Li ⊥ Ci for i = 1, 2 we must have

+ = C1(g)L1(g) = −σ = C2(g)L2(g) = −.

As a direct consequence we can determine the set of signed covectors of the
2-sum by deletion of g (resp. contraction of g in the dual).

Corollary 6. L1⊕2 L2 := L\g1 ◦L\g2 ∪ (L1◦\gL2) is the set of signed covectors
of O1⊕2O2.

Corollary 4 together with Proposition 5 yield a nice analog to the duality
of series and parallel connection (i. e. (O1⊕PO2)∗ = O∗1⊕SO∗2). In case of
oriented matroids the sign of g switches under this duality. For that purpose let
g−Oi be the reorientation of Oi with respect to g. Then

Corollary 7.

(O1⊕PO2)∗ = O∗1 ⊕S
g−O∗2 and

(O1⊕SO2)∗ = O∗1 ⊕P
g−O∗2

and, as a direct consequence, we get for the covectors of the series connection

Corollary 8. The set of covectors of C1⊕S C2 is given by

L1⊕S L2 = L1◦ g−L2 ∪ g−L2◦L1 ∪ (L1◦\gL2).

Considering that cocircuits are covectors of minimal support we get

Corollary 9.

D1⊕PD2 = D\g1 ∪ D\g2 ∪ (D1◦gD2)
D1⊕SD2 = D1 ∪ g−D2 ∪ (D1◦\gD2)

D1⊕2D2 = D\g1 ∪ D\g2 ∪ (D1◦\gD2)
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3.3 Chirotopes

The set of bases of a matroid which is the parallel connection of matroids with
bases B1 and B2 (see Brylawski [3]) is given by

B1⊕P B2 = Bg
1◦Bg

2 ∪ B
\g
1 ∨–gB

g
2 ∪ Bg

1∨–gB
\g
2

= Bg
1◦Bg

2 ∪ B1∨–gB2.

The signed analog of bases are called chirotopes. Recall that χi : Bi →
{+,−, 0} are the chirotopes of Oi. From now on assume that bases are always
given with an ordering. If B = B1 ∪B2, Bi ∈ Bi then let Bi have the ordering
induced by B.

Lemma 10. The function χ⊕P : B⊕P → {+,−, 0} defined by

χ⊕P(B) := χ1(B1)χ2(B2),

where B ∈ B⊕P and therefore, B = B1 ∪ B2 with g ∈ B1 ∩ B2 resp. B =
(B1 ∪B2) \ g with g ∈ Bi for exactly one i ∈ {1, 2} for some B1 ∈ B1, B2 ∈ B2,
is the chirotope of O1⊕PO2

Proof. We prove that χ⊕P defined as above is a proper basis orientation of B⊕P

(see e. g. [1, Definition 3.5.1]). Let B,B′ ∈ B⊕P with |B ∩B′| = r1 + r2− 2 and

e1 := B \B′
e2 := B′ \B
X1 := (B \ e1) ∩ E1 = (B′ \ e2) ∩ E1

X2 := (B \ e1) ∩ E2 = (B′ \ e2) ∩ E2 and thus
B = e1 ∪X1 ∪X2 and
B′ = e2 ∪X1 ∪X2

and let C be the (up to sign reversal unique) circuit in {e1, e2} ∪X1 ∪X2. We
have to show that

χ⊕P(B′) = −C(e1)C(e2)χ⊕P(B).

We consider the following cases:

X1 ∩X2 = {g} : Hence, B,B′ ∈ Bg
1◦Bg

2. Since |X1 ∩X2| = 1 and |X1 ∪X2| =
r1 + r2 − 2 we may assume wlog. that |X2| = r2. Thus, X2 ∈ Bg

2 and
since X2∪ei is independent for i = 1, 2, we must have e1, e2 ∈ E1 \g. The
claim follows since χ1 is a proper basis orientation of B1.

X1 ∩X2 = ∅ : If e1, e2 ∈ Ei for some i, again the claim follows since χi is a
proper basis orientation of Bi. Otherwise, let wlog. ei ∈ Ei and B ∈
B
\g
1 ∨–gB

g
2 implying that X1 ∪ e1 and X2 ∪ g are bases. Then B′ ∈ B⊕P

implies that B′ must be in Bg
1∨–gB

\g
2 and therefore, X1 ∪ g and X2 ∪ e2

must be bases as well. Since C must contain e1 and e2, we have that
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C = C1◦gC2 for circuits C1 ∈ Cg1 and C2 ∈ Cg2 with C1(g) = −C2(g).
Hence, we can exchange e1 with g and on the other side g with e2 and
obtain

χ⊕P(B′) = χ1(X1 ∪ g)χ2(X2 ∪ e2)
= (−C1(g)C1(e1)χ1(X1 ∪ e1)) ·

· (−C2(e2)C2(g)χ2(X2 ∪ g))
C1(g)C2(g)=−= −C1(e1)C2(e2)χ1(X1 ∪ e1)χ2(X2 ∪ g)

= −C(e1)C(e2)χ⊕P(B).

Deleting g from O1⊕PO2 we conclude that (c. f. [3])

B1⊕2 B2 = B
\g
1 ∨–gB

g
2 ∪ Bg

1∨–gB
\g
2

and

Corollary 11. The chirotope χ⊕2 of O1⊕2O2 is given by

χ⊕2(B) = χ1(B1)χ2(B2),

where B ∈ B⊕2 with B = (B1 ∪ B2) \ g for Bi ∈ Bi, i = 1, 2 and g ∈ Bi for
exactly one i.

The basis orientation of the series connection is governed by the set of bases
of the underlying matroid (see [3]) as well:

B1⊕S B2 = B
\g
1 ◦B

\g
2 ∪ B

\g
1 ◦Bg

2 ∪ Bg
1◦B

\g
2 .

Proposition 12. The chirotope χ⊕S of O1⊕SO2 is given by

χ⊕S(B) = χ1(B1)χ2(B2),

where B ∈ B⊕S and therefore, B = B1∪̇B2 for some B1 ∈ B1, B2 ∈ B2.

Proof. If e1, e2 ∈ Ei for some i, the claim follows since χi is a proper basis
orientation of Oi.

Let B,B′ ∈ B⊕S with |B ∩B′| = r1 + r2− 2 and e1, e2, X1, X2, C be defined
as in Lemma 10. If g 6∈ X1 ∪X2, then we conclude e1, e2 ∈ Ei for i ∈ {1, 2} as
follows. If g 6∈ {e1, e2}, this is immediate. Otherwise, if e1 = g, we may wlog.
assume that X1 ∪ g and X2 are bases and hence, e1, e2 ∈ E1.

The only remaining case is g ∈ X1 ∪ X2 and wlog. ei ∈ Ei for i = 1, 2.
By the definition of the Xi we have g ∈ X1 ∩ X2. Because B ∈ B

\g
1 ◦B

\g
2

implies e1, e2 ∈ Ei for some i, we may, by symmetry, assume B ∈ B
\g
1 ◦Bg

2 and
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B′ ∈ Bg
1◦B

\g
2 . Thus, X1, X1 \ g ∪ e1, X2, and X2 \ g ∪ e2 are bases of O1 resp.

O2. Hence,

χ⊕S(B′) = χ1(X1)χ2(X2 \ g ∪ e2)
= (−C1(g)C1(e1)χ(X1 \ g ∪ e1)) ·

· (−C2(e2)C2(g)χ2(X2))
C1(g)C2(g)=−= C1(e1)C2(e2)χ1(X1 \ g ∪ e1)χ2(X2)

= −C(e1)C(e2)χ⊕S(B).

Remark 13. Björner et al. [1, Section 7.6] considered two special cases of
oriented matroid union, i. e. disjoint ground sets (direct sum) and equal ground
sets. As (unoriented) series connection is a special case of matroid union (see
e. g. [9, Proposition 12.3.6]), Proposition 12 is another special case of oriented
matroid union.

3.4 Convex Closure

We are now going to determine the convex hull operators conv⊕∗ of O⊕∗ from
the sets of circuits. For Oi let convi := convCi (i = 1, 2) and conv⊕∗ :=
convC1⊕∗ C2 . We identify convi(A) with convi(A ∩ Ei) for arbitrary sets A
(i = 1, 2) simplifying notation.

First we consider the parallel connection:

Theorem 14. Let

G1 := {+g,−g} ∩ conv2(A) and
G2 := {+g,−g} ∩ conv1(−A).

Then conv⊕P(A) = conv1(A ∪G1) ∪ conv2(A ∪G2).

Proof. “⊆” Let τf ∈ conv⊕P(A) for some τ ∈ {+,−} and wlog. τ = +. The
case +f ∈ A is trivial and otherwise, there is a circuit C ∈ C⊕P such that
−f ∈ C ⊆ A ∪ −f . If C ∈ Ci for i = 1 or 2, then +f ∈ convi(A) ⊆
convi(A ∪ Gi). Otherwise, there is a circuit C = C1◦\gC2 ∈ C1◦\g g−C2. If
−f ∈ C1 and C1(g) = σ, we have the implication

−f ∈ C1 ⇒ C2 \ g ⊆ A
⇒ σg ∈ conv2(A)
⇒ σg ∈ G1

⇒ −f ∈ C1 ⊆ A ∪G1 ∪ −f
⇒ +f ∈ conv1(A ∪G1).

An analogous argument verifies −f ∈ C2 ⇒ +f ∈ conv2(A ∪G2).
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gf gf

Figure 3: −f is contained in conv⊕P(A) but not in conv1(A)

“⊇” Let τf ∈ conv1(A ∪G1). Again we may assume τ = +. If +f ∈ convi(A)
or Gi = ∅ then +f ∈ conv⊕P(A) follows immediately. If +f ∈ conv1(A ∪
G1) \ conv1(A) and σg ∈ G1 then there is a circuit C1 ∈ Cg1 , C1(g) = σ
so that −f ∈ C1 ⊆ A ∪ G1 ∪ −f and a circuit C2 ∈ Cg2 , C2(g) = −σ,
satisfying C2 ⊆ A ∪ −σg. It follows that −f ∈ C1◦\gC2 ⊆ A ∪ −f and
therefore, +f ∈ conv⊕P(A).
The case τf ∈ conv2(A ∪G2) is analogous.

In Figure 3 you see an example for the convex closure operator of the parallel
connection where an edge f is contained in the convex closure of the parallel
connection but not in convi(A). Red arrows indicate that an arc is in the convex
closure of A with the respective sign while bold red arcs are the elements of A.

We will derive the convex closure operator of the 2-sum O1⊕2O2 from the
operator of the series connection.

Theorem 15. Let

G1 := {+g,−g} ∩A ∩ conv2(A \ g)
G2 := {+g,−g} ∩A ∩ conv1(−A \ g).

Then conv⊕S(A) = A ∪ conv1(A \ g ∪G1) ∪ conv2(A \ g ∪G2).

Proof. “⊆” Let τf ∈ conv⊕S(A). If τf ∈ A or τf ∈ convi(A \ g) for i = 1 or 2
the claim is true. It remains to consider

τf ∈ conv⊕S(A) \ (A ∪ conv1(A \ g) ∪ conv2(A \ g))

and wlog. τ = +. Then there is a circuit C = C1 ◦ C2 ∈ C1◦g g−C2 (wlog.
C(g) = +) satisfying −f ∈ C ⊆ A ∪ −f . It follows that +g ∈ A and
hence, f ∈ conv1(A \ g ∪ G1). If f ∈ C1, then −g ∈ C2 ⊆ A ∪ −g and
hence, +g ∈ conv2(A \ g).
Note that

−G1 = {+g,−g} ∩A ∩ conv2(−A \ g) and
−G2 = {+g,−g} ∩A ∩ conv1(A \ g).

Hence, the case f ∈ C2 follows by symmetry, reorienting g.
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Figure 4: −f is contained in conv1(A) but not in conv⊕S(A)

“⊇” Let τf ∈ conv1(A \ g ∪G1). The cases τf ∈ A∪ conv1(A \ g) and G1 = ∅
are trivial. Thus,

τf ∈ conv1(A \ g ∪G1) \ (A ∪ conv1(A \ g)),

wlog. τ = +, and σg ∈ G1. We consider the case f 6∈ {±g} first. Hence,
there is a circuit C1 ∈ Cg1 with C1(g) = σ and −f ∈ C1 ⊆ A \ g∪G1 ∪−f .
Since σg ∈ G1 ⊆ conv2(A \ g), we also have a circuit C2 ∈ Cg2 satisfying
C2(g) = −σ and C2 ⊆ A ∪ −σg. It follows that −f ∈ C1◦C2 ⊆ A ∪ −f
and +f ∈ conv⊕S(A).

Now let f = g and hence, +g ∈ conv1(A \ g ∪ G1) \ conv1(A \ g). Then
+g ∈ G1 ⊆ A and hence, +g ∈ conv⊕S(A) completing the proof.

Figure 4 shows how arcs can be contained in the convex closure of one of the
graphs but not in the convex closure of their series connection if g 6∈ convi(A\g).
By contraction we obtain the result for the 2-sum.

Corollary 16. Let

G1 := {+g,−g} ∩ conv2(A \ g)
G2 := {+g,−g} ∩ conv1(−A \ g).

Then conv⊕2(A) = conv⊕S(A)\g = (conv1(A \ g ∪G1) ∪ conv2(A \ g ∪G2))\g.

4 Generalized Parallel Connection,
Modular Join, and Modular Sum

During this section O1,O2 are oriented matroids on the ground sets E1 resp.
E2 such that E1 ∩ E2 = T and O1[T ] = O2[T ]. The underlying matroids are
Mi := Oi and have the set of flats Fi, rank function ri and matroid closure
operator cli for i = 1, 2.
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Definition 17. Let F denote the family of flats of a matroid M with rank
function r. We call two flats X,Y ∈ F a modular pair if

r(X) + r(Y ) = r(X ∪ Y ) + r(X ∩ Y ).

A flat T is modular if for all X ∈ F X,T is a modular pair of flats.

We will introduce the modular join of O1 and O2 as an oriented version
of a special case of the generalized parallel connection from matroid theory
(see e. g. [3]). First we review the basics of the generalized parallel connection
from matroid theory including some seemingly new observations.

Proposition 18 ([3]). If T ∈ F1 is a modular flat of M1 and T ∈ F2 then the
set

F⊕T
:= {F : F ∩ Ei ∈ Fi for i = 1, 2}

is the set of flats of a matroid, called the generalized parallel connection of M1

and M2 denoted by M⊕T
.

Remark 19. If T is not a flat in M2 then one can extend M1 by the elements
cl2(T )\T via the modular cut {T} yielding a matroid M̂1 in which T̂ := cl2(T ) is
a modular flat. The generalized parallel connection of M1 and M2 is defined to
be the generalized parallel connection of M̂1 andM2 with respect to the common
flat T̂ . For details on modular cuts and single element extensions we refer the
reader to [9].

The rank function of the generalized parallel connection M⊕T
is given by

the following proposition.

Proposition 20 ([2, Proposition 5.5]). If r⊕T
, r1, r2 are the rank functions of

M⊕T
,M1,M2 respectively, then for any F ∈ F⊕T

we have

r⊕T
(F ) = r1(F ∩ E1) + r2(F ∩ E2)− r1(F ∩ T ).

As a direct consequence, the rank of the generalized parallel connection is
rank(O1) + rank(O2)− r⊕T

(T ).

Proposition 21 ([2, Proposition 5.10]).

E1 ∈ F⊕T
⇐⇒ T ∈ F⊕T

⇐⇒ T ∈ F2.

Hence under the above assumption, E1, E2, and T are flats of M⊕T
. From

now on we, additionally, assume that T is a common modular flat of M1 and
M2. As a preparatory step to defining the modular join for oriented matroids,
first we derive the modular join of two matroids M1 and M2 in terms of its
cocircuits.

Proposition 22. The set of cocircuits of the modular join M⊕T
=M1⊕TM2

is
D⊕T

= D
\T
1 ∪ D

\T
2 ∪ (DT

1 ◦TDT
2 ).

12



Proof. By Proposition 20 and since T is a modular flat inM1 andM2, we have
for any flat H ∈ F⊕T

and Hi := H ∩ Ei, i = 1, 2

r⊕T
(H) = r⊕T

(H1) + r⊕T
(H2)− r⊕T

(H1 ∩H2)
= r⊕T

(H1)− r⊕T
(H1 ∩ T ) + r⊕T

(H2)
= r⊕T

(H1 ∪ T )− r⊕T
(T ) + r⊕T

(H2),

and by symmetry

r⊕T
(H) = r⊕T

(H1) + r⊕T
(H2 ∪ T )− r⊕T

(T ).

Again by Proposition 20, r⊕T
equals ri when restricted to Ei. Hence, a

closed set H ∈ F⊕T
is a hyperplane (i. e. has rank r1 + r2 − r⊕T

(T )− 1) if and
only if

r1 + r2 − 1 = r1(H1 ∪ T ) + r2(H2)
= r1(H1) + r2(H2 ∪ T ),

meaning that exactly one of the following cases applies:

(1) H1 = E1 and H2 is a hyperplane of M2 completely containing T ,

(2) H2 = E2 and H1 is a hyperplane of M1 completely containing T ,

(3) Hi are hyperplanes inMi for i = 1, 2 which do not contain T completely.

In case (1) resp. (2) H is a hyperplane whose complement is a cocircuit in M2

resp.M1 and in case (3) H1 and H2 are complements of cocircuits D1, D2 with
D1 ∩ T = D2 ∩ T 6= ∅.

We are now aiming to define an oriented modular join with respect to a
common modular flat T as an oriented analogue of Proposition 22. We will
prove that this is well defined in Theorem 25 and start with some observations.

Proposition 23. Let T be a modular flat of a matroid M and C a cocircuit
such that C ∩ T 6∈ {∅, T}. Then C ∩ T is a cocircuit of M[T ].

Proof. Let r be the rank function of M. By modularity,

r(z(C) ∩ T ) = r(z(C)) + r(T )− r(z(C) ∪ T )
= rank(M)− 1 + r(T )− rank(M)
= r(T )− 1.

The following observation will be crucial for an inductive proof of the cor-
rectness of our join operation.
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Lemma 24. Let O1 and O2 be simple oriented matroids on the ground sets
E1 ∩E2 = T such that O1[T ] = O2[T ] and T is a common modular flat of rank
2. Then

D⊕T
:= D\T1 ∪ D\T2 ∪ (DT1 ◦TDT2 )

is the family of cocircuits of an oriented matroid.

Proof. Wlog. O is reoriented such that every X ∈ D restricted to the elements
of T has one of the sign patterns 0 . . . 0, − . . . − 0 + . . .+, or + . . . + 0 − . . .−
wrt. a fixed linear ordering of the elements of T . Let C 6= −D be elements of
D⊕T

such that e ∈ C+ ∩D−. We proceed by case study:

(1) e ∈ T : Then C = C1 ◦ C2, D = D1 ◦D2 ∈ DT1 ◦TDT2 . If C ∩ T = −D ∩ T
elimination between C1 and D1 yields a cocircuit F1 ∈ D\T1 such that
Fσ1 ⊆ (Cσ1 ∪Dσ

1 ) \ e for σ = +,−. Otherwise, C ∩ T 6= D ∩ T and there is
some f ∈ T ∩((C+

1 \D−1 )∪(C−1 \D+
1 )) and we can perform strong cocircuit

elimination between Ci, Di for i = 1, 2 with respect to e by fixing f which
yields cocircuits Fi ∈ DTi satisfying F1 ∩ T = F2 ∩ T since T is a modular
line. Hence, F1 ◦ F2 ∈ DT1 ◦TDT2 is a cocircuit as required.

(2) Wlog. e ∈ E1\T : Let F1 ∈ D1 be a cocircuit satisfying Fσ1 ⊆ (Cσ1 ∪Dσ
1 )\e.

We are done if F1 ∈ D\T1 . Otherwise, let fC , fD, fF be the unique elements
in z(C1) ∩ T, z(D1) ∩ T resp. z(F1) ∩ T .

(i) fF = fC = fD: Then F1 ◦ C2 or F1 ◦D2 is a cocircuit as required.
(ii) fF = fC 6= fD: Assume F1 ∩ T = −C1 ∩ T . Then F1 ∩ T ⊆ D1 ∩ T ,

a contradiction, as F1(fD) 6= 0. Hence, F1 ∩ T = C1 ∩ T and F1 ◦C2

is a cocircuit as required.
(iii) |{fC , fD, fF }| = 3: By cocircuit elimination we necessarily must have

C(fF ) = −D(fF ) 6= 0. We eliminate fF between C2 and D2 in
O2 and get a cocircuit that either is in D\T2 as required or satisfies
F2(fF ) = 0. Since F1(fC) = F2(fC) = D(fC), we must have F1∩T =
F2 ∩ T and F1 ◦ F2 is a cocircuit as required.

Theorem 25. Let O1,O2 be oriented matroids with a common modular flat
T = E1 ∩ E2. Then

D⊕T
:= D\T1 ∪ D\T2 ∪ (DT1 ◦TDT2 )

is the family of signed cocircuits of an oriented matroid, called the modular join
of O1 and O2, denoted by O⊕T

.

Proof. We may wlog. assume that O1 and O2 are simple. We prove the theorem
by induction on |T |. For |T | ∈ {0, 1} the statement corresponds to the signed
cocircuits of direct sum resp. parallel connection (empty set and single edges
are always modular flats). Now let |T | ≥ 2 and C,D ∈ D⊕T

such that C 6= −D
and e ∈ C+∩D−. If there exists some f ∈ z(C)∩z(D)∩T then C,D ∈ D⊕T

/ f
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and by inductive assumption, there is some F ∈ D⊕T
/ f ⊂ D⊕T

satisfying
F+ ⊆ (C+ ∪ D+) \ e and F− ⊆ (C− ∪ D−) \ e. We now may assume that
z(C) ∩ z(D) ∩ T = ∅.

Since z(C1) ∩ T is a modular flat in O1, we have

0 = r(z(C1) ∩ z(D1) ∩ T ) = r((z(C1) ∩ T ) ∩ (z(D1) ∩ T ))
= r(z(C1) ∩ T ) + r(z(D1) ∩ T )
− r((z(C1) ∩ T ) ∪ (z(D1) ∩ T )

= r(T )− 2.

It thus suffices to consider the case that r(T ) = 2 which was done in Lemma 24.

Corollary 26.
L1 ⊕T L2 = L\T1 ◦ L\T2 ∪ (L1◦TL2).

Please note the analogy to the parallel connection. Furthermore, it is now
immediate to define the modular sum of two oriented matroids as a generaliza-
tion of 2-sum.

Definition 27. Let O1,O2 be oriented matroids on the ground sets E1∩E2 = T
so that T is a common modular flat. The modular sum O1 ⊕\T O2 is defined
via its set of cocircuits D⊕\T :

D⊕\T := D\T1 ∪ D\T2 ∪ (D1◦\TD2).

5 Concluding Remarks

While parallel, series, and 2-sum connection have been studied involving the
most important axiom systems, this is left open for the operations of modular
join and modular sum as e. g. the set of circuits of the generalized parallel con-
nection is not an immediate analogue to the parallel connection. Furthermore,
if T contains more than one element, generalized parallel connection lacks of a
meaningful dual operation which in the case of T = 1 is the series connection
and corresponds to matroid union if the ground sets intersect in T . This does
not hold for larger T as well.

The generalized parallel connection of a matroid is well defined as soon as T
is a modular flat of O1. We leave it as an open question whether the equation
in Corollary 26 yields an oriented matroid if T is not a modular flat of O2. Note
that the unoriented analogue holds.
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