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Abstract

We define series/parallel/2-sum connection of two oriented matroids
in terms of various axiom systems and an oriented modular join and sum
operation by means of signed cocircuits and covectors.

1 Introduction

Parallel, series, 2-sum, and generalized parallel connection of two (non-oriented)
matroids are well known operations in matroid theory (see Brylawski [3, Chap-
ter 7]). Although a generalization to oriented matroids is natural and meaning-
ful, it appeared in the literature only partially and very recently in independent
papers [5] and [8].

Dong [5] defined a parallel connection O @p Oz in terms of covectors and
Hochstéttler and Nickel [8] defined a 2-sum O; @9 O, via the sets of circuits.
The purpose of this paper is to prove that these definitions are compatible, i. e.

01320, = (0O1®pO03)\ gand
O019:0; = (018s02) /9.

and to work out how 2-sum, series and parallel connection (see Figure 1) act on
the different cryptomorphic axiom systems of oriented matroids. To take a leaf
out of Brylawski’s book [3], we will formulate these operations in terms of cir-
cuits, vectors, cocircuits, covectors, chirotopes, and the convex closure operator.
Finally, we define a modular join and a modular sum of two oriented matroids in
terms of cocircuits and covectors enabling us to glue together oriented matroids
at suitable flats of arbitrary dimension.

2 Definitions and Notation

We assume familiarity with oriented matroid theory and freely use the notation
defined in [1]. Let 0,03 be two oriented matroids of rank 7 resp. ro and
element sets F, E5. Let furthermore y;, C;, V; be the chirotope, set of signed
circuits resp. set of signed vectors of O; and D; and L; the sets of signed co-
circuits resp. covectors for ¢ = 1,2. We denote by M; := O, the underlying
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Figure 1: parallel, series, and 2-sum connection of two digraphs.

matroid of O; and by B, §;, D;, t;, resp. cl; its set of bases, flats, cocircuits,
its rank function resp. matroid closure operator.

In the next section we will introduce the parallel, series, and 2-sum connec-
tion of 07 and Oy denoted by Oy ®p Os (resp. Bs, B2). Occasionally, we will
use @, as a placeholder for @&p, g, 2. If we e.g. write C; ©.Co or Cq, we
actually mean C(O; @, Oz) (resp. B,V, L, D).

For an arbitrary signed subset F' let F' = {e : F'(e) # 0} be the support
of F, z(F) := E \ F its zero set, and ZF := (FTA({g} N F),F-A({g} N F))
the reorientation on g, where A denotes the symmetric difference. For a family
of signed subsets F let F = {F | F € F} be the family of supports and
IF .= {IF : F € F} the reorientation on g. If T C E we write FNT :=
(FTNT,F~NT). For two signed subsets Fy, Fy of E1, F3 let Fyo 5 denote the
composition defined by

Fl(e) if Fl(e)yéO
Fy(e) otherwise.

(Flo FQ)e = {

Let T C E and Fy NT = F5,NT. Then we furthermore define the nonstandard
operation composition with T'-deletion by

Fierks := (Flo Fg) \T
For two families F; C 2%, i =1,2 let

FroFy = {FloFg ‘ e F, Fs 6.7:2} and
Frop Fo = {FlOFQ ‘ Fy e F, Fy € Fy, FlmT:FgﬂT#(b}
Fiop Fo = {F1®TF2 | Fy 6.7:1, Fy Efg, FlmT:FgﬂT%Q}.

If T = {g} for some g € E we write X10,Xo, F10,F2, resp. F10,F, instead. If



F is a family of signed subsets of £ and T' C E, then we define

F\N={FeF|FnT =0}
Fl={FeF|FNT+0}

and, again, write F\9 resp. F¢ instead of F\{9} resp. Flo},
We need similar definitions for families X of unsigned subsets of a finite set
E as well:

¥V = {XeXx:XNnT =0}

T =2\ x\T
Xj0X = {XUY:X €X,,Y € Xo}
XijopX = {XUY X €X,,Y €X, XNT =Y NT #0}
XiopX = {(XUY)\T: X €X1,Y € Xy, XNT =Y NT # 0}.

To connect two sets of bases we furthermore define

BivgBy = {(B1UDB2) \g| B1 €B1,B2 € Ba,g € BIAB>}.

The Convex Closure Operator

The convex closure operator was defined by Folkman and Lawrence [6] and uses
a slightly different notion of an oriented matroid. There, the oriented matroid
acts on a set E with an involution * : E — E. Actually, any element e € E' is
contained in E together with its “copy” e*. With this notation, analog circuit
axioms (see [1, Theorem 3]) characterize entire reorientation classes of oriented
matroids but not single orientations. We use a modified version of this notation
that appears in [7] and makes the convex closure more compatible with standard
notation.

Let £F := {+e,—e | e € E} and for some A C +FE let cA™ := {oe | Te € A}
for 0,7 € {+,—} (partitioning E = +EU—F this way chooses a particular
orientation). We will always refer to an element of +F together with its sign.
For some signed subset F' = (FT,F~) of E and a set A C +£F we write F C A
if +FTU—F~ C A and we abbreviate A\ e := A\ {+e, —¢}.

Biichi and Fenton [4] explicitly state the definition of an oriented matroid in
terms of a convex closure operator (see also [, Exercise 3.11]):

Definition 1. A function conv : 2¥F — 2%+E s called the convex closure oper-
ator of an oriented matroid if it satisfies

(CV1) conv(D) = 0.

(CV2) A C conv(A) = conv(conv(A)).

(CV3) AC B = conv(A) C conv(B).

(CV4) conv(—A) = —conv(A).

(CV5) oe € conv(AU —oe) = oe € conv(A).

(CV6) oe € conv(AU —7f) and oe &€ conv(A) = 7f € conv(A\ 7f U —ce).
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Figure 2: In case of a digraph, an arc f is in conv(A) with the respective sign
iff there is a dipath in A connecting its endpoints. Bold arrows indicate that
an arc is contained in A with the respective sign and thin arrows beside an arc
indicate that the arc is in conv(A4) \ A.

It is shown in [4, 7] that the convex closure operator yields a cryptomorphic
characterization of oriented matroids. In particular

Cconv = {(A+7A_) |
A=+A"U— A" is a minimal nonempty set with — A C conv(A)}
satisfies the circuit axioms of an oriented matroid Ocqny and

conv(A) = AU{rf € +FE |3C €Ceony : —Tf €C CAU—7f}.

3 Series, Parallel and 2-Sum Connection

In this section let E1NEy = {g}. The definition of the connections of O; and Oy
along g will be given in terms of circuits, vectors, cocircuits, covectors, signed
bases (chirotopes), and the convex closure operator.

3.1 Circuits and Vectors

Hochstéttler and Nickel [8] introduced a 2-sum O; @9 Oy via the sets of signed
circuits:

C1®2Cyi=CY U CYY U (Crog9C,).
At first we derive compatible series and parallel connection.
Proposition 2.

Ci®pCy = C1 UCy U (Cl®g£02)
CidsCy = C7U CYYU (Crog2Cy)

Proof. Tt is straightforward to verify that C; @, Cs satisfy the circuit axioms
of oriented matroid theory. We give the details only for C; @gCs (see also [3,



Proposition 6.1]). Obviously, Cg. is antisymmetric and its support forms a
clutter. It suffices to verify oriented circuit elimination for Ci,Cy € Cgq with
e € O N O, . This is straightforward if at least one of C; is in Ci\g. Thus,
let C; = C110C12 and Cy = Cy10Cyy for circuits Cij S Cf (Z = 1,2) and
wlog. e € O, NCy; C Ey. If C11(g9) = —C%1(g) then also Cia(g) = —Caa(g)
and eliminating g between C12 and Coy we find C3 € C%g C Cgq as required.
Otherwise, C11(g) = C21(g) and hence, e # g. Using circuit elimination in O by
fixing g we find a circuit Cs; with C3; C (Cf;UCH;)\e and C3; C (C1;UCH) \e.
Now, C3 := (310 (45 is a circuit as required. O

Corollary 3.
C1®2C2 = (C1®pC2) \ g = (C1®sC2) /g

We will now determine Vg, from Cqg, .

Corollary 4.

VidpVe = VioVy U VaoVy U (Vieg9Vy)
ViasVe = V7ol U (Viog 2Vs)
B — VW Ul

Proof. We work out details of the parallel connection only, the other cases being
similar. “D” is trivial. For “C” let V € Vg,. We know from Proposition 3.1
that Vg, is the set of vectors of an oriented matroid. Therefore (see [1, Corol-
lary 3.7.6]), V is a conformal composition of circuits, i.e. V = Cjo...0Cy with
Ci(e)Cj(e) € {0,+} for all e € E. If g € V then C; € C’l\g UC2\g U (Cro44Cs)
and (since Vl\g o 2\9 CVi0Vy) Ve VioVy U(V18;9%). Otherwise, assume
wlog. V(g) = +. Replacing each circuit C; € (C10,%C2) by C’;loC’;"‘ with
i1,52 € {1,2}, 41 # iz such that (C;lo C’;z)(g) = +, we may assume that
V = Djo...o D; with D; € C; UCy. Note that this is conformal up to g.
Let i be the first index with D;(g) # 0 (hence, D;(g9) = +) and wlog. D; € C{.
Then we can rearrange the circuits D; so that

V = (Dj,0...0D;, )o(Djo...0oD; )

tm

with D;, € C1 (¢ € {1,...,m}) and D;, € C (¢ € {1,...,m'}). Hence, V =
Vio Vo € Vo Vs. O

3.2 Covectors and Cocircuits

The parallel connection in terms of covectors as proposed by Dong [5]
L1 Dp Ly := E}go E;g U (ﬁlogﬁg)

is compatible with the 2-sum of Hochstéttler and Nickel [3]:

Proposition 5. L1 ®p Lo is the set of covectors of C1 Gp Ca.



Proof. Dong [5, Proposition 4.2] proved for affine oriented matroids that
01 ®p O is the parallel connection of O; and O,, but the proof does not use
affinity. To show that the signs are correct, it remains to verify that each co-
vector is orthogonal to each circuit. Obviously, E}g o ﬁ;g is orthogonal to Cg,
and C; is orthogonal to Lg, for i =1, 2.

Now let C' = C10,Cy € C10,C and L = Lio Ly € L104,L5, wlog. C(g) =
L(g) = +, and assume for a contradiction that L £ C. It follows that

Ci(e)L1(e) € {0,0} Ve € E; \ g and
Cy(e)La(e) € {0,0} Ve € Eq \ g.

for some o € {+, —}. Because of L; L C; for i = 1,2 we must have

+ = Ci(9)L1(g9) = —0 = Ca(g)La(g) = —.
O

As a direct consequence we can determine the set of signed covectors of the
2-sum by deletion of g (resp. contraction of g in the dual).

Corollary 6. £ ®o Ly = E}go E;g U (L10gL2) is the set of signed covectors
of O1 @2 Os.

Corollary 4 together with Proposition 5 yield a nice analog to the duality
of series and parallel connection (i.e. (O; ®p O5)* = O] Bs O3). In case of
oriented matroids the sign of g switches under this duality. For that purpose let
J0; be the reorientation of O; with respect to g. Then

Corollary 7.

(O1®p Og)" = Of ®s 205 and
(01@s 09)* = OF op 20;

and, as a direct consequence, we get for the covectors of the series connection
Corollary 8. The set of covectors of C1 BsCs is given by
L1®sLy = L1024y U LLyo L1 U (L105L5).
Considering that cocircuits are covectors of minimal support we get

Corollary 9.

Di@pDy = DY U DY U (DyogDy)
Di®sDy = Dy U iDQ U (D1®gD2)
D1 &®oDy = D}g @] D;g @] (D1®gD2)



3.3 Chirotopes

The set of bases of a matroid which is the parallel connection of matroids with
bases B and B, (see Brylawski [3]) is given by

By Gp By = BIo B U B)%v,BY U By, By’
= B0 BJ U B1v,Bs.
The signed analog of bases are called chirotopes. Recall that x; : B; —
{+, —, 0} are the chirotopes of O;. From now on assume that bases are always

given with an ordering. If B = By U By, B; € B; then let B; have the ordering
induced by B.

Lemma 10. The function xgp : Be, — {+,—, 0} defined by

Xap (B) = x1(B1)x2(B2),

where B € Bg, and therefore, B = By U By with g € By N By 1esp. B =
(B1UBs)\ g with g € B; for exactly one i € {1,2} for some By € B, By € Bo,
is the chirotope of O1 ®p Oo

Proof. We prove that xg, defined as above is a proper basis orientation of Bg,
(see e.g. [1, Definition 3.5.1]). Let B, B’ € Bg, with |[BNB'| =711 +r2 —2 and

ep = B\B

e; = B'\B

X1 = (B\ei)NE;=(B"\e)NE;

Xy = (B\e1)NEy=(B\e3)NFEy and thus
B = eUX7UXs and

B = eyUX;UXs

and let C be the (up to sign reversal unique) circuit in {ej,es} U X3 U X5. We
have to show that

Xep(B') = =C(e1)C(e2)xop (B).

We consider the following cases:

X1 N Xy ={g}: Hence, B, B" € BYoBY. Since | X; N X3| =1 and |X; U Xs| =
r1 + re — 2 we may assume wlog. that |Xs| = 5. Thus, Xo € BJ and
since X3 Ue; is independent for ¢ = 1,2, we must have ej,es € Eq\ g. The
claim follows since x; is a proper basis orientation of 957.

X1NXy=0:1If e;,es € E; for some 4, again the claim follows since ; is a
proper basis orientation of %;. Otherwise, let wlog. e; € E; and B €
%}gvg%g implying that X; Ue; and X, U g are bases. Then B’ € B,
implies that B’ must be in B%v, B3¢ and therefore, X; Ug and X, U ey
must be bases as well. Since C' must contain e; and es, we have that



C = Ch04Cy for circuits Cy € € and Cy € C§ with C1(g9) = —Ca(g).
Hence, we can exchange e; with g and on the other side g with e; and
obtain

Xap(B') = X1(X1 U g)xa(X2 Uez)
= (=C1(g9)Cr(er)xa (X1 Uey)) -
“(=Ca(e2)C2(g9)x2(X2 U g))

= -Cy (61)02(62)X1(X1 U 61)X2(X2 U g)
—C(e1)C(e2)xar (B).

Deleting g from O; @p Oy we conclude that (c.f. [3])
By Dy By = BTv;BI U By, B!
and

Corollary 11. The chirotope xg, of O1 @2 Oy is given by

X (B) = x1(B1)x2(B2),

where B € Bg, with B = (B UB3)\ g for B; € B;, i = 1,2 and g € B, for
exactly one 1.

The basis orientation of the series connection is governed by the set of bases
of the underlying matroid (see [3]) as well:

By s By = B0 BY U BB U BIoBY.
Proposition 12. The chirotope xgs of O1@s O2 is given by

Xas(B) = x1(B1)x2(B2),
where B € Bg, and therefore, B = BiUBy for some By € By, By € Bs.

Proof. If e1,eo € E; for some i, the claim follows since x; is a proper basis
orientation of O;.

Let B, B’ € Bg, with |[BNB'| =71 +1r2—2 and ey, e9, X1, X2, C be defined
as in Lemma 10. If g & X7 U X5, then we conclude ey,e2 € E; for i € {1,2} as
follows. If g & {e1, ez}, this is immediate. Otherwise, if e; = g, we may wlog.
assume that X7 U g and X5 are bases and hence, ej,es € Fy.

The only remaining case is ¢ € X; U X5 and wlog. e; € E; for i = 1,2.
By the definition of the X; we have g € X; N X5. Because B € %}go ‘B;g

implies e1, eo € E; for some i, we may, by symmetry, assume B € ‘B}g o BJ and



B' e 8o %;g. Thus, X1, X1\ gUe1, X3, and X3 \ g U es are bases of O, resp.
O,. Hence,

Xas(B') = X1 (X1)x2(X2 \ gUe2)
= (=C1(g9)Ci(e1)x(X1\gUer)) -
(—=C2(e2)C2(g)x2(X2))

Ci(e1)Ca(e2)x1(X1\ gUer)xa2(X2)
= —0(61)0(62)X@s(3)~

01(9)022(9):—

O

Remark 13. Bjorner et al. [1, Section 7.6] considered two special cases of
oriented matroid union, i. e. disjoint ground sets (direct sum) and equal ground
sets. As (unoriented) series connection is a special case of matroid union (see
e.g. [9, Proposition 12.3.6]), Proposition 12 is another special case of oriented
matroid union.

3.4 Convex Closure

We are now going to determine the convex hull operators convg,, of Og, from
the sets of circuits. For O; let conv; := conve, (i = 1,2) and convg, :=
conve, @, c,- We identify conv;(A) with conv;(A N E;) for arbitrary sets A
(i = 1,2) simplifying notation.

First we consider the parallel connection:

Theorem 14. Let

G1 = {+g,—g}Nconvy(A) and
G2 = {+g,—g}Nconvi(—A).

Then convg, (A) = convi (AU G1) U convy(A U Ga).

Proof. “C” Let 7f € convg, (A) for some 7 € {+,—} and wlog. 7= +. The
case +f € A is trivial and otherwise, there is a circuit C' € Cq, such that
—feCCAU—f. IfC eC; fori=1or 2, then +f € conv;(A) C
conv;(A U G;). Otherwise, there is a circuit C = C18,Cy € C10,Cy. If
—f € Cy and C1(g) = o, we have the implication

—felC, = Cy\gCA

og € convy(A)

og € Gy

—feCi CAUGLU—f
+f € convi(AUGY).

el

An analogous argument verifies —f € Cy = +f € convy(A U Gs).



Figure 3: —f is contained in convg, (A) but not in convy (A)

“D” Let 7f € convi(AUG1). Again we may assume 7 = +. If +f € conv;(A)
or G; = 0 then +f € convg, (A) follows immediately. If +f € convy (A U
G1) \ convy(A) and og € Gy then there is a circuit C; € C{, Ci(g) = o
so that —f € C; € AUG; U —f and a circuit Cy € CJ, Ca(g) = —o,
satisfying Co € AU —og. It follows that —f € Ci10,Cy C AU —f and
therefore, +f € convg, (4).
The case 7f € conve(A U Gs) is analogous.
O

In Figure 3 you see an example for the convex closure operator of the parallel
connection where an edge f is contained in the convex closure of the parallel
connection but not in conv;(A4). Red arrows indicate that an arc is in the convex
closure of A with the respective sign while bold red arcs are the elements of A.

We will derive the convex closure operator of the 2-sum O; ®5 Os from the
operator of the series connection.

Theorem 15. Let
G1 = {+g,—g}NAnconve(A\g)
Gos = {+g,—g}NAnconvi(—A\g).
Then convgg(A) = AU convi(A\ g UG1) Uconvy(A\ gU Ga).
Proof. “C” Let 7f € convgg(A). If 7f € Aor 7f € conv;(A\ g) fori =1 or 2
the claim is true. It remains to consider

Tf € convgy(A) \ (AU convi(A\ g) Uconvay(4\ g))

and wlog. 7 = +. Then there is a circuit C' = C; 0 Cy € Clog—gCQ (wlog.
C(g) = +) satisfying —f € C C AU —f. It follows that +g € A and
hence, f € convi(A\ gUGy). If f € Cq, then —g € Co € AU —g and
hence, +g € conva(A\ g).

Note that

-Gy ={+g,—g} N AnNconve(—A\g) and
-Gy ={+g,—g} N Anconvi(A\ g).

Hence, the case f € Cy follows by symmetry, reorienting g.

10
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Figure 4: —f is contained in convy(A) but not in convgg(A)

“2D” Let 7f € convi(A\ gUG1). The cases 7f € AUconvi(A\ g) and G; =0
are trivial. Thus,

7f € convi(A\ gUG)\ (AUconvi(A\ g)),

wlog. 7 =+, and og € G;. We consider the case f ¢ {£g} first. Hence,
there is a circuit C; € CY with C1(g9) =c and —f € C; C A\gUG U—f.
Since og € G1 C convy(A \ g), we also have a circuit Cy € C§ satisfying
Cy(g) = —o and Cy C AU —0og. It follows that —f € C10Cy C AU—f
and +f € convgg (A).

Now let f = g and hence, +g € convi(A\ gUG1) \ convi(A\ g). Then
+g € G1 C A and hence, +¢ € convg,(A) completing the proof.
O

Figure 4 shows how arcs can be contained in the convex closure of one of the
graphs but not in the convex closure of their series connection if g & conv;(A\g).
By contraction we obtain the result for the 2-sum.

Corollary 16. Let
G1 = {+g,—g}Nconvy(A\ g)
Gs = {+g,—g}Nconvi(—A\g).

Then convg, (A) = convg, (A)\g = (convi(A\ gUG1) Uconva(A\ gUG2))\g.

4 Generalized Parallel Connection,
Modular Join, and Modular Sum

During this section O, O are oriented matroids on the ground sets F; resp.
E5 such that By N Ey = T and Oq[T] = O2[T]. The underlying matroids are
M; := O, and have the set of flats §;, rank function v; and matroid closure
operator ¢l; for ¢ = 1,2.

11



Definition 17. Let § denote the family of flats of a matroid M with rank
function v. We call two flats X, Y € § a modular pair if

(X)+t(¥)=e(XUY)+e(XNY).
A flat T is modular if for oll X € § X, T is a modular pair of flats.

We will introduce the modular join of @7 and Oy as an oriented version
of a special case of the generalized parallel connection from matroid theory
(see e.g. [3]). First we review the basics of the generalized parallel connection
from matroid theory including some seemingly new observations.

Proposition 18 ([3]). If T € §1 is a modular flat of M1 and T € Fo then the
set
Sor = {F:FﬁEi € g fori= 172}

is the set of flats of a matroid, called the generalized parallel connection of M;
and Mo denoted by Mg, .

Remark 19. IfT is not a flat in My then one can extend My by the elements
clo(TO\T wvia the modular cut {T} yielding a matroid My in which T := cly(T) is
a modular flat. The generalized parallel connection of My and My is defined to
be the generalized parallel connection ofMl and Moy with respect to the common
flat T. For details on modular cuts and single element extensions we refer the
reader to [9].

The rank function of the generalized parallel connection Mg, is given by
the following proposition.

Proposition 20 ([2, Proposition 5.5]). If tg.,.,t1,t2 are the rank functions of
Mg, M1, My respectively, then for any F € §g, we have

t@T(F) :tl(FmEl)-f-tz(FmEz) —tl(FﬂT).

As a direct consequence, the rank of the generalized parallel connection is
rank(O1) 4 rank(O2) — tg. (T).

Proposition 21 ([2, Proposition 5.10]).
Ei €8¢, <= T €Fa, < T € 3Ja.

Hence under the above assumption, Eq, Es, and T are flats of Mg,.. From
now on we, additionally, assume that 7 is a common modular flat of M; and
M. As a preparatory step to defining the modular join for oriented matroids,
first we derive the modular join of two matroids M; and My in terms of its
cocircuits.

Proposition 22. The set of cocircuits of the modular join Mg, = My &p My
18
De, =0 U DY U (@Tord]).

12



Proof. By Proposition 20 and since T is a modular flat in M; and Ms, we have
for any flat H € §g, and H; :=HNE;, i =1,2

tEBT(H) = t@T(Hl) + tEBT(HZ) - t@T(Hl n HQ)
- tEBT(Hl) - t@T(Hl ﬂT) +Y@T(H2)
=Ttor (H1 U T) — tor (T) + t@T(HQ)’

and by symmetry

tEBT(H) = tEBT(Hl) + tEBT(HZ UT) - t@T(T)'

Again by Proposition 20, tg, equals vr; when restricted to E;. Hence, a
closed set H € §a, is a hyperplane (i.e. has rank 1 + 73 — tg,.(T) — 1) if and
only if

ri+ro—1=v1(HiUT)+va(Hs)
=11 (H1) +v2(H2UT),
meaning that exactly one of the following cases applies:
(1) Hy = E; and Hs is a hyperplane of My completely containing T,
(2) Hy = E> and H; is a hyperplane of M7 completely containing T,
(3) H,; are hyperplanes in M; for i = 1,2 which do not contain 7' completely.

In case (1) resp. (2) H is a hyperplane whose complement is a cocircuit in My
resp. M and in case (3) H; and Hy are complements of cocircuits Dy, Dy with
DiNT=DyNT #0. O

We are now aiming to define an oriented modular join with respect to a
common modular flat T" as an oriented analogue of Proposition 22. We will
prove that this is well defined in Theorem 25 and start with some observations.

Proposition 23. Let T be a modular flat of a matroid M and C' a cocircuit
such that CNT ¢ {0,T}. Then CNT is a cocircuit of M[T].

Proof. Let t be the rank function of M. By modularity,

t(z(C)NT) =1(2(C)) +¢(T) —e(z(C)UT)
= rank(M) — 1 + ¢(T") — rank(M)
=¢(T)-1.

O

The following observation will be crucial for an inductive proof of the cor-
rectness of our join operation.
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Lemma 24. Let O and Oy be simple oriented matroids on the ground sets
EyNEy =T such that O1[T] = Os[T] and T is a common modular flat of rank
2. Then

Dy, :=D," U D" U (DTorDY)

18 the family of cocircuits of an oriented matroid.

Proof. Wlog. O is reoriented such that every X € D restricted to the elements
of T has one of the sign patterns 0...0, —...—0+...+,or +...+0—...—
wrt. a fixed linear ordering of the elements of T. Let C' # —D be elements of
Dg, such that e € Ct N D~. We proceed by case study:

(1) e € T: Then C:CloC’Q,D:DloDQ EID{’OTD%—'. tenT=-DnNnT
elimination between C7 and D; yields a cocircuit F; € D}T such that
Fy C(CfUuDy)\efor o =+,—. Otherwise, CNT # DNT and there is
some f € TN((C;7\ Dy )U(Cy \ Di")) and we can perform strong cocircuit
elimination between C;, D; for i = 1,2 with respect to e by fixing f which
yields cocircuits F; € D} satisfying F; N T = Fo N'T since T is a modular
line. Hence, F} o I, € DT o DT is a cocircuit as required.

(2) Wlog. e € E1\T: Let Fy € Dy be a cocircuit satisfying FY C (CYUDY)\e.
We are done if I € D}T. Otherwise, let fe, fp, fr be the unique elements
in 2(C1) NT,2(D1)NT resp. z(F1)NT.

(i) fr = fc = fp: Then F; o Cy or Fy o D5 is a cocircuit as required.

(11) fF = fc 7é fDZ Assume F1 NnNT = —Ol NT. Then F1 nT g D1 n T,
a contradiction, as Fy(fp) # 0. Hence, F1 NT = C1NT and F; o Cy
is a cocircuit as required.

(i) |{fe, fp, fr}| = 3: By cocircuit elimination we necessarily must have
C(fr) = —D(fr) # 0. We eliminate fr between Cy and D in
05 and get a cocircuit that either is in D;T as required or satisfies
F5(fr) = 0. Since Fi(fo) = Fo(fc) = D(fe), we must have FiNT =
FoNT and F} o F5 is a cocircuit as required.

O

Theorem 25. Let 01,05 be oriented matroids with a common modular flat
T= E1 n Eg. Then

Dy, =D, U D" U (DTorDY)

1s the family of signed cocircuits of an oriented matroid, called the modular join
of O1 and Oy, denoted by Og,,. .

Proof. We may wlog. assume that O; and Qs are simple. We prove the theorem
by induction on |T|. For |T'| € {0,1} the statement corresponds to the signed
cocircuits of direct sum resp. parallel connection (empty set and single edges
are always modular flats). Now let |T'| > 2 and C, D € Dg,. such that C # —D
and e € CTND~. If there exists some f € 2(C)Nz(D)NT then C,D € Dg,,. / f
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and by inductive assumption, there is some F € Dg, /f C Dg, satisfying
Ft C (CtuD*t)\eand F~ C (C-UD7)\ e. We now may assume that
2(C)Nnz(D)NT = 0.
Since z(C1) N T is a modular flat in Oy, we have

0=t(2(Cy)Nz(D1)NT)=2((z(C1)NT)N (2(D1) NT))
(C)NT) ++(2(D1)NT)
—t((2(C1)NT) U (2(D1)NT)

=(T) — 2.

=t(z

It thus suffices to consider the case that t(7") = 2 which was done in Lemma 24.
O

Corollary 26.
L7 Lo =L o L3 U (Lio7Ls).

Please note the analogy to the parallel connection. Furthermore, it is now
immediate to define the modular sum of two oriented matroids as a generaliza-
tion of 2-sum.

Definition 27. Let O1, Oy be oriented matroids on the ground sets E1NFEy =T
so that T is a common modular flat. The modular sum O, E\r Os is defined
via its set of cocircuits De, .-

Da,p =D, UD," U (DiorDy).

5 Concluding Remarks

While parallel, series, and 2-sum connection have been studied involving the
most important axiom systems, this is left open for the operations of modular
join and modular sum as e. g. the set of circuits of the generalized parallel con-
nection is not an immediate analogue to the parallel connection. Furthermore,
if T' contains more than one element, generalized parallel connection lacks of a
meaningful dual operation which in the case of T' = 1 is the series connection
and corresponds to matroid union if the ground sets intersect in 7. This does
not hold for larger T as well.

The generalized parallel connection of a matroid is well defined as soon as T’
is a modular flat of O;. We leave it as an open question whether the equation
in Corollary 26 yields an oriented matroid if T" is not a modular flat of Q5. Note
that the unoriented analogue holds.
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