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1 Introduction

We consider the following games, played on an — initially uncoloured —
graph G with a colour set C. Two players, Alice and Bob, alternately colour
an uncoloured edge of G with a colour from C, so that adjacent edges receive
distinct colours. In the first game we consider, Alice has the first move, in
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the second game, Bob begins. The respective game ends when no move is
possible any more. If at the end every edge is coloured, Alice wins, otherwise
Bob wins. The smallest size of a colour set C with which Alice has a winning
strategy in the game played on G is called game chromatic index of G and
denoted by χ′gA

(G) for the first game and χ′gB
(G) for the second game.

The game chromatic index χ′gA
(G) was introduced by Cai and Zhu [10]

resp. Lam et al. [20] and is denoted usually as χ′g(G). It is the edge colouring
variant of the more general game chromatic number introduced by Bodlaen-
der [8]. The game chromatic number is based on a vertex colouring instead
of edge colouring game. Variants of the game chromatic number — besides
the game chromatic index — are, e.g., the game colouring number [25], and
the incidence game chromatic number [4].

Initiated by the paper of Faigle et al. [14] there have been a lot of at-
tempts to bound or determine the game chromatic number of several classes
of graphs. The first publications on this topic aimed to improve the up-
per bound for the game chromatic number of planar graphs. Kierstead and
Trotter [18] proved that there is such a global upper bound, namely 33. This
bound was improved by Dinski and Zhu [12] to the value 30, by Zhu [25] to
the value 19, by Kierstead [16] to the value 18, and finally by Zhu [26] to
the value 17. The last three bounds were obtained by considering the game
colouring number, which is a natural upper bound for the game chromatic
number. For a recent survey on graph colouring games on planar graphs
see [6]. We remark that it is not known whether even the latest bound of
Zhu is best possible. It has been shown by Wu and Zhu [24] that there is
a planar graph with game colouring number 11, graphs with higher game
colouring number are not known. Kierstead and Trotter [18] gave an exam-
ple of a planar graph with game chromatic number 8. This leaves a gap of 6
for the maximum game colouring number and a gap of 9 for the maximum
game chromatic number of planar graphs.

One of the rare classes of graphs for which the maximum game chromatic
number has been determined exactly is the class of forests, here 4 colours are
sufficient [14] and there is a tree for which 4 colours are needed [8]. Even
for outerplanar graphs there is still an unclosed gap between 6 and 7 for the
maximum game chromatic number [15].

In the last years some variations of the game chromatic number came up,
in particular concerning a relaxed game, where there are many publications
following on the introductory paper of Chou et al. [11]. Kierstead [17] in-
troduced an asymmetric game which provoked further research as well. Also
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different generalizations of the game on oriented graphs (introduced in [22])
and arbitrary digraphs (introduced in [3]) were considered. Furthermore
game-theoretic analoga of the list-chromatic index resp. the list-chromatic
number were introduced recently by Marte [21] resp. by Borowiecki et al. [9].

We will focus here on the results concerning the game chromatic number
of line graphs, i.e. the results on the game chromatic index of graphs. Cai
and Zhu [10] proved that the game chromatic index of k-degenerate graphs
with maximum degree ∆ is at most ∆+3k−1, which implies the bound ∆+2
for forests. In the case of forests with maximum degree ∆ ≥ 5 this bound
was tightened to the value ∆ + 1 by work of Erdös et al. [13] and Andres [2].
The bound ∆ + 1 also holds for forests of maximum degree ∆ = 3 (see [1],
for a partial result see [10]), but for forests of maximum degree ∆ = 4 the
exact bound is still an open question. For the results in case ∆ 6= 4 it does
not matter whether we consider the first or the second game. Bartnicki and
Grytczuk [5] improved the result of Cai and Zhu and showed that the game
chromatic index even of graphs of arboricity k with maximum degree ∆ is at
most ∆+3k−1. An interesting question was for a long time whether there is
a constant c, so that, for every graph G with maximum degree ∆, the game
chromatic index of G is at most ∆ + c. Beveridge et al. [7] answered this
question to the negative.

In spite of the fact that upper bounds or even tight upper bounds are
known for the game chromatic index of some non-trivial classes of graphs,
the problem of determining the exact value for the game chromatic index
of the members of these classes is still open. Apart from paths, cycles, and
some small graphs hardly anything is known about exact game chromatic
indices. Even the characterization of forests of maximum degree ∆ 6= 4 with
game chromatic index ∆ resp. ∆ + 1 is still an open question. Also the game
chromatic index of the complete graph Kn seems not to be known for n ≥ 7
(cf. [23]). In this note we determine the exact game chromatic indices of
wheels.

An n-wheel, n ≥ 3, is a graph with n + 1 vertices, one of which, say v0,
is adjacent to every other vertex, and if the hub v0 and its incident edges
are deleted, the remaining graph is an n-cycle. The edges adjacent to v0 are
called spokes and the edges of the n-cycle are called rim edges. Obviously,
the game chromatic index of an n-wheel is at least n. Lam et al. [20] proved
that, if Alice begins, the game chromatic index of an n-wheel, n ≥ 4, is at
most n+ 1. In this paper we tighten this upper bound, moreover we prove
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Theorem 1. Let Wn be the n-wheel. Then

(a) χ′gA
(Wn) = n if n ≥ 6,

(b) χ′gB
(Wn) = n if n ≥ 3.

By easy calculations, one observes χ′gA
(W3) = 5, χ′gA

(W4) = 5, and
χ′gA

(W5) = 6. Therefore by Theorem 1 the problem of determining the
game chromatic index of wheels is completely solved. In particular, for large
wheels, the game chromatic index equals to the trivial lower bound n for
the game chromatic index. Note that there is a similar result for the inci-
dence game chromatic number of wheels stated in [4] and proved by Kim [19]:
the incidence game chromatic number of large wheels equals to the trivial
lower bound

⌈
3n
2

⌉
for the incidence game chromatic number of graphs with

maximum degree n.

2 Proof of Theorem 1 (b)

We describe a winning strategy for Alice for the second game played on
Wn, n ≥ 3, with n colours. We number the spokes si and the rim edges ri

cyclically in such a way that si is adjacent to ri+1 and ri+2 where we take the
indices modulo n. Therefore the spoke si and the rim edge ri are independent
for any i = 0, . . . , n− 1, since n ≥ 3.

Alice’s strategy is that after each of her moves, for any i, either si and
ri are coloured both, or none of them is coloured. She achieves this goal
by matching moves. In a matching move, if Bob colours ri (resp. si) with a
new colour, then Alice colours its partner si (resp. ri) with the same colour,
and if Bob colours ri with a colour which has already been used before, then
Alice colours si with a new colour. Note that Bob cannot colour a spoke with
an old colour, since by this strategy the set of colours of the rim edges is a
subset of the set of colours of the spokes. After Alice’s k-th move, exactly k
colours are used for spokes. Thus Alice wins.

3 Proof of Theorem 1 (a)

We describe a winning strategy for Alice for the first game played on Wn,
n ≥ 6, with n colours. Here the situation is more complex since Alice has
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the disadvantage of the first move. However, Alice tries to act much in the
way as in the strategy of the previous section.

Again, we number the spokes si and the rim edges ri cyclically in such a
way that si is adjacent to ri+1 and ri+2 where we take the indices modulo n, so
that the spoke si and the rim edge ri are independent for any i = 0, . . . , n−1,
since n ≥ 3. During the game, Alice will keep in mind one special index i0
and possibly change the special index several times. We denote si0 by s and
ri0 by r.

Alice’s strategy is two-fold. The first part of Alice’s strategy will consist
of the first n−3 moves of Alice and the first n−4 moves of Bob. The second
part concerns the end-game of colouring the last seven edges.

In her first move, Alice chooses an index as special index and colours the
spoke s. In the next n − 4 moves, she reacts on Bob’s play in the following
way: If Bob colours a spoke si 6= s or a rim edge ri 6= r, Alice answers by a
matching move. If Bob colours r with a colour c, Alice chooses a new special
index i0, so that si0 is uncoloured and not adjacent to the old r, and colours
si0 with c if c was a new colour before Bob’s move, otherwise with a new
colour. Note that there is such an index i0, since the colour c at rim r can
block at most two spokes, but before Alice plays her move there are still at
least four uncoloured spokes. By playing in this way, after Alice’s k-th move,
exactly k colours are used for spokes and at most k − 1 colours are used for
rim edges, and the set of colours of the rim edges is a subset of the colours
of the spokes. At that moment, there are three uncoloured spokes and four
uncoloured rim edges, and, for any i, if the rim edge ri is coloured, then the
spoke si is coloured, too.

In the end-game, Alice has to avoid the situation that the last two un-
coloured spokes are blocked by a new colour on the rim edge adjacent to
both spokes or that the last uncoloured spoke is blocked by a new colour.
The next lemma shows that in certain situations when there are only five
uncoloured edges left, Alice has a winning strategy. After the proof of the
lemma we will describe how Alice can mostly achieve one of these situations
in her (n− 2)-nd move and how she reacts otherwise.

Lemma 2. If there are only two uncoloured spokes si1 and si2 and three
uncoloured rim edges e1, e2, e3 left, and e1 is not adjacent to si2 (but may be
adjacent to si1), e2 is not adjacent to si1 (but may be adjacent to si2), and e3
is neither adjacent to si1 nor to si2, and there are two unused colours, then
Alice has a winning strategy.
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Proof. If none of the ej is adjacent to si1 or si2 , then the connected com-
ponents of uncoloured edges are paths of length 1, 2, or 3 (length 3 cannot
occur, but we will not use this fact). For a collection of such paths, Alice
has an obvious winning strategy with (the unused) two colours. So we may
assume that e1 is adjacent to si1 .

It is Bob’s turn at the beginning. An old colour is a colour used before
Bob’s turn. We distinguish several cases.

If Bob colours a spoke, Alice colours the other spoke, and the last three
rim edges can be coloured since n ≥ 5.

If Bob colours e1 (resp. e2), then Alice colours si2 (resp. si1), preferably
with the same colour, otherwise with a new colour. Here, the remaining
uncoloured spoke can be coloured with the last colour in any case.

The last case is that Bob colours e3. In this case, Alice colours the rim
edge e1 with an old colour. This is possible, since e1 has at most three
coloured adjacent edges, there are two new colours, and n ≥ 6, so there is
at least a fourth old colour. The three remaining uncoloured edges form a
path of three edges, or a path of two edges and a single rim edge. It is easy
to see that Alice has a winning strategy on the remaining uncoloured path
consisting of two or three edges since there are still two colours unused for
the adjacent edges of this path. (One colour might have been used for e3.)

Thus, in any case, Alice wins.

Now we consider the situation described above: there are three spokes
x, y, z and four rim edges a, b, c, d left and it is Bob’s turn. We distinguish
three cases:

y
zx

a b c d

Figure 1: Case 1

Case 1: x, y, z are subsequent spokes, i.e. there is an index i, so that x = si,
y = si+1, and z = si+2 (indices modulo n).

By Alice’s moves played so far we may assume that a = ri, b = ri+1, c = ri+2,
and d is an arbitrary other rim edge, see Fig. 1. Note that a is not adjacent
to z.
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If Bob colours b, c, y, or z, Alice answers by a matching move. If Bob
colours d, then Alice colours x. And vice versa, if Bob colours x, then Alice
colours d. In all these cases, if Bob uses a new colour, Alice uses the same
colour, if he uses an old colour, she uses a new colour. Playing this way, there
are still two unused colours after Alice’s move, and the situation is exactly
as in the preconditions of Lemma 2. By Lemma 2, Alice wins.

We are left with the case that Bob colours a. Then Alice colours c with
an old colour. After that the three uncoloured spokes x, y, z can still be
coloured with three colours unused so far, except possibly for a. It is easy to
see that Alice has a winning strategy: If Bob colours b, then Alice colours y
by a matching move. If Bob colours d, then Alice colours x, preferably with
the same colour. If Bob colours x, then Alice colours d, preferably with the
same colour. If Bob colours y or z, then Alice colours d. If d is adjacent to y
and/or z, then Alice uses a colour already used for a spoke, which is possible
since n ≥ 6 and d has at most three coloured adjacent edges. The remaining
path with two or three edges can be coloured with two colours if Alice takes
care that the middle edge is coloured after her last move. So, also in this
case, Alice wins.

y
z

b c dd a

x

Figure 2: Case 2

Case 2: x is a single spoke, and y, z are subsequent, i.e. there are indices i, j,
so that x = si, y = sj, and z = sj+1, and |j − i| ≥ 2 and |i− (j + 1)| ≥ 2.

Assume that a = ri, b = rj, and c = rj+1. Then a may be adjacent to z, but
not to x or y, b may be adjacent to x, but not to y or z, and c is adjacent to
y, but not to x or z. Note that, since n ≥ 6, if a is adjacent to z, then b is
not adjacent to x. The edge d may be adjacent to either y and z, or z, or x
or to none of them. See Fig. 2.

If Bob colours x, then Alice colours d, if possible with the same colour (i.e.
in the case that x and d are not adjacent), otherwise with an old colour. If
Bob colours y, then Alice colours a, b or d with the same colour. She chooses
the edge to colour in such a way that after her move there is no uncoloured
spoke left with two adjacent uncoloured rim edges. This is possible because
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of the remarks above. If Bob colours z or c, Alice answers by a matching
move. If Bob colours d, Alice colours a spoke not adjacent to d, preferably
one of subsequent spokes, preferably with the same colour. Now consider the
case that Bob colours a. If d and b are adjacent to x, then Alice colours x,
preferably with the same colour. In all other cases (d or b are not adjacent
to x), Alice colours y, preferably in the same colour as a. In all cases, after
Alice’s move we are in a situation as in the precondition of Lemma 2, and
by Lemma 2 Alice wins.

We are left with the case that Bob colours b. Then, by a matching move,
Alice colours y. Now we are either in the situation of Lemma 2 or z is adjacent
to a and d. The latter implies that x is not adjacent to any uncoloured rim
edge. No matter what Bob does, Alice can ensure in her next move that z is
coloured which will give her a win.

y

d

x

a b c

z

Figure 3: Case 3

Case 3: x, y, z are single spokes.

We may assume that a and d are neither adjacent to y nor to z, b is neither
adjacent to x nor to z, c is neither adjacent to x nor to y, see Fig. 3. Hence
y resp. z are adjacent to at most one coloured rim edge.

If Bob colours x, then Alice colours b with the same colour. If Bob colours
y, then Alice colours d with the same colour. If Bob colours a, then Alice
colours y, preferably with the same colour. If Bob colours b, then Alice
colours x, preferably with the same colour. By reasons of symmetry we may
restrict ourselves to these moves of Bob. After that, Alice wins by Lemma 2.

This proves Theorem 1 (b).

4 An application

Consider a broadcasting network with one central communication node and
n other communication nodes which are grouped along a circle around the
central node. The central node can communicate with each other node, the
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other nodes only with the center and its two neighbours on the circle. So the
communication network is an n-wheel. This is a reasonable assumption on a
network topology.

If a pair of adjacent nodes wants to communicate, they have to choose a
communication frequency which is different from the other frequencies used
by the two nodes. So the problem of assigning a smallest number of fre-
quencies (in order to have big bandwidth) reduces to a simple edge colouring
problem of the wheel, where obviously n colours are sufficient, i.e. only n
frequencies are needed when the frequencies are assigned by a global admin-
istrator.

Now consider the case that some pairs of adjacent nodes send using a
frequency they choose in an anarchistic way by themselves. Think of choices
of assignment in time, one-by-one. Then the main result of this paper says: if
after each anarchistic choice (which corresponds to a move of Bob) the global
administrator may choose another pair that does not communicate at this
time and fixes its communication frequency (which corresponds to a move
of Alice), then it can be guaranteed that as well only n different frequencies
are needed (if the administrator follows Alice’s winning strategy). In short:
a half-way anarchistic wheel-network can be administered with the same
performance as a non-anarchistic wheel-network.

5 Final remarks

By the results concerning wheels one might be misled to conjecture that in
the edge colouring game beginning is always a disadvantage for Alice. This
is not true. Consider K4 − e, the complete graph on 4 vertices in which one
edge is missing. Then χ′gA

(K4−e) = 3, but χ′gB
(K4−e) = 4. Here, beginning

is a real advantage for Alice, she can ensure in her first move that the edge
adjacent to all other edges is coloured.

In Fig. 4 we list 7 small graphs in which beginning is an advantage in
the edge colouring game, among them K4 − e. Some graphs where begin-
ning is a disadvantage are depicted in Fig. 5. Fig. 6 presents a few small
graphs G where beginning is neither advantage nor disadvantage, since here
χ′gA

(G) = χ′gB
(G). These figures were made by explicitly calculating the game

chromatic indices of the respective graphs via complete game-tree search us-
ing a computer program [23].

What do we learn from these pictures? Apparently the classification into
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Figure 4: Graphs G with χ′gA
(G) < χ′gB

(G). Note that the second graph in
the lower row is P5 ∪K2, a disconnected graph.

Figure 5: Graphs G with χ′gA
(G) > χ′gB

(G)

Figure 6: Graphs G with χ′gA
(G) = χ′gB

(G)
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the three classes seems to obey no trivial rule: there are bipartite graphs
and non-bipartite graphs in each of the three classes; there are cographs (i.e.
graphs with no induced P4) and non-cographs in each of the three classes;
and there are 2-connected and non-2-connected graphs in each of the three
classes. So we formulate:

Open Problem 3. Characterize classes of graphs G for which

χ′gA
(G)


<
>
=

χ′gB
(G).

However, one observation can be made: the first three graphs of Fig. 4
can be obtained from the C6 (which is in the second class) by adding an odd
number of matching edges. Some other graphs from class 1 and class 3 can
also be obtained in this way from a class 2 graph.

Open Problem 4. Does, for any graph G with χ′gA
(G) > χ′gB

(G) and any
matching M of odd size of edges which are not in G,

χ′gA
(G+M) ≤ χ′gB

(G+M)

hold?

Maybe the converse problem is also of interest:

Open Problem 5. Does, for any graph G with χ′gA
(G) < χ′gB

(G) and any
matching M of odd size of edges from G,

χ′gA
(G−M) ≥ χ′gB

(G−M)

hold?
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