
Technical University of Munich

Department of Mathematics

Master Thesis

The Stable Set Problem and Graph
Decompositions

Sophia Keip

Examiner: Prof. Dr. Stefan Weltge

Advisor: Prof. Dr. Stefan Weltge

Submission date: 27.08.2019

I hereby declare that this thesis is my own work and that no other sources have been used
except those clearly indicated and referenced.

Garching, 27.08.2019

Zusammenfassung

Diese Arbeit beschäftigt sich mit Techniken, das gewichtete Stabile-Mengen-Problem auf
Graphen G zu lösen, die an einer Trennmenge von Knoten in zwei Teile zerlegt werden
können. Alle vorgestellten Methoden basieren auf einem polyedrischen Ansatz. Hier-
bei wird das Problem durch die Optimierung einer linearen Funktion auf dem Stabile-
Mengen-Polytop P (G) beschrieben. Das Stabile-Mengen-Polytop ist die konvexe Hülle
aller charakteristischen Vektoren, die einer stabilen Menge inG zugeordnet werden können.
Um die Methoden der linearen Programmierung auf dieses Optimierungsproblem anzuwen-
den, ist man an einer geeigneten Beschreibung von P (G) interessiert. P (G) kann en-
tweder durch eine Menge an Ungleichungen im entsprechenden Raum oder durch eine
erweiterte Formulierung beschrieben werden. Eine erweiterte Formulierung ist die Un-
gleichungsbeschreibung eines Polytopes, welches auf P (G) projiziert werden kann. Bei
beiden Arten P (G) zu beschreiben ist die Anzahl an Ungleichungen entscheidend. Um
eine Ungleichungsbeschreibung oder eine erweiterte Formulierung von P (G) zu erhalten,
nutzen wir die Tatsache dass G zerlegbar ist. Das Ziel ist es, eine Beschreibung von
P (G) auf Basis der Beschreibungen der Stabile-Mengen-Polytope der beiden Teile von
G zu erhalten. Solche Techniken ermöglichen es, das Stabile-Mengen-Problem auf einem
Graphen zu lösen, der rekursiv in einfachere Graphen zerlegt werden kann, bei denen
eine kleine Beschreibung des Stabile-Mengen-Problems bekannt ist. Klein bedeutet hier
polynomiell relativ zur Eingabegröße. Entscheidend für unser Vorhaben ist die Struktur
der Trennmenge, an der die beiden Komponenten verbunden sind.
Zunächst werden wir uns den Fall ansehen, in dem die Trennmenge eine Clique bildet.
P (G) kann in diesem Fall einfach durch die Vereinigung der Ungleichungsbeschreibungen
der Stabile-Mengen-Polytope der Komponenten beschrieben werden. Wir werden zeigen,
dass dieser Ansatz nicht funktioniert, wenn die Trennmenge keine Clique bildet. In diesem
Fall bleibt das Stabile-Mengen-Problem NP-schwer, auch wenn die einzelnen Komponen-
ten sehr einfach sind. Wir werden dies durch die Reduktion eines NP-schweren Problems
zeigen.
In dieser Arbeit werden zwei Methoden für beliebige Arten von Trennmengen beleuchtet.
Die Idee ist es, Modifizierungen von G zu betrachten. Ziel dieser Modifizierungen ist die
Konstruktion einer geeigneten Trennmenge. Haben wir eine Ungleichungsbeschreibung für
das Stabile-Mengen-Polytop des modifizierten Graphen, ist es sehr einfach eine erweiterte
Formulierung von P (G) zu erhalten.
Neben der Beschreibung der einzelnen Ansätze werden wir uns den Einfluss der Ergebnisse
auf die Anzahl an Ungleichungen ansehen, die benötigt werden um P (G) zu beschreiben.

Summary

This thesis studies techniques to solve the weighted stable set problem on graphs G, which
can be decomposed into two components by a node cut set. The considered methods are
based on a polyhedral approach. Here, the problem is expressed by the optimization
of a linear function over the stable set polytope P (G), which is the convex hull of all
characteristic vectors of stable sets in G. In order to apply tools of linear programming to
this optimization, one is interested in a suitable description of P (G). P (G) can either be
described by a set of linear inequalities in the ambient space or by an extended formulation,
which is an inequality description of a polytope that can be projected onto P (G). In both
cases, the number of describing inequalities is crucial. In order to get an inequality
description or an extended formulation of the stable set polytope, we exploit the fact
that the considered graphs are decomposable. Our goal is to find techniques to obtain a
description of P (G) that is based on the descriptions of the stable set polytopes of the two
components. Such techniques provide a way to solve the stable set problem on a graph
which is recursively decomposable into simpler graphs that have a known description of
their stable set polytopes of small size. Small means in this context polynomial in the
input size. The structure of the cut set which connects the single components is crucial
for our intention.
We first consider the case where the cut set forms a clique. Here, the inequality description
of P (G) is simply the union of the inequality descriptions of the stable set polytopes
associated with the components. We show that this does not work when the cut set is not
a clique. In this case, the stable set problem is stillNP-hard even if the single components
are very simple. This is shown by the reduction of an NP-hard problem.
This work studies two methods for arbitrary kinds of cut sets. The idea is to look at
modifications of G. The goal of these modifications is the construction of a suitable cut
set. Once we have an inequality description of the stable set polytope of the modified
graph, it is easy to obtain an extended formulation of P (G).
Beyond just describing the various techniques, the impact of the results on the number
of inequalities that are needed to describe P (G) is studied.

Contents

1 Introduction 1

2 Preliminaries 4
2.1 Graphs . 4
2.2 About the Stable Set Polytope . 5
2.3 Extended Formulations . 6

3 Composed Graphs with Clique Cut Sets 9

4 Hardness of the Stable Set Problem on a composed graph 14

5 An Extension with a Clique Cut Set 18

6 Faces as Extension 20
6.1 A general Approach . 20
6.2 Minimum Dimension of a Face as Extension 26
6.3 Two node Cut Sets . 31

6.3.1 General Case . 31
6.3.2 Simplification in the bipartite Case 37

6.4 Extension complexity of modified graphs 41

7 Conclusion 43

A Appendix 47
A.1 Code Section 6.2 . 47
A.2 Code Section 6.3.1 . 50

1

1 Introduction

Let G = (V,E) be an undirected graph. A set S ⊆ V is called stable if it does not
contain a pair of connected nodes. The stable set problem looks for the maximum of∑

v∈S

cv

over all stable sets S ⊆ V of G. Here, cv denotes a weight assigned to every node v
in G. It is an NP-hard optimization problem. The polyhedral approach to solve this
problem bases on the identification of every stable set S in G with a characteristic vector
χS ∈ {0, 1}|V | where

χSv = 1⇔ v ∈ S.

This allows us to reformulate the problem as

max{cTχS | S stable in G},

where the vector c contains the weights of the nodes corresponding to the single entries.
Since we optimize a linear function, we can look at the convex hull of the characteristic
vectors instead of looking at single points. This leads to

max{cTx | x ∈ P (G)},

where
P (G) = conv

{
χS ∈ R|V | | S stable set of G

}
.

We call P (G) the stable set polytope. This polytope can be described as the set of
solutions of a system of linear inequalities. Finding the right set of inequalities that
describe P (G) is in general not easy. Another approach to obtain P (G) is to get it
as a projection of another polytope. If a polytope can be mapped onto the stable set
polytope by some affine map, it is called extension of the stable set polytope. The
system of inequalities and equations that describe an extension of P (G) is called extended
formulation of P (G). Usually extensions use extra variables and are therefore of higher
dimension than P (G). We will see more about that in the first chapter.

P (G)

Figure 1.1: The stable set polytope P (G) as projection of a higher dimensional polytope.

The minimum number of inequalities that are needed to describe an extension of a poly-
tope is called extension complexity of the polytope. Finding a defining inequality
system or an extended formulation of P (G) that is of small size, i.e. polynomial on the

2 1 INTRODUCTION

input size, leads to the applicability of the tools of linear programming which offer a wide
range of algorithms. In this work we will look at graphs G that can be decomposed into
two graphs G1 and G2, e.g. like in figure 1.2.

G1 G2

G

G1 G2

Figure 1.2: A graph G that is decomposable into the two graphs G1 and G2.

The set of nodes that decomposes the graph is called (node) cut set. We are now
interested in techniques that allow us to describe the stable set polytope of G based on
the stable set polytopes associated with the two pieces G1 and G2. Such techniques would
allow us to describe the stable set polytope of a graph, which is recursively decomposable
into graphs which have a known description. We also want to know how the extension
complexity of P (G) depends on the extension complexities of P (G1) and P (G2). A small
extension complexity of P (G) means that the stable set problem on G can be formulated
by a linear program with a small number of inequalities. Crucial for our intention is the
structure of the cut set which connects G1 and G2.
If the cut set is a clique, i.e. a complete graph, then the inequality description of P (G)
is just the union of the inequality descriptions of P (G1) and P (G2) [1]. So in this case a
small description of P (G1) and P (G2) leads to a small description of P (G). We will see
that the strategy of just taking the union of the two inequality descriptions fails already
in the case where we have a cut set that consists of two non-connected nodes. Now the
question comes up if we can expect to find a similar simple way to handle this case. We
will reduce the NP-hard MAX-2-SAT-problem to the stable set problem on a graph,
which is decomposable via such two node cut sets. That shows that this case is also
NP-hard. So for non-clique cut sets another approach is needed.
Here, extended formulations are getting involved. The idea is to look at a modification of
G and obtain an extended formulation of P (G) based on the stable set polytope of this
modification. The main aim of such a modification is the construction of a suitable cut
set.
One approach is to modify the cut set of G in such a way that it forms a clique [2]. We
will call the modified graph G+. As the cut set of G+ now forms clique, we already know
how to obtain the stable set polytope of G+ from the polytopes associated with G+

1 and
G+

2 . P (G) is then obtained by a projection of P (G+). A disadvantage of this method is
that it adds a lot of edges between the nodes of the cut set and the rest of the graph.
This could damage nice graph structures.
We will present an approach where the modification only affects the nodes in the cut set.
We will call the modified graph G̃. Here, the stable set polytope of the modified graph

3

P (G̃) does not directly provide an extension of P (G). We will find a face of P (G̃) that
provides our wanted extension. Our construction will allow us to obtain a description of
this face by the union of the descriptions of corresponding faces of P (G̃1) and P (G̃2). Our
approach works with various modifications, where each of them adds a certain number of
nodes. We will see that there is a minimum number of nodes that have to be added. We
will observe that it is possible to find cases where this minimum number is achievable but
we will also see an example where it is not possible.
The idea of taking a face as an extension is inspired by the work of Baharona and Mahjoub
[3]. They applied this approach to the case where the cut set consists of two non connected
nodes. Furthermore, they did not only find an extension of P (G), they even found a way
to describe it in the original space. We will show that their approach can be simplified in
the case where one of the two components is bipartite.
Besides describing different techniques we will look at their impact on the extension
complexity of P (G).

4 2 PRELIMINARIES

2 Preliminaries

2.1 Graphs

We will use the basic notation of graph theory, i.e. G = (V,E) denotes an undirected,
loopless graph with nodeset V and edgeset E. An edge between u and v ∈ V is denoted
by uv. For a set of nodes A ⊂ V we denote by G \ A the graph G where the nodes in A
together with the corresponding edges are deleted. EA ⊂ E denotes the edges between
the nodes of A. GA = (A,EA) is called the induced subgraph of A in G.

Definition 2.1. Let G = (V,E) be a graph. A (node) cut set U ⊂ V is a set of nodes
such that

i. G \ U disconnects.

ii. G \ u does not disconnect for all u (U .

Definition 2.2. We say that a graph G = (V,E) decomposes into G1 = (V1, E1) and
G2 = (V2, E2) if there is a cut set U ∈ V such that

i. V1 ∩ V2 = U , V1 ∪ V2 = V

ii. (G1)U = (G2)U

iii. E1 ∪ E2 = E.

This means that the nodes and edges of an identical induced subgraph in G1 and G2 can
be identified with each other such that it results in G.

G1
G2

G1 G2

G

Cut Set U

Figure 2.1: A graph G which is decomposable into the graphs G1 and G2.

If U is a clique, i.e. GU is complete, we call U a clique cut set. The neighbors of a set
of nodes A ∈ V are all nodes of V \ A that are connected to one of the nodes of A.

2.2 About the Stable Set Polytope 5

2.2 About the Stable Set Polytope

In this chapter we will take a closer look at the stable set polytope and different classes
of its defining inequalities. An overview can be found in chapter 9 of [4]. Remember that
the stable set polytope P (G) is defined by

P (G) = conv
{
χS ∈ R|V | | S stable set of G

}
,

Let x ∈ R|V |. Since no two neighbored nodes can be in a stable set and all characteristic
vectors are non-negative, the following edge and non-negativity constraints are valid.

xu + xv ≤ 1 ∀ uv ∈ E, u, v ∈ V (2.1)

xv ≥ 0 ∀ v ∈ V (2.2)

It can be shown that these inequalities are sufficient to describe the stable set polytope
of a graph if and only if the graph is bipartite.
The simplest case in which (2.1) and (2.2) are not enough to describe the stable set poly-
tope are odd cycles. For example for a cycle of five nodes the vector x = (1/2, 1/2, 1/2, 1/2, 1/2)
fulfills (2.1) and (2.2). An optimization in the direction of c = (1, 1, 1, 1, 1) over the stable
set polytope of the cycle should give us the maximum cardinality of a stable set in this
cycle. This is 2. But the multiplication with x gives 2.5. Therefore x it is not in the
stable set polytope of the cycle.
For this reason we introduce a new class of inequalities, the so called odd-cycle inequal-
ities ∑

v∈C

xv ≤
|C| − 1

2
∀ C odd cycle of G. (2.3)

A graph is called t-perfect if (2.1), (2.2) and (2.3) suffice to define its stable set polytope.
One example of this class of graphs are almost bipartite graphs. These are graphs
that have a vertex v such that G \ {v} is bipartite. We will see this class of graphs later
again. In t-perfect and bipartite graphs the maximum weighted stable set can be found
in polynomial time. The proofs can be found in [4].
Now we look at some notations. Let x1 ∈ P (G1) ⊂ R|V1| and x2 ∈ P (G2) ⊂ R|V2|
and let x1 and x2 have the same values on the entries assigned to U = V1 ∩ V2. Then
x = x1 ∪ x2 ∈ R|V | denotes the vector where the entries belonging to U of x1 and x2 are
identified with each other i.e.

• xv = (x1)v for v ∈ V1 \ U

• xv = (x2)v for v ∈ V2 \ U

• xv = (x1)v = (x2)v for v ∈ U .

The part of a vector x ∈ P (G), that belongs to the nodes of Gi, i = 1, 2, is denoted by
xGi

. Similarly, we denote the part of x that belongs to the nodes of a set S ⊂ V by xS.
Let ax ≤ α, x ∈ R|V | be an inequality. Then Va = {v ∈ V | av 6= 0} is called the support
of the inequality. Note that av denotes the coefficient in the inequality before the variable
that is assigned to v.

6 2 PRELIMINARIES

2.3 Extended Formulations

We have already seen the geometrical meaning of extended formulations in the introduc-
tion. Let’s take a closer look at them.

Definition 2.3 (Extended Formulation [2]). An extended formulation for a polytope P ⊆
Rn is a system of inequalities Bx+ Cy ≤ d, y ∈ Rm such that

P = {x ∈ Rn : ∃y ∈ Rm : Bx+ Cy ≤ d} (2.4)

The polytope that is defined by an extended formulation is called extension. In order
to show that a polytope P̃ is an extension of a polytope P we will use the following two
steps:

• The projection of every vertex of P̃ lies in P .

• For every vertex of P there exists a vector in P̃ that is projected to this vertex.

During this work we will hear the term ”projection along variables”. The projection of
a vector (x, y) ∈ Rn+m along the variables y ∈ Rm is x ∈ Rn. It is a projection onto the
space of the x variables.

Definition 2.4 (Size of an extension [5]). The size of an extension is the number of
inequalities that are needed to describe it.

Note that equations are not taken into account, because they can be eliminated by a
reduction of variables.

Definition 2.5 (Extension Complexity [5]). The extension complexity of a polytope
P is the smallest size of any of its extensions. It is denoted by xc(P).

Balas proved the following extended formulation for the convex hull of a union of poly-
topes.

Theorem 2.6 (Balas [6]). Let Pi := {x ∈ Rn : Aix ≤ bi} ⊆ Rn, i = 1, . . . , k, be nonempty
polytopes. Then

conv
(⋃

Pi

)
=
{
x ∈ Rn : ∃(x1, . . . , xk, λ), xi ∈ Rn, λ ∈ Rks.t. (2.5)

x =
k∑
i=1

xi; Aixi ≤ λibi;
k∑
i=1

λi = 1, λi ≥ 0 , i = 1 . . . k
}
.

The proof can be found in [6]. This theorem builds the basis for the following theorem.
Here, we replace the inequality descriptions of the Pi’s with extended formulations.

Theorem 2.7. Let Bix + Ciy ≤ bi be an extended formulation of Pi, i = 1, . . . , k. Then
Balas formulation yields

conv
(⋃

Pi

)
=
{
x ∈ Rn : ∃(x1, . . . , xk, y1, . . . , yk, λ), xi ∈ Rn, yi ∈ Rmi , λ ∈ Rk (2.6)

s.t. x =
k∑
i=1

xi; Bixi + Ciyi ≤ λibi;
k∑
i=1

λi = 1, λi ≥ 0 , i = 1 . . . k
}
.

2.3 Extended Formulations 7

Proof. Description (2.5) has to give us the same polytope as the description (2.6). There-
fore we have to show that x fulfills the inequalities of one description if and only if it
fulfills the inequalities of the other description. So let

P = {x ∈ Rn : Ax ≤ b} = {x ∈ Rn : ∃y ∈ Rm : Bx+ Cy ≤ d} (2.7)

be a polytope. We have to show that

Ax ≤ λb⇔ Bx+ Cy ≤ λd (2.8)

for λ ≥ 0 and x ∈ Rn. If this is valid for an arbitrary polytope it is valid for every
polytope Pi, i = 1, . . . , k and therefore (2.5) and (2.6) result in the same polytope.
”⇒ ”: Let Ax ≤ λb. First we look at the case λ > 0. We know that

A
1

λ
x ≤ b. (2.9)

This means 1
λ
x ∈ P and therefore, (2.7) yields

∃y′ : B 1

λ
x+ Cy′ ≤ d⇔ Bx+ Cλy′ ≤ λd. (2.10)

So with setting y = λy′ we found a y such that

Bx+ Cy ≤ λd. (2.11)

Now let λ = 0. Then we have

Ax ≤ O. (2.12)

Here, O denotes the zero vector. Since the recession cone of P is {u ∈ Rn : Au ≤ O}, we
know that x is in this cone. This means that µx ∈ P ∀µ > 0. We also know that P is
bounded, so we have

x = O. (2.13)

If we now also choose y = O we have

Bx+ Cy ≤ λO. (2.14)

”⇐ ” Let Bx+ Cy ≤ λd. We start again with the case λ > 0. We have

Bx+ Cy ≤ λd⇔ B
1

λ
x+ C

1

λ
y ≤ d (2.15)

From (2.7) we have

A
1

λ
x ≤ b⇔ Ax ≤ λb. (2.16)

Now let λ = 0. Then we have

Bx+ Cy ≤ O (2.17)

8 2 PRELIMINARIES

We now take some x̄ ∈ P together with a ȳ such that

Bx̄+ Cȳ ≤ d. (2.18)

Adding a positive multiple of (2.17) to (2.18) gives us

B(x̄+ µx) + C(ȳ + µy) ≤ d for µ ≥ 0, (2.19)

which means that x̄+µx ∈ P for all µ ≥ 0. We conclude again x = O since P is bounded
and have

Ax ≤ O. (2.20)

Assume now that the extended formulations used in theorem 2.7 are minimal, i.e. contain
xc(Pi) inequalities for each Pi, i = 1, . . . , k. Let’s look at the number of inequalities
that is used in the obtained formulation of theorem 2.7. The formulation contains xc(Pi)
inequalities plus the non-negativity constraint for λi for every Pi in the union. Therefore
we can conclude that

xc
(⋃

Pi

)
≤

k∑
i=1

(xc(Pi) + 1). (2.21)

Furthermore, it could be shown in [5] that for polytopes of dimension of at least one this
bound can be improved to

xc
(⋃

Pi

)
≤

k∑
i=1

(xc(Pi)). (2.22)

Since a stable set polytope of a non-empty graph always has dimension of at least 1, we
can use (2.22) when we look at a union of stable set polytopes. So let’s formulate P (G)
as a union of polytopes. What we do is going over all possible stable sets in the cut set
and obtaining P (G) by the union over these possibilities. This results in

P (G) = conv

(⋃
S∈U

{
x ∈ R|V | : xG1 ∈ P (G1), xG2 ∈ P (G2), xU = χS

})
(2.23)

where S is stable in U . The set

{
x ∈ R|V | : xG1 ∈ P (G1), xG2 ∈ P (G2), xU = χS

}
(2.24)

has extension complexity (xc(P (G1)) + xc(P (G2))), since the equations are not counted.
If we now define

s = |{S ⊆ U | S stable in U}| (2.25)

we can use (2.22) and get

xc(P (G)) ≤ s (xc(P (G1)) + xc(P (G2))). (2.26)

9

3 Composed Graphs with Clique Cut Sets

In this chapter we will look at graphs that can be decomposed by a clique cut set. Chvátal
[1] proved that in this case the inequality description of the composed graph is simply the
union of the inequality descriptions of the stable set polytopes of its components.

Theorem 3.1. Let G = (V,E) be decomposable into G1 = (V1, E1) and G2 = (V2, E2)
and let Q = V1 ∩ V2 be a clique cut set. Let P (G1), P (G2) and P (G) be the stable set
polytopes of G1, G2 and G. Then we have

x ∈ P (G)⇔ xG1 ∈ P (G1) and xG2 ∈ P (G2).

We will give a different proof than Chvátal. For that proof we need the following lemma.

Lemma 3.2. Let λ1, λ2, . . . λn ∈ R≥0, µ1, µ2, . . . , µm ∈ R≥0 and

K :=
n∑
i=1

λi =
m∑
i=1

µi.

Then there exist numbers η1, η2, . . . , ηl ∈ R≥0 with the following properties:

i.
∑l

i=1 ηi = K

ii. ∃ p1 ≤ p2 ≤ · · · ≤ pn ∈ {1, . . . , l} :
∑k

i=1 λi =
∑pk

i=1 ηi ∀ k = 1, . . . , n

iii. ∃ q1 ≤ q2 ≤ · · · ≤ qm ∈ {1, . . . , l} :
∑k

i=1 µi =
∑qk

i=1 ηi ∀ k = 1, . . . ,m

Proof. Let λ1, λ2, . . . λn ∈ R≥0, µ1, µ2, . . . , µm ∈ R≥0 and

K =:
n∑
i=1

λi =
m∑
i=1

µi. (3.1)

Now look at the set

{s1, . . . , sl} =
{ k∑
i=1

λi|k ∈ {1, . . . , n}
}
∪
{ k∑
i=1

µi|k ∈ {1, . . . ,m}
}

(3.2)

with s1 < s2 < · · · < sl = K and define

η1 = s1

η2 = s2 − s1

...

ηi = si − si−1 for i = 2, . . . , l
...

ηl = sl − sl−1.

Then
∑l

i=1 ηi = sl = K since it is a telescoping sum. Furthermore, for every sum
∑k

i=1 λi
there exists an r ∈ {1, . . . , l} such that sr =

∑k
i=1 λi. Now set pk = r. Then we have

k∑
i=1

λi = sr =
r∑
i=1

ηi =

pk∑
i=1

ηi. (3.3)

Since k is arbitrary statement ii. is true. Statement iii. can be obtained analogue.

10 3 COMPOSED GRAPHS WITH CLIQUE CUT SETS

Now we can prove theorem 3.1.

Proof. ”⇒”: This implication follows almost directly. We denote by xi ∈ {0, 1}|V |, i =
1, . . . , r characteristic vectors of stable sets in G. Then we have

x ∈ P (G) (3.4)

⇒ x =
r∑
i=1

λixi, λ ≥ 0,
r∑
i=1

λi = 1 (3.5)

⇒ xGk
=

r∑
i=1

λi(xi)Gk
, λ ≥ 0,

r∑
i=1

λi = 1, k = 1, 2 (3.6)

⇒ xGk
∈ P (Gk). (3.7)

The last step follows since (xi)Gk
∈ {0, 1}|Vk| is a characteristic vector of a stable set in

Gk for k = 1, 2, i = 1, . . . , r.

”⇐”: Let now xG1 ∈ P (G1) and xG2 ∈ P (G2). Our goal is to show that x = {xG1∪xG2} ∈
R|V | is in P (G). We note that xG1 and xG2 are both convex combinations

xG1 =
n∑
i=1

λiai, λi ≥ 0 for i = 1, . . . , n,
n∑
i=1

λi = 1 (3.8)

xG2 =
m∑
i=1

µibi, µi ≥ 0 for i = 1, . . . ,m,
m∑
i=1

µi = 1, (3.9)

where ai, i = 1, . . . , n and bi, i = 1, . . . ,m are characteristic vectors of stable sets in G1

and G2, respectively. Since at most one node of the clique cut set Q can be in a stable
set, the entries of ai and bi corresponding to the clique Q have at most one 1-entry, so

(ai)Q, (bi)Q ∈ {e1, e2, . . . , e|Q|,O}. (3.10)

Here, ei ∈ R|Q| denotes the i’th unit vector for i ∈ {1, . . . , |Q|}. (3.10) tells us a lot about
the structure of our convex combination. We know

(xG1)Q = (xG2)Q =
n∑
j=1

λi(ai)Q =
m∑
i=1

µi(bi)Q (3.11)

Note that (xG1)Q and (xG2)Q have a unique representation as a linear combination of unit
vectors, since these are linearly independent. Therefore, the sum of coefficients λi that
correspond to a certain unit vector is unique and equals the sum of coefficients µi which
can be associated with the same unit vector. Formally this means for all j = 1, . . . , |Q|∑

{λi | (ai)Q = ej} =
∑
{µi | (bi)Q = ej} (3.12)

or, equivalently, for all v ∈ Q∑
{λi | (ai)v = 1} =

∑
{µi | (bi)v = 1}. (3.13)

11

Since we know that the sum of the coefficients equals 1, we can also conclude that∑
{λi | (ai)v = 0 ∀ v ∈ Q} = 1−

∑
{λi | (ai)v = 1 for some v ∈ Q}

= 1−
∑
{µi | (bi)v = 1 for some v ∈ Q}

=
∑
{µi | (bi)v = 0 ∀ v ∈ Q}. (3.14)

Or goal now is to construct x = {x1 ∪ x2} as a convex combination

x = η1c1 + η2c2 + · · ·+ ηrcr,
r∑

k=1

ηk = 1, ηk ≥ 0 ∀ k = 1, . . . , r (3.15)

of points ck = {ai ∪ bj}, i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}, k = 1, . . . , r, which are charac-
teristic vectors of stable sets in G. It is only possible to match the two vectors ai and bj
if they can be assigned to the same vector of {e1, e2, . . . , e|Q|,O}. Let’s fix such a vector
and say w.l.o.g. a1, a2, . . . , as and b1, b2, . . . , bt are all vectors which belong to this vector
and λ1, . . . , λs and µ1, . . . , µt are the coefficients in front of these vectors. From (3.13)
and (3.14) we know that

s∑
i=1

λi =
t∑

j=1

µi =: K. (3.16)

We can use lemma 3.2 and know that there are numbers η1, . . . , ηl ∈ R≥0 and integers
p1, . . . , ps ∈ {1, . . . , l}, q1, . . . , qt ∈ {1, . . . , l} such that

i.
∑l

i=1 ηi = K

ii.
∑k

i=1 λi =
∑pk

i=1 ηi for k = 1, . . . , s

iii.
∑k

i=1 µi =
∑qk

i=1 ηi for k = 1, . . . , t

Therefore, one can rewrite

s∑
i=1

λiai =
1∑
i=1

λia1 + (
2∑
i=1

λi −
1∑
i=1

λi)a2 + · · ·+ (
s∑
i=1

λi −
s−1∑
i=1

λi)as (3.17)

=

p1∑
i=1

ηia1 + (

p2∑
i=1

ηi −
p1∑
i=1

ηi)a2 + · · ·+ (

ps∑
i=1

ηi −
ps−1∑
i=1

ηi)as (3.18)

=

p1∑
i=1

ηia1 +

p2∑
i=p1+1

ηia2 + · · ·+
ps∑

i=p(s−1)+1

ηias (3.19)

and analogously

t∑
j=1

µjbj =

q1∑
i=1

ηib1 +

q2∑
i=q1+1

ηib2 + · · ·+
qt∑

i=q(t−1)+1

ηibt. (3.20)

Note that ps = qt = l. Therefore, each ηk, k ∈ {1, . . . , l} is the coefficient of exactly one
ai and one bj. For each ηk we can match ai and bj, since they belong to the same vector

12 3 COMPOSED GRAPHS WITH CLIQUE CUT SETS

of {e1, e2, . . . , e|Q|,O}. We define ck = ai ∪ bj. Note that ck is the characteristic vector of
a stable set of G. If we repeat this procedure for every vector in {e1, e2, . . . , e|Q|,O} we
get all coefficients ηk and all vectors ck to obtain the desired convex combination (3.15),
which proves x ∈ P (G).

Now we proved that the inequality description of P (G) is given by the union of the
inequalities defining P (G1) and P (G2). Let us see what that means for the extension
complexity of P (G).

Corollary 3.3. Let G = (V,E) be decomposable into G1 = (V1, E1) and G2 = (V2, E2)
and let Q = V1 ∩ V2 be a clique cut set. Let P (G1), P (G2) and P (G) be the stable set
polytopes of G1,G2 and G. Then we have

xc(P (G)) ≤ xc(P (G1)) + xc(P (G2)) (3.21)

Proof. Let B1xG1 +C1y1 ≤ d1 and B2xG2 +C2y2 ≤ d2 be extended formulations of P (G1)
and P (G2) that have minimum size.

P (G)
3.1
= {x ∈ RV : xG1 ∈ P (G1) and xG2 ∈ P (G2)}
= {x ∈ RV : ∃y1 : B1xG1 + C1y1 ≤ d1 and ∃y2 : B2xG2 + C2y2 ≤ d2}

Therefore the inequalities

B1xG1 + C1y1 ≤ d1

B2xG2 + C2y2 ≤ d2

provide an extended formulation of P (G) and the size of the minimum extended formu-
lation has to be smaller or equal.

Remark 3.4. The condition of having a clique cut set cannot be dropped, which can be
shown by a very simple example: Let’s assume the graph G is a cycle of five nodes. G
is decomposable into a path of three and a path of four nodes. We call them G1 and G2.
This decomposition is shown in figure 3.1. Obviously the cut set {v1, v2} is not a clique.

G1
G2G v1

v2

v1

v2

v1

v2

Figure 3.1: The graph G that decomposes into G1 and G2 on a cut set which consists of two
disconnected nodes.

Now consider the vectors x1 = (1/2, 1/2, 1/2)T and x2 = (1/2, 1/2, 1/2, 1/2)T . Since

1

2

 1
0
1

+
1

2

 0
1
0

 =

 1/2

1/2

1/2

 (3.22)

13

and

1

2

1
0
1
0

+
1

2

0
1
0
1

 =

1/2

1/2

1/2

1/2

 (3.23)

we have x1 ∈ P (G1) and x2 ∈ P (G2). The corresponding vector in P (G) would be
x = x1 ∪ x2 = (1/2, 1/2, 1/2, 1/2, 1/2)T . Let’s optimize over P (G) with the objective vector
c = (1, 1, 1, 1, 1)T . That should give us the cardinality of the maximum stable set in G.
This would be a set of two nodes, so the value of our objective function would be 2. As
cTx = 2.5, x cannot be in P(G). That shows that Chvátals theorem does not hold here.

We have seen that in the case of a two not cut set, where the nodes are not connected,
it is not sufficient to just take the union of the inequality descriptions of the graph’s
components. In the next chapter we will check if we can expect an easy method to handle
this case.

14 4 HARDNESS OF THE STABLE SET PROBLEM ON A COMPOSED GRAPH

4 Hardness of the Stable Set Problem on a composed

graph

In this chapter we will look at the a case where Chvátals theorem is not applicable, namely
the case when the cut set consists of two disconnected nodes. If there was a way to obtain
a result similar to 3.1 for this case, we could solve the stable set problem efficiently on
the following graph: Let G be a graph that can be decomposed into a ”main graph” Ḡ
and some other graphs G1, G2, G3 . . . Gk. Assume that the cut set between Ḡ and each
Gi, i = 1, . . . , n is a pair of non-connected nodes. Assume furthermore that the stable set
polytope of all subgraphs can be easily described.

Ḡ

G3 G2
G1Gk

Figure 4.1: Scheme of a graph G which decomposes into a ”main graph” Ḡ and the graphs
Gi, i = 1, . . . , k. The cut set between Ḡ and each Gi consists of two disconnected nodes.

First of all let’s apply (2.23) to the two graphs Ḡ and G1. Let’s call the nodes of the
corresponding cut set v1 and v2. Applying (2.23) to this case gives us the following:

P (G) = conv
({

x ∈ R|V | : xḠ ∈ P (Ḡ), xG1 ∈ P (G1), xv1 = 1, xv2 = 1
}

∪
{
x ∈ R|V | : xḠ ∈ P (Ḡ), xG1 ∈ P (G1), xv1 = 0, xv2 = 1

}
∪
{
x ∈ R|V | : xḠ ∈ P (Ḡ), xG1 ∈ P (G1), xv1 = 1, xv2 = 0

}
∪
{
x ∈ R|V | : xḠ ∈ P (Ḡ), xG1 ∈ P (G1), xv1 = 0, xv2 = 0

})
In this case we can conclude

xc(P (G)) ≤ 4 (xc(P (Ḡ)) + xc(P (G1)). (4.1)

If we now apply this approach to the whole graph in figure 4.1, we get

xc(P (G)) ≤ 4k

(
k∑
i=1

xc(P (Gi)) + xc(P (Ḡ))

)
(4.2)

So even if the extension complexity of all components was very small, we would just get
an exponential bound for xc(P (G)). But can we still expect to find a way to handle the
problem in polynomial time? We will show that this cannot be the case, by reducing the
NP-hard MAX-2-SAT problem to it. We start with the explanation of the latter.

Definition 4.1 (Conjunctive normal form (CNF)). In boolean algebra a conjunctive
normal form is a conjunction of clauses where each of these clauses is a disjunction of
literals. A literal is a logic variable or its negation.

15

Informally we can talk of an ’and’ connection of ’ors’. We denote our logic variables as
xi ∈ {0, 1}, i = 1, . . . , n.

Example 4.2. An example of a conjunctive normal form is the following

(x0 ∨ x1) ∧ (¬x0 ∨ x1) ∧ (¬x0 ∨ ¬x1) ∧ (x0 ∨ ¬x1)

In general satisfiability problems (SAT problems) one looks for an allocation of 1 and
0 values on the n logic variables, such that a given CNF is true. A special case is the
2-SAT problem. Here, we have the restriction that every clause of the CNF contains at
most two literals. This problem is in P . When we look at example 4.2 we see that no
1-0-allocation on x0 and x1 fulfills all clauses. This leads us to the MAX-2-SAT problem.
Here, we look for the maximum number of clauses that can be satisfied in a given CNF.
This optimization problem is NP-hard. To show that the stable set problem on our
composed graph G is also NP-hard, we will reduce the MAX-2-SAT problem to it. We
will use the decision version of the MAX-2-SAT problem for this matter, i.e. the question
if one can fulfill at least a certain number of clauses in a given CNF. This decision version
is NP-complete.

The Reduction

Given a case of the MAX-2-SAT problem with k clauses on n variables, we construct our
composed graph like in the following:

Ḡ : For each clause we introduce two nodes and label them corresponding to the two
literals in the clause. We add edges to all pairs of nodes which correspond to a
{xj,¬xj}, j = 1, . . . , n combination. We give all nodes the weight 1.

Gi : Every graph Gi, i = 1, . . . , k corresponds to one clause in the formula. Each graph
is a path of four nodes, where the first and the last node are labeled with the two
literals of the clause. These two nodes get the weight 1, the ones in the middle of
the path stay unlabeled and are assigned with the weight 2k + 1.

We compose these graphs by connecting the first and the last nodes of the paths Gi with
the two nodes belonging to the same clause in Ḡ. The whole procedure can be done in
polynomial time. Let’s demonstrate this construction using the CNF of example 4.2.

Example 4.3. We look again at

(x0 ∨ x1) ∧ (¬x0 ∨ x1) ∧ (¬x0 ∨ ¬x1) ∧ (x0 ∨ ¬x1) (4.3)

First we construct our graph Ḡ.

x0

(x0 ∨ x1) · · ·

x1 ¬x0 x1 ¬x0 ¬x1 x0 ¬x1

16 4 HARDNESS OF THE STABLE SET PROBLEM ON A COMPOSED GRAPH

Then we construct the Gi’s. In this case we have four of them.

x0 x1 ¬x0 x1 ¬x0 ¬x1 x0 ¬x1

(x0 ∨ x1) · · ·

Together we get the decomposable graph G:

x0 x1 ¬x0 x1 ¬x0 ¬x1 x0 ¬x1

As demonstrated in the example we now have exactly what we wanted: a big main graph
Ḡ which has connections consisting of two non-connected nodes to a k smaller graphs
G1, . . . , Gk. These smaller graphs are even identical. Now we show that the used graphs
are all bipartite, which means that the weighted stable set problem can be solved in
polynomial time on each of them. When we look at the partition of Ḡ which divides the
nodes in negated and not negated variables, i.e. I1 = {v | ∃xj, j = 1, . . . , n : v =̂ xj},
I2 = {v | ∃xj, j = 1, . . . , n : v =̂ ¬xj}, we see that no two nodes within I1 or I2 are
connected. That shows that Ḡ is bipartite. Also all Gi, i = 1, . . . , k are bipartite, as they
are just paths.

Proof that the Reduction is correct

Theorem 4.4. Given an instance of the MAX-2-SAT problem and a graph G, constructed
like above. Then the following holds:

In a given CNF K clauses can be fulfilled.
⇔

There is a stable set in G which has the weight K + k(2k + 1).

Proof. ” ⇒ ” Given an instance of the MAX-2-SAT problem where K clauses of the
corresponding CNF can be satisfied.
That means it is possible to select one true literal in K clauses. This choice is consistent
in the sense that no complementary pair {xj,¬xj}, j = 1, . . . , n is contained in the chosen
set.

In our example we have e.g. K = 3. By setting x0 = 1, x1 = 1 the corresponding
choice of variables looks like

(x0 ∨ x1) ∧ (¬x0 ∨ x1) ∧ (¬x0 ∨ ¬x1) ∧ (x0 ∨ ¬x1).

17

Now we pick all nodes in G that correspond to the chosen literals. We get a stable set,
since the only edges between these nodes connect a literal and its complement, both of
which could not have been selected. At the moment our stable set has the weight K.
We have selected at most one node in each subgraph Gi, i = 1, . . . , k. Therefore, we can
also pick one of the unlabeled nodes in each Gi and add them to the stable set without
destroying the stability. That updates the weight of the stable set to K+ k(2k+ 1), since
we added k nodes of weight 2k + 1.

Let’s visualize this in our example:

x0 x1 ¬x0 x1 ¬x0 ¬x1 x0 ¬x1

The red nodes are the ones that were chosen corresponding to the choice of literals in
the CNF. The grey ones are the unlabeled nodes that were added.

”⇐ ” Assume there is a stable set in G with the weight K + k(2k + 1).
Since the weight of all labeled nodes together is 2k, the weight of k(2k + 1) has to come
from k unlabeled nodes. Otherwise such a high value would not be achievable. So in every
subgraph Gi, i = 1, . . . , k exactly one of the unlabeled nodes has to be in this stable set.
There cannot be more of the unlabeled nodes in the stable set, since this would destroy
stability. It follows that K of the literal corresponding nodes have to be in the stable
set. They all belong to different clauses, since the one unlabeled node of each subgraph
Gi, which has to be in our stable set, prevents that both nodes corresponding to a clause
are together in the stable set. Also no complementary pair {xj,¬xj}, j = 1, . . . , n, of
variables is in the stable set, since the edges of Ḡ prevent this. So if we pick the literals of
the CNF corresponding to the labeled nodes in the stable set of G, this choice is consistent
and covers K clauses. So a true assignment to this literals leads to the satisfiability of K
clauses in our given CNF.

Thus we now know that our reduction is correct, we can conclude that the stable set
problem on our composed graph G is NP-complete in its decision version and NP-hard
in its optimization version, even if we can solve it on the single components. That means
that we cannot expect to find a way that is as simple as Chvátals approach to handle the
case of a two node cut set where the nodes are disconnected.

18 5 AN EXTENSION WITH A CLIQUE CUT SET

5 An Extension with a Clique Cut Set

Since Chvátal’s theorem is only applicable to a special case, we are looking for a more
general method. Conforti, Gerards and Pashkovich present an approach in [2] where the
graph is modified in such a way that Chvátals theorem is applicable. The stable set
polytope of this modified graph then provides an extension of P (G). The modification
takes place via so-called clique lifting.

Definition 5.1 (Clique Lifting). Let G = (V,E) be an undirected graph and let U ⊆ V .
A clique lift G+ of U from G is the replacement of the nodes in U by a clique of the nodes

{wS | S non-empty stable set of U}. (5.1)

Each of these new nodes is connected to the neighbors of the stable set the node represents.
We call the set of added nodes U+.

Let’s look at this procedure in the example of a two node cut set where the nodes are
disconnected.

Example 5.2 (Clique lift of a graph with a cut set consisting of two disconnected nodes).
Let’s assume we have a graph G = (V,E) which is decomposable into G1 = (V1, E1) and
G2 = (V2, E2) where V1 ∩ V2 = U = {v1, v2} and v1, v2 disconnected. The non-empty
stable sets in U are {v1}, {v2} and {v1, v2}. Therefore, we substitute U with three nodes,
as shown in the following figure.

G1

U

G

G2

v1

v2

G+
1 G+

2

U+

G+

v{v1}

v{v2}

v{v1,v2}

Figure 5.1: A graph G which decomposes into G1 and G2 on a cut set that consists of two
disconnected nodes before and after the clique lifting.

Now G+ has a clique cutset and we can use Chvátals Theorem.

The applicability of Chvátals theorem leads to the following corollary.

Corollary 5.3. Let G = (V,E) be decomposable into G1 = (V1, E1) and G2 = (V2, E2)
and let U = V1 ∩ V2. Moreover, let G+, G+

1 and G+
2 be the clique lifts of U from G, G1

and G2. Then we have

x ∈ P (G+)⇔ xG+
1
∈ P (G+

1) and xG+
2
∈ P (G+

2). (5.2)

19

For the extension complexity this means the following.

Corollary 5.4. Let G = (V,E) be decomposable into G1 = (V1, E1) and G2 = (V2, E2)
and let U = V1 ∩ V2. Let G+, G+

1 and G+
2 be the clique lifts of U from G, G1 and G2.

Then we have
xc(P (G)) ≤ xc(P (G+)) ≤ xc(P (G+

1)) + xc(P (G+
2)) (5.3)

Since corollary 5.3 only gives us an inequality description of P (G+) we are interested in
the projection which gives us P (G).

Theorem 5.5. Let G+ be the clique lift of U in G. Then the stable set polytope P (G) is
the image of P (G+) under the projection defined by

pv(x) =

∑

S in U :v∈S
xvS if v ∈ U

xv otherwise

(5.4)

Proof. We will show that every projected vertex of P (G+) lies in P (G) and that every
vertex of P (G) has a preimage in P (G+). Note that at most one node vS of U+ can be in
a stable set of G+. Let SG\U be a stable set on the nodes of G \U and S be a non empty
stable set in U . From the construction of G+ we have

SG\U ∪ {vS} is stable in G+ ⇔ SG\U ∪ S is stable in G (5.5)

SG\U is stable in G+ ⇔ SG\U is stable in G. (5.6)

The projection of the characteristic vector of SG\U ∪ {vS} in P (G+) is the characteristic
vector of SG\U∪S in P (G) (analogue for 5.6). Since SG\U , vS and S were chosen arbitrary,
we see that every vertex of P (G+) is projected to an element of P (G) and that every vertex
of P (G) has a preimage in P (G+). That proves that P (G) is the image of P (G+) which
means that P (G+) is an extension of P (G).

To obtain P (G+) one needs to know the inequality description of P (G+
1) and P (G+

2). If
G1 and G2 have a nice structure, the clique lift could destroy this structure as a lot of new
edges within the whole graph are added. In the next chapter we will look at a method
where the modification only affects the node of the cut set U .

20 6 FACES AS EXTENSION

6 Faces as Extension

6.1 A general Approach

Before we start this chapter we look at a short recap about faces of polyhedra.

Remark 6.1 (Faces of polytopes). Let ax ≤ α be a valid inequality of a polytope P , i.e.
ax ≤ α ∀ x ∈ P. Then the set F = {x ∈ P : ax = α} is a called a face of P . By definition
F is also a polytope. All vertices of a polytope are faces. A set F ′ ⊆ F is a face of F if
and only if it is a face P . That means that x ∈ F is a vertex of F if and only if it is a
vertex of P . Therefore, all faces of an integer polytope are again integer polytopes. As all
the vertices of the stable set polytope are characteristic vectors of stable sets, all vertices
of its faces are also characteristic vectors of stable sets. For more information about faces
of polytopes refer to chapter 3.1 of [7].

We start again with a graph G = (V,E) which is decomposable into two graphs G1 =
(V1, E1) and G2 = (V2, E2). Let U = V1 ∩ V2 be the cut set. The goal is again to find
an extended formulation for P (G). The idea for this approach comes from Barahona and
Mahjoub [3], who applied it to a cut set which consists of two disconnected nodes. We will
have a look at their work later. Let us outline our intention. We want to start again with a
modified version of G. We will modify our graph in such a way that all edges we add only
affect the nodes in the modified cut set. The modified graph is called G̃ = (Ṽ , Ẽ) and the
two graphs G̃1 = (Ṽ1, Ẽ1) and G̃2 = (Ṽ2, Ẽ2) are the corresponding modified versions of G1

and G2. In opposite to the clique lifting approach that we have seen in the last chapter,
the nodes of U should not be removed. The aim is now to find a face F (G̃) of P (G̃) such
that P (G) is the projection of F (G̃) along the added variables, like visualized in figure 6.1.

F (G̃)

P (G)

P (G̃)

Figure 6.1: P (G) as projection of a face F (G̃) of a higher dimensional stable set polytope
P (G̃).

We start by analyzing the assumptions that ensure that such a face exist. Furthermore,
we want to know how to obtain an inequality description of that face.

6.1 A general Approach 21

Theorem 6.2. Let G = (V,E) be decomposable into G1 = (V1, E1) and G2 = (V2, E2)
and let U = V1 ∩ V2 be the cut set. Let G̃ = (Ṽ , Ẽ) be the graph that evolved out of G by
enlarging the cut set to Ũ = U ∪ {w1, w2, . . . , wk} together with edges within the new cut
set. Let G̃1 = (Ṽ1, Ẽ1) and G̃2 = (Ṽ2, Ẽ2) be the corresponding modifications of G1 and
G2. Let ax̃ ≤ α, x̃ ∈ R|V | be an inequality with the following properties:

i. The support of the inequality lies in Ũ .

ii. ax̃ ≤ α defines a face of P (G̃1), P (G̃2) and P (G̃).

iii. For all stable sets S ∈ U there exists a stable set S̃ ∈ Ũ with aχS̃ = α such that
U ∩ S̃ = S.

iv. The set {χS̃
Ũ
| aχS̃ = α , S̃ 6= ∅ stable in Ũ} is linearly independent.

Then P (G) is the projection of F (G̃) = {x̃ ∈ P (G̃) : ax̃ = α} along the variables
corresponding to w1, w2, . . . , wk and the following holds:

x̃ ∈ F (G̃)⇔ x̃G̃1
∈ F (G̃1) and x̃G̃2

∈ F (G̃2) (6.1)

Where F (G̃1) = {x̃ ∈ P (G̃1) | ax̃ = α} and F (G̃2) = {x̃ ∈ P (G̃1 | ax̃ = α}.

That means that F (G̃) is described by the union of inequalities that define F (G̃1) and
F (G̃2). Let’s prove this.

Proof. First we prove that F (G̃) provides the wanted extended formulation. We have
to show that the projection of all vertices of F (G̃) lies in P (G). Remember that this
projection just ”deletes” the entries assigned to the nodes w1, w2, . . . , wk of a vector. Let
x̃ be a vertex of F (G̃). As F (G̃) is a face of P (G̃) all its vertices are integer and correspond
to stable sets in G̃. Deleting the components of the added nodes in x̃ gives us a vector
x ∈ R|V | which corresponds to a stable set of G and therefore x ∈ P (G).
Now we show that there exists a corresponding x̃ ∈ F (G̃) that is projected onto x for
every vertex x ∈ P (G). So let x ∈ P (G) be a vertex of P (G). Since x is a characteristic
vector of a stable set in G, xU belongs to a stable set S ∈ U . From the assumptions we
made, we know that there exists a stable set S̃ ∈ Ũ with aχS̃ = α such that U ∩ S̃ = S.
Let us now add the corresponding components x̃w1 , x̃w2 , . . . , x̃wk

of this S̃ to x. We get a
vector x̃ which corresponds to a stable set in G̃. Furthermore we have ax̃ = α, so x̃ is in
F (G̃). We conclude

P (G) = {x | ∃x̃w1 , x̃w2 , . . . , x̃wk
: (x, x̃w1 , x̃w2 , . . . , x̃wk

) ∈ F (G̃)}, (6.2)

so F (G̃) is an extension of P (G).
Now we show that

x̃ ∈ F (G̃)⇔ x̃G̃1
∈ F (G̃1) and x̃G̃2

∈ F (G̃2) (6.3)

holds. Here we use a similar proof to the one of theorem 3.1.
”⇒ ” This direction is analogue to the proof of theorem 3.1.
” ⇐ ” Let x̃G̃1

∈ F (G̃1) and x̃G̃2
∈ F (G̃2). We can write these vectors as convex

22 6 FACES AS EXTENSION

combinations of characteristic vectors of stable sets in F (G̃1) and F (G̃2), respectively.
From the assumptions we know that the cut set’s corresponding parts of these vectors are
linearly independent. Now we can use the same argumentation as in the proof of theorem
3.1 and match the characteristic vectors of G̃1 and G̃2 with suitable coefficients such that

x̃ = x̃G̃1
∪ x̃G̃1

can be represented as convex combinations of characteristic stable set vectors of G̃. That
shows x̃ ∈ F (G̃).

The procedure that is used to obtain P (G) in theorem 6.2 is shown in the following figure.

G1 G2

G

cut set U

G̃1 G̃2

suitable modification

G̃

modified
cut set Ũ

F (G̃1), F (G̃2)P (G̃1), P (G̃2)
suitable inequality

F (G̃)

P (G)
?

Projection

Union of inequality
descriptions

Figure 6.2: The way how P (G) is obtained by the projection of a face of P (G̃) in the sense of
theorem 6.2.

This theorem gives us information about the assumptions on the existence of such a face.
Now the question comes up if we can find a modification for any arbitrary cut set such
that the assumptions of theorem 6.2 are fulfilled. We will present an approach, which
makes it possible to construct a suitable modification and a suitable inequality for every
kind of cut set. The idea is shown in the following example.

6.1 A general Approach 23

Example 6.3. Let G be decomposable into G1 = (V1, E1) and G2 = (V2, E2). We assume
that U = V1 ∩ V2 = {v1, v2} and that v1 and v2 are not connected. In this cut set we have
four possibilities of stable sets, namely {v1, v2}, {v1}, {v2} and ∅.
Now we have to construct our modified graphs G̃1 and G̃2. We add a node for every possible
stable set in U , i.e. Ũ = {v1, v2, w{v1,v2}, w{v1}, w{v2}, w∅}, and complete them with edges
to a clique. We add edges between a new node and all nodes of U which are not in the
stable set the new node belongs to. This means we add the edges w{v1}v2, w{v2}v1, w∅v1 and
w∅v2. Let’s look at the resulting graph.

Ũ

w∅

w{v1,v2}

w{v2} w{v1}

v2v1

Now we have to choose a suitable inequality ax̃ ≤ α. For α we choose the maximum
cardinality of a stable set in U plus one. In our case this is 3. As the support of this
inequality has to be in Ũ , we only need coefficients for the variables assigned to the nodes
of Ũ . The variables that belong to the nodes in U get the coefficient 1. A variable that
belongs to a node which is assigned to a stable set of U gets the coefficient α minus the
cardinality of the assigned stable set. In our example this leads to the inequality

x̃v1 + x̃v2 + x̃w{v1,v2} + 2x̃w{v1} + 2x̃w{v2} + 3x̃w∅ ≤ 3. (6.4)

Now we have defined the graphs G̃1, G̃2 and G̃ and we have an inequality. As desired
the added nodes are only connected with each other and the nodes in U . We now check if
theorem 6.2 is applicable.

i. The support of (6.4) lies in Ũ

ii. (6.4) is valid, i.e. it defines a face.

iii. Within {v1, v2, w{v1,v2}}, {v1, w{v1}}, {v2, w{v2}} and {w∅} we can find a stable set

S̃ ∈ Ũ with aχS̃ = α for all stable sets S ∈ U such that U ∩ S̃ = S.

iv. The characteristic vectors of all stable sets S̃ in Ũ with aχS̃ = α are the columns of
the following matrix

v1

v2

w{v1,v2}
w{v1}
w{v2}
w∅

1 1 0 0
1 0 1 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (6.5)

As the part of the matrix that belongs to the added nodes builds the unit matrix these
columns are clearly linearly independent.

24 6 FACES AS EXTENSION

The conditions of the theorem are fulfilled and we can conclude that

F (G̃) = {x̃ ∈ P (G̃) | x̃v1 + x̃v2 + x̃w{v1,v2} + 2x̃w{v1} + 2x̃w{v2} + 3x̃w∅ = 3} (6.6)

provides an extended formulation of P (G) and

x̃ ∈ F (G̃)⇔ x̃G̃1
∈ F (G̃1) and x̃G̃2

∈ F (G̃2) (6.7)

The procedure from example 6.3 can be done for any kind of cut set. We formalize it in
the following theorem.

Theorem 6.4. Let G = (V,E) be decomposable into G1 = (V1, E1) and G2 = (V2, E2)
and let U = V1 ∩ V2. Let G̃1, G̃2 and G̃ be constructed as follows:

1. For every stable set S ∈ U add a node wS.

2. Connect the set {wS | S stable in U} to a clique.

3. Add the edges {wSv, v ∈ {U \ S}} for every node in {wS | S stable set of U}.
Let ax̃ ≤ α be an inequality with the following properties

1. av = 0 ∀ v ∈ Ṽ1 ∪ Ṽ2 \ Ũ

2. α = max{|S|+ 1, S stable set of U}

3. av = 1 ∀ v ∈ U

4. awS
= α− |S| , S stable in U

Then theorem 6.2 is applicable.

Proof. Let G = (V,E) be decomposable into G1 = (V1, E1) and G2 = (V2, E2) and let
U = V1∩V2. Let G̃1, G̃2 and G̃ and ax̃ ≤ α be defined like in theorem 6.4. First recognize
that the added nodes are only connected with each other and the nodes in U . We have
to show that all assumtions of theorem 6.2 are satisfied.

i. The support of the inequality lies in Ũ .

This fact follows from the definition of ax̃ ≤ α.

ii. The inequality ax̃ ≤ α defines a face of P (G̃1), P (G̃2) and P (G̃).

Since the support of ax̃ ≤ α lies in Ũ , we only have to check that all characteristic vectors
of stable sets S̃ in Ũ fulfill the inequality. If S̃ only contains nodes in U , the inequality
is fulfilled since α is larger than the maximum weight of such a stable set. So let S̃ be a
stable set that contains a node wS ∈ Ũ \ U . Note that it is not possible that it contains
more than one such node. The only nodes that can be in a stable set with wS are the
nodes in the corresponding stable set S, so the maximum stable set which contains a
certain wS is wS ∪ S. Inserting χ(wS∪S) into our inequality gives us

(α− |S|) + |S| = α. (6.8)

Note that (α − |S|) is the coefficient of xwS
and |S| is the sum of all coefficients of xv,

v ∈ S ⊆ U . We see that our inequality is valid and defines a face of P (G̃). Since the
support lies in Ũ it is also valid for P (G̃1) and P (G̃2) and defines a face there.

6.1 A general Approach 25

iii. For all stable sets S ∈ U exists a stable set S̃ ∈ Ũ with aχS̃ = α such that
S ∩ S̃ = S.

Let S be a stable set in U . If we look a the set S̃ = S ∪ wS ∈ Ũ , we find that it is still
stable, since no node in S is connected to wS. First notice that U ∩ S̃ = S. Now we insert
the characteristic vector of this set into ax̃ ≤ α and get

(α− |S|) + |S| = α, (6.9)

i.e. aχS̃ = α. Therefore this assumption is fulfilled.

iv. The set {χS̃
Ũ
| aχS̃ = α , S̃ stable in Ũ} is linearly independent.

All stable sets S̃ ∈ Ũ with aχS̃ = α are of the form S̃ = S ∪ wS. The corresponding
characteristic vectors look like the columns of the following matrix

U
wS1

wS2

...
wSk

xS1 xS2 . . . xSk

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 (6.10)

where S1, S2, . . . , Sk are all possible stable sets in U . Since the components correspond-
ing to wS1 , wS2 , . . . , wSk

are clearly linear independent, all columns are linear independent.

We showed that all assumptions of theorem 6.4 are fulfilled and it is therefore appli-
cable.

With this approach we have something that works for every kind of cut set. The number
of nodes that have to be added is the number of all possible stable sets in U . We call this
number again

s = |{S | S stable in U}|.

This can be a lot. But what is the minimum number of nodes that we have to add to use
theorem 6.2? Let’s look at the set

{χS̃
Ũ
| aχS̃ = α , S̃ stable in Ũ}. (6.11)

We need a stable set S̃ ∈ Ũ for all stable sets S ∈ U such that

aχS̃ = aχS̃
Ũ

= α (6.12)

and S∩S̃ = S. That means that (6.11) has to contain at least s vectors. The first equality
of (6.12) holds since the support of ax ≤ α lies in Ũ . We need that all vectors in (6.11)
are linear independent. A set of s vectors can only be linearly independent when every
vector has at least s entries. That means that we need s nodes in Ũ . Since U ⊆ Ũ , we
have to add at least s−|U | new nodes. In the next chapter we will check if this minimum
number of added nodes is always achievable.

26 6 FACES AS EXTENSION

6.2 Minimum Dimension of a Face as Extension

In the last chapter we saw that we have to add at least s − |U | nodes in order to use
theorem 6.2. In this chapter we will check if this number is achievable and furthermore if
it is always achievable. For this matter we will look at two examples where the cut sets
consist of three nodes.

The minimum number of added nodes is achievable

We will now present an example where the minimum number of added nodes can be
achieved. So let’s look at a graph G = (V,E) which is decomposable into G1 = (V1, E1)
and G2 = (V2, E2). Let V1 ∩ V2 = U = {v1, v2, v3} and let v1 and v2 are connected. We
look at a three node cut set of the following form:

v2v1

v3

Figure 6.3: Three node cut set before modification.

Within this cut set we have six possible stable sets:

{v1, v3}, {v2, v3}, {v1}, {v2}, {v3}, ∅ (6.13)

That means that the minimum number of nodes we have to add is three, so let’s set
Ũ = {v1, v2, v3, w1, w2, w3}. We connect the nodes with the edges w1v1, w1v3, w1, w2,
w2v1, w2v2, w2w3, w3v2 and w3v3.

v2v1

v3

w1 w2 w3

Figure 6.4: Three node cut set after modification.

Now we need a suitable inequality. We take

xv1 + xv2 + xv3 + xw1 + xw2 + xw3 ≤ 2. (6.14)

6.2 Minimum Dimension of a Face as Extension 27

The following matrix contains the characteristic vectors of all stable sets in the modified
cut set that fulfill (6.14), i.e {χS̃

Ũ
| aχS̃ = α , S̃ stable in Ũ}.

v1

v2

v3

w1

w2

w3

1 0 1 0 0 0
0 1 0 1 0 0
1 1 0 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0
0 0 1 0 0 1

 (6.15)

Now let’s check if theorem 6.2 is applicable. We see immediately that the support of (6.14)
is in the modified cut set and that (6.14) is valid and therefore face defining on P (G̃).

Furthermore, the first three rows of (6.15) show that we have a stable set S̃, aχS̃ = α for
every stable set S of (6.13) such that S̃ ∩U = S. The determinant of (6.15) is −2 6= 0, so

the set {χS̃
Ũ
| aχS̃ = α , S̃ stable in Ũ} is linearly independent. All conditions of theorem

6.2 are fulfilled, so we found an example where it is possible to obtain the minimum
number of added nodes.

The minimum number of added nodes is not always achievable

Now we will see an example where the minimum number of added nodes is not achievable.
Let G = (V,E) be again decomposable into G1 = (V2, E2) and G2 = (V2, E2). We stay in
the three node cut set case, i.e. U = V1 ∩ V2 = {v1, v2, v3}, but this time with no edges
between the nodes. There are eight possible stable sets within this cut set:

{v1, v2, v3}, {v1, v2}, {v1, v3}, {v2, v3}, {v1}, {v2}, {v3}, ∅ (6.16)

So the minimum number of added nodes is five, i.e. Ũ = {v1, v2, v3, w1, w2, w3, w4, w5}. In
order to apply theorem 6.2, there has to be a possibility to add edges between the nodes
of Ũ such that the resulting graph G̃Ũ = (Ũ , EŨ) has the following properties:

• The nodes v1, v2 and v3 are pairwise disconnected.

• There exists a face defining inequality ax ≤ α of P (G̃Ũ) such that

– {χS̃ | aχS̃ = α , S̃ stable in Ũ} is linearly independent.

– for all stable sets S ∈ U exists a stable set S̃ ∈ Ũ with aχS̃ = α such that
S ∩ S̃ = S.

It suffices to look at G̃Ũ , since a face defining inequality of P (G̃Ũ) also defines a face
of P (G̃). Furthermore, the required linear independence only affects the characteristic
vectors of stable sets within Ũ , so it doesn’t matter if we look at P (G̃Ũ) or P (G̃). Also for
our last assumption it does not make a difference: all stable sets S̃ of G̃Ũ are also stable
in G̃ and since the support of our inequality lies in Ũ we have

aχS̃ = α, χS̃ ∈ {0, 1}|Ũ | ⇔ aχS̃ = α, χS̃ ∈ {0, 1}|Ṽ |. (6.17)

So if the characteristic vector of a stable set in U has a preimage in a face of P (G̃Ũ) it
will also have a preimage in the corresponding face of P (G̃).

28 6 FACES AS EXTENSION

Remark 6.5. Note that we need eight linearly independent characteristic vectors of stable
sets in our face. Linearly independent vectors are also affinely independent. A face is a
facet of a stable set polytope if and only if it contains |V | affinely independent characteristic
stable set vectors [8]. Since in our case |V | = |Ũ | = 8, the wanted face has to be a facet.

What we will do is looking at all possible graphs on the eight nodes and checking if they
fulfill the conditions. We will implement this in Python. The code can be found in A.1.
The basis is formed by a list of all different undirected graphs on eight nodes (up to
isomorphisms), where every graph is given by the upper diagonal part of its adjacency
matrix1. In the following we go through the procedure that is applied to each graph.

1. We will follow the procedure with the example of a graph having the following
adjacency matrix. We will call the eight nodes u1, . . . , u8 since we cannot know in
the beginning which three nodes will correspond to v1, v2 and v3.

u1 u2 u3 u4 u5 u6 u7 u8

u1 0 0 0 0 1 1 1 1

u2 0 0 0 1 1 1 1 1

u3 0 0 0 1 1 1 1 1

u4 0 1 1 0 0 0 1 1

u5 1 1 1 0 0 1 0 1

u6 1 1 1 0 1 0 1 0

u7 1 1 1 1 0 1 0 0

u8 1 1 1 1 1 0 0 0

2. In the first step we check each graph to see if it has a stable set of size three. This is

needed since we need three nodes in the graph which correspond to the disconnected
nodes v1, v2 and v3. In our example graph this condition is fulfilled. We see that
u1, u2 and u3 are disconnected.

u1 u2 u3 u4 u5 u6 u7 u8

u1 0 0 0 0 1 1 1 1

u2 0 0 0 1 1 1 1 1

u3 0 0 0 1 1 1 1 1

u4 0 1 1 0 0 0 1 1

u5 1 1 1 0 0 1 0 1

u6 1 1 1 0 1 0 1 0

u7 1 1 1 1 0 1 0 0

u8 1 1 1 1 1 0 0 0

1https://people.cs.umass.edu/~barring/graphs/eightgraphs (16.08.2019)

https://people.cs.umass.edu/~barring/graphs/eightgraphs

6.2 Minimum Dimension of a Face as Extension 29

3. Now we generate the characteristic vectors of all possible stable sets of the graph.
This is done by looking at every subset of nodes of the graph and checking if it
forms a stable set. The characteristic vectors of all stable sets in our example are
the columns of the following matrix. We denote the stable sets by S1, . . . , S19.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19

u1 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1

u2 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1

u3 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1

u4 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0

u5 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0

u6 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0

u7 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0

u8 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0

4. Note from remark 6.5 that our wanted face is a facet. In order to get all facet
defining inequalities of a graph we use a tool called cddlib2. This tool enumerates
all facet defining inequalities of a convex hull of vectors. From step 3. we know the
vectors whose convex hull gives us the stable set polytope, so the tool is applicable
to our case. For our example graph we get the following facet defining inequalities:

1x1 + 1x3 + 1x4 + 1x5 + 1x6 + 1x7 + 1x8 ≤ 2

1x1 + 1x2 + 1x4 + 1x5 + 1x6 + 1x7 + 1x8 ≤ 2

2x3 + 1x4 + 1x5 + 1x6 + 1x7 + 1x8 ≤ 2

2x2 + 1x4 + 1x5 + 1x6 + 1x7 + 1x8 ≤ 2

1x1 + 1x6 + 1x7 ≤ 1
...

1x3 + 1x6 + 1x7 ≤ 1

xi ≥ 0 for i = 1, 2, 3, 4, 5, 6, 7, 8

5. Now we look at every facet defining inequality and check which characteristic vec-
tors lie in the defined facet, i.e. we check which characteristic vectors fulfill the
inequality with equality. Since the empty stable set does not play a role, we delete
its characteristic vector out of the list. Let’s look at the first inequality that defines
the stable set polytope of our example graph and check which characteristic vectors
of the stable sets S1, . . . , S19 fulfill it with equality.

2https://inf.ethz.ch/personal/fukudak/cdd_home/ (15.08.2019)

https://inf.ethz.ch/personal/fukudak/cdd_home/

30 6 FACES AS EXTENSION

The result can be found in the columns of the following matrix.

S11 S12 S14 S15 S16 S17 S18 S19

u1 1 1 0 0 0 0 0 1

u2 0 0 0 0 0 0 0 1

u3 1 0 0 0 0 0 0 1

u4 0 1 1 1 0 0 0 0

u5 0 0 1 0 1 0 0 0

u6 0 0 0 1 0 1 0 0

u7 0 0 0 0 1 0 1 0

u8 0 0 0 0 0 1 1 0

6. The next step is to verify the linear independence of the characteristic vectors of

non-empty stable sets that fulfill an inequality with equality. We first check if the
number of such vectors equals eight. If there are more such vectors they cannot be
linearly independent. If there are less it is not possible that every stable set within
v1, v2 and v3 has a preimage. Then we check the determinant of the matrix which
has these vectors as columns. In our example we have eight such vectors and the
determinant of the matrix is −2 6= 0. The facet defined of the first inequality is
therefore a candidate for an extension in sense of theorem 6.2.

7. Lastly we have to check if every stable set within v1, v2 and v3 has a preimage in
this facet. For this matter we look at all stable sets of size three of a graph. These
are candidates to correspond to v1, v2 and v3. Looking back to step 2. we see that
in our example the only stable set of size three is the set {u1, u2, u3}. Let’s look at
the corresponding entries of the characteristic vectors in our considered facet.

S11 S12 S14 S15 S16 S17 S18 S19

u1 1 1 0 0 0 0 0 1

u2 0 0 0 0 0 0 0 1

u3 1 0 0 0 0 0 0 1

u4 0 1 1 1 0 0 0 0

u5 0 0 1 0 1 0 0 0

u6 0 0 0 1 0 1 0 0

u7 0 0 0 0 1 0 1 0

u8 0 0 0 0 0 1 1 0

Obviously not every stable set of (6.16) has its characteristic vector within these
entries. Therefore, we can conclude that this facet is not suitable in the sense of
theorem 6.2.

We apply this procedure to all possible graphs and come to the conclusion that none of
the graphs has a suitable facet. So in this case we cannot achieve the minimum number of
added nodes which means that it is not always possible to obtain this minimum number.

6.3 Two node Cut Sets 31

6.3 Two node Cut Sets

6.3.1 General Case

Let G = (V,E) be decomposable into G1 = (V1, E1) and G2 = (V2, E2). We assume that
U = V1 ∩ V2 = {v1, v2} and that v1 and v2 are not connected. In this chapter we look at
an approach of Barahona and Mahjoub [3], who modified the graph such that theorem
6.2 is applicable. In this special case they even found an inequality description of P (G)
in the original space. The modification is the following:

• Ṽk = Vk ∪ {w1, w2, w3} k = 1, 2

• Ẽk = Ek ∪ {v1w1, v2w1, v1w2, w2w3, w3v2} k = 1, 2

• G̃1 = (Ṽ1, Ẽ1), G̃2 = (Ṽ2, Ẽ2) and G̃ = (Ṽ1 ∪ Ṽ2, Ẽ1 ∪ Ẽ2)

What we did is completing the nodes v1 and v2 to a cycle of length five. We call the cycle
C∗.

G1

G

G2

v1

v2

G̃1 G̃2

G̃

v1

v2

w2

w3

w1
C∗

Figure 6.5: A graph G which decomposes into G1 and G2 on a cut set that consists of two
disconnected nodes before and after the modification of adding the cycle of length five.

In order to use theorem 6.2 we need an inequality. Since at most two nodes in C can be
together in a stable set, the inequality

3∑
i=1

xwi
+ xv1 + xv2 ≤ 2 (6.18)

is valid. It defines a face of the polytopes P (G̃1), P (G̃2) and P (G̃). Let us check if
theorem 6.2 is applicable. The added nodes are only connected to the nodes of the cut
set and the support of the inequality lies in Ũ . That means that we only have to check
the following two conditions.

• For all stable sets S ∈ U there exists a stable set S̃ ∈ C∗ with aχS̃ = α such that
U ∩ S̃ = S

• The set {χS̃C∗ | aχS̃ = α , S̃ stable in C∗} is linearly independent

32 6 FACES AS EXTENSION

Let’s look at the matrix that has {χS̃C∗ | aχS̃ = α , S̃ stable in C∗} as columns.

M =

0 0 1 1 0
0 0 1 0 1
1 1 0 0 0
1 0 0 0 1
0 1 0 1 0

v1

v2

w1

w2

w3

(6.19)

Since det(M) = 2 6= 0, we have the required linear independence. Furthermore we can
read from the first to rows of M that every stable set within v1 and v2 has a preimage
in the facet. Theorem 6.2 is therefore applicable and we can formulate the following
corollary:

Corollary 6.6. Let G = (V,E) be decomposable into G1 = (V1, E1) and G2 = (V2, E2).
We assume that U = V1 ∩ V2 = {v1, v2} and that v1 and v2 are not connected. Let G̃, G̃1

and G̃2 be defined like above. Then

F (G̃) = {x ∈ P (G̃) |
3∑
i=1

xwi
+ xv1 + xv2 = 2} (6.20)

provides an extension of P (G). Furthermore, we have

x ∈ F (G̃)⇔ xG̃1
∈ F (G̃1) and xG̃2

∈ F (G̃2), (6.21)

where

F (G̃1) = {x ∈ P (G̃1) |
3∑
i=1

xwi
+ xv1 + xv2 = 2}

and

F (G̃2) = {x ∈ P (G̃2) |
3∑
i=1

xwi
+ xv1 + xv2 = 2}.

Barahona and Mahjoub found a description of P (G) in the original space. They start
with the inequality descriptions of P (G̃1) and P (G̃2). To get an idea of the structure of
these inequalities we take the following lemmas into account. The proofs can be found in
[8]. We denote the subgraph of G that is induced by the support of an inequality ax ≤ α,
by Ga.

Lemma 6.7. If Ga contains a path with vertices p,u,v,q, where u and v are of degree 2,
then au = av.

Lemma 6.8. Let Ga be different from an odd cycle (and from K3) and let u and v be two
given nodes. Then Ga does not contain two edge-disjoint paths between u and v such that
each node, except u and v, has degree 2.

Lemma 6.9. If ax ≤ α is not of the form xu + xv ≤ 1 or 0 ≤ xu ≤ 1, then Ga does not
contain a node of degree 1.

6.3 Two node Cut Sets 33

So let’s apply these lemmata on our case. The goal is to cluster the inequalities that define
P (G̃k), k = 1, 2, according to the occurrence of w1, w2 or w3. First we have the case that
w1, w2 and w3 are not in the support of an inequality. We denote these inequalities by the
index sets I1

1 for G̃1 and I2
1 for G̃2. Note that the only inequality where the support only

contains nodes of {w1, w2, w3} and none of the nodes {v1, v2} is the edge-constraint for the
edge w2w3. Furthermore, there cannot be an inequality support (except edge-constraints)
where only one node of {v1, v2} together with nodes of {w1, w2, w3} is contained, since
this would contradict lemma 6.9. So let’s look at the different cases in which v1 and v2

together with w1, w2 or w3 and the other nodes of Ṽk, k = 1, 2 are in the support of an
inequality:

v1

w1

v2

w3

w2

A)

v1

w1

v2

w3

w2

B)

v1

w1

v2

w3

w2

C)

v1

w1

v2

w3

w2

D)

v1

w1

v2

w3

w2

E)

v1

w1

v2

w3

w2

F)

v1

w1

v2

w3

w2

G)

Figure 6.6: Different combinations of w1, w2 and w3 in the support of a defining inequality of
P (G̃1) respectively P (G̃2). •: in the support, •: not in the support

In the cases B), C), D) and E) we end up with nodes which have degree 1, so these
combinations are not possible for our inequalities according to lemma 6.9. In case A)
we don’t have this problem, so inequalities whose support intersects {v1, v2, w1} but not
{w2, w3} will be taken into account. The corresponding index set will be called Ik2 , k = 1, 2.
The same holds for case F). Here we just have to be careful with the coefficients of w2 and
w3. According to lemma 6.7 they have to be equal. We denote the indexset by Ik3 , k = 1, 2.
In case G) we have to be careful. If the support of an inequality contains more than these
five vertices, lemma 6.8 applies and constellation G) would not be possible. But if the
support of an inequality only contains {v1, v2, w1, w2, w3}, lemma 6.8 does not apply since
we have an odd cycle, so such an inequality would be possible. Again, lemma 6.7 applies
and v1, v2, w1, w2 and w3 must have the same coefficients. With this achievement we can
cluster the inequalities that define P (G̃k), k = 1, 2 as follows:

a)
∑

v∈Vk a
k
ivxv ≤ αki i ∈ Ik1

b)
∑

v∈Vk a
k
ivxv + xw1 ≤ αki i ∈ Ik2

c)
∑

v∈Vk a
k
ivxv + xw2 + xw3 ≤ αki i ∈ Ik3

d) xv1 + xw1 ≤ 1

e) xv1 + xw2 ≤ 1

f) xv2 + xw1 ≤ 1

g) xv2 + xw3 ≤ 1

h) xw2 + xw3 ≤ 1

34 6 FACES AS EXTENSION

i) xv1 + xv2 + xw1 + xw2 + xw3 ≤ 2

j) xv ≥ 0, v ∈ Ṽk

If we add the inequalitiy

k) −xv1 − xv2 − xw1 − xw2 − xw3 ≤ −2,

we have a description for F (G̃k), k = 1, 2. Now we can use corollary 6.6 and obtain an
inequality description of F (G̃) by uniting both systems. We need to find a way to get
from the inequality description of F (G̃) to the description of P (G). Therefore we use the
following theorem of Balas and Pulleybank [9].

Theorem 6.10 (Balas and Pulleybank). Let Z = {(x, y) | Ax + By ≤ b, x ≥ 0, y ≥ 0}.
Then the projection along the y variables is given by

X = {x | (vA)x ≤ vb,∀v ∈ extr ψ, x ≥ 0} (6.22)

where extr ψ denotes the set of extreme rays of

ψ = {y | yB ≥ 0, y ≥ 0} (6.23)

In our case the y-variables are the variables xwi
, i = 1, 2, 3 and B is the matrix of

coefficients of these variables. Therefore, it is given by

B =

0 0 0
1 0 0
0 1 1
1 0 0
0 1 0
1 0 0
0 0 1
0 1 1
1 1 1
−1 −1 −1

a)
b)
c)
d)
e)
f)
g)
h)
i)
k) .

(6.24)

The letters on the right show from which type of inequality the coefficients come from.
Since some of the rows in B are redundant we work with

B̄ =

0 0 0
1 0 0
0 1 1
0 1 0
0 0 1
1 1 1
−1 −1 −1

a)
b), d) or f)
c) orh)
e)
g)
i)
k) .

(6.25)

6.3 Two node Cut Sets 35

Instead of looking at the extreme rays we will look at the extreme points of

ψ̄ = {z | zB̄ ≥ 0,
7∑
i=1

zi = 1; z ≥ 0}. (6.26)

This step is illustrated in the following picture.

Extreme Rays

Extreme Points

∑
zi = 1

Figure 6.7: Extreme points belonging to extreme rays in R3.

These extreme points can be enumerated (A.2) and are the columns of the following
matrix:

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1

3
1
4

0
0 0 1 0 0 0 1

3
0 0

0 0 0 1 0 0 0 1
4

0
0 0 0 0 1 0 0 1

4
0

0 0 0 0 0 1 0 0 1
2

0 0 0 0 0 0 1
3

1
4

1
2︸ ︷︷ ︸

1)

︸︷︷︸
2)

︸︷︷︸
3)

︸︷︷︸
4)

(6.27)

Now we can use Theorem 6.10 to obtain the inequalities of P (G). The theorem says
that we have to multiply each extreme point with Ax. In our case Ax is the part of the
inequalities a) - k) which belongs to the variables assigned to the nodes of V1 and V2. In
other words, Ax are the inequalities a) - k) where the variables belonging to w1, w2 and
w3 were deleted. If we multiply e.g. the second column of (6.27) with our Ax, we get
the inequalities of b) without the variable belonging to w1. Applying this procedure to
all columns gives us the following results. The single steps belong to the different kinds
of extreme points, as already clustered in (6.27).

1) Keep the inequalities a) - f).

2) Take the sum of three inequalities, one of type b), d) or f), one of type c) or h) and
the inequalitiy k).

3) Take the sum of four inequalities, one of type b), d) or f), one of type e), one of
type g) and inequalitiy k).

36 6 FACES AS EXTENSION

4) Take the sum of the two inequalities i) and k).

Note that for step 2)-4) it does not matter whether we scale the inequalities or not, since
such a scaling leads to an equivalent inequality. For example in step 2) we can neglect the
factor 1/3. Now we have a lot of inequalities which already form an inequality description
of P (G). To prove redundancy of some of them we use the following lemma.

Lemma 6.11. Let ax ≤ α, x ∈ R|Vk| be an inequality that defines a facet of P (G). If
Va ⊆ Vk, then this inequality also defines a facet of P (G̃k), k = 1, 2.

The proof can be found in [3]. Remember that all facet defining inequalities of P (G̃k)
where the support only contains nodes of Vk, k = 1, 2 are collected in a). Lemma 6.11
says that a multiple of every facet defining inequality in the description of P (G), where
the support only contains nodes of Vk, k = 1, 2, is covered by the inequalities of a). So
all other inequalities with such a support are redundant. Let’s look at the support of the
inequalities we obtained above and check if we have to keep them. Steps 1)-4) analyze
the inequalities that were obtained in the corresponding steps above.

1) The support of b) - f), neglecting variables assigned to the nodes w1, w2 and w3, is a
subset of Vk. Therefore, we only keep the inequalities a) and neglect the inequalities
b)-f).

2) Here, we only keep the inequalities which are a sum of inequalities of P (G̃1) and
P (G̃2). The support of all other such inequalities lies in Vk, k = 1, 2.

3) Here, the only inequalities where the support contains nodes, which are not in
{v1, v2}, are the inequalities of category b). Their support contains nodes of V1 or
V2. A combination of an inequality of type b) with inequalities where the support
only contains nodes of {v1, v2} cannot have a support that does not only lie in Vk,
k = 1, 2. So all inequalities obtained here a redundant.

4) This step leads to the equation 0 = 0, so it is redundant.

What is left are the inequalities of a) together with the mixed inequalities obtained in
step 2) that contain defining inequalities of P (G̃1) and P (G̃2). With this achievement we
can formulate the theorem which gives us the wanted description of P (G).

Theorem 6.12. Let G = (V,E) be decomposable into G1 = (V1, E1) and G2 = (V2, E2).
We assume that U = V1 ∩ V2 = {v1, v2} and that v1 and v2 are not connected. Let G̃, G̃1

and G̃2 be defined like above. The stable set polytope P (G) is defined by

i.
∑

v∈Vk a
k
ivxv ≤ αki i ∈ Ik1 (the inequalities a))

ii.
∑

v∈Vk a
k
ivxv +

∑
v∈Vl a

l
jvxv − xv1 − xv2 ≤ αki + αlj − 2

for k = 1, 2; l = 1, 2; k 6= l; i ∈ Ik2 ; j ∈ Ik3 (mixed inequalities from step 2)

iii. xv ≥ 0 for v ∈ V

It has also been shown in [3] that this description is minimal.

6.3 Two node Cut Sets 37

6.3.2 Simplification in the bipartite Case

In this chapter we apply Barahona and Mahjoubs [3] approach to the special case where
one of the two graphs is bipartite. We will see that the modification in this case can be
simplified. So let G = (V,E) be decomposable into G1 = (V1, E1) and G2 = (V2, E2). Let
V1 ∩ V2 = {v1, v2}. Furthermore let w.l.o.g. G1 be bipartite and let v1 and v2 be on the
same side of the partition of G1.

Application of theorem 6.12

Let G̃, G̃1 and G̃2 be defined like in the beginning of chapter 6.3.1, i.e. with the added
cycle of length five. Since G1 is bipartite, we know that P (G1) is described only by edge
and non-negativity constraints. But what about P (G̃1)?

v1 v2

w1

w2 w3

Figure 6.8: The bipartite graph G1 where the cut set nodes are on the same side of the
partition, after adding a cycle of length five.

Since v1 and v2 are on different sides of the partition, all v1-v2-paths have an odd number
of nodes. So all odd cycles, which are caused by adding the cycle of length five, go trough
w2 and w3. Every cycle that is closed by w1 is even. We can conclude that G̃1\wi, i = 2, 3
is bipartite, so G̃1 is almost bipartite and therefore t-perfect. This means that the stable
set polytope P (G̃1) is described by the inequalities

xv ≥ 0 ∀ v ∈ Ṽ1 (6.28)

xu + xv ≤ 1 ∀ uv ∈ Ẽ1 (6.29)∑
v∈C

xv ≤
|C| − 1

2
∀ C odd cycle of G̃1. (6.30)

In order to use theorem 6.12, we have to cluster these inequalities into I1
1 , I1

2 and I1
3 .

We start with I1
1 , i.e. the inequalities whose support does not intersect with {w1, w2, w3}.

Here, we only have the edge inequalities for edges in E1. Now we look at I1
2 . These are the

inequalities whose support contains {v1, v2, w1} but not {w2, w3}. Since the only odd cycle
that goes through w1 is the added cycle itself, which is treated in a separate inequality,
there are no such inequalities, so I1

2 = ∅. The set I1
3 , which consists of inequalities whose

support intersects {v1, v2, w2, w3} but not {w1}, is formed by the odd cycle inequalities
without the one corresponding the added cycle. Now we can use theorem 6.12 and obtain
the following inequality description for P (G):

38 6 FACES AS EXTENSION

i. xu + xv ≤ 1 ∀ uv in E1 (Inequalities of I1
1)∑

v∈Vk a
k
ivxv ≤ αki i ∈ I2

1

ii.
∑

v∈C∩V1 xv +
∑

v∈V2 a
2
ivxv − xv1 − xv2 ≤

|C|−1
2

+ α2
i − 2

for i ∈ I2
2 , C odd cycle in G̃1, C 6= C∗

iii. xv ≥ 0 for v ∈ V

We see that no defining inequality of G̃1 whose support intersects {w1} is used. Further-
more no defining inequality of G̃2 whose support intersects {w2, w3} is used. This leads
to the idea that it is maybe not necessary to add all three nodes to both components of
the graphs.

The Simplification

So let’s define

• V̂1 = V1 ∪ {w2, w3}

V̂2 = V2 ∪ {w1}

• Ê1 = E1 ∪ {v1w2, w2w3, w3v2}

Ê2 = E2 ∪ {v1w1, w1v2}

• Ĝ1 = (V̂1, Ê1), Ĝ2 = (V̂2, Ê2).

The result can be seen in the following figure.

Ĝ1
Ĝ2

v1

w2

w3

v2

v1

w1

v2

Figure 6.9: The bipartite graph G1 after adding a path of length four and the graph G2 after
adding a path of length three.

We set up the following theorem:

Theorem 6.13. Let Ĝ1 and Ĝ2 be defined like above. P(G) is the projection of

F̂ =
{
x ∈ RV̂1∪V̂2 : xĜ1

∈ P (Ĝ1) and xĜ2
∈ P (Ĝ2),

3∑
i=1

xwi
+ xv1 + xv2 = 2

}
(6.31)

along the variables xw1, xw2 and xw3.

6.3 Two node Cut Sets 39

Proof. We first have to show that every projected point of F̂ lies in P (G). As we already
know the inequality description of P (G), we just have to show that all the inequalities are
valid for such a projected point. The inequalities in i., whose support does not intersect
{w1, w2, w3}, and the non-negativity constraints in iii. are obviously still valid for P (Ĝ1)
and P (Ĝ2). As the support of these inequalities does not intersect {w1, w2, w3}, they are
also valid for every projected vector. Let’s look at the inequalities of ii., i.e. the mixed
inequalities. They are a sum of odd cycle inequalities of P (G̃1), inequalities from I2

2 and
the inequality −xv1−xv2−xw1−xw2−xw3 ≤ 2. As all odd cycles (except C∗) that existed
in G̃1 still exist in Ĝ1, all required odd cycle inequalities are valid for P (Ĝ1) and therefore
also for F̂ . The inequalities of I2

2 are valid for P (Ĝ2), since their support does not contain
w2 or w3. So these inequalities are also valid for F̂ . From the definition of the right hand
side of (6.31) we also know that the inequality −xv1 − xv2 − xw1 − xw2 − xw3 ≤ 2 holds
for F̂ . If we add up these three types of inequalities we end up with∑

w∈C∩V1

xw +
∑
j∈V2

a2
ijxj − xv1 − xv2 ≤

|C| − 1

2
+ α2

i − 2 (6.32)

for i ∈ I2
2 and C an odd cycle in Ĝ1. The variables assigned to w1, w2 and w3 cancel each

other out. The result is exactly the mixed type of inequality that defines P (G), so the
mixed inequalities are also still valid for F̂ . As the support of this mixed inequalities does
not intersect {w1, w2, w3}, the inequalities are still valid for all projected vectors. Since
we now showed that every projected vector of F̂ fulfills all defining inequalities of P (G),
we can conclude that every such vector lies in P (G). Now we show that every vertex of
P (G) has a preimage in F̂ . Let x ∈ P (G) be a vertex of P (G), i.e. a characteristic vector
of a stable set in G. For each combination of v1 and v2 in such a stable set vector, one
finds 0-1-values for xw1 , xw2 and xw3 such that

3∑
i=1

xwi
+ xv1 + xv2 = 2

and the corresponding set of nodes in Ĝ1 and Ĝ2 is stable. So every characteristic vector
of stable sets in G has a preimage in F̂ .

Until now we only considered the case where the nodes v1 and v2 are on the same side of
the partition. Let’s look at the case where they are on different sides.

v1

v2

w1

w2

w3

Figure 6.10: The bipartite graph G1 where the cut set nodes are on different sides of the
partition, after adding a cycle of length five.

40 6 FACES AS EXTENSION

As in this case all v1-v2-paths have an even number of vertices, all the odd cycles that
occur after adding the cycle of length five are going trough w1, which means that G̃1

is again t-perfect. This time we recognize that in the description of P (G) no defining
inequality of P (G̃1) occurs where the support uses w2 or w3 and no defining inequality of
P (G̃2) occurs which uses w1. With these findings we can use the same argumentation as
before and come to the following similar result.

Corollary 6.14. Let G = (V,E) be decomposable into G1 = (V1, E1) and G2 = (V1, E2).
If we define

• V̂1 = V1 ∪ {w1}

V̂2 = V2 ∪ {w2, w3}

• Ê1 = E1 ∪ {v1w1, w1v2}

Ê2 = E2 ∪ {v1w2, w2w3, w3v2}

• Ĝ1 = (V̂1, Ê1), Ĝ2 = (V̂2, Ê2),

then (6.31) provides an extension of P (G) in the case where v1 and v2 are on different
sides of the partition.

The extension that is obtained by Barahona und Mahjoubs [3] , i.e.

F (G) =
{
x ∈ RṼ1∪Ṽ2 : xG̃1

∈ P (G̃1) and xG̃2
∈ P (G̃2),

3∑
i=1

xwi
+ xv1 + xv2 = 2

}
, (6.33)

is integer, since it is a face of a stable set polytope. We will show that this is not the case
for our new set

F̂ =
{
x ∈ RV̂1∪V̂2 : xĜ1

∈ P (Ĝ1) and xĜ2
∈ P (Ĝ2),

3∑
i=1

xwi
+ xv1 + xv2 = 2

}
. (6.34)

In order to show this we state an example. Consider two graphs G1 and G2 where both
are paths of length three. The connection of these two graphs are their endnodes. Clearly
G1 is bipartite. Now we define Ĝ1 and Ĝ2 as before and end up like in figure 6.11.

Ĝ1 Ĝ2v1

w2

w3

v2

v1

w1

v2

w∗ w∗

Figure 6.11: The modified versions Ĝ1 and Ĝ2 of G1 and G2.

We see that

6.4 Extension complexity of modified graphs 41

w∗

v1

w2

w3

v2

0

1/2

1/2

1/2

1/2

 ∈ P (Ĝ1),

v1

w1

v2

w∗

1/2

0
1/2

1/2

 ∈ P (Ĝ2). (6.35)

Since these two vectors together fulfill
∑3

i=1 xwi
+ xv1 + xv2 = 2, we have

w∗

v1

v2

w1

w2

w3

w∗

0
1/2

1/2

0
1/2

1/2

1/2

∈ F̂ . (6.36)

If F̂ was integer, all its vertices would have to be characteristic vectors of stable sets.
Now we optimize over F̂ in the direction of c = (0, 1, 1, 0, 1, 1, 1). If F̂ was integer, the
maximum value of this optimization has to be 2, since a combination of a characteristic
vector of a stable set in Ĝ1 with one of Ĝ2 cannot have a higher value. If we multiply c
with (6.36) we get a value of 2.5. Therefore, our polytope has to be non-integer.

6.4 Extension complexity of modified graphs

Theorem 6.2 gives us the following information about the extension complexity of P (G).

Corollary 6.15. Let G = (V,E) be decomposable into G1 = (V1, E1) and G2 = (V2, E2)
and let U = V1 ∩ V2. Let G̃, G̃1 and G̃2 be modified versions of G, G1 and G2 such that
theorem 6.2 is applicable. Then we have

xc(P (G)) ≤ xc(F (G̃)) ≤ xc(F (G̃1)) + xc(F (G̃2)) (6.37)

Now there comes up the question if we can improve the bound from (2.26). Let’s see how
we can bound F (G̃i) in terms of P (Gi), i = 1, 2. We know that the nodes that were added
to obtain G̃i are only connected to the nodes of U . Therefore we can describe P (G̃i) by

F (G̃i) = conv
⋃
S∈Ũ

{
x ∈ RṼi : xGi

∈ P (Gi), xŨ = χS
}
, (6.38)

where χS ∈ {0, 1}Ũ denote all characteristic vectors of stable sets S ∈ Ũ that fulfill the
face defining inequality of F (G̃i) with equality. We can conclude that

xc(F (G̃k)) ≤ s′ · xc(P (Gk)), k = 1, 2 (6.39)

where s′ denotes the number of stable sets in Ũ that fulfill the face defining inequality
with equality. Therefore,

xc(P (G)) ≤ s′ (xc(P (G1)) + xc(P (G2))). (6.40)

42 6 FACES AS EXTENSION

We know from theorem 6.4 that we can find a modification for every kind of cut set such
that s′ = s. Remember that s denotes the number of stable sets in U . Since in this case
(6.40) equals (2.26), we cannot improve this bound. The results of this chapter can still be
helpful, namely in the case when G̃1 and G̃2 have a nice structure, i.e. when we can still
find a small inequality description of them. In this case we can easily find an extended
formulation of P (G) and in the case where we have a two node cut set with disconnected
nodes even an inequality description of P (G).

43

7 Conclusion

Aim of this thesis was to obtain a description of the stable set polytope of a decomposable
graph G that bases on the stable set polytopes of the single components G1 and G2 of
the graph. Let’s summarize our findings.

We have two cases where we found an inequality description of P (G) in the original
space. One of these is the case where the cut set forms a clique. Here, the inequality
description of P (G) is obtained by the union of the inequality descriptions of P (G1) and
P (G2). In the case of a cut set which consists of two disconnected nodes we also saw
an inequality description of the original polytope. Here, we had to go an indirect way
which led over extended formulations. The original graph was modified and a face of
the stable set polytope of this modified graph provided an extension of P (G). Then the
inequality description of P (G) in the original space was obtained by a combination of the
inequalities that define this face. The whole procedure is much more difficult than in the
clique cut set case. This is not surprising. If there was a way to solve this case similar to
the clique cut set case, then one could solve the stable set problem efficiently on a graph
which is recursively decomposable into simpler graphs on such two node cut sets. We
showed that this is not the case by reducing the NP-hard MAX-2-SAT problem to the
weighted stable set problem on such a graph. That also implies that we cannot expect
too much if we look for methods that work for any kind of cut sets.

We found techniques to find extended formulations of arbitrary decomposable graphs,
but we did not find a description in the original space. One of the approaches we looked
at was clique lifting. Here, the nodes of the cut set were replaced by a clique of other
nodes. We could then apply the results that we observed for clique cut sets on this
modified graph. The obtained stable set polytope then provided an extension of P (G).
This method adds edges between the nodes of the modified cut set and the other nodes
of the graph. Therefore, we looked for a method that only affects the cut set of G and
found a suitable technique. It is a generalization of Barahona and Mahjoub’s [3] idea to
get a face as an extension. After analyzing the required properties of such a face, we
introduced a way to modify an arbitrary cut set in such a way that there exists such a
face. We also constructed the inequality that defines this face. With this construction
we can conclude the same things as in the approach of Barahona and Mahjoub: the face
provides an extension of P (G) and the inequality description of that extension is obtained
by the union of the inequality descriptions of the corresponding faces of the stable set
polytopes of the two parts of G.

The problem of the studied techniques for arbitrary cut sets is the necessity of a modi-
fication of a graph. If the stable set polytopes of G1 and G2 can be easily described, it
could happen that the modifications change the graph structure of G1 and G2 in such a
way that it is hard to find the required inequality description. Nevertheless, if the stable
set polytopes of the modified versions of G1 and G2 are still easy to describe, one gets an
extended formulation of P (G) very fast. Therefore, it would be helpful to find ways to
obtain the stable set polytope of a modification that base on the original descriptions.

Another goal of this thesis was to look at the dependence of the extension complexity of
P (G) on the extension complexities of P (G1) and P (G2). In the case of a clique cut set the
extension complexity of P (G) could be bounded by the sum of the extension complexities
of P (G1) and P (G2). So in this case, a small extension complexity of P (G1) and P (G2)

44 7 CONCLUSION

leads to a small extension complexity of P (G). For arbitrary cut sets we did not find such
a small bound in all cases. Here, it depends on the number of stable sets in the single
cut set. The extension complexity of P (G) could be bounded by this number times the
sum of the extension complexities of P (G1) and P (G2). So if this sum and the number
of stable sets in the cut set are small, the extension complexity of P (G) is also small.

LIST OF FIGURES 45

List of Figures

1.1 The stable set polytope P (G) as projection of a higher dimensional polytope. 1
1.2 A graph G that is decomposable into the two graphs G1 and G2. 2
2.1 A graph G which is decomposable into the graphs G1 and G2. 4
3.1 The graph G that decomposes into G1 and G2 on a cut set which consists

of two disconnected nodes. 12
4.1 Scheme of a graph G which decomposes into a ”main graph” Ḡ and the

graphs Gi, i = 1, . . . , k. The cut set between Ḡ and each Gi consists of two
disconnected nodes. 14

5.1 A graph G which decomposes into G1 and G2 on a cut set that consists of
two disconnected nodes before and after the clique lifting. 18

6.1 P (G) as projection of a face F (G̃) of a higher dimensional stable set poly-
tope P (G̃). 20

6.2 The way how P (G) is obtained by the projection of a face of P (G̃) in the
sense of theorem 6.2. 22

6.3 Three node cut set before modification. 26
6.4 Three node cut set after modification. 26
6.5 A graph G which decomposes into G1 and G2 on a cut set that consists

of two disconnected nodes before and after the modification of adding the
cycle of length five. 31

6.6 Different combinations of w1, w2 and w3 in the support of a defining in-
equality of P (G̃1) respectively P (G̃2). •: in the support, •: not in the
support . 33

6.7 Extreme points belonging to extreme rays in R3. 35
6.8 The bipartite graph G1 where the cut set nodes are on the same side of the

partition, after adding a cycle of length five. 37
6.9 The bipartite graph G1 after adding a path of length four and the graph

G2 after adding a path of length three. 38
6.10 The bipartite graph G1 where the cut set nodes are on different sides of

the partition, after adding a cycle of length five. 39
6.11 The modified versions Ĝ1 and Ĝ2 of G1 and G2. 40

46 REFERENCES

References

[1] Vašek Chvátal. On certain polytopes associated with graphs. Journal of Combinatorial
Theory, Series B, 18(2):138–154, 1975.

[2] Michele Conforti, Bert Gerards, and Kanstantsin Pashkovich. Stable sets and graphs
with no even holes. Mathematical Programming, 153(1):13–39, 2015.

[3] Francisco Barahona and Ali Ridha Mahjoub. Compositions of graphs and polyhedra
ii: stable sets. SIAM Journal on Discrete Mathematics, 7(3):359–371, 1994.

[4] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and
combinatorial optimization, volume 2. Springer Science & Business Media, 2012.

[5] Stefan Weltge. Sizes of linear descriptions in combinatorial optimization. 2015.

[6] Egon Balas. Disjunctive Programming and Extended Formulations, pages 69–77.
Springer International Publishing, Cham, 2018.

[7] Korte Bernhard and J Vygen. Combinatorial optimization: Theory and algorithms.
Springer, Third Edition, 2005., 2008.

[8] Ali Ridha Mahjoub. On the stable set polytope of a series-parallel graph. Mathematical
Programming, 40(1):53–57, 1988.

[9] Egon Balas and William Pulleyblank. The perfectly matchable subgraph polytope of
a bipartite graph. Networks, 13(4):495–516, 1983.

47

A Appendix

A.1 Code Section 6.2

1 import itertools , os , numpy

2

3 #

4 # helper functions to obtain vertex and inequality descriptions of the

stable set polytopes of all considered graphs

5 #

6

7 def read_graphs ():

8 file = open("8_nodes.txt", "r")

9 graphs = [[[int(a) for a in c] for c in line.split(": ")[1]. strip

().split(" ")] for line in file]

10 file.close()

11 return graphs

12

13 def is_stable_set(g, nodes):

14 for i in range(len(nodes)):

15 for j in range(i + 1, len(nodes)):

16 if g[nodes[j] - 1][nodes[i]] == 1:

17 return False

18 return True

19

20 def has_stable_set_of_size_three(g):

21 n = len(g)

22 for i in range(n):

23 for j in range(i + 1, n):

24 for k in range(j + 1, n):

25 if is_stable_set(g, [i, j, k]):

26 return True

27 return False

28

29 def get_graphs_with_stable_set_of_size_at_least_three(graphs):

30 return [g for g in graphs if has_stable_set_of_size_three(g)]

31

32

33 def get_all_stable_sets(g):

34 items = range(len(g) + 1)

35 powerset = [x for length in range(len(items) + 1) for x in

itertools.combinations(items , length)]

36 stable_sets = []

37 for s in powerset:

38 if is_stable_set(g,s) == True:

39 stable_set = [0, 0, 0, 0, 0, 0, 0, 0]

40 for i in range(len(s)):

41 stable_set[s[i]] = 1

42 stable_sets.append(stable_set)

43 return stable_sets

44

45 def get_stable_sets_of_graphs(graphs):

46 return [get_all_stable_sets(g) for g in graphs]

47

48 A APPENDIX

48 def write_v_representations(stable_sets_of_graphs):

49 for i in range(len(stable_sets_of_graphs)):

50 stable_sets = stable_sets_of_graphs[i]

51 m = len(stable_sets)

52 f = open(’Polytopes/graph ’ + str(i) + ’.ext’, ’w’)

53 f.write(’V-representation \nbegin \n’ + str(m) + ’ ’ + str(

len(stable_sets [0]) + 1) + ’ ’ + ’integer\n’)

54 for j in range(m):

55 f.write(’ 1’)

56 for k in range(len(stable_sets [0])):

57 f.write(’ ’ + str(stable_sets[j][k]))

58 f.write(’\n’)

59 f.write(’end’)

60 f.close ()

61

62 def create_h_representations ():

63 for filename in os.listdir("Polytopes"):

64 if filename.endswith(".ext"):

65 basename = filename.split(".")[0]

66 os.system("cat Polytopes/" + basename + ".ext | ./ cddexec

--rep > Polytopes/" + basename + ".ine 2> /dev/null")

67

68 #

69 # the actual program to obtain vertex and inequality descripton of the

stable set polytopes of all considered graphs

70 #

71

72 graphs = read_graphs ()

73 graphs = get_graphs_with_stable_set_of_size_at_least_three(graphs)

74 print(graphs [11890])

75 stable_sets_of_graphs = get_stable_sets_of_graphs(graphs)

76 print(stable_sets_of_graphs [11890])

77 #write_v_representations(stable_sets_of_graphs)

78 #create_h_representations ()

79

80 #

81 # part which uses vertex and inequality descriptions to check if there

exists a facet with the wanted features

82 #

83

84 #Getting for every facet defining inequality of the stable set

polytope of a graph all characteristic stable set vectors which

fulfill the facet defining inequality with equaliy

85

86 vectors_in_facets = [] #saves for every graph and all of it’s

inequalities all characteristic stable set vectors that fulfill the

inequality with equality

87 for p in range(len(graphs)):

88 f = open(’Polytopes/graph ’ + str(p) + ’.ine’, ’r’) #opens the

inequality description files

89 inequalities = [[a for a in line.strip().split(" ")] for line in f

]

90 corrected_inequalities = [] #saves the coefficients of the facet

defining inequalities

91 for i in range(4, len(inequalities) -1):

A.1 Code Section 6.2 49

92 corrected_inequalities.append ([])

93 for j in range(len(inequalities[i])):

94 if inequalities[i][j] != ’’:

95 corrected_inequalities[i-4]. append(int(inequalities[i

][j]))

96 satisfy_equalitiy = [] #saves the vectors that fulfill an

inequality with equality for one graph

97 for i in range(len(corrected_inequalities)):

98 satisfy_equalitiy.append ([])

99 for j in range(len(stable_sets_of_graphs[p])):

100 eingesetzt_in_inequalities = sum(-corrected_inequalities[i

][k] * stable_sets_of_graphs[p][j][k - 1] for k in

range(1, len(corrected_inequalities[i])))

101 if eingesetzt_in_inequalities == corrected_inequalities[i

][0]:

102 satisfy_equalitiy[i]. append(stable_sets_of_graphs[p][j

])

103 vectors_in_facets.append(satisfy_equalitiy)

104 f.close ()

105

106 print(vectors_in_facets [11890])

107

108 #Since the zero vector doesn ’t play a role when linear independecy is

checkt we delete all of them from the list

109

110 vectors_in_facets_without_zerovector = [] #save the vectors which

fulfill the inequalities with equality without the zerovector

111 for p in range(len(graphs)):

112 vectors_in_facet_without_zerovector_per_graph = []

113 for i in range(len(vectors_in_facets[p])):

114 vectors_in_facet_without_zerovector = []

115 for j in range(len(vectors_in_facets[p][i])):

116 if vectors_in_facets[p][i][j] != [0, 0, 0, 0, 0, 0, 0, 0]:

117 vectors_in_facet_without_zerovector.append(

vectors_in_facets[p][i][j])

118 vectors_in_facet_without_zerovector_per_graph.append(

vectors_in_facet_without_zerovector)

119 vectors_in_facets_without_zerovector.append(

vectors_in_facet_without_zerovector_per_graph)

120

121 print(vectors_in_facets_without_zerovector [11890])

122

123 #The next part checks if there is an inequality where the

corresponding vectors fulfill all assumtions

124

125 items = range (8)

126 powerset = [x for length in range(len(items) + 1) for x in itertools.

combinations(items , length)]

127 needed_stable_sets = [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1,

0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1]] #preimages of all stable

sets in the cut set

128 for p in range(len(graphs)):

129 for i in range(len(vectors_in_facets_without_zerovector[p])):

130 if len(vectors_in_facets_without_zerovector[p][i]) == 8 and

numpy.linalg.det(vectors_in_facets_without_zerovector[p][i

50 A APPENDIX

]) != 0: #checks first if the number of vectors that

fulfill a inequality with equality is eight and checks then

the determinant for the linear independence

131 if p == 11890:

132 print(i)

133 for s in powerset:

134 if len(s) == 3 and graphs[p][s[2] -1][s[1]] == 0 and

graphs[p][s[2] -1][s[0]] == 0 and graphs[p][s[1] -1][

s[0]] == 0: #the nodes that correspond to the

preimages are not allowed to have edges between

each other , since they correspond to the three

desconnected nodes from the original cut set

135 if p == 11890:

136 print(s)

137 all_tripel = [] #saves the parts of the

characteristic vectors which belong to the

nodes that are candidates to represent the

nodes of the original cut set

138 for j in range(len(

vectors_in_facets_without_zerovector[p][i])):

139 new_tripel = [

vectors_in_facets_without_zerovector[p][i][

j][s[0]],

vectors_in_facets_without_zerovector[p][i][

j][s[1]],

vectors_in_facets_without_zerovector[p][i][

j][s[2]]]

140 all_tripel.append(new_tripel)

141 all_tripel.sort()

142 if p == 11890:

143 print(all_tripel)

144 if all_tripel == needed_stable_sets: #checks if

all stable sets within the original cut set

have a preimage within the stable sets that lie

in a facet

145 print(p)

146 print(i)

A.2 Code Section 6.3.1

1 A = [0 -1 0 0 0 -1 1;

2 0 0 -1 -1 0 -1 1;

3 0 0 -1 0 -1 -1 1; %columns of B bar

4 -1 0 0 0 0 0 0;

5 0 -1 0 0 0 0 0;

6 0 0 -1 0 0 0 0;

7 0 0 0 -1 0 0 0;

8 0 0 0 0 -1 0 0;

9 0 0 0 0 0 -1 0;

10 0 0 0 0 0 0 -1] %non -negativity constraints

A.2 Code Section 6.3.1 51

11

12 b = [0; 0; 0; 0; 0; 0; 0; 0; 0; 0]

13

14 Aeq = [1,1,1,1,1,1,1] %equation that has to hold for z

15

16 beq = [1]

17

18 V=lcon2vert(A,b,Aeq ,beq)

19 %This function was downloaded on

20 %https ://de.mathworks.com/matlabcentral/fileexchange /30892 -

analyze -n-dimensional -polyhedra -in-terms -of-vertices -or-

in -equalities

	1 Introduction
	2 Preliminaries
	2.1 Graphs
	2.2 About the Stable Set Polytope
	2.3 Extended Formulations

	3 Composed Graphs with Clique Cut Sets
	4 Hardness of the Stable Set Problem on a composed graph
	5 An Extension with a Clique Cut Set
	6 Faces as Extension
	6.1 A general Approach
	6.2 Minimum Dimension of a Face as Extension
	6.3 Two node Cut Sets
	6.3.1 General Case
	6.3.2 Simplification in the bipartite Case

	6.4 Extension complexity of modified graphs

	7 Conclusion
	A Appendix
	A.1 Code Section 6.2
	A.2 Code Section 6.3.1

