
Note

Asymmetric Directed Graph Coloring Games

Stephan Dominique Andres

Zentrum für angewandte Informatik Köln,
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Abstract

This note generalizes the (a, b)-coloring game and the (a, b)-marking game which
were introduced by Kierstead [7] for undirected graphs to directed graphs. We prove
that the (a, b)-chromatic and (a, b)-coloring number for the class of orientations of
forests is b + 2 if b ≤ a, and infinity otherwise. From these results we deduce
upper bounds for the (a, b)-coloring number of oriented outerplanar graphs and of
orientations of graphs embeddable in a surface with bounded girth.
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1 Introduction

The new area of research on graph coloring games was introduced by Bodlaen-
der [3]. In Bodlaender’s original game there are two players, Alice and Bob,
who are given an initially uncolored graph and a set C of colors. The players
alternately take turns in coloring vertices of the graph with a color from C, so
that no neighbor of a vertex to be colored with x ∈ C has been colored with
x before. Here, a move consists in coloring exactly one vertex at a time. The
game ends, when no move is possible any more. If all vertices are colored at
the end of the game, Alice wins, otherwise Bob wins.
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Since then there have been a lot of attempts to generalize this game. We will
mention only one of them. Kierstead [7] modified the game by defining two
positive integers a and b and the rule that each of Alice’s moves consists in
coloring a vertices and each of Bob’s in coloring b vertices.

In this note, we generalize Kierstead’s game to digraphs. This game will be
called (a, b)-coloring game and is played on a digraph D with a color set C.
Alice begins. A feasible coloring of a vertex v is a color that has not yet
been used for any vertex w for which there is an arc (w, v). (Such a vertex
w is called an in-neighbor of v.) However, the out-neighbors of v may have
any color. Each of Alice’s moves consists in coloring a vertices of the digraph
feasibly, each of Bob’s in coloring b vertices feasibly. If in Alice’s last move
there are only x < a uncolored vertices left, or in Bob’s last move there are
only x < b uncolored vertices left, the respective player has to color only x

vertices during that (incomplete) move. Alice wins if and only if every vertex
is colored at the end. Obviously, for undirected graphs, which are interpreted
as digraphs where each arc (v, w) has an opposite arc (w, v), the game is
equal to Kierstead’s game. The directed (1, 1)-coloring game has already been
investigated in [1,2].

The (a, b)-chromatic number χg(D; a, b) of the digraph D is the smallest inte-
ger n for which Alice has a winning strategy for the (a, b)-coloring game with
#C = n colors. We further define for a nonempty class C of digraphs

χg(C; a, b) = sup
D∈C

χg(D; a, b).

A lot of results for graph coloring games can be obtained by considering the
associated marking games, which was first observed by Zhu [8] for undirected
graphs. So we introduce the (a, b)-marking game which is played on a di-
graph D with a score n. Alice begins, and Alice marks a vertices in a turn,
Bob b vertices. A vertex which is marked may have n−1 marked in-neighbors
at most. The last move may be incomplete in the same way as for the (a, b)-
coloring game. The game ends when no move is possible any more. Alice wins
if every vertex is marked at the end of the game, otherwise Bob wins. The
lowest score for which Alice has a winning strategy is called (a, b)-coloring

number colg(D; a, b) of D. For a nonempty class C of digraphs let

colg(C; a, b) = sup
D∈C

colg(D; a, b).

We observe the fundamental inequality

χg(D; a, b) ≤ colg(D; a, b), (1)

which holds for every digraph D, cf. [8].
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Throughout this paper, let F be the class of undirected forests and ~F be
the class of orientations of forests. χg(F ; 1, 1) = colg(F ; 1, 1) = 4 holds by a

result of Faigle et al. [4], whereas the author [1,2] proved that χg( ~F ; 1, 1) =

colg( ~F ; 1, 1) = 3. Kierstead [7] determined χg(F ; a, b) and colg(F ; a, b) for all
positive integers a and b. The main aim of this note is to have an analogous
result for oriented forests, which is the following theorem.

Theorem 1 Let a and b be positive integers. Then,

(a) for b ≤ a: χg( ~F ; a, b) = colg( ~F ; a, b) = b + 2,

(b) for a < b: χg( ~F ; a, b) = colg( ~F ; a, b) = ∞.

Surprisingly, there are fewer case distinctions than in Kierstead’s result [7],
although the class of oriented forests seems to be more complicated than the
class of undirected forests.

For the class O of undirected outerplanar graphs Guan and Zhu [5] determined
the upper bound colg(O; 1, 1) ≤ 7. In Section 4, from our results for forests
we will derive an upper bound for the (a, b)-coloring number of orientations of
outerplanar graphs as well as of graphs embeddable in a surface with bounded
girth.

2 Two lower bounds

Lemma 2 For all a, b ∈ N, b + 2 ≤ χg( ~F ; a, b).

PROOF. Let D be the oriented forest with vertices ui, vi,j and wi,j,k, i =
1, . . . , a + b, j = 1, . . . , 2a + 1, k = 1, . . . , b, and arcs (ui, vi,j) and (wi,j,k, vi,j).
We shall prove a winning strategy for Bob with b′ + 1 ≤ b + 1 colors for the
(a, b)-coloring game on D. In his first move, Bob colors vertices ui, no matter
what Alice has done before. After Alice’s second move she will have left a
subtree with vertex set {ui0, vi0,j0, wi0,j0,k | k = 1, . . . , b} in which ui0 is the
only colored vertex. Then Bob colors wi0,j0,k for k = 1, . . . , b′ with distinct
colors which are different from the color of ui0, and wins, since vi0,j0 cannot
be colored any more. 2

Fig. 1. The graph of Lemma 2 for (a, b) = (1, 2)
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Lemma 3 If b > a, then χg( ~F ; a, b) = ∞.

PROOF. Let t be a positive integer. Let D be the digraph with vertex set
{vi, wi,j | i = 1, . . . , bt, j = 1, . . . , t} and arc set {(wi,j, vi) | i = 1, . . . , bt, j =
1, . . . , t}. So D is a forest of bt oriented stars. We will prove that Bob has
a winning strategy with t′ ≤ t colors for the (a, b)-coloring game on D. We
divide the game into several rounds consisting of several moves. During the k-
th round (k = 1, 2, . . . , t′) Bob colors, with color k, bt−k+1 vertices wi,j in stars
where Alice has not colored any vertex in previous rounds and Bob has colored
only vertices wi,j with colors 1, 2, . . . , k−1. This is indeed possible since during
the k-th round Alice may color at most bt−ka ≤ bt−k(b− 1) = bt−k+1 − bt−k of
the stars Bob has colored. So there are at least bt−(k+1)+1 such stars left for the
next round. In the t′-th round there will be left at least one star the center of
which is not colored but t′ leaves of which are colored with t′ distinct colors.
As the center cannot be colored any more, Bob wins. 2

3 An upper bound

When playing the marking game on a forest the players divide the forest into
smaller components. Each time they mark a vertex v, the actual component
of v is broken into pieces at the point v. Equivalently one may delete arcs
(w, v) (since v is no danger for w), arcs (v, w) are left in their component. If
necessary, i.e. if there are several arcs (v, w), the vertex v is multiplied, so that
there is a copy of vertex v for each arc (v, w). These arcs (v, w) are considered
to be in different components after v has been colored. These components are
called independent subtrees.

Lemma 4 If b ≤ a, then colg( ~F ; a, b) ≤ b + 2.

PROOF. Let F be any oriented forest. We will prove that Alice has a winning
strategy for the (a, b)-marking game with score b + 2. As proven in [1,2] Alice
has the following winning strategy with score 3 for the (1, 1)-marking game:
She guarantees that after each of her moves every independent subtree has at
most one marked vertex. This strategy also works if Bob is allowed to pass
one or several moves.

We will adapt this strategy for the (a, b)-marking game with score b+2. Alice
still guarantees that after her moves every independent subtree has at most
one marked vertex. Then after Bob’s next move every independent subtree
has at most b+1 marked vertices. Assume that Bob has marked v1, v2, . . . , vb.
Alice imagines that Bob has only marked v1, and answers by marking a vertex
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according to her winning strategy for the (1, 1)-marking game unless the vertex
to be marked is vi for some i. In the latter case she imagines she would have
marked vi and continues. In the next step, Alice imagines that Bob has only
marked v1 and v2 and reacts according to her strategy for the (1, 1)-marking
game. In general, in the k-th step she imagines Bob has marked v1, . . . , vk,
always replacing those vi she imagines to have marked herself by subsequent vj .
After x ≤ b steps she will have reinstalled the invariant, and there will be at
most b + 1 marked in-neighbors of a vertex in the meantime. For the next
a−x steps Alice plays as if Bob was passing. So at the end of her move, every
independent subtree has at most one marked vertex. 2

This lemma, together with the lemmata of Section 2 and the inequality (1),
completes the proof of Theorem 1. Note that the argument of simulation in the
proof of Lemma 4 is just the same as in the corresponding proof of Lemma 3
in Kierstead [7].

Remark. The bound of Lemma 4 still holds for a game where Bob is allowed
to have the first move and where he is allowed to miss one or several turns. On
the other hand the lower bounds from Section 2 are still true for a game where
Alice is allowed to have the first move and is allowed to pass. So Theorem 1
still holds for all these variants of the games.

4 Outerplanar and topological digraphs

Let D = (V, E), D1 = (V, E1), and D2 = (V, E2) be digraphs with the same
vertex set. D1|D2 is an arc partition of D if E = E1∪̇E2. By ∆+(D) we
mean the maximum in-degree of D. The following obvious observation is a
generalization of an observation in [2] resp. of Theorem 2 in [5].

Observation 1 If a digraph D has an arc partition D1|D2, then

colg(D; a, b) ≤ colg(D1; a, b) + ∆+(D2).

Let ~O be an orientation of an outerplanar graph. As proven in [5] for undirected

graphs, ~O has an arc partition D1|D2, so that D1 is a forest and D2 has
maximum (in-)degree at most 3. By Observation 1 and Theorem 1 we conclude:

Corollary 5 Let ~O be an orientation of an outerplanar graph, and a ≥ b.

Then

colg( ~O; a, b) ≤ b + 5.
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The lightness of an arc (v, w) is the maximum of the in-degrees of v and w.
The lightness L(D) of a digraph D is its minimum lightness of an arc. In [6]
it is shown that if every subgraph H of an undirected graph G has minimum
degree δ ≤ 1 or L(H) ≤ k, then the edges of G can be partitioned into a
forest and a graph with maximum degree ∆ ≤ k−1. So by Observation 1 and
Theorem 1 we may also state

Corollary 6 For b ≤ a and an orientation D of a graph embeddable in a

surface S with girth at least g,

colg(D; a, b) ≤ b + u(S, g) + 1.

Here, u(S, g) is an upper bound for the lightness of undirected graphs embed-
dable in the surface S with girth at least g and minimum degree δ ≥ 2. In [2]
(and for planar graphs already in [6]) these bounds u(S, g) are determined ex-
plicitly for surfaces of small orientable or nonorientable genus and sufficiently
large girth.

Final remark. It is an open question for which (a, b) the (a, b)-coloring
number of the class of planar (toroidal, etc.) digraphs is bounded.
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