
The incidence game chromatic number

Stephan Dominique Andres

Zentrum für angewandte Informatik Köln,
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Abstract

We introduce the incidence game chromatic number which unifies the ideas of game
chromatic number and incidence coloring number of an undirected graph. For k-
degenerate graphs with maximum degree ∆, the upper bound 2∆ + 4k − 2 for the
incidence game chromatic number is given. If ∆ ≥ 5k, we improve this bound to the
value 2∆ + 3k − 1. We also determine the exact incidence game chromatic number
of cycles, stars and sufficiently large wheels and obtain the lower bound 3

2
∆ for the

incidence game chromatic number of graphs of maximum degree ∆.
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1 Introduction

Let G = (V, E) be a graph with vertex set V and edge set E. The set of
incidences of G is defined as

I = {(v, e) ∈ V × E | v is incident with e}.

Two distinct incidences (v, e), (w, f) ∈ I are adjacent if (v, f) ∈ I or (w, e) ∈ I.
This means in particular, if either v = w or e = f , then the incidences (v, e)
and (w, f) are adjacent. See Fig. 1.
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(a) (b)

Fig. 1. (a) pairs of adjacent incidences (b) pairs of non-adjacent incidences. A white
dot denotes a vertex, a black dot on an edge e next to a vertex v denotes the
incidence (v, e).

Consider the following game which is played on I with a color set C. Two
players, Alice and Bob, alternately color an incidence with a color from C

in such a way that incidences that are adjacent receive distinct colors. The
game ends when this is not possible any more. Alice wins if every incidence is
colored at the end of the game, otherwise Bob wins. The smallest number of
colors, so that Alice has a winning strategy for the game played on I, is called
incidence game chromatic number ιg(G) of G. This is a competitive version of
the incidence coloring number introduced by Brualdi and Massey [3].

The game chromatic number χg(G) (resp. game chromatic index χ′

g(G)) of a
graph G is defined for a similar game where vertices (resp. edges) of a graph
are colored instead of incidences, and where in the definition of the game the
adjacency of incidences is replaced by the adjacency of vertices (resp. edges).
It was introduced by Bodlaender [2] (resp. Cai and Zhu [4]). To be precise, we
assume in our games that Alice has the first move, and missing a turn is not
allowed.

If G is a graph, then GI is the graph the vertices of which are the incidences
of G, with edges joining adjacent incidences. Thus ιg(G) = χg(G

I). However, in
this paper we will only make use of this construction in the proof of Theorem 3.

An incidence coloring of a graph G is a color assignment to its incidences
in such a way that adjacent incidences receive distinct colors. The minimum
number of colors needed for G is the incidence coloring number of G. An
incidence of an edge e = vw is one of the incidences (v, e) or (w, e). Later
we will also consider the incidences of an oriented graph. In this case, in all
previous definitions the edges have to be replaced by arcs.

Upper bounds for the incidence coloring number have been determined for
several classes of graphs, e.g. for k-degenerate graphs, K4-minor free graphs
and planar graphs [9], and graphs with maximum degree 3 [13]. These bounds
depend on the maximum degree of the graphs. Guiduli [8] found the tight
asymptotic upper bound ∆ + O(log∆) for the incidence coloring number of
graphs with maximum degree ∆. For forests [3], Halin graphs of maximum
degree ∆ ≥ 5 and outerplanar graphs of maximum degree ∆ ≥ 4 [14], certain
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types of meshes [10], and complete k-partite graphs [12] the exact values of
the incidence coloring numbers are known.

Upper bounds for the game chromatic number have been determined for
forests [6], outerplanar graphs [7], graphs embeddable in an orientable sur-
face [11], line graphs of k-degenerate graphs [4], line graphs of forests with
maximum degree ∆ 6= 4 [4,5,1], and planar graphs [11,15].

When coloring incidences one should be aware of the unusal properties of
the adjacency relation of incidences. As depicted in Fig. 2, both incidences of
the edges incident with v (except vw) are adjacent to the incidence (v, vw),
whereas only one incidence of the edges incident with w is adjacent to the
incidence (v, vw), and the incidences of other edges (which are not depicted)
are not adjacent to (v, vw). Since the degree of v is m = 4 and the degree of w is
n = 6, the number of incidences adjacent to (v, vw) is 2(m−1)+1+(n−1) = 12
in our example. Therefore (v, vw) can be colored with a 13-th color.

A trivial upper bound for the incidence game chromatic number of graphs G∆

with maximum degree ∆ ≥ 1 is

ιg(G∆) ≤ 3∆ − 1. (1)

This is simply the maximum number of adjacent incidences an incidence can
have plus one. Our main theorem improves this bound for k-degenerate graphs
(Section 2.) The trivial upper bound is attained by sufficiently large cycles, as
we shall see in Section 3. In Section 4 we determine the exact incidence game
chromatic number of stars and wheels. When we use the ideas of these proofs
we obtain a lower bound for the incidence game chromatic number of graphs
with maximum degree ∆, a bound which is half of the trivial upper bound.
This phenomenon also occurs for the game chromatic index, the trivial lower
bound of which is half of its trivial upper bound.

v wx

Fig. 2. The incidences adjacent to the incidence x = (v, vw) are indicated by black
dots and the incidence (v, vw) is depicted by a grey dot with ‘x’. Here a black dot
on an edge f next to a vertex z means the incidence (z, f).
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2 k-degenerate graphs

In this section we will consider the incidence game chromatic number of k-
degenerate graphs. The proof uses an activation strategy. The idea of such an
activation strategy was already used by Cai and Zhu [4] in order to bound the
game chromatic index of k-degenerate graphs.

We start with a definition. A graph G with vertex set {v1, v2, . . . , vn} is k-
degenerate if there is a linear order

L(v1) < L(v2) < · · · < L(vn)

on its vertex set such that for every 1 ≤ i ≤ n the vertex vi has degree at most
k in the induced subgraph on the vertex set {v1, v2, . . . , vi}. We will prove the
following

Theorem 1 For a k-degenerate graph G with maximum degree ∆ we have

(a) ιg(G) ≤ 2∆ + 4k − 2.
(b) ιg(G) ≤ 2∆ + 3k − 1, provided ∆ ≥ 5k − 1.
(c) ιg(G) ≤ ∆ + 8k − 2, provided ∆ ≤ 5k − 1.

PROOF. We will describe a winning strategy of Alice with max{∆ + 8k − 2,
2∆ + 3k − 1} colors. Before doing so we need some preparations. The vertex
set {v1, v2, . . . , vn} of G is considered as ordered according to a linear order L,
i.e.

L(v1) < L(v2) < · · · < L(vn),

so that, for every 1 ≤ i ≤ n, vi has vertex degree at most k in the induced
subgraph on {v1, v2, . . . , vi}. Such an order exists, since G is k-degenerate. To
every edge vivj is assigned an orientation in such a way that if L(vi) > L(vj)

then (vi, vj) is an arc (directed edge). We call the digraph created this way ~G.

Every time we color an incidence, we color it in both G and ~G. Let d+(v)
be the number of out-arcs (v, w) of v. By construction, d+(v) ≤ k for every
vertex v. A sink is a vertex v with d+(v) = 0. The level of vertex vi is the
number i. The level of an arc is the level of its starting vertex.

During the game certain arcs are considered as active, all other arcs as inactive.
A subset of the active arcs is represented by the half-selected resp. selected
arcs, i.e. those arcs one incidence or both incidences of which are colored.
By an arc of minimum level we mean an uncolored or half-selected arc the
level of which is minimal among all such arcs. For an arc (v, w), we call the
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incidence (v, (v, w)) top incidence of (v, w), and the incidence (w, (v, w)) is
called bottom incidence of (v, w). An arc is called top-half-selected if its top
incidence is colored and its bottom incidence is uncolored.

At the beginning Alice colors a bottom incidence of an arc incident with a sink
and activates its arc. After that, for each of Bob’s moves, where Bob colors
an incidence of an arc (v, w), she answers as follows:

(Step 0) e = (v, w), activate e

(Step 1) while w has inactive out-arcs do

choose an inactive out-arc (w, w1), activate it,

w := w1

end do

(Step 2) if w has an unselected or top-half-selected active out-arc e,

(Step 2a) color the bottom incidence of e,

else if w has an half-selected active out-arc e,

(Step 2b) color the uncolored incidence of e,

(Step 2c) else color an incidence of an arc e of minimum level, activate e

(in Step 2c color a bottom incidence if possible)

We will show that for this strategy after every move of Alice every uncolored
incidence of an unselected or half-selected arc (v, w) has at most max{2∆ +
3k − 3, ∆ + 8k − 4} colored adjacent incidences. Note that, in Step 2c, no arc
(x, v) can be (half-)selected before (v, w) by Alice as (v, w) lies on a lower
level. Therefore arcs (x, v) can only pass through steps 1, 2a, and 2b before
both incidences of (v, w) are colored. There are at most #vout = k − 1 arcs
(v, y) different from (v, w). So at most k arcs (x, v) can have been activated
(Step 1) in order to activate arcs of the type (v, y). After that at most 2k − 1
arcs (x, v) can have been activated (Steps 1, 2a, 2b) in order to color 2k − 1

3k-1

k-1

v

w

-1

Fig. 3. Adjacent incidences of arc (v,w) which may be colored
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of the 2k incidences of the arcs (v, y). Thus there are at most #vin = 3k − 1
active arcs of the form (x, v). In the worst case there are #w = ∆ − 1 active
arcs incident with w. See Fig. 3. So, in the worst case the incidence (v, (v, w))
has at most

#w + 1 + 2#vout + 2#vin = ∆ + 8k − 4

adjacent incidences on active arcs, and the incidence (w, (v, w)) has at most

2#w + 1 + #vout + #vin = 2∆ + 4k − 3

adjacent incidences on active arcs after a move of Alice.

However, we need not count the number of adjacent incidences on active arcs,
but only the number of colored adjacent incidences. The latter number is
smaller than the previous since the set of selected and half-selected arcs is a
subset of the set of active arcs, and since Alice, by her strategy, prefers to color
bottom incidences. Therefore, when the incidence (w, (v, w)) is to be colored,
the top incidence of any arc of type (v, y) is either uncolored or colored by
Bob. If #v′

out = m top incidences of the arcs of type (v, y) (including (v, w))
are colored by Bob, then, by the same reasons as before, there are at most
#v′

in = 3k−1−m active arcs of the form (x, v). Thus the incidence (w, (v, w))
has at most

2#w + #v′

out + #v′

in = 2∆ + 3k − 3

colored adjacent incidences.

Summarizing, we state that after Alice’s move an incidence can have at most

max{∆ + 8k − 4, 2∆ + 3k − 3}

colored adjacent incidences. After Bob’s next move an incidence can have at
most

max{∆ + 8k − 3, 2∆ + 3k − 2}

colored adjacent incidences. We obtain the conclusion that

max{∆ + 8k − 2, 2∆ + 3k − 1}

colors are sufficient to color every incidence during the game.
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Further we have ∆ + 8k − 2 ≤ 2∆ + 3k − 1 if, and only if, ∆ ≥ 5k − 1, from
which (b) and (c) follows. Note that, for ∆ ≥ 4k, ∆ + 8k − 2 ≤ 2∆ + 4k − 2,
and for ∆ ≤ 4k − 1, the trivial upper bound 3∆− 1 is better than the bound
b0 = 2∆ + 4k − 2. Thus b0 is an upper bound for all ∆, as stated in (a). 2

The game chromatic index of a k-degenerate graph of maximum degree ∆ is
at most ∆+3k− 1 [4]. Our bound is better than simply doubling this bound.

Corollary 2 Let P be a planar graph with maximum degree ∆, O be an out-
erplanar graph with maximum degree ∆, and F be a forest with maximum
degree ∆. Then

ιg(P ) ≤ 2∆ + 18, ιg(O) ≤ 2∆ + 6, ιg(F ) ≤ 2∆ + 2

PROOF. This follows from the fact that planar graphs are 5-degenerate,
outerplanar graphs are 2-degenerate, and forests are 1-degenerate. 2

The results of this section have a noncompetitive analogue: Hosseini Dolama
et al. [9] found ∆+2k−1 as an upper bound for the incidence coloring number
of k-degenerate graphs and ∆+7 as an upper bound for the incidence coloring
number of planar graphs of maximum degree ∆.

3 Cycles

In this section we consider the incidence game chromatic number of cycles.
While the incidence game chromatic number of cycles attains the trivial upper
bound (1), its counterparts for stars and wheels, in Section 4, will make us
discover a trivial lower bound that cannot be improved for graphs in general.
Let Ck be the cycle with k vertices.

Theorem 3 ιg(Ck) = 5 for k ≥ 7.

PROOF. Let Ck be a cycle with k ≥ 7 edges. Then CI
k = (V I , EI) is the

graph with vertex set V I = {v1, v2, . . . , v2k} and edge set

EI = {vivj | i− j ≡ ±1,±2 mod 2k}.

ιg(Ck) ≤ 5 follows from the trivial upper bound. So, we only have to prove
ιg(Ck) = χg(C

I
k) ≥ 5, i.e. we have to explain a winning strategy for Bob for
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Fig. 4. A winning configuration for Bob on a cycle. If there are only 4 colors in the
game, the uncolored vertex v cannot be colored any more.
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Fig. 5. State of the game after Bob’s second move. Some vertices of of CI
k are black

dots, colored vertices are white dots with the number of the color in it.

the vertex coloring game with 4 or less colors on CI
k . It is easy to see that

Bob wins with 3 or less colors. Assume for the following that the players have
4 colors at their disposal. The general winning idea of Bob is to construct a
configuration as in Fig. 4.

W.l.o.g. Alice starts the game by coloring v2k−1 with color 1. Bob then colors
a vertex at distance 3, namely v2 with color 2. By reasons of symmetry we
may assume that Alice, in her next move, colors one of the vertices v3, . . . , vk,
and if she colors v3, then she uses color 1. Indeed if Alice colored v2k or v1

(with color 3), Bob would color v3 or v2k−2 at distance 3 from Alice’s vertex
with color 4, so that v1 or v2k could not be colored any more. In the same way,
if Alice colored v3 with color 3, Bob would color v2k with color 4, which would
result in a win for him since he has constructed a winning configuration around
the uncolored vertex v1. Since the vertex Alice has colored in her second move
is far enough away from v2k−4, Bob can color v2k−4 with color 2 in his second
move. (Here we need the precondition k ≥ 7, from which (2k − 4) − k ≥ 3
follows.) The situation of the game after Bob’s second move is depicted in
Fig. 5.

Now, Alice is stuck. By the same reason as discussed above, Alice may not
color v2k−5 or v3 with a color different from 1. Furthermore, if she colors

8



v2k−3, v2k−2, v2k or v1, Bob can force a win in his next move. The next moves
until Bob has created a winning configuration or until there are only 5 uncol-
ored vertices left will be called a round. Everything Alice can do is to color
the remaining of the vertices v3, . . . , v2k−5 in the round. Bob will color only
vertices v4, . . . , v2k−6 in the round. Either Bob wins or the round ends when
there are only 5 uncolored vertices left. Consider the latter case.

If Alice, in her last move, has colored v3 with a color different from color 1,
Bob can force a win as described above. Thus we may assume without loss of
generality that v3 is colored with color 1. We distinguish two cases.

The first case is that one of the vertices v4, . . . , v2k−6 is uncolored or v2k−5

is uncolored but can be colored with color 1. Then Bob colors this vertex,
preferably with color 1. Now the only uncolored vertices are v2k−3, v2k−2, v2k,
and v1. Alice colors one of these vertices with color 3 or 4. Then Bob colors the
uncolored vertex at distance 3 with a different color, and one of the remaining
uncolored vertices cannot be colored any more. (The colors 3 and 4 are allowed
for the vertex Bob has colored since v2k−5 and v3 are colored with color 1.)

In the second case v2k−5 is uncolored and cannot be colored with color 1. We
may assume that v2k−5 can be colored with color 3. Then Bob colors v2k−2

with color 4. In order to avoid the situation that v2k−3 cannot be colored any
more, Alice must either color v2k−3 with color 3 or v2k−5 with color 4. Then
Bob colors v1 with color 3, and wins since v2k cannot be colored any more.
His move is feasible as we have assumed that v3 is colored with color 1. 2

The same argumentation does not work for paths with k ≥ 8 edges. The
reason is that in the incidence graph of a cycle, for reasons of symmetry, we
can assume without loss of generality that Alice colors v2k−1 in her first move.
However, in the incidence graph of a path we cannot assume that Alice starts
coloring a vertex in the middle of a path. So we may formulate

Open question. Let P be a large path. Is ιg(P ) = 4 or ιg(P ) = 5?

4 Some simple classes of graphs

Let Sk be the star with k edges which are incident with the same center vertex.
Further let Wk be the wheel with 2k edges. Let v0 be the center vertex of a star
or a wheel. We call an incidence (v0, e) inner incidence, and an incidence (v, e)
with v 6= v0, but where v0 is incident with e, outer incidence. Incidences on the
rim of a wheel, which are neither inner nor outer incidences, are called border
incidences. In a star or a wheel, inner incidences are adjacent to all inner and
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outer incidences, but two different outer incidences are not adjacent.

Theorem 4 For k ≥ 1, ιg(S2k) = 3k.

PROOF. First, we describe a winning strategy for Alice playing on S2k with
3k colors. At the beginning, Alice colors inner incidences. If Bob colors an
outer incidence with color i, then Alice also colors an outer incidence with
color i. In this way, Bob can use at most k colors for outer incidences. If
Alice is forced to color an outer incidence (this is only the case when all inner
incidences are colored), then she colors an outer incidence with a color already
assigned to an outer incidence, except if there is no such color. In the latter
case she chooses one of the remaining k colors and continues coloring the outer
incidences with that color. Even if Bob always uses a new color for his outer
incidences, in his last move he will be forced to take a color already used. In
every case, 2k colors are used for inner incidences, and at most k colors for
outer incidences, so Alice wins.

Now we discuss a winning strategy for Bob with 3k − 1 or fewer colors. In
his k first moves, Bob colors k outer incidences with k distinct colors. Then
there are at most 2k − 1 colors left to color the inner incidences. Thus it is
impossible to color all of them, and Bob wins. 2

Theorem 5 For k ≥ 0, ιg(S2k+1) = 3k + 2.

PROOF. A winning strategy for Alice playing on S2k+1 with 3k + 2 colors is
given as follows. Alice, in her first k + 1 moves, colors outer incidences with
a fixed color i. Meanwhile, Bob can use at most k distinct colors for outer
incidences. So 2k + 1 colors are left for the inner incidences, and Alice wins.

We still have to exhibit a winning strategy for Bob with 3k+1 or fewer colors.
If Alice, in her first move, colors an inner incidence, Bob, in his first k + 1
moves, colors outer incidences with k +1 distinct colors. On the other hand, if
Alice, in her first move, colors an outer incidence with color i, then Bob, in his
next k moves, colors outer incidences with k distinct colors different from i. In
both cases, at most 2k colors are left for the inner incidences, which therefore
cannot be colored any more, i.e. Bob wins. 2

Theorem 6 For k ≥ 7, ιg(W2k) = 3k.

PROOF. First, we describe a winning strategy for Alice with 3k colors which
is very similar to the case of stars. Alice chooses 7 colors. During the game,
if one of her chosen colors is used for an inner incidence, she exchanges that
color with one of the colors not yet used for an inner incidence. This is possible
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since there are 3k ≥ 2k + 7 colors. As long as Bob colors inner incidences and
border incidences, Alice colors inner incidences (or, if she is forced to, border
incidences). If Bob colors an outer incidence, Alice replies by coloring an outer
incidence with one of her chosen 7 colors, preferably with the same color as
Bob (if necessary, Alice exchanges a color not used before among her 7 colors
with Bob’s color.) There is always a feasible color among these because an
outer incidence is affected by at most 4 border incidences. The same strategy
will make Alice win if she is forced to color outer incidences first (at the end
Bob can also use one of the 7 colors.) Note that border incidences are affected
by at most 4 border incidences, at most 2 outer incidences, and one inner
incidence. Thus a border incidence can always be colored by one of Alice’s 7
colors.

The winning strategy for Bob with 3k − 1 or fewer colors is just the same as
for a star: Bob first colors outer incidences with k distinct colors, then he will
win. 2

Theorem 7 For k ≥ 6, ιg(W2k+1) = 3k + 2.

PROOF. First, we prove a winning strategy for Alice with 3k+2 colors. Alice
chooses 7 colors. Every time one of these colors is used for inner incidences
she exchanges this color with a color not used so far. This is possible since
there are 3k + 2 ≥ (2k + 1) + 7 colors. In her first move, Alice colors an
outer incidence with one of the chosen colors. As long as Bob colors inner
or border incidences, Alice colors inner or border incidences as well. If Bob
colors an outer incidence, she colors an outer incidence preferably with the
same color (and in this case she exchanges this color with one of the seven
colors which has not been used before if such a color exists), or else with one of
the seven colors, preferably with a color already used. Playing this way Alice
can guarantee that the final set of seven colors will be used for outer incidences
and that the outer incidences are colored by at most k + 1 colors. Note that
there is no problem coloring the border incidences with these k+1 ≥ 7 colors.
So Alice wins.

A winning strategy for Bob with 3k + 1 or fewer colors is the same as with
stars. In his first k+1 moves Bob can guarantee that k+1 outer incidences are
colored distinctly. Then he will win as the inner incidences cannot be colored
any more. 2

Stars and wheels are classes of graphs for which the incidence game chromatic
number is asymptotically half of the value of the trivial upper bound. There
is no class of graphs where this fraction is lower because of the following
proposition.
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Proposition 8 For any graph G with maximum degree ∆, ιg(G) > 3∆−1

2

PROOF. A winning strategy for Bob with ⌈3∆

2
⌉ − 1 or fewer colors is given

as follows. Bob chooses a vertex v of degree ∆. An outer incidence of v is an
incidence (w, e) such that e = vw. In his first ⌈∆

2
⌉ moves, Bob (possibly with

Alice’s help) colors ⌈∆

2
⌉ outer incidences of v with ⌈∆

2
⌉ distinct colors. Then

there are only less than ∆ colors left for the incidences of type (v, e). Thus
Bob wins. 2

We have the analogon between the lower and upper bounds for the incidence
game chromatic number

3∆ − 1

2
< ιg(G∆) ≤ 3∆ − 1 (2)

and the trivial lower and upper bounds for the game chromatic index

2∆ − 1

2
< χ′

g(G∆) ≤ 2∆ − 1. (3)

The lower bounds are tight for every ∆ in the sense that no positive integer
may be added to them.

Open question. For fixed ∆ > 2, are the upper bounds in (2) and (3) tight?

Open question. Is the incidence game chromatic number a monotonic pa-
rameter (i.e. for a graph G is it as least as big as for any subgraph of G)?

The game chromatic number is known to be non-monotonic (consider Km,m

and its subgraph where a perfect matching is deleted). The game chromatic
index, too, is non-monotonic (consider C6 together with an isolated edge, and
its subgraph P6). Hence, it would be no surprise if the answer of the last
question was not affirmative.
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