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Abstract

A graph coloring game introduced by Bodlaender [3] as coloring construction game

is the following. Two players, Alice and Bob, alternately color vertices of a given
graph G with a color from a given color set C, so that adjacent vertices receive
distinct colors. Alice has the first move. The game ends if no move is possible any
more. Alice wins if every vertex of G is colored at the end, otherwise Bob wins. We
consider two variants of Bodlaender’s graph coloring game: one (A) in which Alice
has the right to have the first move and to miss a turn, the other (B) in which Bob
has these rights.

These games define the A-game chromatic number resp. the B-game chromatic
number of a graph. For such a variant g, a graph G is g-perfect if, for every induced
subgraph H of G, the clique number of H equals the g-game chromatic number
of H.

We determine those graphs for which the game chromatic numbers are 2 and
prove that the triangle-free B-perfect graphs are exactly the forests of stars, and
the triangle-free A-perfect graphs are exactly the graphs each component of which
is a complete bipartite graph or a complete bipartite graph minus one edge or a
singleton. From these results we may easily derive the set of triangle-free game-
perfect graphs with respect to Bodlaender’s original game. We also determine the
B-perfect graphs with clique number 3.

As a general result we prove that complements of bipartite graphs are A-perfect.
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1 Introduction

Consider the following game, which is played with a graph G and a set C of
colors by two players, Alice and Bob. The players alternately color a vertex
of G with a color from C in such a way that adjacent vertices receive different
colors. The game ends if either an uncolored vertex is adjacent to vertices of
all colors, in which case Bob wins, or every vertex is colored, in which case
Alice wins. Alice can never win if |C| < χ(G), where χ(G) is the chromatic
number of G, i.e. the number of colors needed to color G without having
a malicious adversary Bob. Bob can never win if |C| ≥ ∆(G) + 1, where
∆(G) is the maximum degree of G. This type of game was first considered
by Bodlaender [3] and Faigle et al. [10]. In the original version Alice has the
first move and missing a turn is not allowed, we, however, will deal with
variants where the latter is permitted. The first variant of the game, which we
call A, consists in giving Alice the right to have the first move and the right
to miss one or several turns. In the second variant, B, Bob has these rights.
For any variant g, the g-game chromatic number χg(G) of G is the smallest
cardinality of the color set C for which Alice has a winning strategy for the
variant g played on G.

For several variants of the game, determining upper bounds for the game
chromatic number of different classes of graphs has recently received atten-
tion. For Bodlaender’s original variant, e.g. the classes of trees [10], outerpla-
nar graphs [12], graphs embeddable in a fixed surface [14] including planar
graphs [18], line graphs of k-degenerate graphs [4] including line graphs of
forests of maximum degree ∆ 6= 4 [1], and (a, b)-pseudo partial k-trees [17]
have been examined. A new trend are results for relaxed coloring variants of
the game [5,13,7–9].

A graph G is called perfect if, for each induced subgraph H of G, the chro-
matic number χ(H) equals the clique number ω(H), i.e. the size of the largest
clique of H . Motivated by an application in coding theory, Berge was the first
to examine the structure of perfect graphs, cf. [2]. Since then, there have been
several hundreds of contributions to the theory of perfect graphs. By the fa-
mous Strong Perfect Graph Theorem [6] a graph is perfect if and only if it
contains neither induced cycles of odd length l ≥ 5 nor their complements.

We call a graph G g-nice if its g-game chromatic number equals its clique
number, i.e., χg(G) = ω(G). A graph G is g-perfect if every induced subgraph
H of G is g-nice. We have

ω(G) ≤ χ(G) ≤ χA(G) ≤ χB(G).

The first two inequalities are obvious, the third was first proven in [1]. Thus,
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B-perfect graphs are A-perfect, and A-perfect graphs are perfect.

In this paper we completely determine the A-nice and B-nice graphs with
clique number 2 and thus the A-perfect and B-perfect graphs with clique
number 2 (Corollary 16 and Corollary 4). As a corollary we obtain the game-
perfect graphs with clique number 2 for Bodlaender’s original version of the
game and for its dual (Corollary 19 and Corollary 20). For any variant g of the
game, all g-nice and g-perfect graphs with clique number 2 are in particular
bipartite. A graph G is bipartite if χ(G) ≤ 2. We also determine the B-perfect
graphs with clique number 3 (Theorem 26). The only class of perfect graphs
which could be recognized as A-perfect in general are complements of bipartite
graphs, see Section 5.

These results are first steps towards Strong Perfect Graph Theorems for game-
perfectness. However, the sets of forbidden induced subgraphs occurring in
Sections 2, 3, and 6 are far from being complete. Unlike perfectness, game-
perfectness does not have the Weak Perfect Graph Theorem’s property, i.e.
a graph is perfect if and only if its complement is perfect [15], but there are
A-perfect (B-perfect) graphs the complements of which are not A-perfect (B-
perfect), cf. Section 6.

We denote by Pn the path with n vertices, by Cn the cycle with n vertices, by
Kn the complete graph with n vertices, and by Km,n the complete bipartite
graph with partite sets of cardinalities m resp. n. By Km,n−Mk we denote the
graph which is obtained from Km,n by deleting a matching of cardinality k ≥ 0.
For a graph G and a subgraph H of G, V (G) denotes the vertex set of G, and
G \H is the graph obtained from G by deleting all vertices of H and incident
edges. The length of the path Pn is n−1. The distance d(v1, v2) of two vertices
v1 and v2 of a graph is the length of the shortest path containing v1 and v2,
or ∞ if there is no such path. The diameter of a graph G is defined as

diam(G) = sup
(v1,v2)∈V ×V

d(v1, v2).

A graph is called trivially perfect if it neither contains a P4 nor a C4 as an
induced subgraph. Trivially perfect graphs were introduced by Golumbic [11],
but examined even earlier, e.g. by Wolk [16]. A universal vertex of a graph
G = (V, E) is a vertex v ∈ V that is adjacent to every vertex w ∈ V , w 6= v.
A star is a tree that contains a universal vertex.

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. The join graph G1 ∨ G2

is defined as the graph consisting of disjoint copies G′

1 of G1 and G′

2 of G2

and additional edges in the form that every vertex of G′

1 is adjacent to every
vertex of G′

2. The union graph G1 ∪ G2 is defined as the graph consisting of
disjoint copies G′

1 of G1 and G′

2 of G2. For a graph G and n ≥ 0, the graph

3



nG is the graph

G ∪ G ∪ . . . ∪ G
︸ ︷︷ ︸

n

.

In case n = 0 it is the empty graph. The complement of a graph G is denoted
by G.

2 B-perfect graphs with clique number 2

The classification of B-nice (and B-perfect) graphs with clique number 2 is
given in this section. First we prove that the two configurations of Fig. 1 are
forbidden in B-perfect graphs.

Lemma 1 Let G be a graph with ω(G) = 2 containing an induced C4. Then

G is not B-nice.

PROOF. Let v1v2v3v4 be an induced C4. Bob has the following winning strat-
egy with 2 colors: He misses his turns until Alice either colors a vertex vi of
the C4 or one of its neighbors w with – say – color 1. In case Alice has colored
vi he replies by coloring vi+2 (index mod 4) with color 2. This is possible since
neither vi+1, vi+2, vi+3 nor any other neighbor of vi+2 has been colored before.
Bob wins, since vi+1 cannot be colored any more. In case Alice has colored a
neighbor w of vi outside the C4, Bob answers by coloring vi+1 with color 2.
This is possible, since no neighbor of vi+1 has been colored. Note that w is not
a neighbor of vi+1, otherwise there would be a triangle wvivi+1 contradicting
ω(G) = 2. Here again, since vi cannot be colored any more, Bob wins. 2

Lemma 2 Let G be a graph with ω(G) = 2 containing an induced P4. Then

G is not B-nice.

PROOF. Let v1v2v3v4 be an induced P4. Bob has the following winning strat-
egy with 2 colors: He misses his turns until Alice either colors a vertex vi of the
P4 or one of its neighbors w with – say – color 1. Then Bob colors a vertex x

of the P4 at distance 2 from vi resp. w with color 2. In case Bob has colored w
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The cycle C4 The path P4

Fig. 1. Two forbidden configurations for B-perfect graphs with clique number 2
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there is such a vertex, otherwise there would be a triangle in G as in the proof
of the previous lemma. If Bob has colored vi there is obviously a vertex of
distance 2 in the P4. This vertex can be colored with color 2 since none of its
neighbors has been colored. After that, there is a vertex y which is adjacent
to vi resp. w and x. The vertex y cannot be colored any more, so Bob wins. 2

Theorem 3 A graph G with ω(G) ≤ 2 is B-nice if, and only if, it is trivially

perfect. This is the case if, and only if, G is a forest of stars.

PROOF. Trivially perfect graphs with clique number of at most 2 are the
graphs without induced C3, C4 and P4. These are obviously forests whose
components have diameter 2 at most, i.e. forests of stars. If G contains a C4

or P4, by Lemma 1 resp. 2, G is not B-nice. We are left to prove a winning
strategy for Alice with 2 colors in case the graph is a forest of stars: If Bob
colors a leaf vertex of a star whose center v0 is uncolored, Alice colors v0 in
order to fix the coloring of the star. Otherwise Alice colors a center of a star
if there is still an uncolored center of a star. In case the centers of all stars
are colored, the coloring is fixed and Alice may color any uncolored vertex. In
case the star is a K2 we consider one of its two vertices as a center. By this
strategy, when Alice or Bob color a center of a star, at most one leaf vertex
of the star is colored, therefore 2 colors are sufficient. 2

Since every induced subgraph of a forest of stars is a forest of stars we obtain

Corollary 4 A graph G with ω(G) ≤ 2 is B-perfect if, and only if, it is

trivially perfect. This is the case if, and only if, G is a forest of stars.

3 A-perfect graphs with clique number 2

It is very easy to decide whether a connected graph with clique number 2 and
diameter 6= 3 has A-game chromatic number 2, see the following propositions.
But there are graphs with diameter 3 and clique number 2 as well with A-game
chromatic number 2 as with larger A-game chromatic number. For example,
consider the two graphs C6 and Π of Fig. 2 which have diameter 3 and clique
number 2. It is easy to see that χA(C6) = 2, but χA(Π) = 3. Alice has the
following winning strategy with two colors for C6: she misses her first turn
and, after Bob has colored a vertex v with the first color, she colors a vertex
at distance 3 from v with the second color. Then the colors of the remaining
vertices are fixed. Alice will also use such a fixing strategy in the case of other
bipartite graphs. This strategy fails for Π if Bob colors a vertex of degree 1 in
his first move.
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C6 Π

Fig. 2. Two graphs with diameter 3

This section contains a classification of A-nice graphs with clique number 2
which begins with Lemma 7 and does not make use of the notion diameter.

Proposition 5 Let G be bipartite and diam(Gi) ≤ 2 for each component Gi

of G. Then G is A-nice.

PROOF. We prove a winning strategy with 2 colors for Alice. Alice misses
her turns until Bob colors a first vertex x in some component Gi. If x is a
universal vertex of Gi, Alice continues passing since the coloring of Gi is fixed
by the color of x. On the other hand, if there is a vertex y with distance
d(x, y) = 2, then Alice colors the middle vertex z on the shortest path xzy

from x to y. We state that now the coloring is fixed since every vertex of Gi

has either distance at most 1 from x, or distance at most 1 from z. Assume
that there is a vertex a with d(a, x) = 2 and d(a, z) = 2. Then there are paths
abx and acz. In case b = c we have a triangle bxz, otherwise a C5 abxzc, both
contradicting the fact that G is bipartite. Alice uses this strategy for each
component that Bob begins to color, so there is no need for more than two
colors. 2

Proposition 6 Let G be bipartite and diam(Gi) ≥ 4 for some component Gi

of G. Then G is not A-nice.

PROOF. We prove a winning strategy for Bob with 2 colors. In Gi there is
a path v1v2v3v4v5 without abbreviation paths from v1 to v5. If Alice colors vi

or some neighbor of vi, Bob replies by coloring a vertex at distance 2 with the
remaining color, making it impossible to color the graph completely. Other-
wise, Bob colors v3. No matter what Alice does, since there are no common
neighbors of v1 and v5, Bob may color either v1 or v5 different from v3 in his
next move. Again, Bob wins. 2

Lemma 7 Let 1 ≤ k + 1 ≤ m ≤ n. Then Km,n − Mk is A-nice.

PROOF. Let P resp. Q be the partite sets with m resp. n vertices. Since
k ≤ m − 1 ≤ n − 1, P and Q contain each a vertex p resp. q that is adjacent
to all vertices of the other side. Alice’s winning strategy with two colors is
the following. In her first move she uses her right to miss a turn. W.l.o.g. Bob
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colors a vertex of P . If he colors a vertex that is adjacent to every vertex of Q,
Alice colors q with the second color. If Bob colors a vertex that is adjacent
with every vertex of Q except one vertex q′, Alice colors q′ with the second
color. In both cases the coloring is fixed after Alice’s move. 2

Lemma 8 For m ≥ 2, Km,m − Mm is A-nice.

PROOF. This is the same as the second case in the proof of the previous
lemma. 2

Lemma 9 For 2 ≤ m < n, Km,n − Mm is not A-nice.

PROOF. Let M resp. N be the partite sets with m resp. n vertices. Let
W ⊆ N be the vertices which are adjacent to all vertices of M . As m < n,
W 6= ∅. We prove a winning strategy for Bob with two colors in the game A.

If Alice uses her first move to color a vertex with the first color, then Bob
colors a vertex of the same partite set with the second color. As the graph is
connected, Bob will win.

If Alice misses her turn, Bob colors a vertex of W with the first color. Alice
now colors a vertex of M or N , or she misses her turn. If she colors a vertex x

of M she has to use the second color. Bob then colors the unique vertex y of
N that is not adjacent to x with the second color. If she colors a vertex of N

or misses her turn, since m ≥ 2, she leaves at least one vertex y′ of N \ W

uncolored. Bob then colors y′ with the second color. In any case, since the
graph is connected, Bob will win. 2

Lemma 10 Let G be a graph with ω(G) = 2 and let H be an induced subgraph

of G which does not contain any isolated vertices. Assume that, in her first

move of the game A played on G with 2 colors, Alice colors a neighbor v ∈
V (G \ H) of w ∈ V (H). Then Bob wins.

PROOF. Since there are no isolated vertices in H , there is an edge wz ∈
E(H). There is no edge vz ∈ V (G), otherwise there would be a triangle vwz,
contradicting ω(G) = 2. So Bob may color z different from v. During the
game, w cannot be colored feasibly any more, i.e., Bob wins. 2

The proof of the following lemma is obvious.
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Fig. 3. Two forbidden configurations for A-perfect graphs with clique number 2

Lemma 11 Let G be a graph with ω(G) = 2 and let H be an induced subgraph

of G, so that every vertex of H lies on an induced P4 ⊆ H. Assume that, in

her first move of the game A played on G with 2 colors, Alice colors a vertex

of H. Then Bob wins.

A chair is the graph on the left-hand side of Fig. 3. It will be denoted by Ch.
In the Lemmas 12 and 13 we will prove that Ch and P6 are forbidden config-
urations for A-perfectness. In the proof of Lemma 12 we will use the notation
from Fig. 3.

Lemma 12 Let G be a graph with ω(G) = 2 that contains an induced chair

Ch. Then G is not A-nice.

PROOF. We prove a winning strategy for Bob with 2 colors. If Alice colors a
neighbor of v, v1,1, v2,1, v3,1 or v3,2 in her first move, Bob will win by Lemma 10.
If Alice colors v, v1,1, v2,1, v3,1 or v3,2, then Bob will also win, by Lemma 11.
So we are restricted to the case that Alice passes or colors a vertex which is
neither one of Ch nor one of its neighbor vertices. In this case Bob colors v1,1

with the first color. Now, Alice may neither color v3,2 with the first color nor
v2,1 or v3,1 with the second color, otherwise she will loose. If Alice colors a
vertex with the first color, Bob answers by coloring either v2,1 or v3,1 with the
second color. On the other hand, if Alice colors a vertex with the second color
or if she misses her second turn, Bob colors either v3,2 with the first color or
v2,1 with the second color. In either case, Bob wins. 2

Lemma 13 Let G be a graph with ω(G) = 2 that contains an induced path P6.

Then G is not A-nice.

PROOF. Let v1v2v3v4v5v6 be an induced P6 in G. We prove a winning strat-
egy for Bob with 2 colors. If Alice, in her first move, colors a neighbor of
some vi, Bob has a winning strategy by Lemma 10, if she colors some vi, Bob
wins by Lemma 11. We are left with the case that Alice colors some other
vertex or misses her turn. In this case, Bob will respond by coloring v3 with
the first color. Then, if Alice colors some vertex with the first color or if she
passes, Bob may color either v1 or v5 with the second color in order to win. In
case Alice colors some vertex v 6= v6 with the second color, Bob colors v6 with
the first color and wins. If Alice colors v6 with the second color, Bob wins by
coloring v1 with the second color. 2
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Lemma 14 Let G be a connected bipartite graph that does neither contain

an induced chair Ch nor an induced P6. Then G is a Km,n − Mk, where

k ≤ min{m, n}.

PROOF. Since G is bipartite, there exist integers m and n, so that G is
subgraph of Km,n. Assume in G there are two different vertices v and w on
the same side and a vertex z on the other side with the property that edges
vz and wz do not exist in G. As G is connected, there are shortest paths
v . . . z and w . . . z in G. Assume that one of them has length ≥ 5. Then this
path contains an induced P6, contrary to the precondition. So both paths
have length exactly 3. Let vxyz and wabz be these paths which w.l.o.g. have
a maximal number of common edges among all such pairs of paths. Let z0 be
the first common vertex of both paths (beginning each path from v and w,
respectively). So the vertices after z0 are equal in both paths.

Case 1: z0 = z

Then vxyzbaw is an induced P7, which contradicts the precondition. Note that
there is no edge ya, otherwise y would be first common vertex of the paths.
By the same argument, va, wx, and bx do not exist in G, since otherwise a,
x, or b would be first common vertex, respectively.

Case 2: z0 = y = b

There is no edge va (resp. wx), because otherwise a (resp. x) would be the
first common vertex of the paths. Thus vxyaz is an induced S1,1,2, contrary
to the precondition.

Case 3: z0 = x = a (which implies y = b)
In this case vwxyz is an induced S1,1,2.

In every case, we obtain a contradiction, hence our assumption was wrong,
and in Km,n misses a matching at most. 2

Theorem 15 Let G be a graph with ω(G) = 2. Then G is A-nice if, and only

if, each component H of G is K1 or Km,n−Mk, for k < m ≤ n, or Km,m−Mm.

PROOF. If every component H of G is K1 or Km,n −Mk, for k < m ≤ n, or
Km,m − Mm, then by Lemma 7 resp. Lemma 8 Alice has a winning strategy
with two colors for every component. Note that the ‘local’ winning strategy
of every component guarantees that she may miss her first turn, see the proof
of Lemmas 7 and 8. We will describe a ‘global’ winning strategy, i.e. we prove
that Alice wins on G with two colors. Alice misses her first turn. After that,
whenever Bob colors a vertex of any component H0, Alice replies by playing in
H0 according to her winning strategy for H0, i.e. she either colors a vertex of
H0 or misses her turn. If Bob colors the first vertex of H0, Alice, in order to be
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able to apply her local winning strategy, thinks that she has missed her first
turn. If, by Bob’s move, H0 is completely colored, she misses her turn. Alice
interchanges her winning strategies in the same way as Bob interchanges the
components in which he plays. Bob has no chance to break the local winning
strategies, so Alice will win by her global strategy with two colors on G. Thus
G is A-nice.

Now consider the case that a component H is different from K1 and Km,n−Mk,
for any k < m ≤ n, and Km,m − Mm. Then either H is a Km,n − Mm with
2 ≤ m < n, in which case Bob has a winning strategy with two colors by
Lemma 9 if he only plays in H , or H is not bipartite, in which case Bob
obviously wins with two colors, or H is bipartite but not of the form Km,n−Mk

for k ≤ m ≤ n. In the latter case, by Lemma 14, H contains an induced chair
or an induced P6. Thus Bob has a winning strategy with two colors by playing
only in H , according to Lemma 12 resp. Lemma 13. If in the cases in which
Bob only plays in H Alice colors a vertex in a different component, Bob, in
order to be able to apply his winning strategy, thinks that she has missed her
turn. So G is not A-nice since ω(G) = 2. 2

Corollary 16 A graph G with ω(G) ≤ 2 is A-perfect if, and only if, every

component of G is either K1 or Km,n or Km,n − M1 for some m, n.

PROOF. The A-nice configurations Km,n − Mk for m, n ≥ 3, k ≥ 2 are
excluded from being A-perfect, since they contain an induced subgraph iso-
morphic to K3,2 − M2, which is not A-nice. 2

4 Bodlaender’s original version

We consider two other games. The first one is Bodlaender’s original game,
which was called coloring construction game by Bodlaender [3] and which we
denote by gA, where Alice has the first move, but missing a turn is not allowed
for any player. Its dual version is gB, where Bob has the first move and missing
a turn is not allowed. The other rules of these games are the same as in the
variants A and B. For the associated game chromatic numbers we have by [1]
for any graph G

χA(G) ≤ χgA
(G) ≤ χB(G),

and

χA(G) ≤ χgB
(G) ≤ χB(G).
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Thus gA-nice and gB-nice graphs with clique number 2 are contained in the
set of A-nice graphs. As in the proof of Lemma 7 resp. 8 it is easy to see
that the connected gA-nice graphs with clique number 2 are exactly nontrivial
stars, thus exactly the connected B-nice graphs with clique number 2, and
the connected gB-nice graphs with clique number 2 are the connected A-nice
graphs with clique number 2.

In the following, we will consider two types of components: stars and A-
components. Denote by A-component a connected Km,m−Mm or a connected
Km,n−Mk for k < m ≤ n that is not a star. An odd resp. even component is a
component with an odd resp. even number of vertices. Then we may formulate

Theorem 17 Let G be a graph with clique number 2. Then G is gA-nice if,

and only if, it holds either

(i) every component of G is a star, or

(ii) G consists of an odd number of odd stars and an arbitrary number of

even stars and exactly one odd A-component, or

(iii) G consists of an odd number of odd stars and an arbitrary number of

even stars and an arbitrary number of even A-components.

Theorem 18 Let G be a graph with clique number 2. Then G is gB-nice if,

and only if, it holds either

(i) every component of G is a star, or

(ii) G consists of an even number of odd stars and an arbitrary number of

even stars and exactly one odd A-component, or

(iii) G consists of an even number of odd stars and an arbitrary number of

even stars and an arbitrary number of even A-components.

PROOF. (Theorems 17 and 18) In both variants, every A-component has
to be colored by Bob first, otherwise Alice will loose. The possibilities for Alice
to force Bob to this are given in the theorems. 2

Corollary 19 A graph G with clique number 2 is gA-perfect if, and only if,

it is a forest of stars.

PROOF. The graphs in case (i) of Theorem 17 are obviously gA-perfect.
Consider the case that G contains an odd number of odd stars as in case (ii)
and (iii). Then the subgraph of G in which one of the odd stars is deleted has
an even number of odd stars and at least one A-component, hence it is not
gA-nice. 2
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Corollary 20 A graph G with clique number 2 is gB-perfect if, and only if,

it is either a forest of stars or a single A-component of type Km,n − M0 or

Km,n − M1.

PROOF. Case (i) of Theorem 18 describes obviously gB-perfect graphs. Now
consider case (ii) and (iii) of Theorem 18. If G contains an even number ≥ 2
of odd stars, then the subgraph where one of these odd stars is deleted has an
odd number of odd stars and is not gB-nice. Also, if G contains an arbitrary
number ≥ 1 of even stars, then the subgraph where one vertex of degree 1 in
an even star is deleted has an odd star, thus it is not gB-nice. So G has no
stars and a single odd A-component in case (ii) or some even A-components
in case (iii). In the latter case, if G has more than one even A-component then
the subgraph H which is obtained by deleting a vertex of smallest degree has
either a Km,n − Mm with m < n (which is not gB-nice) and at least one even
A-component, or one odd A-component and at least one even A-component,
or a single odd star and at least one even A-component, thus H is not gB-
nice. So in case (ii) and (iii) G is a single A-component which is of the form
Km,n −M0 or Km,n −M1 by Corollary 16 using χgB

(G) ≥ χA(G). It is easy to
see that such a graph is always gB-perfect since every subgraph is of the form
Km′,n′ − Mk with k ∈ {0, 1}. 2

5 The general case

In the previous sections we have examined game-perfectness of graphs with
clique number 2. Now we will focus the more general case where there is no
restriction on the clique number. Since the complete solution of the general
case for a variant g would be a game-theoretic analogon of the Strong Perfect
Graph Theorem [6] such a characterization might be hard to obtain and can-
not be given at this time. Instead, we start with observations concerning A-
resp. B-nice graphs and the relation to the game chromatic numbers of their
components. After that we will discuss whether certain subclasses of perfect
graphs are A- resp. B-perfect in general.

Theorem 21 A graph G is B-nice if, and only if, for each component H of G

Alice has a winning strategy in the game B played on H with ω(G) colors.

PROOF. Assume there is a component H0 with the property that Bob has
a winning strategy in the game B played on H0 with ω(G) colors. We have
to prove that Bob has a winning strategy on G with ω(G) colors. Consider
the game played on G. Then Bob only plays on H0 according to his winning
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Fig. 4. The graph G2

strategy for H0. (If Alice plays in a component different from H0, Bob misses
his next turn.) So Bob will win globally, i.e. on G.

Now assume that Alice has a winning strategy for every component H of G

in the game B with ω(G) colors. We shall prove a winning strategy for Alice
on G with ω(G) colors. Alice always answers a move of Bob by playing in
the same component where Bob has just colored a vertex according to her
winning strategy for this component. If the component is completely colored
or if Bob misses his turn, she arbitrarily chooses a component and thinks “Bob
has missed his turn playing in that component.” Playing like that Alice wins
on G with ω(G) colors. 2

Theorem 22 If a graph G is A-nice, then for each component H of G Alice

has a winning strategy in the game A played on H with ω(G) colors.

PROOF. Assume that there is a component H0, so that Bob wins the game A

on H0 with ω(G) colors. Then Bob has a global winning strategy on G with
ω(G) colors if he only plays on H0. If Alice colors a vertex in a different
component, Bob imagines that she has missed a turn. So Bob wins on G. 2

Remarkably, the inverse implication of Theorem 22 does not hold for ω(G) ≥ 3.
It is easy to see that each component of the graph G2 of Fig. 4 has A-game
chromatic number 3 = ω(G2), but G2 itself has A-game chromatic number 4.

Special classes of perfect graphs are bipartite graphs, comparability graphs
and triangulated graphs, and their complements, cf. [2]. Interval graphs are
special triangulated graphs. Bipartite graphs are special comparability graphs.
None of these classes, except the class of complements of bipartite graphs, is
contained completely in the class of B-perfect or A-perfect graphs. P4 is a
bipartite interval graph and the complement of a bipartite interval graph as it
is self-complementary, but not B-perfect. An example of a bipartite interval
graph is P5, which is not A-perfect. Ch is not A-perfect but the complement
of an interval and comparability graph, namely the graph in Fig. 10 (a). Some
non-trivial examples for interval graphs are given in Figs. 5 and 6.

The interval graph of Fig. 5 is not B-perfect since it contains an induced P4.
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Fig. 5. An interval graph which is not B-perfect

Fig. 6. An interval graph which is not A-perfect

The interval graph of Fig. 6 is not A-perfect, even not A-nice. A winning
strategy for Bob with 3 colors consists in the following general idea: For one
component of the graph of Fig. 4 Alice wins with 3 colors if she colors the
two vertices of degree 4 in her first two moves. This strategy does not work
any more for the graph of Fig. 6 because of the vertex of degree 1, as careful
case distinctions show. (If Alice, in her first move, colors one of the vertices of
degree 4 with color 1, Bob colors one of the vertices of degree 2 with color 2.
If Alice, in her next move, leaves the other vertex v of degree 4 uncolored, she
cannot avoid that Bob colors either the other vertex of degree 2 or the vertex
of degree 3 with color 3, so that v cannot be colored any more. Therefore Alice
must color v with color 3. Then Bob colors the vertex of degree 1 with color 2,
and he wins since the vertex of degree 3 cannot be colored any more. — If
Alice, in her first move, colors one of the three vertices of degree 2 or 3 with
color 1, then Bob colors a second of these vertices with color 2 and wins since
not both vertices of degree 4 can be colored. — If Alice, in her first move,
colors the vertex of degree 1 with color 1, Bob colors a vertex of degree 2 with
color 1, and not all three vertices of degree 3 and 4 can be colored (with the
remaining two colors). — Finally, if Alice, in her first move, misses her turn,
Bob colors the vertex of degree 3 with color 1. Since Alice can color only one
vertex in her next move, she cannot avoid that Bob colors a vertex of degree 2
with either color 2 or 3 in his following move. Then one of the vertices of
degree 4 cannot be colored any more. — Thus Bob wins in every case.)

Theorem 23 Complements of bipartite graphs are A-perfect.

PROOF. Let G = (A∪B, E) be a bipartite graph and G′ be its complement.
So A and B are the vertex sets of cliques in G′, but not necessarily of maximum
cliques. Let ω(G′) be the clique number of G′. Since G′ is perfect, there is a
coloring c : A∪B −→ {1, . . . , ω(G′)} with ω(G′) colors. We call a vertex which
is the only vertex in c of a certain color a single vertex. All other vertices are
called double vertices as every color class in c has at most two vertices. If v is a
vertex and w is a vertex of the same color in c, then w is called the companion

of v. We will prove that for the variant A, Alice has a winning strategy with
ω(G′) colors.
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Alice misses her first turn. If Bob colors a single vertex, Alice misses her
turn. If Bob colors a double vertex v with a color not used so far and the
companion w of v is uncolored, then Alice colors w with the same color as
Bob has colored v. The last case is that Bob colors a double vertex v with a
color already used for another vertex and the companion w of v is uncolored.
In this case Alice colors w with a new color. Note that the number of colors in
the partial coloring Alice and Bob produce is never greater than the number
of colors in the partial coloring of c induced by the same vertices. This is so
because the last case may only occur if at a certain point of the game Bob has
used the color he already assigned to a single vertex for a double vertex. (And
after that Bob may have used the color of a double vertex for a double vertex
which is not its companion.) There are no further cases since after Alice’s
moves if a double vertex is colored then its compagnion is also colored. So at
the end the players will have used only ω(G′) colors. 2

6 Towards a Strong Perfect Graph Theorem for B-perfect graphs

We define a broken wheel as a graph G with a universal vertex v0 and n sets
A1, . . . , An of vertices and possibly an additional set B of vertices with the
following properties. Between vertices of different sets Ai and Aj or B there
are no edges. The subgraph induced by Ai is a complete graph. The subgraph
induced by B is a complete graph without one edge b1b2 between two vertices
b1, b2 ∈ B. So the maximum cardinality of Ai ∪ {v0} resp. B determines the
clique number ω(G). See Fig. 7 for an example of a broken wheel with clique
number 3.

Theorem 24 A graph each component of which is a broken wheel is B-perfect.

PROOF. First, we prove that such a graph G is B-nice. By Theorem 21
we may assume that G is a broken wheel. We give a winning strategy for
Alice with ω(G) ≥ 3 colors. Alice has to do two things: to color the universal
vertex v0 as early as possible, but if Bob colors bi, i ∈ {1, 2}, then she has to
color b3−i with the same color. So the universal vertex will be colored after
Alice’s second move (possibly with the third color) and the remaining ω(G)−1
or fewer vertices of a set Ai can always be colored. The same holds for B if
Alice colors b3−i immediately after Bob has colored bi. If Bob forces Alice to
color the first vertex of {b1, b2}, then this will be at the end of the game when
every vertex of B except b1 and b2 is colored. But then there is no danger
for Alice any more to color a vertex bi. So Alice will win in every case. For
ω(G) ≤ 2 a broken wheel is simply a star.
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Fig. 7. A broken wheel with clique number 3

Now we have to prove that every subgraph of a graph the components of which
are broken wheels is a graph all components of which are broken wheels. But
this is obvious since if vertices in an set of type Ai are missing then we obtain
again a clique thus a set of type Ai. On the other hand, if vertices in a set of
type B are missing we either obtain a set of type Ai or of type B. Hence, in
every component there is at most one set of type B. If v0 is missing then every
set Ai and B forms a component which is a trivial broken wheel. In each of
these components any vertex except b1 and b2 is a new universal vertex of the
component. We conclude that a graph of broken wheels is B-perfect. 2

One may conjecture that the broken wheels are mainly all B-perfect graphs.
The next theorem proves this conjecture for graphs with clique number 3.
We need the following lemma concerning trivially perfect graphs which was
proved by Wolk [16].

Lemma 25 (Wolk [16]) Let G be a connected trivially perfect graph. Then

G contains a universal vertex.

Theorem 26 A graph G with ω(G) = 3 is B-perfect if and only if every

component of G is a broken wheel.
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Fig. 8. Two more forbidden configurations for B-perfect graphs

Fig. 9. Two B-perfect graphs with clique number 4

PROOF. By Theorem 24 a graph each component of which is a broken wheel
is B-perfect. Now consider the case that G with ω(G) = 3 is B-perfect. By
the proofs of Lemmas 1 and 2, G is trivially perfect. Therefore, by Lemma 25,
every component of G contains a universal vertex. Consider such a component
with universal vertex v0. Let S be a 2-connected block of this component. Since
S \ {v0} does not contain induced P4 or C4, S \ {v0} is a star. If it is a star
with three or more leaves, then Bob has a winning strategy with three colors:
in his first move he colors a leaf, in his second move a leaf with a different
color. So S \ {v0} is either K1, K2 or P3. If two different blocks without the
universal vertex are P3, then Bob has the following winning strategy: in his
first move he colors the first leaf v1 of the first P3 with the first color. If Alice
colors one of the neighbors v2 or v0 of v1 with the second color or a vertex of
the second P3 or of another block with an arbitrary color, then Bob colors the
second leaf of the first P3 with the third color, so that eventually either v2 or
v0 will be surrounded by all three colors. So the only possibility for Alice to
play safely is to color the second leaf of the first P3 with the first color. But
then Bob colors the first leaf of the second P3 with the second color. By the
same argument as above, the only chance for Alice to play safely is to color
the second leaf of the second P3 with the second color. However, then Bob
colors v2, the third vertex of the first P3, with the third color, and Alice has
lost as v0 cannot be colored any more. Thus the respective component of G is
a broken wheel. 2

The graphs depicted in Fig. 8 have clique number 3 but are no broken wheels,
therefore they are not B-perfect by Theorem 26. There are connected graphs
with clique number ≥ 4 which are B-perfect but no broken wheels, e.g. the
graphs in Fig. 9. Alice has the following winning strategy with 4 colors for the
graphs of Fig. 9. In her first two moves she ensures that the two vertices of
degree 4 (in the left-hand graph) resp. of degree 5 (in the right-hand graph)
are colored. This is possible since, if Bob uses two different colors in his moves,
Alice can use the other two colors in her two first moves. The remaining vertices
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can be colored in any case since they have degree of at most 3.

In general, the definition of broken wheels has to be refined.

Conjecture. A graph G with ω(G) = 4 is B-perfect if, and only if, G is of

the form

K1 ∨ (n1K1 ∪ n2K2 ∪ n3P3

∪n4K3 ∪ n5(K1 ∨ 2K2) ∪ n6(K1 ∨ (K1 ∪ K2)) ∪ n0(K2 ∨ K2))

with ni ≥ 0, n0 ∈ {0, 1}, and n4 + n5 + n6 + n0 ≥ 1.

For example, if we set n6 = 1 and n1 = n2 = n3 = n4 = n5 = n0 = 0 in the
conjecture, we obtain the left-hand graph of Fig. 9. The right-hand graph is
obtained if we set n5 = 1 and n1 = n2 = n3 = n4 = n6 = n0 = 0. A broken
wheel is obtained if we set n5 = n6 = 0.

Final remark. The Weak Perfect Graph Theorem [15] states that a graph
is perfect if, and only if, its complement is perfect. There is no game theo-
retic analogon of this theorem. An example with 5 vertices is the graph in
Fig. 10 (b) which is B-perfect but its complement C4 ∪ K1 is not B-perfect.
The complement of the A-perfect graph in Fig. 10 (a) is the chair Ch which
is not A-perfect.

(a) (b)

Fig. 10. An (a) A-perfect resp. (b) B-perfect graph the complement of which is not
A-perfect resp. B-perfect

Open question. Find an analogon to the Strong Perfect Graph Theorem for
game-perfectness.
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