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1 Motivation

Signed graphs have been studied a lot during the last two decades. We address
the vertex disjoint negative cycle packing problem posed by Zaslavsky [7,
Problem II.A.1a]. Our aim is to find two vertex disjoint negative cycles in
reasonable time which generalizes the problem of finding two vertex disjoint
odd cycles in a graph.

In the first stage we show that the problem is solvable in polynomial time as it
reduces to testing a given matrix for total unimodularity. Such an algorithm
operates on the incidence matrix of the signed graph and does not make use
of the underlying graphic structure.

There are at least two ways to accelerate the procedure. The first is to dis-
assemble the total unimularity test and to consider minimum non-totally uni-
modular submatrices resulting in a complexity of at least one total unimodu-
larity test which is still not very efficient.

Instead, we try to find an algorithm that acts on the graph itself, investigate
structural properties of the problem and present instances where straight-
forward approaches fail.
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Signed Graphs

A signed graph G(V, E, Σ) is a (multi-)graph G(V, E) together with a partition
E = Σ∪̇(E \Σ) of its edges into negative and positive edges. A subset of edges
is called negative if it contains an odd number of negative edges and even,
otherwise. A cycle of a signed graph is a cycle of G(V, E).

We consider the problem of finding two vertex disjoint negative cycles in
G(V, E, Σ). If Σ = E this problem is equivalent to finding two vertex dis-
joint cycles of odd length.

Proving Polynomiality

The Bias Matroid of a Signed Graph

The node-edge incidence matrix A(G) of a signed graph is the matrix with ±1
in component av,e when e ∈ E is a non-loop edge incident with v ∈ V . The
signs in a column corresponding to a non-loop edge e alternate/correspond
when e is positive respectively negative. Positive loops correspond to zero-
columns and negative loops correspond to columns that have a 2 in the row
corresponding to the incident vertex.

The circuits of a signed graph G are the edge sets corresponding to minimal
linear dependent columns of A(G) and form the set of circuits of a matroid
(see Oxley [2]) which is called the bias matroid of G. Zaslawski [8] has shown
that these are exactly the edge sets corresponding to

· positive cycles of G
· pairs of negative cycles intersecting in a single vertex
· pairs of vertex disjoint negative cycles connected with a (non-trivial) path.

The last type is called a handcuff. Our problem now reduces to searching a
connected signed graph for a handcuff.

If G(V, E) is not 2-connected one can try and find in any block of G a negative
cycle in linear time (at least one has to be careful that two such cycles do not
intersect in a cut vertex). Thus, it suffices to consider the 2-connected case.
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A Forbidden Minor

Proposition 1.1 (Tutte [6]) A matroid is binary if and only if it does not
contain a 4-element minor whose circuits are {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}.

The minor in the above theorem is the uniform matroid U2,4 of rank two with
four elements, the four point line. One easily checks that U2,4 is isomorphic to
the bias matroid of the following signed graph ±Ko

2 (negative edges are bold):

By the 2-connectedness and Menger’s Theorem two disjoint negative cycles can
be connected by two vertex disjoint paths. These paths and cycles together
contract to ±Ko

2 . Hence we get the following result of Pagano [3]:

Proposition 1.2 The bias matroid of a 2-connected signed graph G is not
binary if and only if Ĝ contains two disjoint negative cycles.

Here, Ĝ is the signed graph obtained from G by contracting all blocks that do
not contain a negative cycle.

With its rational representation matrix A(G) the bias matroid of a signed
graph is orientable and, therefore a 2-connected signed graph (resp. its bias
matroid) is regular if and only if it has no ±Ko

2 minor.

A matroid representable over Q is regular if and only if it has a representation
by a totally unimodular matrix. Total unimodularity testing is possible in
polynomial time (see Cunningham and Edmonds [1]). As regular matroids are
uniquely representable it suffices to test A(G) for total unimodularity.

Proposition 1.3 Let M(G) be a minimal non-regular bias matroid of a signed
graph (i. e. the deletion of any edge makes M(G) into a regular matroid). Then
M(G) has corank 2, i. e. M(G) \ e contains exactly one circuit for any edge
e.

An outline of a polynomial algorithm is as follows: Delete edges as long as the
incidence matrix remains non-totally unimodular. Then find a handcuff in the
corank 2 minor of G′ of G by deleting each edge once.

Structural Considerations

The fact that the family of odd cycles does not have the Erdös-Pósa property
constitutes that the problem at least is not trivial:
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Proposition 1.4 (Rautenbach and Reed [4]) There is no integer k such
that every graph G either contains 2 vertex disjoint odd cycles or a set K of
k vertices such that G \K is bipartite.

The graph instances that require the deletion of o(|V |) vertices are the Escher
walls (see [4]). Hence, the existence of two vertex disjoint odd cycles cannot
be checked by deleting a subset of vertices of fixed size.

Switching a vertex v, i. e. making positive edges incident with v negative and
vice versa, leaves the circuit structure invariant. The goal is to find a switching
so that there are two disjoint negative cycles each having only one negative
edge. Then we have

Theorem 1.5 If G contains two vertex disjoint negative cycles C1, C2 satis-
fying C1 ∩ Σ = C2 ∩ Σ = 1 then these can be found in polynomial time.

The proof of this is very easy. Consider any pair of two nonadjacent negative
edges s1t1 and s2t2 and find in G \ Σ two vertex disjoint paths from si to ti
for i ∈ {1, 2}. This is possible in O(|V | · |E|) time (see [5]).

The above argument also holds for a fixed number of p vertex disjoint negative
circles but the corresponding polynomial algorithms are hardly practical for
p > 2 ([5]). p vertex disjoint paths can be found in O(|V |2|E|) but with a
large constant factor.

The problem is to find a switching so that two such cycles exist. Take any
spanning tree T of G. Then there is an S ⊆ V so that all edges of T are positive.
Obviously, there are trees so that the assumption of the above theorem holds.
Unfortunately, we can construct counterexamples so that spanning trees with
nice structural properties such as DFS trees or Hamiltonian paths leave one
pair of two disjoint negative cycles that both have more than one negative
edge:

A signed graph with a unique pair of two negative disjoint cycles
spanned by a positive path
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