The Orthogonal Rayleigh Quotient Iteration (ORQI) method

by

Achiya Dax

March, 2000

Hydrological Service
P.O.B. 6381

Jerusalem 91063
ISRAEL

Abstract. This paper presents a new method for computing all the eigenvectors of a real $n \times n$ symmetric tridiagonal matrix T. The algorithm computes an orthogonal matrix $Q=\left[\mathbf{q}_{1}, \ldots, \mathbf{q}_{n}\right]$ and a diagonal matrix $\Lambda=\operatorname{diag}\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ such that $T Q=Q \Lambda$. The basic ideas are rather simple. Assume that $\mathbf{q}_{1}, \ldots, \mathbf{q}_{k-1}$ and $\lambda_{1}, \ldots, \lambda_{k-1}$ have already been computed. Then \mathbf{q}_{k} is obtained via the Rayleigh Quotient Iteration (RQI) method. Starting from an arbitrary vector \mathbf{u}_{0} the RQI method generates a sequence of vectors $\mathbf{u}_{\ell}, \quad \ell=1,2, \ldots$, and a sequence of scalars $\rho_{\ell}, \ell=0,1,2, \ldots$. The theory tells us that these two sequences converge (almost always) to an eigenpair (ρ^{*}, \mathbf{u}^{*}). The appeal of the RQI method comes from the observation that the final rate of convergence is cubic. Furthermore, if the starting point is forced to satisfy $\mathbf{q}_{i}^{T} \mathbf{u}_{0}=0$ for $i=1, \ldots, k-1$, as our method does, then all the coming vectors, $\mathbf{u}_{\ell}, \ell=1,2, \ldots$, and their limit point, \mathbf{u}^{*}, should stay orthogonal to $\mathbf{q}_{1}, \ldots, \mathbf{q}_{k-1}$. In practice orthogonality is lost because of rounding errors. This difficulty is resolved by reorthogonalization of \mathbf{u}_{ℓ} against $\mathbf{q}_{1}, \ldots, \mathbf{q}_{k-1}$. The key for effective implementation of the algorithm is to use a selective orthogonalization scheme in which \mathbf{u}_{ℓ} is orthogonalized only against "close" eigenvectors. That is, \mathbf{u}_{ℓ} is orthogonalized against \mathbf{q}_{i} only if $\left|\rho_{\ell}-\lambda_{i}\right| \leq \gamma$ where γ is a small preassigned threshold value, e.g. $\gamma=\|T\|_{\infty} / 100$. A further essential feature of the proposed orthogonalization scheme is the use of reorthogonalization.

The ORQI method is supported by forward and backward error analysis. Preliminary experiments on medium-size problems $(n \leq 1000)$ are quite encouraging. The average number of Orthogonal Rayleigh Quotient iterations per eigenvector was less than 12, while the overall number of flops required for orthogonalizations is often below $\frac{1}{2} n^{3}$.

Key words: Eigenvectors, eigenvalues, real symmetric tridiagonal matrices, complete eigensystem, Rayleigh Quotient Iteration, selective orthogonalization, reorthogonalization.

