An $\mathcal{O}(n^2)$ algorithm for the bidiagonal SVD

Benedikt Großer

April 26, 2000

Abstract

Dhillon proposed a new algorithm to compute the eigendecomposition of a symmetric tridiagonal matrix T in 1997. In this talk we discuss how this method can be applied to the bidiagonal SVD $B = U\Sigma V^T$. It turns out that using the algorithm as a black box to compute $B^T B = V\Sigma^2 V^T$ and $BB^T = U\Sigma^2 U^T$ separately may give poor results for $||U^T BV - \Sigma||$. The use of T_{GK} can fail as well for clusters of tiny singular values. A solution is to work on $B^T B$ and to keep factorizations of BB^T implicitly. We present transformations which allow to replace the representation $u = \frac{1}{\sigma} Bv$ by $u = \mathcal{L}v$, where \mathcal{L} is a diagonal matrix. Numerical results of our implementation are compared to the LAPACK-routines DSTEGR, DBDSQR and DBDSDC.