An $\mathcal{O}\left(n^{2}\right)$ algorithm for the bidiagonal SVD

Benedikt Großer

April 26, 2000

Abstract

Dhillon proposed a new algorithm to compute the eigendecomposition of a symmetric tridiagonal matrix T in 1997. In this talk we discuss how this method can be applied to the bidiagonal SVD $B=U \Sigma V^{T}$. It turns out that using the algorithm as a black box to compute $B^{T} B=V \Sigma^{2} V^{T}$ and $B B^{T}=U \Sigma^{2} U^{T}$ separately may give poor results for $\left\|U^{T} B V-\Sigma\right\|$. The use of $T_{G K}$ can fail as well for clusters of tiny singular values. A solution is to work on $B^{T} B$ and to keep factorizations of $B B^{T}$ implicitly. We present transformations which allow to replace the representation $u=\frac{1}{\sigma} B v$ by $u=\mathcal{L} v$, where \mathcal{L} is a diagonal matrix. Numerical results of our implementation are compared to the LAPACK-routines DSTEGR, DBDSQR and DBDSDC.

