Anti-triangular forms for Hermitian pencils

Christian Mehl
Technische Universität Chemnitz
Fakultät für Mathematik
09107 Chemnitz, Germany.
E-mail: mehl@mathematik.tu-chemnitz.de

Hermitian pencils, i.e., pairs of Hermitian matrices, arise in many applications, such as the linear quadratic optimal control problem. This is the problem of minimizing the cost functional

$$
\begin{equation*}
\frac{1}{2} \int_{t_{0}}^{\infty}\left(x(t)^{*} Q x(t)+u(t)^{*} R u(t)+u(t)^{*} S^{*} x(t)+x(t)^{*} S u(t)\right) d t \tag{1}
\end{equation*}
$$

subject to the dynamics

$$
\begin{align*}
E \dot{x}(t) & =A x(t)+B u(t), \quad t_{0}<t \tag{2}\\
x\left(t_{0}\right) & =x_{0}, \tag{3}
\end{align*}
$$

where $A, E, Q \in \mathbb{C}^{n \times n}, B, S \in \mathbb{C}^{n \times m}, R \in \mathbb{C}^{m \times m}, Q$ and R Hermitian, $x_{0}, x(t), u(t) \in \mathbb{C}^{n}$, and $t_{0}, t \in \mathbb{R}$. It is known that solutions of (1)-(3) can be obtained via the solution of a boundary value problem. For the solution of this boundary value problem one has to compute deflating subspaces of the matrix pencil

$$
\lambda\left[\begin{array}{ccc}
E & 0 & 0 \tag{4}\\
0 & -E^{*} & 0 \\
0 & 0 & 0
\end{array}\right]-\left[\begin{array}{ccc}
A & 0 & B \\
Q & A^{*} & S \\
S^{*} & B^{*} & R
\end{array}\right]
$$

Permuting some rows and columns one can easily see that this pencil is equivalent to a Hermitian pencil.

If one is interested in finding condensed forms for Hermitian pencils under unitary transformations (for the sake of numerical stability), anti-triangular forms seem to be good forms to look for. A matrix X is called anti-triangular if

We derive conditions which anti-triangular forms for Hermitian pencils can be obtained under unitary equivalence transformations. Also the case that the pencil (4) is singular will be included.

