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Abstract. We use a “weakly formulated” Sylvester equation

H1/2TM−1/2 −H−1/2TM1/2 = F

to obtain new bounds for the rotation of spectral subspaces of a nonnegative
selfadjoint operator in a Hilbert space. Our bound extends the known results
of Davis and Kahan. Another application is a bound for the square root of
a positive selfadjoint operator which extends the known rule: “The relative
error in the square root is bounded by the one half of the relative error in
the radicand”. Both bounds are illustrated on differential operators which are
defined via quadratic forms.

1. Preliminaries

In this work we will study properties of nonnegative selfadjoint operators in a
Hilbert space which are close in the sense of the inequality

(1.1) |h(φ, ψ)−m(φ, ψ)| ≤ η
√
h[φ]m[ψ]

where the sesquilinear forms h,m belong to the operators H,M respectively and
m[ψ] = m(ψ, ψ), h[φ] = h(φ, φ). ByQ(h) we denote the domain space of a sesquilin-
ear form h and in (1.1) we assume that Q(h) = Q(m).

In the first part of the paper we show that (1.1) implies an estimate of the
separation between “matching” eigensubspaces of H and A. To be more precise
one of the typical situations is: Let

0 ≤ λ1(H) ≤ λ2(H) ≤ · · · ≤ λn(H) < D < λn+1(H) ≤ · · ·(1.2)

0 ≤ λ1(M) ≤ λ2(M) ≤ · · · ≤ λn(M) < D < λn+1(M) ≤ · · ·(1.3)

be the eigenvalues of the operators H and M which satisfy (1.1) then

‖EH(D)− EM(D)‖ ≤ min
{√Dλn(H)

D − λn(H)
,

√
Dλn(M)

D − λn(M)

}
η.

Such an estimate was implicit in [7]. We then generalize this inequality to hold both
for the operator norm ‖ · ‖ and the Hilbert–Schmidt norm ||| · |||HS . We also allow
that EH(D) and EM(D) be possibly infinite dimensional. For recent estimates of
the separation between eigensubspaces see [10].
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In the second part of the paper we establish estimates for a perturbation of the
square root of a positive operator. It will be shown that the inequality (1.1) implies

|h2(φ, ψ) −m2(φ, ψ)| ≤ η

2

√
h2[φ]m2[ψ],

where the sesquilinear forms h2,m2 belong to the operators H1/2,M1/2, respec-
tively. This will show that it is meaningful to consider weakly formulated Sylvester
equations where all the coefficient operators are unbounded, cf. (1.4).

Both of this problems will be solved through a study of the weak Sylvester
equation, which reads formally

(1.4) HT − TM = H1/2FM1/2.

These two case studies represent two different classes of additional assumptions
which have to be imposed on the coefficient operators H, M and F in order that
(1.4) defines a meaningful operator T .

The main novelty (and contribution) of this work is that we present an abstract
study of the operator equation (1.4) in the case when only F is a bona fide operator.
The expression H1/2FM1/2 need not possess an operator representation. In com-
parison, H1/2FM1/2 was always a bounded operator for the Sylvester equations
which were studied in [1, 2, 12]. Most recent and most general result of this type
in the case of matrix coefficients is [12, Theorem 1] which reads

Let M and H be positive semi definite (finite) matrices such that
the intersection of their spectra is empty. Then the solution T of
(1.4) satisfies

||| T |||≤ π

2

||| F |||
min{| lnλ/µ| : λ ∈ σ(H), µ ∈ σ(M)}

Here σ(H) and σ(M) denote the spectra of H and M and ||| . ||| is
any unitary invariant matrix norm.

We consider a very general class of (unbounded) operator coefficients for the
weak Sylvester equation. In order to regularize the problem we need to impose more
stringent conditions (as compared with those in the result we have just stated) on
the location of σ(H) and σ(M) or on the unitary invariant norm ||| · |||, see Theorems
2.1, 2.4, 2.7, 2.8 and 5.1 below. It should be noted that in the matrix case and
in the situation in which all of these results apply their numerical performance is
comparable, cf. [12].

A main technique which led to [12, Theorem 1] is the inequality

(1.5) ||| ln(H)T − T ln(M) |||≤||| H1/2TM−1/2 −H−1/2TM1/2 |||=||| F |||

This deep result from [9] can unfortunately only be assumed as formally correct in
our setting since the products ln(H)T and T ln(M) do not have to be bona fide
operators. To some extent it could be said that the main novelty in this work is a
form theoretic approach to the problem of regularizing the equation (1.4).

More specifically, our first main result—contained in Theorem 2.1 below—extends
our previous result from [7] in various ways. In particular, we allow the perturbed
projection to be infinite dimensional. In the proof we also overcome a technical
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error contained in [7]. We then extend this result to the case of other unitary in-
variant operator norms1. Particular attention is paid to the Hilbert–Schmidt norm
because of its possible importance in applications. This special case is handled by
another technique which allows an arbitrary interlacing of the involved spectra.

1.1. Notation and Lemmata. The main object in this work shall be a closed
nonnegative symmetric form in a Hilbert space. When dealing with symmetric
forms in a Hilbert space, we shall follow the terminology of Kato, cf. [8]. For
reader’s convenience we now give definitions of some terms that will frequently be
used, cf. [3, 8].

Definition 1.1. Let h be a positive definite symmetric form in H. A sesquilinear
form a, which need not be closed, is said to be h-bounded, if Q(h) ⊂ Q(a) and there
exists η ≥ 0

|a[u]| ≤ ηh[u] u ∈ Q(h).

If h is positive definite the space (Q(h), h) can be considered as a Hilbert space
and h-bounded form a defines a bounded operator on (Q(h), h).

Definition 1.2. A bounded operator A : H → U is called degenerate if its range
space R(A) := {Au : u ∈ H} is finite dimensional.

Definition 1.3. If H is a selfadjoint operator and P a projection, to say that P
commutes with H means that u ∈ D(H) implies Pu ∈ D(H) and

HPu = PHu, u ∈ D(H).

Definition 1.4. Let H and M be nonnegative operators. We define the order
relation ≤ between the nonnegative operators by saying that M ≤ H if and only if
D(H1/2) ⊂ D(M1/2) and

‖M1/2u‖ ≤ ‖H1/2u‖, u ∈ D(H1/2),

or equivalently m[u] ≤ h[u], u ∈ Q(h) := D(H1/2), when m and h are nonnegative
forms defined by the operators M and H and M ≤H.

As a notational convention we use normal math-script letters (e.g. M) to denote
bounded operators and matrices and boldface math-script letters (e.g. H) to denote
unbounded operators.

A main principle we shall use to develop the perturbation theory will be the
monotonicity of the spectrum with regard to the order relation between nonnegative
operators. This principle can be expressed in many ways. The relevant results,
which are scattered over the monographs [3, 8], are summed up in the following
theorem, see also [11, Corollary A.1].

Theorem 1.5. Let M =
∫
λ dEM(λ) and H =

∫
λ dEH(λ) be nonnegative oper-

ators in H and let M ≤ H. Let the eigenvalues of H and M be as in (1.2) and
(1.3) then

(1) λe(M) ≤ λe(H)
(2) dim EH(γ) ≤ dim EM(γ), for every γ ∈ R
(3) λk(M) ≤ λk(H), k = 1, 2, · · · .

The infimum of the essential spectrum of some operator H is denoted by λe(H).

1Also called “cross-norms” in the terminology of [8] or “symmetric norms” in the terminology
of [4, 17].
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With this theorem in hand we review spectral properties of operators H and M,
for which there exists 0 ≤ ε < 1 such that

(1.6) (1− ε)m[u] ≤ h[u] ≤ (1 + ε)m[u], u ∈ Q := Q(h) = Q(m).

Let us assume h[u] > 0 then m[u] > 0 and

(1.7) (1− ε

1− ε )h[u] ≤ m[u] ≤ (1 +
ε

1− ε)h[u].

Inequality (1.6) implies that N(H) = N(M), so (1.7) holds for all u ∈ Q. By N(H)
we denote the null space of some operator H.

Lemma 1.6. Let m and h be nonnegative forms such that λe(M) > 0 and λe(H) >
0 and let (1.6) hold. Then

|λi(H)− λi(M)| ≤ ελi(M)(1.8)

|λi(H)− λi(M)| ≤ ε

1− ελi(H)(1.9)

λi(H) and λi(M) are as in (1.2) and (1.3). Assume that λi−1(H) < λi(H) <
λi+1(H) and

(1.10)
ε

1− ε < max
{λi+1(H)− λi(H)

λi+1(H) + λi(H)
,
λi(H)− λi−1(H)

λi(H) + λi−1(H)
, 1
}

then

(1.11) min
λj(M)

|λi(H)− λj(M)|
λi(H)

=
|λi(H)− λi(M)|

λi(H)
< 1.

If λi−1(H) < λi(H) = · · · = λi+n−1(H) < λi+n(H) and

(1.12)
ε

1− ε < max
{λi+n(H)− λi(H)

λi+n(H) + λi(H)
,
λi(H)− λi−1(H)

λi(H) + λi−1(H)
, 1
}

then

argmin
j∈N

|λi−1(H)− λj(M)|
λi−1(H)

≤ i− 1(1.13)

argmin
j∈N

|λi+n(H)− λj(M)|
λi+n(H)

≥ i+ n.(1.14)

Proof. Estimates (1.8)–(1.9) are a consequence of (1.6)–(1.7) and Theorem 1.5.
The rest of the theorem follows from a proof which analogous to the proof of [5,
Theorem 4.16]. We repeat the argument in this new setting.

Let i 6= j then

|λi(H)− λj(M)|
λi(H)

≥ |λi(H)− λj(H)|
λi(H) + λj(H)

λi(H) + λj(H)

λi(H)
− |λj(H)− λj(M)|

λj(H)

λj(H)

λi(H)

≥ γ
(

1 +
λj(H)

λi(H)

)
− ε

1− ε
λj(H)

λi(H)
> γ

>
|λi(H)− λi(M)|

λi(H)
.

With this we have established (1.11). (1.13)–(1.14) are a way to state (1.11) in a
presence of a multiple eigenvalue λi(H). The proof follows by a repetition of the
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previous argument for j ≥ i and j ≤ i+ n− 1. For instance, we establish (1.13) by
proving

|λi−1(H)− λj(M)|
λi−1(H)

>
|λi−1(H)− λi−1(M)|

λi−1(H)

for all j ≥ i. �

Remark 1.7. The significance of this lemma is that it detects which spectral sub-
spaces should be compared. When we were comparing discrete eigenvalues, the
order relation between the real numbers (eigenvalues) solved this problem auto-
matically. For spectral subspaces we need to assume more than (1.6) in order to be
able to construct meaningful estimates. Assumptions (1.10) and (1.12) show how
much more we (will) assume.

Next we show that (1.6) implies (1.1) with η = ε(1 − ε)−1/2. To establish this
claim we need a notion of a pseudo inverse of a closed operator. A definition from
[18] will be used. The pseudo inverse of a selfadjoint operator H is the selfadjoint
operator H† defined by

D(H†) = R(H)⊕D(H)⊥,

H†(u+ v) = H−1u, u ∈ R(H), g ∈ D(H)⊥.

It follows that H† = H−1 in R(H). Note that we did not assume H† to be bounded
or densely defined. The operator H† will be bounded if and only if R(H) is closed in
H, see [15]. The operator H† could have also been defined by the spectral calculus,
since

H† = f(H), f(λ) =

{
0, λ = 0,
1
λ , λ 6= 0.

In [18] Weidmann has given a short survey of the properties of the pseudo inverse of
a nondensely defined operator H. In particular, let H1 and H2 be two nonnegative

operators in D(H1) and D(H2) respectively then

(1.15) ‖H1/2
1 u‖ ≤ ‖H1/2

2 u‖ ⇔ ‖H1/2†
2 u‖ ≤ ‖H1/2†

1 u‖.
Analogously, let h1 and h2 be two closed, not necessarily densely defined, positive
definite forms and let H1 and H2 be the selfadjoint operators defined by h1 and h2

in Q(h1) and Q(h2). We say h1 ≤ h2 when Q(h2) ⊂ Q(h1) and

(1.16) h1[u] = ‖H1/2
1 u‖2 ≤ h2[u] = ‖H1/2

2 u‖2, u ∈ Q(h2).

Equivalently, we write H1 ≤ H2 when h1 ≤ h2. Now, we can write the fact (1.15)
as

(1.17) H1 ≤H2 ⇐⇒ H†2 ≤H†1.

In one point we will depart from the conventions in [8].

Definition 1.8. A nonnegative form

h(u, v) = (H1/2u,H1/2v)

will be called nonnegative definite when H† is bounded. Analogously, the nonneg-
ative operator H such that H† is bounded will also be called nonnegative definite.

In the sequel we establish a connection between (1.6) and (1.1) when h and m
are nonnegative definite forms.
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Lemma 1.9. Let H and M be nonnegative definite operators in a Hilbert space H
such that (1.6) holds for 0 ≤ ε < 1. Let

(1.18) S = H1/2M†1/2 −H†1/2M1/2

then S is bounded and

(1.19) |(ψ, Sφ)| ≤ ε√
1− ε‖ψ‖‖φ‖.

Proof. The closed graph theorem implies that the operator

S = H1/2M†1/2 −H†1/2M1/2

is bounded. Also, N(H) = N(M) = N(S) and PN(S) commutes with S. It is
sufficient to prove the estimate for x, y ∈ R(H). The assumption (1.6) gives

|
(
h−m

)
(H†1/2x,M†1/2y)| ≤ ε‖y‖ m[H†1/2x]1/2.

Analogously, (1.6) implies

(1.20) ‖M1/2H†1/2‖ ≤ 1√
1− ε .

Altogether, the estimate (1.19) follows. �

Now, we rewrite the conclusion of this lemma in the symmetric form setting.
The result is given in the form of a proposition which we present without proof.

Proposition 1.10. Let m and h be nonnegative definite forms and let there exist
0 ≤ ε < 1 such that (1.6) holds then N(H) = N(H) and

|h(u, v)−m(u, v)| ≤ ε√
1− ε

√
h[u]m[v].

When we only know that h and m satisfy (1.1) then we can establish a similar
result about N(H) and N(M).

Proposition 1.11. Let m and h be nonnegative definite forms such that (1.1) holds
then

S = H1/2M†1/2 −H†1/2M1/2

S∗ = M†1/2H1/2 −M1/2H†1/2

are bounded operators and ‖S∗‖ = ‖S‖ ≤ η. Furthermore, N(H) = N(M) and a
fortiori R(H) = R(M).

The operator S has a special structure. Assume Mu = µu and Hv = λv, then

(v, Su) = λ1/2(v, u)µ1/2 − λ−1/2(v, u)µ1/2

=
λ− µ√
λµ

(v, u) .(1.21)

The equation (1.21) suggests the distance function

|λ− µ|√
λµ

which measures the distance between the eigenvalues of operators H and M. We
state this result as the following corollary..
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Corollary 1.12. Let Mu = µu, ‖u‖ = 1 and Hv = λv, ‖v‖ = 1 and let S be as in
Proposition 1.11 then

|λ− µ|√
λµ

≤ η

|(u, v)| .

Our theory is designed to be directly applicable to differential operators given in
a weak form. This will enable us to obtain estimates for the difference between the
spectral projections of the operators to which the theory of [1, 2] does not apply,
see Example 3.4 below.

2. Weak Sylvester equation

Let us outline the general picture. We have an unbounded positive definite
operator A and a bounded positive definite operator M . They are defined in,
possibly, different subspaces of the environment Hilbert space H. Thus, HM =
R(M) is (of necessity) a closed subspace of H and likewise

D(A1/2)
H

= R(A1/2) = HA.

Let the bounded operator F : HM → HA be given, then we are looking for the
bounded operator T : HM → HA such that
(2.1)

(A1/2v, TM−1/2u)− (A−1/2v, TM1/2u) = (v, Fu) , v ∈ D(A1/2), u ∈ HM .
Formally, we say that T solves the equation

(2.2) AT − TM = A1/2FM1/2.

Here G = A1/2FM1/2 is naturally only a formal expression and does not represent
a bona fide operator. In the case in which G be a bona fide operator equation (2.2)
becomes the rigorous equation

AT − TM = G,

called the (standard) Sylvester equation, cf. [1, 2]. The case when A and M are
finite matrices has been considered in [12] where (2.2) was called the structured
Sylvester equation.

We call the relation (2.1) the weak Sylvester equation. This equation has the
same form as (1.4), but its coefficients are less general since we assume M to be a
bounded operator. On the other hand, this “special” Sylvester equation allows us
to tackle the perturbation problem for EH(D) and EM(D) in full generality (e.g.
take A : HA → HA as the compression of H on the subspace HA := R(EH(D))⊥

and M : HM → HM as the compression of M on the subspace HM := R(EM(D)),
for details see Section 3). We have adapted the notation to reflect this structural
fact.

The weak Sylvester equation represents a generalization of the concept of the
structured Sylvester equation (2.2) from finite matrix setting to unbounded oper-
ator setting. The following theorem slightly generalizes the corresponding result
from the joint paper [7] and corrects a technical glitch in one of the proofs.

Theorem 2.1. Let A and M be positive definite operators in HA and HM , re-
spectively and let F be a bounded operator from HM into R(A1/2) = HA. If M is
bounded and

(2.3) ‖M‖ < 1

‖A−1‖
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then the weakly formulated Sylvester equation

(2.4)
(
A1/2v, TM−1/2u

)
−
(
v,A−1/2TM1/2u

)
= (v, Fu)

has a unique solution T , given by τ(v, u) = (v, Tu) and

(2.5) τ(v, u) = − 1

2π

∫ ∞

−∞
(A1/2v, (A− iζ − d)−1F (M − iζ − d)−1M1/2u)dζ,

where d is any number satisfying

(2.6) ‖M‖ < d <
1

‖A−1‖ .

Proof. The uniqueness means that

(2.7)
(
A1/2v,WM−1/2u

)
−
(
v,A−1/2WM1/2u

)
= 0,

for u ∈ HM , v ∈ D(A1/2), has the only bounded solution W = 0. Let

En =

∫ n

0

d EA1/2(λ),

then in particular
(
A1/2v, EnWM−1/2u

)
−
(
v,A−1/2EnWM1/2u

)
= 0,

for u ∈ HM , v ∈ D(A1/2) ∩ EnH. Define the cut–off function

fn(x) =

{
x, D ≤ x ≤ n
n, n ≤ x

with D = 1/‖A−1‖. The operator fn(A1/2) is bicontinuous and

(2.8) fn(A1/2)EnWM−1/2 − fn(A1/2)−1EnWM1/2 = 0.

Since fn(A1/2) and M1/2 are bounded and positive definite operators, the standard
Sylvester equation (2.8) has the unique solution

(2.9) EnW = 0, n ∈ N .

This is a consequence of the standard theory of the Sylvester equation with bounded
coefficients, see [1, 2]. The statement (2.9) implies W = 0.

Now for the existence. We use the spectral integral A =
∫
λ dE(λ) to compute

∫ ∞

−∞
‖(A + iζ − d)−1A1/2v‖2 dζ =

∫ ∞

−∞
(A1/2v,

∣∣A− iζ − d
∣∣−2

Av) dζ

=

∫ ∞

−∞
dζ

∫ ∞

D

λ d(E(λ)A1/2v,A1/2v)

(λ− d)2 + ζ2

=

∫ ∞

D

λ d(E(λ)A1/2v,A1/2v)

∫ ∞

−∞

dζ

(λ− d)2 + ζ2

=

∫ ∞

D

πλ d(E(λ)A1/2v,A1/2v)

λ− d
= π(A(A − d)−1v, v).(2.10)

Analogously, one establishes

(2.11)

∫ ∞

−∞
‖(M − iζ − d)−1M1/2u‖2 dζ = π(M(d −M)−1u, u).
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The convergence of these integrals justifies the following computation. Set

τ(v, u) = − 1

2π

∫ ∞

−∞
(A1/2v, (A − iζ − d)−1F (M − iζ − d)−1M1/2u)dζ

and then compute using (2.10) and (2.11)

|τ(v, u)|2 =
1

(2π)2

[ ∫ ∞

−∞
((A + iζ − d)−1A1/2v, F (M − iζ − d)−1M1/2u)dζ

]2

≤ ‖F‖
2

(2π)2

[ ∫ ∞

−∞
‖(A + iζ − d)−1A1/2v‖ ‖(M − iζ − d)−1M1/2u‖dζ

]2

≤ ‖F‖
2

4
(A(A− d)−1v, v)(M(d−M)−1u, u).(2.12)

This in turn implies that the operator

τ(v, u) = (v, Tu)

is a bounded operator and also gives the meaning to the formula (2.5).
Now we will prove that this T satisfies the equation (2.4). Note that

A(A − ρ− d)−1 = I + (ρ+ d)(A− ρ− d)−1, ρ 6∈ σ(A)

and then take v ∈ D(A) to compute

(A1/2v, TM−1/2u)− (A−1/2v, TM1/2u) =

= − 1

2π

[ ∫ ∞

−∞
(Av, (A− iζ − d)−1F (M − iζ − d)−1u) dζ

−
∫ ∞

−∞
(v, (A− iζ − d)−1F (M − iζ − d)−1Mu) dζ

]

= − 1

2π

[
v.p.

∫ ∞

−∞
(v, F (M − iζ − d)−1u) dζ

+

∫ ∞

−∞
(iζ + d)((A− iζ − d)−1v, F (M − iζ − d)−1u) dζ

−
∫ ∞

−∞
(iζ + d)((A− iζ − d)−1v, F (M − iζ − d)−1u) dζ

− v.p.

∫ ∞

−∞
((A− iζ − d)−1v, Fu) dζ

]

= (v, Fu).

By a usual density argument we conclude that the operator T satisfies (2.4). �

Theorem 2.2. Let A, M and F be as in Theorem 2.1 then

‖T‖ ≤
√

D‖M‖
(D − d)(d − ‖M‖)

‖F‖
2

for any ‖M‖ < d < D. The optimal d is d = (‖M‖+D)/2 and then we obtain

(2.13) ‖T‖ ≤
√
D‖M‖

(D − ‖M‖) ‖F‖
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D−0 g ‖M−1‖−1 d D+

λ ≤ λm−1 λm+n ≤ λ

‖M‖

Figure 1. The spectral gaps

Proof. Estimate (2.12) yields

‖T‖ ≤ ‖F‖
2
‖A(A− d)−1‖ ‖M(d−M)−1‖ ≤ ‖F‖

2

√
D‖M‖

(D − d)(d − ‖M‖)

This in turn implies the desired estimate. The optimality of the d = (‖M‖+D)/2
can now be checked by a direct computation. �

Remark 2.3. In fact, we will see that the estimate of Theorem 2.2 is optimal in the
following sense. Let us consider the equation (2.4) in another light. Theorem 2.1
gives a set of conditions when the equation (2.1) has a unique solution. Theorem
2.2 then provides us with an estimate of this solution.

Since for given F , under the conditions of Theorem 2.1, there exists the unique
T such that (2.4) holds, we can define the so called “Sylvester operator” which
associates the solution T to every operator F . The estimate (2.13) is then an
estimate of the norm of the inverse of such an operator.

The bound (2.13) is sharp in this sense as shows the following example. Let M
and A be such that

Mq = ‖M‖q, Ap = Dp,

for p and q one dimensional projections and let F = pq.
Then (2.4) is obviously satisfied by

T =

√
D‖M‖

D − ‖M‖pq.

2.1. Allowing for a more general relation between σ(M) and σ(A). An
analogue of Theorem 2.1 holds, if the assumption (2.6) is replaced by a more general
one, namely that the interval

[
‖M−1‖−1, ‖M‖

]

be contained in the resolvent set of the operator A. We omit the proof of the
following result.

Theorem 2.4. Let the operators A, M and F be as in Theorem 2.1, and let their
spectra be arranged as on Figure 1, then (in the sense of (2.5))

T = − 1

2π

∫ ∞

−∞
A1/2(A− iζ − d)−1F (M − iζ − d)−1M1/2dζ

+
1

2π

∫ ∞

−∞
A1/2(A− iζ − g)−1F (M − iζ − g)−1M1/2dζ,
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where d, g are chosen from the right and left spectral gap, see Figure 1, is the solution
of the weak Sylvester equation (2.4). We also have the estimate

‖T‖ ≤
(√‖M−1‖−1D−
‖M−1‖−1 −D−

+

√
D+‖M‖

D+ − ‖M‖
)
‖F‖.

2.2. Estimates in the Hilbert–Schmidt norm. A bounded operator H : H →
H is a Hilbert–Schmidt operator if H∗H is trace class and then, cf. [8, Ch. X.1.3],

(2.14) ||| H |||HS := Tr
√
H∗H.

Let A and M be positive definite operators in HA ⊂ H and HM ⊂ H, re-
spectively. We will analyze the weakly formulated Sylvester equation under the
assumption that ||| F |||HS<∞ and

(2.15) gap(σ(M), σ(H)) := inf
µ∈σ(M),
λ∈σ(A)

|µ− λ|√
µλ

> 0.

To prove our result, we will need a basic result on the spectral representation of
selfadjoint operators, see [19, Satz 8.17].

Theorem 2.5 (Spectral representation). For every selfadjoint operator H in a
sparable Hilbert space H there exists a σ-finite measure space (M, µ), a µ-measurable
function h :M→ R and a unitary operator V : H → L2(M, µ) such that

H = V −1H̃V.

Here H̃ : L2(M, µ) → L2(M, µ) is the multiplication operator which is defined by
the function h.

We will also need the following theorem on the integral representation of Hilbert–
Schmidt operators. For the proof see [19, Satz 3.19].

Theorem 2.6. A bounded operator T : L2(M1, µ) → L2(M2, ν) is a Hilbert–
Schmidt operator if and only if there exists a function t ∈ L2(M1×M2, µ×ν) such
that

(Tg)(y) =

∫

M1

t(x, y)g(x)dµ ν-almost everywhere, g ∈ L2(M1, µ).

Furthermore, we have

||| T |||HS= ‖t‖L2(M1×M2,µ×ν).

We now prove a “Hilbert–Schmidt” version of Theorem 2.1. We will assume that
||| F |||HS< ∞ and that H be separable. On the other hand, the spectra of A and
M may be arbitrarily interlaced.

Theorem 2.7. Let A and M be positive definite operators in HA and HM, re-
spectively and let F : HM → HA be a bounded operator. Assume further that
||| F |||HS<∞ and gap(σ(M), σ(H)) > 0 then there exists a unique Hilbert–Schmidt
operator T such that

(2.16)
(
A1/2v, TM−1/2u

)
−
(
v,A−1/2TM1/2u

)
= (v, Fu)

and

(2.17) ||| T |||HS≤
||| F |||HS

gap(σ(M), σ(H))
.
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Proof. The uniqueness of the bounded solution of the equation (2.16) follows by a
double cut-off argument analogous to the one used in (2.8)–(2.9). We leave out the
details.

By Theorem 2.6 there exist measure spaces (MM, µ) and (MA, µ), measurable
functions m : MM → R and a : MA → R and unitary operators U : H →
L2(MM, µ) and V : H → L2(MA, µ) such that

A = V −1ÃV

M = U−1M̃U.

Here we have taken Ã and M̃ to be the multiplication operators which were defined
by the functions a and m respectively. Since ||| F |||HS< ∞, the operator V FU :
L2(MM, µ) → L2(MA, µ) is obviously a Hilbert–Schmidt operator and ||| V FU ||
|HS=||| F |||HS . We can therefore assume, without loosing generality, that we work

with HM = L2(MM, µ), HA = L2(MH, ν) and that A = Ã, M = M̃ and F =
V FU .

Theorem 2.6 implies that there exists a function f ∈ L2(MM×MA, µ×ν) such
that

(Fg)(y) =

∫

MM

f(x, y)g(x)dµ ν-almost everywhere, g ∈ L2(MM, µ).

Set

(2.18) t(x, y) =
f(x, y)

a(y)1/2

m(x)1/2 − m(x)1/2

a(y)1/2

, µ× ν-almost everywhere.

Relation (2.15) and the positive definiteness of A and M imply that

‖a(·)1/2m(··)1/2

a(·)−m(··) ‖L∞(MM×MA,µ×ν) ≤
1

gap(σ(M), σ(A))

thus t ∈ L2(MM ×MA, µ× ν) and

(2.19) ‖t‖L2(MM×MA,µ×ν) ≤
1

gap(σ(M), σ(A))
‖f‖L2(MM×MA,µ×ν).

Now (2.18) can be rewritten as

(2.20) a(y)1/2t(x, y)m(x)−1/2 − a(y)−1/2t(x, y)m(x)1/2 = f(x, y)

The kernel t defines a Hilbert–Schmidt operator T with

(v, Tu) =

∫
v(y)t(x, y)u(x)dµ dν.

By taking integrals for v ∈ D(A1/2) and u ∈ D(M1/2) we establish that the equa-
tion (2.20) is equivalent to (2.16) and the estimate (2.19) implies (2.17). �

2.3. Estimates by other unitary invariant operator norms. Let L(H) be
the algebra of all bounded operators on the Hilbert space H. We will consider
symmetric norms ||| · ||| on a subspace S of L(H). To say that the norm is symmetric
on S ⊂ L(H) means that, beside the usual properties of any norm, it additionally
satisfies:

(i): If B ∈ S, A,C ∈ L(H) then ABC ∈ S and

||| ABC |||≤ ‖A‖ ||| B ||| ‖C‖.
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(ii): If A has rank 1 then ||| A |||= ‖A‖, where ‖·‖ always denotes the standard
operator norm on L(H).

(iii): If A ∈ S and U, V are unitary on H, then UAV ∈ S and ||| UAV |||=|||
A |||.

(iv): S is complete under the norm ||| · |||.
The subspace S is defined as a ||| · |||–closure of the set of all degenerate operators in
L(H). Such S is an ideal in the algebra L(H), cf. [4, 17]. Symmetric norms were
used in [1] in the context of subspace estimates. If we assume, additionally to the
assumptions of Theorem 3.2 that ||| F |||< ∞ then there exists a unique bounded
solution T of the weak Sylvester equation and

||| T |||≤
√
D‖M‖

D − ‖M‖ ||| F ||| .

We now prove this fact.

Theorem 2.8. Let A and M be the selfadjoint operators which satisfy the assump-
tions of Theorem 2.1 and let the symmetric norm ||| · ||| have the property

(P) If sup ||| An |||<∞ and A = w-limnAn then A ∈ S and

||| A |||≤ sup ||| An ||| .
If ||| F |||<∞ then there exists a unique bounded operator T such that

(
A1/2v, TM−1/2u

)
−
(
v,A−1/2TM1/2u

)
= (v, Fu)

and

||| T |||≤
√
D‖M‖

D − ‖M‖ ||| F ||| .

Proof. The proof follows by a cut-off argument. We (re)use the construction which
was used in (2.8). Let fn(A1/2) and En be as in (2.8). The equation

(2.21)
(
fn(A1/2)v, TnM

−1/2u
)
−
(
fn(A1/2)−1v, TnM

1/2u
)

= (v, EnFu)

can now be written as the standard Sylvester equation

fn(A1/2)2Tn − TnM = fn(A1/2)EnFM
1/2

which has the unique bounded solution Tn : HM → R(En) and ||| Tn |||< ∞ (this
follows from [2, Theorem 5.2]). The operator EnT is bounded and satisfies the
equation (2.21) therefore Tn = EnT . Here we have tacitly assumed L(HA) ⊂ L(H).
Furthermore,

(2.22) A1/2EnTM
−1/2 −A−1/2EnTM

1/2 = EnF.

We compute, using the property (i),

||| A−1/2EnTM
1/2 ||| ≤ ‖M1/2‖√

‖A−1‖−1
||| EnT |||

||| A1/2EnTM
−1/2 ||| ≥

√
‖A−1‖−1

‖M1/2‖ ||| EnT ||| .

From these estimates and (2.22) we obtain the uniform upper bound

(2.23) ||| EnT |||≤
√
D‖M‖

D − ‖M‖ ||| EnF |||≤
√
D‖M‖

D − ‖M‖ ||| F ||| .
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Since EnT → T in the strong operator topology, Property (P) and the uniform
bound (2.23) imply ||| T |||<∞ and the desired estimate follows. �

3. Perturbations of spectral subspaces

When comparing two spectral subspaces of operators H and M, which satisfy
(1.1), we have to make an additional assumption on the location of the spectra.
Namely we assume that there exist D1 < D2 such that the interval [D1, D2] ⊂ R
is contained in the resolvent sets of both H and M. Let Q = EH(D1) and P =
EM(D1). We want to estimate the norm of P −Q. The following description of a
relation between a pair of orthogonal projections in a Hilbert space will be sufficient
for our considerations. For the proof see [8].

Theorem 3.1 (Kato). Let P and Q be two orthogonal projections such that

‖P (I−Q)‖ < 1.

Then we have the following alternative. Either

(1) R(P ) and R(Q) are isomorphic and

‖P (I−Q)‖ = ‖Q(I− P )‖ = ‖P −Q‖ or

(2) R(P ) is isomorphic to true subspace of R(Q) and

‖Q(I− P )‖ = ‖P −Q‖ = 1.

To ease the presentation set P⊥ = I− P and Q⊥ = I−Q. First, let us consider
the case when h and m are positive definite. With the help of Proposition 1.11 we
shall later reduce the nonnegative definite case to the positive definite one.

We define the operators

(3.1) A = Q⊥HQ⊥, H = QHQ, M = PMP and W = P⊥MP⊥.

We shall not notationally distinguish the operators A, M , W and H from their
restrictions to the complement of their respective null spaces. Obviously,

H = H + A, M = M + W

and we compute, for S from (1.18),

Q⊥SP = (H1/2Q⊥PM−1/2 −H−1/2Q⊥PM1/2)P

= A1/2Q⊥PM
−1/2 −A−1/2Q⊥PM

1/2

= A1/2TM−1/2 −A−1/2TM1/2.(3.2)

Here we have defined T = Q⊥P . If we assume that dim(Q) = dim(P ) < ∞ then
Theorem 3.1 yields

‖P −Q‖ = ‖T‖.
The case when dim(Q) = dim(P ) =∞ will follow in a similar fashion.

The operator equation can be written in the following variational form

(A1/2v, TM−1/2u)− (A−1/2v, TM1/2u) = (v, Su),(3.3)

v ∈ D(A1/2), u ∈ R(P ),

which we have called the weakly formulated Sylvester equation.
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Theorem 3.2. Let the positive definite forms m and h be given such that (1.1)
holds. Let there exist D1 < D2 such that the interval [D1, D2] ⊂ R be contained in
the resolvent sets of both H and M. Set Q = EH(D1), P = EM(D1) and assume
η < (D2 −D1)(D2D1)−1/2 then

(3.4) ‖P −Q‖ ≤
√
D2D1

D2 −D1
η .

Proof. T = Q⊥P is the unique solution of the equation (3.3). Theorem 2.2 implies

‖T‖ ≤ η

2

√
D2λn(M)

(D2 − d)(d− λn(M))
.

for any λn(M) < d < D2. The optimal d equals (D2+λn(M))
2 and since ‖M‖ < D1

we conclude

‖Q⊥P‖ ≤ η
√
D2λn(M)

D2 − λn(M)
≤ η

√
D2D1

D2 −D1
< 1.

Analogous argumentation for T = P⊥Q, with the roles of H and M in (3.3) being
interchanged, yields the inequality

‖P⊥Q‖ ≤ η
√
D2D1

D2 −D1
< 1.

Theorem (3.1) now implies that

‖Q⊥P‖ = ‖P⊥Q‖ = ‖Q− P‖.
This in turn establishes (3.4). �

In the case in which h is only nonnegative definite, assumption (1.1) implies that
N(M) = N(H) and R(H) = R(M), since H and M are selfadjoint. This in turn
allows us to conclude that N := R(P ) ∩ N(H) ⊂ R(Q), so

Q̃ = Q− PN , P̃ = P − PN
are orthogonal projections and

‖Q− P‖ = ‖Q̃− P̃‖.

Since R(P̃ ) ⊂ R(H) and R(Q̃) ⊂ R(H) we can reduce the problem to the positive
definite case.

Theorem 3.3. Let the positive definite forms m and h be given such that (1.1)
holds. Let there exist 0 < L1 < L2 < D1 < D2 such that the intervals [L1, L2] ⊂ R
and [D1, D2] ⊂ R be contained in the resolvent sets of both H and M. Set Q =
EH[L1, L2], P = EM[D1, D2] and assume

[ √D2D1

D2 −D1
+

√
L2L1

L2 − L1

]
η < 1

then

(3.5) ‖P −Q‖ ≤
[ √D2D1

D2 −D1
+

√
L2L1

L2 − L1

]
η .
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Proof. The assumption L1 > 0 implies that we may assume, without losing any
generality, that we have the positive definite forms m and h. Theorem 2.7 and the
same argument as in Theorem 3.2 implies

‖P⊥Q‖ = ‖Q⊥P‖ = ‖P −Q‖.
This in turn allows us to conclude that

‖P −Q‖ ≤
[ √D2D1

D2 −D1
+

√
L2L1

L2 − L1

]
η.(3.6)

�
Numerical experiments with the Sturm–Liouville eigenvalue problem, which were

performed in [7], illustrated that in some situations the results of Theorems 3.2
and 3.3 yield considerably sharper estimates of the perturbations of the spectral
subspaces than the results of [1, 2]. We now show that our theorems also apply in
situations in which the theory from [1, 2] does not.

Example 3.4. Take H, M as selfadjoint realizations of the differential operators

− ∂

∂x
α(x)

∂

∂x
, − ∂

∂x
β(x)

∂

∂x
,

respectively, in the Hilbert space H = L2(I), I a (finite or infinite) interval with,
say, Dirichlet boundary conditions and non-negative bounded measurable functions
α(x), β(x) which satisfy

|β(x) − α(x)| ≤ η
√
β(x)α(x).

Now, the form
δ(u, v) = h(u, v)−m(u, v)

is not—in general—representable by a bounded operator. This rules out an appli-
cation of the subspace perturbation theorems from [1, 2]. On the other hand both
of our Theorems 3.2 and 3.3 apply and yield the corresponding estimates, e.g.

‖Eα(D1)−Eβ(D1)‖ ≤
√
D2D1

D2 −D1
η ,

when we know that [D1, D2] is contained in the resolvent sets of both H and M.

Theorem 2.7 can also be applied to yield a Hilbert–Schmidt version of Theorems
3.2 and 3.3.

Theorem 3.5. Let the positive definite forms m and h be given such that (1.1)
holds. Assume P and Q are projections which commute with the operators H and
M respectively and let A, M , W, H as in (3.1). If both ||| Q⊥SP |||HS< ∞,
||| P⊥S∗Q |||HS<∞ and both

gap(σ(A), σ(M)), gap(σ(W), σ(H)),

are positive. Then Q⊥P , P⊥Q and P −Q are Hilbert–Schmidt operators and

||| Q⊥P |||2HS ≤
||| Q⊥SP |||2HS

gap(σ(A), σ(M))2
(3.7)

||| P⊥Q |||2HS ≤
||| QSP⊥ |||2HS

gap(σ(W), σ(H))2
(3.8)

||| P −Q |||2HS ≤
||| Q⊥SP |||2HS

gap(σ(A), σ(M))2
+

||| QSP⊥ |||2HS

gap(σ(W), σ(H))2
.(3.9)
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Proof. by construction (3.1) the operator T = T1 = Q⊥ satisfies the Sylvester
equation (3.3), which in this setting has the form, cf. (2.16),

(A1/2v, TM−1/2u)− (A−1/2v, TM1/2u) = (v,Q⊥SPu),(3.10)

v ∈ D(A1/2), u ∈ D(M1/2).

On the other hand, the operator T = T2 = P⊥Q satisfies the “dual” equation, cf.
Proposition 1.11,

(W1/2v, TH−1/2u)− (W−1/2v, TH1/2u) = (v, P⊥S
∗Qu),(3.11)

v ∈ D(W1/2), u ∈ D(H1/2).

Now,

(P −Q)2 = Q⊥P + P⊥Q,

where by Theorem 2.7 both Q⊥P and P⊥Q are Hilbert–Schmidt2 and

||| P −Q |||2HS = Tr(Q⊥P + P⊥Q) = Tr(PQ⊥P ) + Tr(QP⊥Q)

=||| Q⊥P |||2HS + ||| P⊥Q |||2HS
Using (2.17), we see that estimates (3.7)–(3.9) hold. �

Corollary 3.6. Let the positive definite forms m and h be given such that (1.1)
holds. If ||| S |||HS<∞ and the other conditions of Theorem 3.5 hold. Then

(3.12) ||| P −Q |||2HS≤
||| S |||2HS

min
{

gap(σ(A), σ(M))2 , gap(σ(W), σ(H))2
} .

Proof. Just note that

||| Q⊥SP |||2HS + ||| QSP⊥ |||2HS≤||| S |||2HS .
�

4. Further properties of the operator S — an application in the
numerical analysis

We will now present an application of Theorem 2.2 in numerical analysis. This
will also demonstrate a role played by the new Hilbert–Schmidt norm estimates.

Assume now that we are given a positive definite operator H such that (1.2)
holds. Let P be an orthogonal projection such that R(P ) ⊂ Q(h) and dim R(P ) = n.
We aim to obtain estimates of

(4.1) ||| EH(D)− P |||
for ||| · |||= ‖ · ‖ and ||| · |||=||| · |||HS .

We estimate (4.1) by an application of Theorem 2.2 (equivalently Theorem 3.5).
Theorem 2.2 will allow us to improve [7, Theorem 3.2] inasmuch as that we establish
estimates for the Hilbert–Schmidt norm and not just the spectral norm.

The properties of the main perturbation construction from [7], cf. [5, 6], will be
summarized for reader’s convenience.

We start by defining the positive definite form

(4.2) hP (u, v) = h(Pu, Pv) + h(P⊥u, P⊥v)

2To prove this equality one can use the singular value analysis from [2]. Alternatively, one
could use the property (P) from Theorem 2.8.
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and a selfadjoint operator HP which represents the form hP in the sense of Kato.
It was shown, see [5, 6, 7] that

(1) the form hP is positive definite , hence there exists the positive definite
operator HP which represents hP in the sense of Kato.

(2) Q(h) = Q(hP )
(3) R(P ) reduces HP .
(4) H−1 −H−1

P is a degenerate selfadjoint operator.
(5) Let δhP := h − hP and let δHP

s be the bounded selfadjoint operator such
that

(4.3) (u, δHP
s v) = δhP (H

−1/2
P u,H

−1/2
P v)

then δHP
s is a degenerate operator and dimR(δHP

s ) = 2n.
(6) The values

(4.4) ηi = max
S⊂R(P ), dimS=n−i

min
{ (ψ,H−1ψ)− (ψ,H−1

P ψ)

(ψ,H−1ψ)
: ψ ∈ S

}1/2

together with their negatives are all non-zero eigenvalues of δHP
s . Further-

more, ηi are all the singular values of the operator δHP
s P .

(7)

(4.5) |δhP (φ, ψ)| ≤ ηn
√
hP [ψ]hP [φ]

The estimates from [7, Theorem 3.2] only use information which is contained in
ηn. New theory allows us to take advantage of other ηi.

Proposition 4.1. Let P and hP be as in (4.2) and let

S = H1/2H
−1/2
P −H−1/2H

1/2
P

then

||| SQ ||| ≤ ||| δH
P
s Q |||√

1− ηn

||| S ||| ≤ ||| δH
P
s |||√

1− ηn
.

Here δHP
s is the degenerate operator from (4.3), Q is any projection, ηn is given

by (4.4) and ||| · ||| is any unitary invariant norm.

Proof.

(ψ, SQφ) = δhP (H−1/2ψ,H
−1/2
P Qφ) = δhP (H

−1/2
P

(
H

1/2
P H−1/2

)
ψ,H

−1/2
P Qφ)

= (ψ,
(
H

1/2
P H−1/2

)∗
δHP

s Qφ), φ, ψ ∈ H

(4.5) and (1.20) imply ‖H1/2
P H−1/2‖ ≤ 1/

√
1− ηn. Property (i) of the symmetric

norm ||| · ||| and the fact that δHP
s Q is a degenerate operator allow us to complete

the proof. �

This proposition leads to an improved version of [7, Theorem 3.2]. Observe that
||| δHP

s ||| depends only on ηi from (4.4).
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Theorem 4.2. Let h be as in (1.2) and let P and hP be as in (4.2) and ηi as in
(4.4). Set

DP := max
ψ∈R(P )

h[ψ]

‖ψ‖2

and assume ηn(1− ηn)−1 < (D −DP )(D +DP ) then

(4.6) ||| EH(D)P⊥ |||≤
√
DDP

D −DP

||| δHP
s P |||√

1− ηn
.

Here ||| · ||| is any unitary invariant norm which has Property (P).

Proof. Set T = (EH(D))⊥P and apply Theorem 2.8 to estimate the norm
||| (EH(D))⊥P |||. Proposition 4.1 now implies (4.6), cf. Corollary 3.6, [2, Corollary
3.1] and [2, Proposition 6.1]. �

Assume ||| · |||=||| · |||HS , then Theorem 4.2 yields the estimate

(4.7) ||| (EH(D))⊥P |||HS≤
√
DDP

D −DP

√
η2

1 + · · ·+ η2
n√

1− ηn
.

Remark 4.3. If ||| · |||= ‖ · ‖ then under the conditions of Theorem 4.2 the identity
‖(EH(D))⊥P‖ = ‖EH(D) − P‖ holds, cf. Theorem 3.1. A similar relation holds
for a general unitary invariant norm since according to [2, Corollary 3.1] and [2,
Section 2] we have ||| (EH(D))⊥P |||=||| P⊥EH(D) ||| and

(4.8) ||| EH(D)− P |||=||| (EH(D))⊥P + P⊥EH(D) ||| .
Theorem 4.2 is therefore our version (generalization) of the sin Θ theorem from
[2, Appendiy 6.]. Same as in [2, Proposition 6.1], an estimate of (4.8) is obtained
by a combination of Proposition 4.1 and available (depending on an application)
information on the separation of the involved spectra, cf. Corollary 3.6. We have
not specified a general estimate on ||| EH(D) − P ||| since we consider such an
estimate to be highly application dependent and we would not like to prejudice its
form.

N 5 6 7 8 9 10

||| (EH(D))⊥P |||HS 4.4e-3 2.0e-3 1.1e-3 6.0e-4 3.7e-4 2.4e-4

√
λ3DPN

λ3 −DPN

√
η2

1 + η2
2√

1− η2
2.2e-2 1.0e-2 5.3e-3 3.3e-3 2.2e-3 1.5e-3

√
s1(RN2 ) + s2(RN2 )

λ3 −DPN

2.0e-2 1.4e-2 9.6e-3 7.2e-3 5.5e-3 4.4e-3

Table 1. Error estimate from Theorem 4.2 and the true error
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We will now evaluate (4.7) on the example from [7, Section 4]. There we have
considered the positive definite operator H which is defined by the symmetric form

h(u, v) =

∫ 2π

0

(
u′v′ − αuv

)
dt

u, v ∈ {f : f, f ′ ∈ L2[0, 2π], eiθf(0) = f(2π)} = D(h).

The eigenvalues and eigenvectors of the operator H are

ω±k =

(
±k +

θ

2π

)2

− α, z±k(t) = e−i(±k+ θ
2π )t, k ∈ N

ω0 =

(
θ

2π

)2

− α, z0(t) = e−i θ2π t.

In standard notation we have

λ1(H) = ω0, λ2(H) = ω−1, λ3(H) = ω1,

u1 = z0, u2 = z−1, u3 = z1.

For numerical experiments we chose θ = π − 10−4 and α = 0.2499 so that the
eigenvalues λ1 and λ2 are “small” and tightly clustered. As a test space we chose
Y3
N = span

{
wN1 , w

N
2

}
, where wN1 and wN2 are generated by the smooth N point

equidistant cubic interpolation of the known eigenfunctions u1 and u2. Take PN
such that R(PN ) = Y3

N . Since Y3
N ⊂ D(H) both Theorem 4.2 and the bounds from

[2] apply. Set rφ = Hφ + (φ,Hφ)φ. Since wN1 , w
N
2 ∈ D(H) we conclude that rwN1

and rwN2 are bona fide vectors. Set

RN2 =

[
(rwN1 , rwN1 ) (rwN1 , rwN2 )

(rwN2 , rwN1 ) (rwN2 , rwN2 )

]
.

The competing bound from [2] is

(4.9) ||| (EH(D))⊥PN |||HS≤
√
s1(R2) + s2(R2)

λ3 −DPN

.

We see that with the improvement of the approximation the advantage of the bound
from Theorem 4.2 over (4.9) grows, see Table 1. On Table 1 we have displayed the
actual measured error in the first line, in the second line we display the bound from
(4.7) and in the third line Davis–Kahan bound (4.9). Further examples, where
a numerical advantage of (4.6) over (4.9) is more stunning, are given in [7]. We
repeat the results of the numerical experiments from [7] on Table 2. There we
try to estimate the approximation error in the vector wN1 in the ‖ · ‖-norm by an
application of Theorem 3.2. Otherwise the makeup of Table 2 is the same as the
makeup of Table 1.

We now present a variation on this example where (4.9) does not apply whereas
(4.6) still gives useful information. We chose Y1

N = span
{
lN1 , l

N
2

}
, where lN1 and

lN2 are generated by the N point equidistant continuous linear interpolation of u1

and u2 then rlN1 and rlN2 are no longer bona fide vectors. Subsequently, (4.9) does

not apply any more but Theorem 4.2 is still applicable. Take now QN such that
R(QN) = Y1

N . The results are presented on Table 3.
The performance of the bound (4.6) is influenced by the quotient

|DPN − λ2|
DPN

.
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N 6 7 8 9 10

‖EH(D)− PN‖ 2.0e-3 1.1e-3 6.0e-4 3.7e-4 2.4e-4

√
λ2dPN

λ2 − dPN
η2√

1− η2
1.5e0 6.2e-1 3.5e-1 2.2e-1 1.5e-1

√
s1(RN2 )

λ2 − dPN
3.6e+2 2.1e+2 1.5e+2 1.1e+2 8.9e+1

Table 2. Approximations for u1 (here we use dPN := minψ∈R(PN )
h[ψ]
‖ψ‖2 )

N 100 120 140

||| (EH(D))⊥QN |||HS 5.2024e-005 3.6126e-005 2.6541e-5

√
λ3DQN

λ3 −DQN

||| δHQN
s |||HS√

1− ηn
8.7374e-003 6.9293e-003 5.7302e-003

Table 3

DPN is an approximation3 of λ2 and in this example we have measured

|DPN − λ2|
DPN

> 0.17, N = 100, 120, 140.

The (under)performance of the bound (4.6) correctly detects this approximation
feature of R(QN ), cf. Table 3.

5. Estimates for perturbations of the square root of a nonnegative
operator

In this section we will show that there are interesting applications of the equation
(2.1) even when all of the coefficients A,M and F are unbounded. To demonstrate
this we will generalize the known scalar inequality 4

(5.1)
|√m−

√
h|

4
√
mh

≤ |m− h|
2
√
mh

, h,m > 0.

3To be more precise DPN is Rayleigh–Ritz approximation to λ2(H) from the subspace R(PN ).

For more on the Rayleigh–Ritz eigenvalue approximations see [7].
4“The relative error in the square root is bounded by the half relative error in the radicand”.
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to positive definite Hermitian matrices or, more generally, to positive, possibly
unbounded, operators in an arbitrary Hilbert space. One of the obtained bounds is

(5.2) ‖M−1/4(M−1/2 −H−1/2)H−1/4‖ ≤ 1

2
‖M−1/2(M −H)H−1/2‖.

In [13] a related bound for finite matrices was obtained. It reads

(5.3) ‖H−1/4(M−1/2 −H−1/2)H−1/4‖ ≤ η

2
+O(η2),

η = ‖H−1/2(M −H)H−1/2‖.
This is a more common type of estimate — the error is measured by the “unper-
turbed operator” only — while in our estimate the error is measured by H and M
in a symmetric way. The latter type of estimate is convenient, if both operators H
and M are known equally well and we are interested in a possibly sharp bound. Our
bound is obviously as sharp as its scalar pendant. It is also rigorous, in contrast
to (5.3) which is only asymptotic. Moreover, (5.2) will retain its validity for fairly
general positive selfadjoint operators in a Hilbert space. The bound (5.2) is a “rel-
ative bound” which may be convenient in computing or measuring environments
(cf. related bounds obtained for the eigenvalues and eigenvectors of the Hermitian
matrices in [14] and the literature cited there). Also, this bound is readily expressed
in terms of quadratic forms, which will be convenient for application with elliptic
differential operators as will be shown below.

The idea of the proof is very simple, especially in the finite dimensional case
which we present first, also in order to accommodate readers not interested in
infinite dimension technicalities.

The basis of our proof is the obvious Sylvester equation (cf. [16])

(5.4) M1/2(M1/2 −H1/2) + (M1/2 −H1/2)H1/2 = M −H,
valid for any Hermitian, positive definite matrices H and M . We rewrite this
equation in the equivalent form

(5.5) M1/4TH−1/4 +M−1/4TH1/4 = F

with

(5.6) F = M−1/2(M −H)H−1/2, T = M−1/4(M−1/2 −H−1/2)H−1/4,

which is immediately verified. This equation has a unique solution

(5.7) T =

∫ ∞

0

e−M
−1/2tM−1/4FH−1/4e−H

−1/2tdt.

(just premultiply (5.5) by e−M
−1/2tM−1/4, postmultiply by e−H

−1/2tH−1/4, inte-
grate from 0 to ∞ and perform partial integration on its left hand side). Hence for
arbitrary vectors φ, ψ we have

|(Tψ, φ)|2 ≤ ‖F‖2
(∫ ∞

0

‖e−M−1/2tM−1/4φ‖‖e−H−1/2tH−1/4ψ‖dt
)2

≤ ‖F‖2
∫ ∞

0

‖e−M−1/2tM−1/4φ‖2dt
∫ ∞

0

‖e−H−1/2tH−1/4ψ‖2dt

(5.8) =
‖F‖2

4
‖‖ψ‖2φ‖2,
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where we have used the obvious identity

(5.9)

∫ ∞

0

e−2CtCdt =
1

2
I

for C = H−1/2, M−1/2. Thus, (5.2) holds true.

We now turn to the Hilbert space H of arbitrary dimension. We assume that H
and M are positive selfadjoint operators. This implies that all fractional powers of
H and M are also positive. Neither of these operators need be bounded (or have
bounded inverse).

Theorem 5.1. Let H and M be positive selfadjoint operators in a Hilbert space
X having the following property (A): D(H1/2) = D(M1/2) and the norms ‖H1/2 · ‖
and ‖M1/2 · ‖ are topologically equivalent. Then the same property is shared by
H1/2 and M1/2. The operators

M−1/2H1/2, M1/2H−1/2, M−1/4H1/4, M1/4H−1/4,

(5.10) H−1/2M1/2, H1/2M−1/2, H−1/4M1/4, H1/4M−1/4

are well defined and bounded. Let

(5.11) F = M1/2H−1/2 −M−1/2H1/2

and

(5.12) T = M1/4H−1/4 −M−1/4H1/4

then

(5.13) ‖T‖ ≤ 1

2
‖F‖.

Proof. The fact that the square roots inherit the property (A) is a consequence of
Löwner type theorems (see e.g. [8], Ch.V, Th. 4.12). The corresponding pairs of

operators in (5.10) are mutually adjoint e.g. M−1/2H1/2
∗

= H1/2M−1/2 etc. Obvi-
ously, (5.11) and (5.12) reduce to F, T from (5.11), if the space is finite dimensional.
The equation (5.5) becomes here

(5.14) (TH−1/4u,M1/4v) + (TH1/4u,M−1/4v) = (Fu, v)

for u ∈ DA = D(H1/4) ∩ D(H−1/4) and similarly for v and M. We will now prove
this.

The left hand side of (5.14) equals

(M1/4H−1/4H−1/4u,M1/4v)− (H−1/4u,H1/4M−1/4M1/4v)

+(H1/4u,H−1/4M1/4M−1/4v)− (M−1/4H1/4H1/4u,M−1/4v) =

(H−1/2u,M1/2v)− (u, v) + (u, v)− (H1/2u,M−1/2v) =

(M1/2H−1/2u, v)− (M−1/2H1/2u, v) = (Fu, v).

Now, substitute in (5.14)

(5.15) v = e−M−1/2tM−1/4φ, u = e−H−1/2tH−1/4ψ
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for any φ ∈ D(M−1/2), ψ ∈ D(H−1/2). Note that subspaces M−1/4D(M−1/2) and

H−1/4D(H−1/2) are invariant under e−M−1/2t, e−H−1/2t, respectively so, in (5.15)
we have u ∈ DA and v ∈ DM. Then integrate (5.15) and use partial integration:
∫ s

0

(Te−H−1/2tH−1/2ψ, e−M−1/2tφ)dt+

∫ s

0

(Te−H−1/2tψ, e−M−1/2tM−1/2φ)dt =

−
∫ s

0

(T
d

dt
e−H−1/2tψ, e−M−1/2tφ)dt+

∫ s

0

(Te−H−1/2tψ, e−M−1/2tM−1/2φ)dt =

(Tψ, φ)− (Te−H−1/2sψ, e−M−1/2sφ) +

∫ s

0

(Te−H−1/2tψ, (−e−M−1/2tM−1/2)φ)dt

+

∫ s

0

(Te−H−1/2tψ, e−M−1/2tM−1/2φ)dt =

(Tψ, φ)− (Te−H−1/2sψ, e−M−1/2sφ) =
∫ s

0

(Fe−H−1/2tH−1/4ψ, e−M−1/2tM−1/4φ)dt.

In the limit s → ∞ by using the functional calculus for H, M, respectively and
monotone convergence for spectral integrals we obtain

e−H−1/2sψ → 0, e−M−1/2sφ→ 0

in the norm. Hence

(5.16) (Tψ, φ) =

∫ ∞

0

(Fe−H−1/2tH−1/4ψ, e−M−1/2tM−1/4φ)dt

where the integral on the right hand side is, in fact, Lebesgue as shows the chain of
inequalities in (5.8) which are valid in this general case as well. Here the identity
(5.9) is used in the weak sense:

∫ ∞

0

(e−2CtCφ, φ)dt = (φ, φ)/2, φ ∈ D(C)

for any positive selfadjoint C. Thus,

|(Tψ, φ)|2 ≤ ‖F‖2(ψ, ψ)(φ, φ)/4.

�

Remark 5.2. The main assertion (5.13) of Theorem 5.1 is obviously equivalent to
the following statement: the inequality

|m(φ, ψ)− h(φ, ψ)| ≤ ε
√
h(φ, φ)m(φ, ψ)

implies

|m2(φ, ψ)− h2(φ, ψ)| ≤ ε

2

√
h2(φ, φ)m2(ψ, ψ)

where the sesquilinear forms h,m, h2,m2 belong to the operators H,M,H1/2,M1/2,
respectively. Thus, our theorem will be directly applicable to differential operators
given in weak form.
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Example 5.3. Let again H and M be as in Example 3.4. That is to say take H,
M as selfadjoint realizations of the differential operators

− ∂

∂x
α(x)

∂

∂x
, − ∂

∂x
β(x)

∂

∂x
,

in the Hilbert space H = L2(I) (again I can be a finite or infinite interval) with
the Dirichlet boundary conditions and non-negative bounded measurable functions
α(x), β(x) which satisfy

|β(x) − α(x)| ≤ ε
√
β(x)α(x)

Now

|(M1/2φ,M1/2ψ)− (H1/2φ,H1/2ψ)|2 ≤
(∫

I

|β(x) − α(x)||ψ′(x)φ′(x)|dx
)2

≤

ε2

∫

I

α(x)|ψ′(x)|2dt
∫

I

β(x)|φ′(x)|2dt = ε2‖H1/2φ‖2‖M1/2ψ‖2

hence ‖F‖ ≤ ε and Theorem 5.1 applies yielding

|(M1/4φ,M1/4ψ)− (H1/4φ,H1/4ψ)| ≤ ε

2
‖H1/4φ‖‖M1/4ψ‖

or, equivalently, in the terms as in Remark 5.2

|m2(φ, ψ) − h2(φ, ψ)| ≤ ε

2

√
h2(φ, φ)m2(ψ, ψ).

6. Conclusion

With this work we complete our study of the weak Sylvester equation which
started in [7]. A notion of a weak Sylvester equation was introduced in [7] as a tool
on a way to obtain invariant subspace estimates for unbounded positive definite
operators. With this paper we show that there are applications of the concept of
a weak Sylvester equation outside the theory of Rayleigh–Ritz spectral approxi-
mations. We have extended out theory to infinite dimensional invariant subspaces
and have obtained estimates of the difference between the corresponding spectral
projections in all unitary invariant norms. With this results we have developed a
counterpart of the sin Θ theorems from [1] for perturbations of operators which are
only defined as quadratic forms.

Due to the very singular nature of integral representations (which can not be
avoided by reformulation of the integrals) of the solution to the equation (2.4), cf.
formula (2.5), we were not able to extend the technique from [1] to prove that in
the setting of Theorem 2.7 assumption ||| F |||< ∞ also implies that there exists a
bounded solution T such that ||| T |||< ∞. We believe that this statement is true,
but the proof will have to remain a task for the future and will most likely require
another technique. The technique behind [12, Theorem 1.] could be a way to
overcome this difficulty since the inequality (1.5) holds for bounded and invertible
operators H and M . In order to complete this agenda a new way to regularize
the weak Sylvester equation has to be found. We believe that the results of this
article well illustrate the advantages and limitations of our form theoretic approach
to weak Sylvester equation.

An application of the concept to a perturbation of the square root of a positive
definite operator shows that there are other application areas for weakly formulated
operator equations and that the developed techniques are (and hopefully will be)
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easily adaptable to new situations. The applications which we have reported in this
paper are presented as an illustration only. Further applications will be the subject
of the future work, cf. [6].
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