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Abstract

We estimate the size of the spectral gap at zero for some Hermitian block matrices.
Included are quasi-definite matrices, quasi-semidefinite matrices (the closure of the
set of the quasi-definite matrices) and some related block matrices which need not
belong to either of these classes. Matrices of such structure arise in quantum models
of possibly disordered systems with supersymmetry or graphene like symmetry. Some
of the results immediately extend to infinite dimension.

1 Introduction

Consider (finite) Hermitian block matrices of the form

H =

[
A B
B∗ −C

]
(1)

(the minus sign is set by convenience). If A,C are positive definite then the matrix H is
called quasi-definite. These matrices have several remarkable properties, one of them being
that they are always nonsingular with a spectral gap at zero,

ρ(H) ⊇ (−minσ(C),minσ(A)) (2)

(ρ the resolvent set, σ the spectrum). That is, the spectral gap of the block-diagonal part
of H in (1) can only grow if any B is added. Moreover, quasi-definite matrices have two
remarkable monotonicity properties:

(A) If B is replaced by tB, t > 0, then all the eigenvalues go monotonically asunder as t
is growing ([18],[11]).

(B) The same holds if A,C is replaced by A+ tI, C + tI, t > 0, respectively ([9]).

In this note we study some related classes of matrices. If in (1) the blocks A,C are
allowed to be only positive semidefinite then H will naturally be called quasi-semidefinite.
These matrices need not to be invertible.

It is relatively easy to characterise the nonsingularity of a quasi-semidefinite matrix, see
Proposition 2.1 below. Giving estimates for the gap at zero is more involved and this note
offers some results in this direction. Since the size of the spectral gap at zero is bounded
from below by 2‖H−1‖−1 we will give various bounds for this quantity in terms of the blocks
A,B,C where A,C are only positive semidefinite and the properties of B come into play.
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It is known from [19] that the invertibility of B carries over to H, but no bound for H−1

was provided there. Some bounds for H−1 were given in [21].
As a technical tool we derive a bound for the matrix (I + AC)−1 with A,C positive

semidefinite which might be of independent interest. We also sketch a related functional
calculus for such products. More specifically, the present article provides the following.

1. A bound for (I +AC)−1 with A,C positive semidefinite.

2. A characterisation of the nonsingularity of a quasi-semidefinite matrix.

3. A bound for H−1 based on the bound for B−1 including an immediate generalisation
to unbounded Hilbert-space operators defined by quadratic forms. To this general
environment we also extend an elegant estimate obtained by [12] for the special case
A = C, B = B∗.

4. A bound for H−1 based on the geometry of the null-spaces of all of A,B,C and certain
restrictions of these operators to the orthogonal complements of these null-spaces.

5. Several counterexamples; some of them showing that some plausibly looking general-
isations of the properties (A), (B) above are not valid.

6. A monotonicity and a sharp spectral inclusion result for the case of Stokes matrices
(those with C = 0).

7. A study of the spectral gap of a particular class of matrices which arise in the quantum
mechanical modelling of disordered systems (see e.g. [4]). There we have C = A in
(1), but A is not necessarily positive definite. In particular, we will illustrate how
changing boundary conditions can remove spurious eigenvalues from the gap. This is
a specific, thoroughly worked out example on how to deal successfully with what is
called spectral pollution.

Let us remark that the variety of special cases as well as techniques which we use illustrate
the fact that we did not succeed in obtaining a unified framework for spectral gap estimates
for general quasi-definite matrices.

Quasi-semidefinite matrices and their infinite dimensional analogs have important appli-
cations in Mathematical Physics. Although we here have no space to discuss the relevant
models in detail, we would like to convey an impression of the questions arising in this
context. These have been the motivation for much of the research presented here. Certain
types of Dirac operators are important examples. In these cases the nonsingularity of H
is typically due to the one of B (see [21] where this phenomenon was dubbed ’off-diagonal
dominance’).

Another particular motivation are quantum mechanical models of disordered solids.
While this is a well established research field, recently there has been interest in such models
which give rise to operators with block-structure, see e.g. [12] or [4]. For some of these mod-
els the block structure is a consequence of the Dirac-like symmetry arising in Hamiltonians
describing graphene.

Let us describe some of the specific spectral features which are of interest in this context.
We consider several instances of one-parameter Hermitian pencils A+ tB, t ∈ R. The well
known monotonicity property, namely that the eigenvalues of A+ tB grow monotonically in
t, if B is positive semidefinite can, at least partly, be carried over to quasi-definite matrices
as show the properties (A), (B) listed above. Here a question of particular importance is
whether and how fast the spectral gap increases as t grows. Several theorems of this paper
provide answers to this question in specific situations.
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As mentioned, certain physical models of disordered systems give rise to block-structured
operator families. In this context, estimates have to take into account the following two im-
portant aspects.

(I) The size of the original physical system is macroscopic, i.e. essentially infinite. A
mathematical understanding of the physical situation is – as a rule – only possible by
analysing larger and larger finite sample systems which describe the original physical situ-
ation in the thermodynamic limit.

This leads to finite matrices or to operators with compact resolvent. In any case, effec-
tively one can reduce the focus on a finite number, say n, of eigenvalues, when analysing
monotonicity properties. However, n is not fixed but growing unboundedly as one passes to
larger and larger sample scales.

Thus, efficient estimates on spectral gaps (or derivatives of eigenvalues) are not allowed
to depend on the system size – expressed in the dimension of the matrix or the number of
eigenvalues n. We will pay special attention to this issue in the following.

(II) Due to the fact that one wants to model a disordered system, with a large number of
degrees of freedom, there is in fact not just one coupling constant ∈ R, but rather a whole
collection (tj)j∈Z of them. Thus the considered operator pencil is originally of the form

A+
∑

j

tj Bj .

A one-parameter family arises if one freezes all coupling constants except for one. As a
consequence, one is not dealing with one fixed unperturbed operator A, but rather with a
whole collection of them, depending on the background configuration of the (other) cou-
pling constants (tj , j 6= 0). For this reason it would be desirable to obtain estimates on the
spectral gap which do not depend on specific features of A.

The plan of the paper is as follows. In the next section we provide certain basic pre-
liminary estimates for quasi-semidefinite matrices. In Section 3 the main results concerning
the spectral gap size of such matrices are stated. These results are formulated for finite
matrices. In Section 4 we explain which results carry immediately over to the setting of
(possibly unbounded) operators defined as quadratic forms. This includes the mentioned
generalisation of an estimate from [12], as well as a comparison with bounds obtained in
[21]. In Section 5 we consider Stokes matrices. By reduction to a quadratic eigenvalue prob-
lem we (i) prove monotonicity properties of the eigenvalues (but not as it would be naively
expected from cases (A) and (B) above), then (ii) give a tight bound for the two eigenvalues
closest to zero. The last section considers a special class of finite difference matrices, not
necessarily quasi-definite, studied in [4]. Here we show that a stable spectral gap at zero
can be achieved by an appropriate tuning of boundary conditions. Similar phenomena, yet
without rigorous proofs, are numerically observed on related models with random diagonal
entries.

2 Some preliminary results

To set the stage we collect some rather elementary statements and estimates.

Proposition 2.1 A quasi-semidefinite matrix

H =

[
A B
B∗ −C

]
.
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is singular if and only if at least one of the subspaces

N (A) ∩ N (B∗), N (C) ∩ N (B)

(N denoting the null-space) is non-trivial. Moreover, in the obvious notation,

N (H) =

[
N (A) ∩ N (B∗)
N (C) ∩ N (B)

]
. (3)

The value min(σ(A)) is an eigenvalue of H if and only if N (B∗) = {0} (and similarly for
min(−σ(C))).

Proof. The equations
Ax+By = 0, B∗x− Cy = 0

imply
x∗Ax+ x∗By = 0, y∗B∗x− y∗Cy = 0.

Since both x∗Ax and y∗Cy are real and non-negative, the same is true of ±x∗By such that,
in fact, all three expressions vanish. Since A,C are Hermitian positive semidefinite this
implies Ax = 0 and Cy = 0, then also B∗x = 0 and By = 0. This proves (3); for the last as-
sertion apply (3) to the matrixH−min(σ(A))I. The other assertions follow trivially. Q.E.D.

Corollary 2.2 The matrix H is nonsingular if and only if the matrices

A+
√
BB∗, C +

√
B∗B

are positive definite.

Corollary 2.3 The null-space of the matrix H from (1) does not change if A is replaced
by tA, t > 0 and similarly with B,C.

To quantify the influence of B in (1) on the spectral gap in the quasi-definite case we
proceed as follows. First note the fundamental equality, valid for all selfadjoint operators,
saying that

‖(H − λI)−1‖ = dist(λ, σ(H)). (4)

Taking any λ from the open interval (−minσ(C),minσ(A)) we have

H − λI =

[
(A− λI)1/2 0
0 (C + λI)1/2

]
W

[
(A− λI)1/2 0
0 (C + λI)1/2

]

with

W =

[
I Z
Z∗ −I

]
, Z = (A− λI)−1/2B(C + λI)−1/2.

As it is readily seen, the eigenvalues of the matrix W are ±
√

1 + σ2
i , where σi are the

singular values of Z (cf. [15]). Thus,

‖W‖ =
√

‖I + Z∗Z‖, ‖W−1‖ =
√
‖(I + Z∗Z)−1‖.

This gives the estimate

‖(H − λI)−1‖ ≤
√

‖(I + Z∗Z)−1‖
min{min(σ(A)− λ),min(σ(C) + λ)

. (5)
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Therefore by taking e.g. λ = λ0 = 1
2 (min(σ(A)−min(σ(C)) we obtain

‖(H − λ0I)
−1‖ ≤ 2

√
‖(I + Z∗Z)−1‖

min(σ(A) + min(σ(C)
. (6)

We see that the gap is stretched at least by the factor

‖(I + Z∗Z)−1‖−1/2 =
√
1 + min

i
σ2
i .

3 Spectral bounds for quasi-semidefinite matrices.

We will particularly be interested in how the appearance of the block B can create a spectral
gap at zero if A,C alone are unable to do so. The size of this gap is bounded from below
by the quantity 2/‖H−1‖, cf. (4).

As a preparation we will consider the matrices of the form I + AC with A,C positive
semidefinite. These will play a key role in our estimates and may have an independent
interest of their own. Note that they are generally not Hermitian.

Theorem 3.1 Let A,C be Hermitian positive semidefinite. Then
(i)

σ(AC) = σ(CA) ⊆ [0,∞), (7)

(ii)

‖(I +AC)−1‖ ≤ 1 +
min{‖A‖1/2‖L∗C‖, ‖C‖1/2‖‖AM‖}

1 + minσ(AC)
(8)

where
A = LL∗, C =MM∗, (9)

(iii) the matrix AC is diagonalisable.

Proof. The statements (i), (iii) above are not new (see [7], [8], respectively). To prove (ii)
note that

(λI +AC)−1 =
1

λ
I − 1

λ
(λI +AC)−1AC =

1

λ
I − 1

λ
(λI + LL∗C)−1LL∗C

=
1

λ
I − 1

λ
L(λI + L∗CL)−1L∗C, (10)

So the spectra of CA and L∗CL coincide - up to possibly the point zero. Now, L∗CL is
Hermitian positive semidefinite, hence

‖(I + L∗CL)−1‖ =
1

1 +minσ(L∗CL)
=

1

1 + minσ(AC)

and therefore

‖(I +AC)−1‖ ≤ 1 +
‖L‖‖L∗C‖

1 + minσ(AC)
.

The second half of (8) is similar. Q.E.D.

From (8) it immediately follows that

‖(I +AC)−1‖ ≤ 1 +
‖A‖1/2‖C‖1/2‖L∗M‖

1 + minσ(AC)
≤ 1 + ‖A‖‖C‖. (11)
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Proposition 3.2 Let A,C be Hermitian positive semidefinite. Then

‖I +AC‖ ≥ 1 (12)

and equality is attained if and only if AC = 0.

Proof. Since the norm dominates the spectral radius, and by (7) the latter is not less than
one, (12) follows. In the case of equality, the whole spectrum consists of the single point
1, that is, the spectrum of AC = A1/2A1/2C is {0}. Then the spectrum of the Hermitian
matrix A1/2CA1/2 also equals {0}. Hence A1/2CA1/2 = (C1/2A1/2)∗C1/2A1/2 = 0 and then
also AC = (CA)∗ = 0. Q.E.D.

Theorem 3.3 Let in (1) the matrix B be square and invertible and let

α = sup
x 6=0

x∗Ax

x∗
√
BB∗x

, γ = sup
x 6=0

x∗Cx

x∗
√
B∗Bx

. (13)

Then
‖H−1‖ ≤ ‖B−1‖ (1 + max{α, γ}+ αγ) . (14)

Proof. Using the polar decomposition B = U
√
B∗B =

√
BB∗U we get the factorisation

H =

[
(BB∗)1/4 0

0 (B∗B)1/4

] [
Ã U

U∗ −C̃

] [
(BB∗)1/4 0

0 (B∗B)1/4

]
(15)

with
Ã = (BB∗)−1/4A(BB∗)−1/4, C̃ = (B∗B)−1/4C(B∗B)−1/4.

Also, [
Ã U

U∗ −C̃

]−1

=

[
(I + ĈÃ)−1Ĉ U(I + C̃Â)−1

(I + ÂC̃)−1U∗ −Â(I + C̃Â)−1

]
(16)

where
Â = U∗ÃU, Ĉ = UC̃U∗

are again Hermitian positive semidefinite. This is immediately verified taking into account
the identity

(I + ÂC̃)−1U∗ = U∗(I + ÃĈ)−1. (17)

This, together with the identities of the type

(I + ĈÃ)−1Ĉ = Ĉ1/2(I + Ĉ1/2ÃĈ1/2)−1Ĉ1/2 (18)

and the obvious inequality

∣∣∣∣
∣∣∣∣
[
E F
G K

]∣∣∣∣
∣∣∣∣ ≤ max{‖E‖, ‖K‖}+max{‖F‖, ‖G‖},

permits the use of (11) and the factorisation (15) to obtain (14). Here we have used the
obvious identities

α = ‖Ã‖ = ‖Â‖, γ = ‖C̃‖ = ‖Ĉ‖
and the fact that U is unitary. Q.E.D.

6



If B is replaced by tB, t > 0 then (14) goes over into

‖H−1‖ ≤ ‖B−1‖
t

(
1 +

max{α, γ}
t

+
αγ

t2

)
. (19)

Note that here the right-hand side is monotonically decreasing in t.
The proof of Theorem 3.3 may appear odd: the estimate for the inverse of a Hermitian

matrix H relies heavily on the estimate for the inverse of some non-Hermitian matrices of
the type I +AC. But this is the price for halving the dimension of the problem in working
with ’non-symmetric’ Schur complements.

On the other hand, if both A, C are positive definite then setting C̃ = Ĉ = C, Ã = Â =
A, U = I in (16), the inclusion (2) yields

‖(I +AC)−1‖ ≤ max{‖A−1‖, ‖C−1‖}. (20)

Remark 3.4 By (7) the spectrum of I +AC is uniformly bounded away from zero, so one
may ask whether there is a uniform bound for the norm of its inverse. The answer is negative
as shows the following example which is due to M. Omladič (private communication). Set

A =

[
t 0
0 1/t

]
, C =

[
1/t 1
1 t

]
.

Then

I +AC =

[
2 t
1/t 2

]
, (I +AC)−1 =

1

3

[
2 −t

−1/t 2

]
, (21)

and this is not bounded as t varies over the positive reals.

Numerous numerical experiments with random matrices led us to conjecture the bound

‖(I +AC)−1‖ ≤ ‖I +AC‖. (22)

This conjecture is true (i) in dimension two, (ii) if one of the matrices A,C has rank one
and (iii) if A,C commute; in the last case with the trivial bound

‖ (I +AC)
−1 ‖ ≤ 1. (23)

However, the estimate (22) is in general false. A nice counterexample, communicated to us
by A. Böttcher, is as follows. Set




1 0 0
−20 1.1 0

0 −20 1.2


 .

A numerical calculation gives

‖I +M‖ = 21.177 < 22, ‖(I +M)−1‖ = 43.774 > 42.

Now, (cf. eg. [2]) any diagonalisable matrix M with non-negative eigenvalues (our M is
such) is a product of two Hermitian positive semidefinite matrices. Indeed, if

M = UΛU−1

with Λ ≥ 0 diagonal then

M = (UΛ1/2U∗)(U−∗Λ1/2U−1),
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thus yielding a counterexample to the conjecture.

We now turn to the more complicated case in which A,C may have null-spaces and
the invertibility of H is due to the conspiring of all three blocks A,B,C. As an additional
information we will need lower bounds for the non-vanishing part of σ(A), σ(C). Thus, it
will be technically convenient to represent H in a block form which explicitly displays these
null-spaces:

H =




A 0 B11 B12

0 0 B21 B22

B∗
11 B∗

21 −C 0
B∗

12 B∗
22 0 0


 . (24)

Here, for the notational simplicity, the new blocks A,C are the ‘positive definite restrictions’
of the original blocks A,C in (1). In view of Proposition 2.1, H is nonsingular if and only
if both matrices [

B∗
21 B∗

22

]
,

[
B12

B22

]

have full rank. The following theorem gives a new sufficient condition for invertibility and
subsequently a gap estimate.

Theorem 3.5 Suppose that

H =

[
A B
B∗ −C

]

is quasi-semidefinite. Assume, in addition,

1. dim(N (A)) = dim(N (C))

2. B is a one-to-one map from N (C) onto N (A).

That is, the block B22 in (24) is square and nonsingular. Then

(−ε, ε) ∩ σ(H) = ∅

with

ε =
1

(1 + max{‖B12B
−1
22 ‖, ‖B∗

21B
−∗
22 ‖})2 max{‖A−1‖, ‖C−1‖, ‖B−1

22 ‖} .

Proof. We represent H in the unitarily equivalent, permuted form




A B11 0 B12

B∗
11 −C B∗

21 0
0 B21 0 B22

B∗
12 0 B∗

22 0


 =

[
Â B̂

B̂∗ Ĝ

]
. (25)

By renaming this matrix again into H we now perform the decomposition

H =

[
I B̂Ĝ−1

0 I

] [
Â− B̂Ĝ−1B̂∗ 0

0 Ĝ

] [
I 0

Ĝ−1B̂∗ I

]
.

This yields the simple estimate

‖H−1‖ ≤ (1 + ‖B̂Ĝ−1‖)2 max{‖(Â− B̂Ĝ−1B̂∗)−1‖, ‖Ĝ−1‖}.
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We now bound the single factors above:

Â− B̂Ĝ−1B̂∗ = Â−
[

0 B12

B∗
21 0

] [
0 B−∗

22

B−1
22 0

] [
0 B21

B∗
12 0

]

=

[
A B11 −B12B

−1
22 B21

B∗
11 −B∗

21B
−∗
22 B

∗
12 −C

]
.

This matrix is quasi-definite, hence the interval (−minσ(C),minσ(A)) contains none of its

eigenvalues. Thus, Â− B̂Ĝ−1B̂∗ is invertible and

‖(Â− B̂Ĝ−1B̂∗)−1‖ ≤ max{‖A−1‖, ‖C−1‖}.

Furthermore,
‖Ĝ−1‖ = ‖B−1

22 ‖
and

B̂Ĝ−1 =

[
B12B

−1
22 0

0 B∗
21B

−∗
22

]
,

whence

‖H−1‖ ≤ (1 + max{‖B12B
−1
22 ‖, ‖B∗

21B
−∗
22 ‖})2 max{‖A−1‖, ‖C−1‖, ‖B−1

22 ‖}.

Q.E.D.

Note that the radius of the resolvent interval guaranteed in the previous theorem depends
on the spectra of some operators obtained from the original blocks A,B,C.

If in the preceding theorem we replace B by tB and t is sufficiently large then we obtain

ε =
t

(1 + max{‖B12B
−1
22 ‖, ‖B∗

21B
−∗
22 ‖})2‖B−1

22 ‖ . (26)

Another relevant special case has A = C and B∗ = B, both positive definite. Then, as was
shown in [12], we have

ρ(H) ⊇ (−
√
minσ(A)2 +minσ(B)2,

√
minσ(A)2 +minσ(B)2 ). (27)

Remark 3.6 The technique used in the proof of Theorem 3.1 is related to the more general
functional calculus for products AC with A,C bounded and selfadjoint and C positive
semidefinite in a general Hilbert space. It reads

f 7→ f(AC) = f(0)I +AC1/2f1(C
1/2AC1/2)C1/2 (28)

with

f1(λ) =

{
f(λ)−f(0)

λ , λ 6= 0,
f ′(0), λ = 0,

By the property
f(XY )X = Xf(Y X), (29)

valid for any matrix analytic function f , this obviously extends the standard analytic func-
tional calculus and requires f to be differentiable at zero and otherwise just to be bounded
and measurable; then f1 will again be bounded and measurable and is applied to a selfad-
joint operator C1/2AC1/2.1 This calculus is a Hilbert-space generalisation of the assertions
of Theorem 3.1 (i), (ii), only here the point zero may remain a sort of a ‘spectral singularity’.

1This functional calculus, probably well-known by now, was communicated to the second author by the
late C. Apostol, Bucharest, more than forty years ago.
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The linearity and multiplicativity of the map f 7→ f(AC) is verified by straightforward
algebraic manipulations. Also, if the functions f in (28) are endowed with the norm

‖f‖ = |f(0)|+ ‖f1‖∞ (30)

then the map f 7→ f(AC) is obviously continuous. This admits estimating some other
interesting functions of AC, for instance, the group e−ACt, if both A and C are positive
semidefinite and t > 0. In this case f(λ) = e−tλ and it is immediately verified that |f1|, λ ≥
0, is bounded by t, whence

‖e−ACt‖ ≤ 1 + t‖AC1/2‖‖C1/2‖ (31)

and similarly
‖e−ACt‖ ≤ 1 + t‖CA1/2‖‖A1/2‖. (32)

Remark 3.7 Extending monotonicity properties? In the introduction we have stated
two known monotonicity properties of the eigenvalues for some affine quasi-definite pencils.
It is natural to try to extend this monotonicity to some neighbouring classes of matrix
families. Some of our examples will be of the form

H =

[
A B
B∗ −A

]
(33)

with 2×2-matrices A∗ = A and B∗ = ±B and no (semi)definiteness assumption whatsoever.
Here a straightforward calculation shows that the characteristic polynomial is

λ4 − 2(‖A‖2F + ‖B‖2F )λ2 +
∣∣det(A−

√
∓1B)

∣∣2 (34)

where ‖ · ‖F means the Frobenius or Hilbert-Schmidt norm. This can be used to give a
general formula for the roots explicitly, see the Appendix.

If in a quasi-definite matrix (1) the matrices A and C increase (in the sense of forms),
then the estimate (2) certainly improves, but does the gap at zero also necessarily increase?
The answer is no as the following example due to W. Kirsch (private communication) shows.
Set

H =

[
A Bt

Bt −A

]
(35)

with

A =

[
2 −1

−1 2

]
, Bt =

[
1 0
0 t

]
.

The matrix is quasi-definite. By (34) the characteristic equation is readily found to be

λ4 − (11 + t2)λ2 + 13 + 5t2 + 2t = 0 (36)

and the absolutely smallest eigenvalue is given in Figure 1 as function of t, 5 < t < 20,
(conveniently scaled) and it shows a non-monotonic behaviour. Thus, there does not seem
to be a simple generalisation of the monotonicity property (A). On the other hand, by the
unitary similarity

[
A Bt

Bt −A

]
=

1

2

[
I I
I −I

] [
Bt A
A −Bt

] [
I I
I −I

]
(37)

the same holds for the property (B). Another likely generalisation of (B), namely to have
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Figure 1: Lack of monotonicity
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Figure 2: Lack of monotonicity
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monotone eigenvalues if in (33) the matrix A is replaced by tA is also false. The counterex-
ample is a numerical one:

A =

[
1.24 0.81
0.81 0.53

]
, B =

[
0.30 −0.27

−0.31 −0.48

]
.

Here both A and B are positive definite. The absolutely smallest eigenvalues for 5 < t < 20
are shown in the Figure 2.

Finally, a yet simpler quasi-semidefinite example is given by

H =

[
At B
−B −At

]
(38)

with

At =

[
0 0
0 t

]
, B =

[
0 1

−1 0

]
.

Note that det(H) = 1 for all t and that the spectrum −λ1,−λ2, λ2, λ1 is symmetric
w.r.t. zero. Thus if |λ1| increases, |λ2| has to decrease with growing t > 0. This already

shows that property (B) in the introduction cannot hold for t 7→ A+ t

[
0 0
0 1

]
. Moreover,

it turns out that the spectral gap of (38) shrinks to zero as t→ ∞.
At the end of this remark, let us formulate certain monotonicity properties of one-

parameter families of quasi-definite matrices which are possibly true, but cannot prove at
the moment. The open questions are:

• If A and C in

Ht =

[
A tB

tB∗ −C

]
, t > 0 (39)

are positive semidefinite, are all positive eigenvalues of Ht isotone functions of t, and
all negative eigenvalues of Ht antitone functions of t? This would be an extension of
property (A) mentioned in the introduction.

• Are, in this situation, the positive eigenvalues of Ht strictly increasing in t? Under
which conditions on A, B, and C?

• Does this properties carry over to the infinite dimensional case, e. g. when Ht in (39)
is defined on ℓ2(Z)× ℓ2(Z) and A,B,C are bounded operators on ℓ2(Z)?

• A particularly interesting special class of operators of this type is

Ht =

[
−∆ tB
tB∗ −∆

]
, t > 0 (40)

where ∆ is the finite-difference Laplacian on ℓ2(Z), i.e.

∆φ(x) =
∑

y∈Z,y∼x

(
φ(y)− φ(x)

)
, x ∈ Z, φ ∈ ℓ2(Z)

and where y ∼ x denotes the neighbours of x.
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4 Unbounded operator matrices

Most of the results obtained above immediately extend to infinite dimensional Hilbert space.
Theorem 3.1 (except (iii)) and Proposition 3.2, together with their proofs, apply literally
to any bounded selfadjoint positive semidefinite operators A,C. Theorem 3.3 even allows
B,A,C to be unbounded. In fact, the last two may be just quadratic forms, requiring,
of course, that the quantities α, γ in (13), reformulated in the quadratic form context, be
finite, whereas B needs to have a bounded, everywhere defined inverse. More precisely, in
this setting, the operator H is defined by the form block matrix

[
a B

B∗ −c

]
(41)

where the symmetric sesquilinear forms a, c have to be defined on the form domains of√
BB∗,

√
B∗B, respectively, and the relative form bounds

α = sup
x 6=0

a(x, x)

‖(B∗B)1/4x‖2 , γ = sup
x 6=0

c(x, x)

‖(BB∗)1/4x‖2 (42)

need to be finite. So, the operators Ã, C̃, Â, Ĉ appearing in the proof of Theorem 3.3 will
again be bounded and positive semidefinite whereas the formula (15) now serves as a natural
definition of the operator H itself. Indeed, H is given as a product of three selfadjoint
operators, each having a bounded, selfadjoint inverse. The bounded invertibility of the first
and the third factor in (15) is trivial, whereas for the second it follows from the formula
(16) (cf. also [19]). Similar remarks hold for Theorem 3.5 as well. (Proposition 2.1 could
also be reformulated in infinite dimension, but this will not interest us here.)

We will now compare our bound with a bound obtained in [21]. This bound (with
our notation) requires that A,C be relatively bounded with respect to B,B∗, respectively.
According to [10], Ch. VI, Th. 1.38, the operator boundedness implies the form boundedness
with the same bound; so our setting is more general. In addition [21] gives an eigenvalue
bound under the condition that at least one of the operators A,C is bounded. The estimate
obtained there is rather complicated; but if both A,C are bounded then [21] gives the
somewhat simpler bound

dist(σ(H), 0) ≥ −1

2
(‖A‖+ ‖C‖) +

(
1

4
(‖A‖ − ‖C‖)2 +

(
‖B−1‖−2

))1/2

, (43)

which is still not easily compared with our estimate (14). Anyhow, if ‖A‖ = ‖C‖ and
the relative bound ‖A‖‖B−1‖ is larger than one, then the right-hand side of (43) becomes
negative and the estimate is void whereas the bound (14) always makes sense. In fact, our
relative bounds α and γ may be arbitrary. In particular, they need not to be less than one,
which is a usual requirement in operator perturbation theory. It is a general feature with
quasi-definite matrices that perturbations, as long as they respect, in an appropriate sense,
the block structure, need to be relatively bounded, but not necessarily with the relative
bound less than one, in order to yield an effective perturbation theory. Such a phenomenon
was already encountered in [19], for example.

The selfadjointness of the operator H from (41) immediately applies to various kinds of
Dirac operators with supersymmetry (see [17], Sect. 5.4.2 and 5.5) under the appropriate
definiteness assumption for the diagonal blocks.

An analogous construction of a selfadjoint block operator matrix H was made in [19] in
the ‘dual’ case in which B is dominated by A,C in the sense that A−1/2BC−1/2 is bounded.
Estimate (6) extends to this more general situation, where A,B,C need not be bounded.
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Finally we come back to the estimate (27). The proof given in [12] went through squaring
the matrix

H =

[
A B
B −A

]
, (44)

which is inconvenient if A,B are unbounded. We provide an alternate proof under a weaker
assumption, namely that instead of operators A,B we have symmetric positive semidefinite
(not necessarily closed) sesquilinear forms a, b defined on a dense domain D = D(a) = D(b).
The obvious generalisation of the block operator matrix (44) is the symmetric sesquilinear
form h defined as

h(x, y) = a(x1, y1) + b(x2, y1) + b(x1, y2)− a(x2, y2), x =

[
x1
x2

]
, y =

[
y1
y2

]
(45)

for
x, y ∈ D ⊕D.

Neither of the forms a, b need to be closed but their sum shall be assumed as closed. Here
we have, in fact, first to construct the operator H. To this end we use the ‘off-diagonalizing’
transformation given by the unitary matrix

U =
1√
2

[
I I
iI −iI

]
(46)

(cf. [17]). Obviously U(D ⊕D) = D ⊕D, whereas a direct calculation leads to

ĥ(x, y) = h(Ux,Uy) = ia(x1, y2) + b(x1, y2) + b(x2, y1)− ia(x2, y1)

= τ(x2, y1) + τ∗(x1, y2) (47)

where the forms
τ = a− ib, τ∗ = a+ ib (48)

are sectorial and mutually adjoint. Obviously the range of the form τ lies in the lower right
quadrant of the complex plane.

The form τ is closed. This is readily seen from the equivalence of the corresponding
norms:

|τ(x, x)| =
√
a(x, x)2 + b(x, x)2 ≤ a(x, x) + b(x, x)

≤
√
2(a(x, x)2 + b(x, x)2) =

√
2|τ(x, x)|,

so that the closedness of a + b is, in fact, equivalent to that of τ . Thus τ, τ∗ generate
mutually adjoint maximal sectorial operators T, T ∗, respectively (see [10], Ch. VI, Theorem
2.1). Now, for x2 ∈ D(T ), x1 ∈ D(T ∗) and y1, y2 ∈ D we have

ĥ(x, y) = (Ĥx, y) (49)

where the operator

Ĥ =

[
0 T

T ∗ 0

]
(50)

is obviously selfadjoint with the domain D(T ∗) ⊕ D(T ). Also selfadjoint is its inverse con-
jugate

H = UĤU∗

with
h(x, y) = (Hx, y), D(H) ⊆ D(τ)⊕D(τ). (51)
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The operator H is uniquely determined by (51) as is shown in [19], Proposition 2.3.
To estimate the inverse note that

‖Tz‖‖z‖ ≥ |(Tz, z)| =
√
a(z, z)2 + b(z, z)2 ≥

√
α2 + β2 ‖z‖2

where α, β ≥ 0 is the lower bound of a, b, respectively. The above ‘Lax-Milgram inequalities’
are, in fact, the key argument in this matter. They are non-trivial if any of α, β is different
from zero. In this case, by the maximality of T , its inverse is everywhere defined and

‖T−1‖ = ‖T−∗‖ ≤ 1√
α2 + β2

,

From the obvious formula

Ĥ−1 =

[
0 T−∗

T−1 0

]
(52)

we finally obtain

‖Ĥ−1‖ = ‖H−1‖ = ‖T−1‖ ≤ 1√
α2 + β2

, (53)

which obviously reduces to (27) if a, b are bounded. Thus, we have proved the following
theorem.

Theorem 4.1 Let a, b be positive semidefinite symmetric sesquilinear forms with the com-
mon dense domain D and respective lower bounds α, β and such that a+ b is closed. Then
the form h from (45) defines a unique selfadjoint operator H with D(H) ⊆ D ⊕ D and
h(x, y) = (Hx, y) for x ∈ D(H), y ∈ D ⊕ D. Moreover, if any of α, β is non-zero then H
has a bounded inverse with

‖H−1‖ ≤ 1√
α2 + β2

.

Remark 4.2 (i) The conditions of the preceding theorem are obviously fulfilled if one of the
forms a, b is closed and the other is relatively bounded with respect to the first. Moreover,
if, say, b is relatively bounded with respect to a then b need not to be semidefinite; indeed
the whole construction of H, Ĥ, T in the proof of the preceding theorem goes through and
we have

‖Ĥ−1‖ = ‖H−1‖ = ‖T−1‖ ≤ 1

α
, (54)

provided that a is positive definite.
(ii) The form τ constructed in the proof of the preceding theorem is not sectorial in the

strict sense as defined in [10] because its range does not lie symmetrically with respect to the
positive real axis. But, of course, the whole theory developed in [10] naturally and trivially
extends to all kinds of numerical ranges having semi-angle less than π/2. The standard form
can be achieved simply by multiplying τ with a phase factor

e
π

4
iτ =

1√
2
((a+ b) + i(a− b)).

The symmetric part of this form is closed, whereas the skew-symmetric part is relatively
bounded with respect to the symmetric one, so it is sectorial in the strict sense of [10].

(iii) The obvious fact that the eigenvalues (whenever existing) of H are ± singular values
of T may have advantage in numerical computations with finite matrices. Firstly, the size
of T is half the size of H and, secondly, there is plenty of reliable computational software to
compute the singular values (and vectors) of arbitrary matrices.

(iv) If a + b is only closable then its closure is again of the form ã + b̃ where ã, b̃ are
obtained by the usual limiting process and Theorem 4.1 applies. We omit the details.
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5 Stokes matrices

If we set C = 0 in (1), we obtain a Stokes matrix. Stokes matrices have been extensively
studied, see [14], [1] and the literature cited there. For C = 0, we obviously have AC = CA.
Consequently by (23) the estimate (14) becomes

‖H−1‖ ≤ ‖B−1‖(1 + α). (55)

A more careful inspection of formula (16) gives a tighter bound

‖H−1‖ ≤ ‖B−1‖α+
√
α2 + 4

2
. (56)

In [14] the following spectral inclusion was proved.

Theorem 5.1 ([14]) For positive definite A and B of full column rank,

σ(H) ⊆ I+ ∪ I−, (57)

I+ =

(
α1,

αm +
√
α2
m + 4β2

m

2

)
, (58)

I− =

(
α1 +

√
α2
1 + 4β2

m

2
,
αm +

√
α2
m + 4β2

1

2

)
, (59)

where 0 < α1 ≤ · · · ≤ αm are the eigenvalues of A whereas 0 < β1 ≤ · · · ≤ βm are the
singular values of B.

Under the same assumptions [1] establishes the inclusion (57) with the intervals I± given
by

I− =

(
−2σmαm

α1 +
√
α2
1 + 4σ2

m

,
σ1α1

σ1 + α1

)
, (60)

I+ =

(
α1,

αm +
√
α2
m + 4σ2

m

2

)
, (61)

where 0 < σ1 ≤ · · · ≤ σm are the eigenvalues of B∗A−1B.
In the following we partly improve and generalise the foregoing results. For illustration

purposes let us start with the 2× 2-case, i. e.

H =

[
a b
b̄ 0

]
, min{a, |b|} > 0. (62)

The eigenvalues of H are

λ± = f±(a, t) =
a±

√
a2 + t2

2
, where t = 2|b|. (63)

The functions f−, f+ have the following properties:

1. f−(a, t) < 0 < f+(a
′, t′) for all a, t, a′, t′ ∈ R,

2. f+ is increasing in both variables a, t,

3. f− is increasing in a and decreasing in t.
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Herewith a result for n× n matrices.

Theorem 5.2 Let

H =

[
A B
B∗ 0

]
(64)

be an n× n Hermitian matrix over the field K ∈ {R,C} such that A is positive semidefinite
of order m and

N (A) ∩ N (B∗) = {0}. (65)

Define p+, p− : Sm−1 → R, where S
m−1 is the unit sphere in K

m, by

p±(x) =
x∗Ax±

√
∆(x)

2
, ∆(x) = (x∗Ax)2 + 4x∗BB∗x, ‖x‖ = 1 (66)

and
p++ = max

‖x‖=1
p+(x), p−+ = min

‖x‖=1
p+(x),

p+− = max
‖x‖=1

p+(x), p−− = min
‖x‖=1

p−(x).

Then the following hold.

Extremal eigenvalues: The points p++, p
−
+, p

+
−, p

−
− are eigenvalues of H.

Spectral inclusion:
σ(H) ⊆ I− ∪ I+ ∪ {0} (67)

where
I− = [p−−, p

+
−] and I+ = [p−+, p

+
+] (68)

and
p+− = max I− ≤ 0 ≤ p−+ = min I+, (69)

p+− < p−+. (70)

Monotonicity: Consider the eigenvalues of H as functions of the submatrices A,B. Then
all eigenvalues are non-decreasing with A, whereas the non-positive eigenvalues are
non-increasing and the non-negative ones non-decreasing with BB∗.2

Proof. The eigenvalue equation for H is written as

Ax+By = λx, (71)

B∗x = λy. (72)

For λ 6= 0 these equations are equivalent to

(λ2I − λA−BB∗)x = 0, x 6= 0, y = B∗x/λ. (73)

By assumption (65), for x 6= 0 we have ∆(x) > 0 and from (73) and ‖x‖ = 1 it follows

λ2x∗x− λx∗Ax− x∗BB∗x = 0. (74)

Therefore λ ∈ {p+(x), p−(x)} and p± are real-valued. Obviously

p±(x) = f±(x
∗Ax, x∗BB∗x) (75)

2The terms in(de)creasing for A and B mean the quadratic forms x∗Ax and x∗BB∗x = ‖B∗x‖2, respec-
tively.
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with f± from (63); then the properties (69), (70) immediately follow from the property 1 of
the functions f± from (63). With the property ∆(x) > 0 the matrix pencil λ2I−λA−BB∗

is called overdamped. In [5] a minimax theory for the eigenvalues of overdamped pencils was
established. According to this theory there are minimax formulae for the eigenvalues

λ−1 ≤ · · · ≤ λ−m ∈ I− λ+m ≤ · · · ≤ λm1 ∈ I+

reading
λ+k = max

Sk

min
x∈Sk

‖x‖=1

p+(x), (76)

λ−k = min
Sk

max
x∈Sk

‖x‖=1

p−(x) (77)

where Sk varies over all k-dimensional subspaces of Km. In particular,

λ+1 = max
‖x‖=1

p+(x), λ+m = min
‖x‖=1

p+(x),

λ−1 = min
‖x‖=1

p−(x), λ−m = max
‖x‖=1

p+(x).

Thus, the boundary points of the two intervals I− and I+ are eigenvalues, given by p++, p
−
+,

p+−, p
−
−. All other eigenvalues are in the specified range. It remains to prove the monotonic-

ity statement. It is an immediate consequence of the formulae (75), (76) and (77) and the
monotonicity properties of the functions f± in (63). Q.E.D.

By its very construction the interval I+ is minimal among those which contain all positive
eigenvalues λ+m ≤ · · · ≤ λm1 of H. In an analogous sense I− is minimal, as well. So they are
included in those from (57) as well as in those from (60).

On the other hand our intervals can be used as a source for new estimates. Assume that
B∗ has full column rank (in which case

√
BB∗ is positive definite) and take α as in (13).

Then ( −2β1

α+
√
α2 + 4

, β1

)
\ {0} ⊆ ρ(H) (78)

where β1 = min‖x‖=1 ‖B∗x‖. Indeed, the inequality p+ ≥ β1 is trivial. Using again the
monotonicity properties of the function f− from (63) and taking ‖x‖ = 1 we obtain

p−(x) =
x∗Ax−

√
(x∗Ax)2 + 4x∗BB∗x

2

≤ αx∗(BB∗)1/2x−
√

(αx∗(BB∗)1/2x)2 + 4x∗BB∗x

2

≤ αx∗(BB∗)1/2x−
√

(αx∗(BB∗)1/2x)2 + 4(x∗(BB∗)1/2x)2

2

= x∗(BB∗)1/2x
α−

√
α2 + 4

2

≤ − 2β1

α+
√
α2 + 4

,

where we have first used (13), then the obvious inequality

x∗BB∗x ≥ (x∗(BB∗)1/2x)2

and finally the identity

min
‖x‖=1

x∗(BB∗)1/2x = minσ((BB∗)1/2) = min(σ(BB∗))1/2 = min
‖x‖=1

‖B∗x‖ = β1.
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This proves (78). Note that (56) exactly reproduces the lower edge of the spectral gap (78)
while the upper edge of the gap is not described correctly by (56).

Another immediate consequence of the monotonicity properties of the functionals p± are
perturbation bounds for the eigenvalues of the perturbed matrix

Ĥ = H + H̃

with

H̃ =

[
Ã B̃

B̃∗ 0

]

where
|x∗Ãx| ≤ ηx∗Ax, ‖B̃x‖ ≤ η‖Bx‖, η < 1.

Then, as was shown in [20], the eigenvalues λ̂−1 , . . . , λ̂
−
m, λ̂

+
1 , . . . , λ̂

+
m of the perturbed matrix

Ĥ satisfy

(1− η)λ+k ≤ λ̂+k ≤ (1 + η)λ+k , (79)

1 + η

1− η
λ−k ≤ λ̂−k ≤ 1− η

1 + η
λ−k . (80)

Remark 5.3 The interest in Stokes matrices stems form the fact that they are discrete
analogs of Stokes operators. A Stokes operator has the form

HS =

[
− div a grad − grad

div 0

]
.

Here a : Ω → (0,∞) is a positive function on some domain Ω ⊆ R
n such that the inverse

of − div a grad in L2(Ω) is compact. Operator-theoretical facts about Stokes operators are
given e.g. in [16].

Without having checked the details of proofs we intutively expect that for such opera-
tors the monotonicity as well as the continuity bounds (79) for the positive eigenvalues as
functions of a(·) should hold as well. Thus, a perturbation â(·) = a(·)+ ã(·) of a(·) satisfying

|ã(x)| ≤ ηa(x), η < 1

would imply (79).

6 Boundary conditions and invertibility - a case study.

The most prominent example of an operator whose invertibility depends on boundary
conditions is the Laplacian on an interval with Dirichlet and Neumann boundary condi-
tions. A deeper manifestation of this phenomenon is encountered in the spectral analysis of
Schrödinger operators with periodic potential. Such operators exhibit a spectrum consist-
ing of intervals, so-called spectral bands. If one restricts the Schrödinger operator originally
defined on R or R

d to a finite interval or cube, respectively, it is desirable to preserve the
periodic structure of the original, unrestricted operator as much as possible. A restriction to
a finite cube with Dirichlet boundary conditions leads to spurious eigenvalues located in the
spectral gaps of the original operator. A consistent way to avoid these boundary-induced
eigenvalues is to impose periodic or, more generally, quasi-periodic boundary conditions. For
such restrictions, the arising spectrum is contained in the spectrum of the original operator;
see [13] for an exposition for operators on L2(R). In the context of periodic Schrödinger
operators, spectral pollution in gaps is a well studied subject, see e. g. [3].
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In this section we want to explore these ideas applied to a block-operator investigated
in the recent paper [4]. There the following matrix of order n = 2m is considered:

Hc = Hc(n) =

[
A+ 2cI B

−B −A− 2cI

]
(81)

with the m×m-blocks

A =




0 1 0 . . . 0

1 0 1 . . .
...

0 1
. . .

...
... 0 1
0 . . . . . . 1 0




, B =




0 1 0 . . . 0

−1 0 1 . . .
...

0 −1
. . .

...
... 0 1
0 . . . . . . −1 0




(82)

where c is any real number (the factor 2 is set by convenience) and n = 2m.
We will analyse the spectrum of Hc and see that it exhibits two spurious eigenvalues. To

remove these, we will introduce a low-rank modification H̃c concentrated on the “bound-
ary”. This results in a circulant-type matrix. The circulant structure can be understood
as an analogy to periodic boundary conditions used in the context of periodic Schrödinger
operators. The specific type of the circulant matrix shows that the operator considered in
[4] lives on the two-fold covering space {1, . . . , 2m} → {1, . . . ,m}.

Of course, the spectrum of Hc = Hc(n) will depend on the dimension n, so we will say
that an interval I around zero is a (maximal) stable spectral gap of Hc if I ∩ σ(Hc) = ∅ for
all n and I is the largest interval with this property.

We perform the off-diagonalisation by taking the unitary matrix

U =
1√
2

[
I I
I −I

]
(83)

and obtaining

Kc = U−1HcU = UHcU =

[
0 Ac −B

Ac +B 0

]
= 2

[
0 Tc

T ∗
c 0

]
(84)

with

Tc =




c
1 c

1
. . .

. . . c
1 c




(85)

(all void places are zeros). As is well known, the eigenvalues of Kc, including multiplicities,
are ± the singular values of Tc. Now, the latter are of some importance in Matrix Numerical
Analysis, see [6], where it was shown that the smallest singular value of Tc tends to zero for
m→ ∞ and any fixed c with |c| < 1. In any case the singular values of Tc are independent
of the sign of c as is seen from the property

U0TcU0 = T−c, [U0]ij = (−1)jδij .

We will now study these singular values in some detail. We shall distinguish the cases

(i) c = 0, (ii) 0 < c < 1, (iii) c = 1, (iv) c > 1.
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For c = 0, the matrices Tc, T
∗
c are partial isometries with all singular values equal to 1,

except for the non-degenerate eigenvalue zero corresponding to

N (Tc) = span {em}, N (T ∗
c ) = span {e1}

where e1, . . . , em is the canonical basis in R
m. Hence Kc has the eigenvalues ±2 each with

multiplicity n− 1 and the double eigenvalue zero with

N (Kc) = span

{[
0

em

] [
e1
0

]}
. (86)

The case c > 1 is easily accessible based on the representation (81), because then the matrix

Ac := A+ 2cI =




2 1 0 . . . 0

1 2 1 . . .
...

0 1
. . .

...
... 2 1
0 . . . . . . 1 2




+ (2c− 2)I

is positive definite, being a sum of two obviously positive definite matrices, so σ(Ac) ≥ 2c−2.
Therefore Hc is quasidefinite and by (2) the interval

(−2c+ 2, 2c− 2)

is contained in the stable spectral gap of Hc (and of Kc). For further investigation we use
the fact that the singular values of Tc are the square roots of the eigenvalues of T ∗

c Tc or,
equivalently, of

Wc = T ∗
−cT−c =




c2 + 1 −c 0 . . . 0

−c c2 + 1 −c . . .
...

0 −c . . .
...

... c2 + 1 −c
0 . . . . . . −c c2




. (87)

Now Wcx = λx is componentwise written as

(c2 + 1)x1 − cx2 = λx1

−cxj−1 + (c2 + 1)xj − cxj+1 = λxj , j = 2, . . . ,m− 1,

−cxm−1 + c2xm = λxm

or as a standard second order difference equation

−cxj−1 + (c2 + 1− λ)xj − cxj+1 = 0, j = 1, . . . ,m (88)

with the boundary conditions

x0 = 0, xm − cxm+1 = 0. (89)

The solutions
xj = sin jα, with λ = c2 + 1− 2c cosα (90)
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and
xj = sinh jα, with λ = c2 + 1− 2c coshα (91)

automatically satisfy x0 = 0. The second boundary condition from (89) will determine the
values of α. This gives

(1− c cosα) sinmα− c cosmα sinα = 0, (92)

(1− c coshα) sinhmα− c coshmα sinhα = 0, (93)

respectively. In the easiest case c = 1, the substitution (90) immediately leads to

α = αk =
2k − 1

2m+ 1
π, k = 1, . . . ,m,

giving rise to the eigenvalues

λ = λk = 4 sin2
2k − 1

2m+ 1
π, k = 1, . . . ,m.

In this case the lowest eigenvalue λ1 = 4 sin2 2
2m+1π ≈ (2m+1)−2 tends to zero as m tends

to infinity, so the stable spectral gap of Hc is empty.
In the case c > 1, equation (92) can be written as

f(α) = tanmα
1− c cosα

sinα
− c = 0, 0 < α < π. (94)

The localisation of these roots is a bit involved, because there are several different cases
to be distinguished. A generic situation is shown on Figure 3, which displays

• the function f(α) (blue) with its poles and roots,

• the function λ = λ = c2 + 1 − 2c cosα (red), which, taken at the roots, gives the
eigenvalues,

• the point α̂ = arccos 1
c on the α-axis on which f is generically negative.

Thus, between each two poles there is a root, except for the two poles enclosing α̂; these
two poles enclose two roots, altogether n of them. The case in which α̂ coincides with one
of the poles must be treated separately. But to determine the exact position of the stable
spectral gap, it is enough to notice that in any case, for m large enough, the interval

0 < α < α̂,

on which the factor 1− c cosα is positive, will contain several of the singularities

(2k − 1)π

2m
, k = 1, 2, . . .m

of the function f in (94), see Figure 3. Each two of these singularities enclose a root α of
(94), and since each of them tends to zero for m→ ∞, the lowest root tends to zero as well.
Hence the corresponding eigenvalue λ from (90) tends to (c − 1)2. Since we already know
that the interval (−2(c−1), 2(c−1)) is contained in the stable spectral gap of Kc (and Hc),
this interval is, in fact, equal to this gap.

In the case c < 1, the factor 1− c cosα in (94) is globally positive, so the m singularities

(2k − 1)π

2m
, k = 1, 2, . . . ,m
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Figure 3: Functions f and λ for n = 7 and c = 2

will enclose m−1 roots of the equation (94) and the lowest of them will again approach zero
with growing m. That is, the corresponding m − 1 eigenvalues λ from (90) will be larger
than (c− 1)2 and the lowest of them will approach (c− 1)2. Thus, we would have a stable
spectral gap (−2(1 − c), 2(1 − c)), but for one eigenvalue which is still to be determined.
However, as we know from [6], the smallest eigenvalue tends to zero with growing m. This
completes the picture. Thus, for 0 ≤ c <∞ the interval

(−2|c− 1|, 2|c− 1|)
is the stable spectral gap for Kc (and Hc), except that for 0 < c < 1 there are two ‘spurious
eigenvalues’ tending to zero with growing m.

There is some interest in obtaining an asymptotic estimate of the small eigenvalues. In
[6] it was shown that the smallest singular value of Tc is bounded from above by O( 1

m ).
Numerical experiments indicate that the decay is, in fact, much faster. The setting of
difference equations makes it possible to determine the decay accurately, and this is what
we shall do now.

This solution is obtained by the ansatz xj = sinh jα and the fact that (93) can be written
as

g(α) = tanhmα
1− c coshα

sinhα
− c = 0, 0 < α <∞. (95)

Since
g(0+) = m(1− c)− c, g(∞) = −2c

and 0 < c < 1, for large m the equation (95) has a positive root α = α1 which completes
the m− 1 roots previously found, whereas the corresponding eigenvalue λ = λ1 is given by
(91). As an approximation to α1 we propose the value

α0 = arcosh
c2 + 1

2c
. (96)
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Then a straightforward calculation gives

g(α0) =
−2ce−2mα0

1 + e−2mα0

= −2ce−2mα0 +O(e−2mα0)

and

g′(α0) =
mc

cosh2mα0

− tanhmα0
−2c

1− c2
= − 2c

1− c2
+O(e−2mα0)

Thus, the difference δα = α1 − α0 is given by

δα = − g(α0)

g′(α0)
+O(e−2mα0) = O(e−2mα0)

whereas the corresponding eigenvalue λ1 of Wc =Wc(m) is given by

O(e−2mα0) + λ1 = δα(−2 sinhα0) = − 4cδα

1− c2
= 4ce−2mα0 ,

where we have used the fact that the function c2 + 1− 2c coshα vanishes at α = α0. Hence
the small eigenvalues of Kc (and Hc) are asymptotically absolutely bounded by

O(e−mα0).

We summarize the main findings in the following.

Theorem 6.1 The spectrum of Hc is symmetric w.r.t. zero, i.e. if λ is an eigenvalue, then
−λ is also an eigenvalue, with the same multiplicity.

If c ≥ 1, the interval (−2|c − 1|, 2|c − 1|) is a stable spectral gap, i.e. (−2|c − 1|, 2|c −
1|) ∩ σ(Hc(m)) = ∅ for all m ∈ N.

For c ∈ [0, 1] and each m ∈ N, (−2|c − 1|, 2|c − 1|) ∩ σ(Hc(m)) consists of exactly two
eigenvalues with absolute value of order O(e−mα0), with α0 as in (96).

In both cases, (−2|c−1|, 2|c−1|) is the maximal interval with the above properties. More
precisely, for any ε > 0 and N ∈ N, there exists anM ∈ N such that (−2|c−1|−ε, 2|c−1|+ε)
contains 2N eigenvalues of Hc(m) for all m ≥M .

The spurious eigenvalues can be computed with high relative accuracy by iteratively
solving the equation (95). By high relative accuracy we mean to obtain a significant number
of correct digits independently of the size of the computed quantity. Note that the usual
matrix computing software computes a singular value of a matrix A with the error of the
order ε‖A‖ (ε the machine precision) which may yield no significant digits, if the singular
value itself is very small. A notable exception are bidiagonal matrices, which is the case with
our Tc. Then there exists an algorithm (and it is implemented in LAPACK and MATLAB
packages) which computes each singular value with about the same number of significant
digits, no matter how small or how large it may be (barring underflow).3

It is also worthwhile to note that the components xj = sinh jα1 of the corresponding
eigenvector always agglomerate on one side of the sequence 1, . . . ,m, that is, on the bound-
ary, while all other eigenvectors exhibit standard oscillatory behaviour.

Removing spurious eigenvalues. The form of the null-space of K0 suggests to intro-
duce the matrix

K̃c = Kc +

[
em 0
0 e1

] [
−2 0
0 2

] [
eTm 0
0 eT1

]
= 2

[
eme

T
m Tc
T ∗
c −e1eT1

]
. (97)

3In fact, in order to perform the computation with high relative accuracy, MATLAB will need the input
matrix to be upper bidiagonal, so the MATLAB function svd should be applied not to Tc but to its transpose.
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For c = 0 this leaves all eigenvectors of K0 unchanged and raises the zero eigenvalues to ±2,
respectively, thus ‘purging’ the spurious eigenvalues. The spectrum of K̃0 is {±2} with the
multiplicity m. In particular,

K̃2
0 = 4I. (98)

It is a remarkable fact that for c 6= 0 the eigenvalues of the matrix K̃c still come in plus/minus
pairs, including multiplicity. To see this we take

J =




0 · · · 0 1
0 · · · 1 0
...

...
1 0 · · · 0


 (99)

and set

P =

[
I 0
0 J

]

and note that Je1 = em, Jem = e1 and that the matrix Sc = TcJ is symmetric. Then

P
−1K̃cP = PK̃cP =

[
e1e

T
1 Sc

Sc −e1eT1

]
.

This matrix is of the form (44), and such matrices have the eigenvalues in plus/minus pairs
when A and B are allowed to be any symmetric matrices ([12]). It remains to determine the

stable spectral gap of K̃c. In order to do this it is convenient to turn back to the original
representation (81) and to form the matrix

H̃c = UK̃cU =

[
Ã+ 2cI B̃

B̃∗ Â− 2cI

]
(100)

with

Ã =




1 1 0
1 0 1

1
. . .

. . .

. . .
. . .

. . .

. . . 0 1
1 −1




, B̃ =




1 1 0
−1 0 1

−1
. . .

. . .

. . .
. . .

. . .

. . . 0 1
−1 1




,

Â =




1 −1 0
−1 0 −1

−1
. . .

. . .

. . .
. . .

. . .

. . . 0 −1
−1 −1




.

By (98) we have H̃2
0 = 4I, which implies

Ã2 + B̃B̃∗ = 4I, ÃB̃ + B̃Â = 0, B̃∗B̃ + Â2 = 4I.
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Using this4 we obtain that

H̃2
c =

[
(4 + 4c2)I + 4cÃ 0

0 (4 + 4c2)I − 4cÂ

]
. (101)

Noting the identity
JÂJ = −Ã

we obtain that the eigenvalues of H̃2
c are

4 + 4c2 − 4cκj , j = 1, . . . , r

(with the multiplicity two) where κj are the eigenvalues of Â. These are obtained from the
difference equation

xj−1 + κxj + xj+1 = 0, j = 1, . . . ,m (102)

with the boundary conditions

x0 = −x1, xm+1 = xm. (103)

The substitution
xj = A cos jα+B sin jα

solves (102) with
κ = −2 cosα,

whereas the boundary conditions (103) yield after some computation

α = αk =
2k − 1

2m
π, k = 1, . . . ,m

and hence (cf. the Appendix)

κ = κk = −2 cos
2k − 1

2m
π, k = 1, . . . ,m. (104)

Thus the eigenvalues of H̃2
c are

4 + 4c2 + 2c cos
2k − 1

2m
π, k = 1, . . . ,m

(each taken twice), which is always larger than 4(1 − c)2, and for m large the set of these
eigenvalues comes arbitrarily close to 4(1− c)2. Again we conclude the following

Theorem 6.2 The stable spectral gap of H̃c is

(−2|c− 1|, 2|c− 1|).

More precisely, for all m ∈ N and c ≥ 0, the eigenvalues of H̃c(m) come in plus/minus pairs

and (−2|c− 1|, 2|c− 1|) ∩ σ(H̃c(m)) = ∅. This interval is the largest with this property.

In particular, (−2|c− 1|, 2|c− 1|) contains no spurious eigenvalues whatsoever.

Finally, we consider the ‘infinite dimensional limits’, that is, the matricesHc,A,B,Tc,Wc,
obtained from H,A,B, Tc,Wc by stretching to infinity in both directions. Thus A = A∗,

4Of course, these three identities could be proved directly.
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B = −B∗, Tc, and Wc = T∗
−cT−c = W∗

c are bounded operators on the Hilbert space
ℓ2(Z), while Hc and Kc are selfadjoint operators on ℓ2(Z)

⊕
ℓ2(Z). The operator

U =
1√
2

[
I I
I −I

]

is unitary on ℓ2(Z)
⊕
ℓ2(Z), where now I denotes the identity on ℓ2(Z). The operators keep

their algebraic relations

Kc = U−1HcU = UHcU =

[
0 Ac −B

Ac +B 0

]
= 2

[
0 Tc

T∗
c 0

]
.

Formula Wc = T∗
−cT−c gives us

(Wcx)j = −cxj−1 + (c2 + 1)xj − cxj+1.

Now using the isometric isomorphism ℓ2(Z) → L2(0, 2π) given by

ψ(λ) =
1√
2

∞∑

k=−∞

eijλxj ,

the operator Wc goes over into

(Xcψ)(λ) =
1√
2

∞∑

j=−∞

eijλ(−cxj−1 + (c2 + 1)xj − cxj+1)

=
1√
2

∞∑

j=−∞

eijλ(c2 + 1− 2c cosλ)xj = (c2 + 1− 2c cosλ)ψ(λ),

which is a multiplication operator with the spectrum

[−(1 + c)2,−(1− c)2] ∪ [(1− c)2, (1 + c)2],

thus creating the spectral gap (|1− c|, |1 + c|) of Hc. Thus, the obvious approximation Hc

obtained by cutting a ‘window’ out of Hc gives rise to spectral pollution in the spectral gap
of Hc. By adding convenient boundary conditions Hc we obtain the modification H̃c. This
new approximation to Hc

(i) has no spectral pollution and

(ii) keeps the symmetry of the spectrum with respect to zero.

Some numerical experiments. Here we would like to report some interesting observa-
tions based on numerical experiments. They are motivated by physical models of disordered
systems. In this context the matrix A in (81) is replaced by Vω = A + diag(ω1, . . . , ωn),
where ωi are independent random variables. Here we will consider a uniform distribu-
tion on the interval [a, b]. Then, as expected, the multiple eigenvalues ±2 of the matrix

Hω = H

[
Aω B
−B −Aω

]
smear into uniformly distributed intervals, but the double small

eigenvalue is only slightly perturbed in the sense that for n large these two eigenvalues tend
to zero. We illustrate this by exhibiting those eigenvalues of the matrix Hω which are close
to zero by taking a = −3, b = 3.
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m = 20 m = 50 m = 100

-7.2091e-01 -3.5965e-01 -0.170365

-5.4659e-01 -1.4649e-01 -0.098804

-5.4215e-04 -4.5522e-10 -9.819153e-31

5.4215e-04 4.5522e-10 9.819153e-31

5.4659e-01 1.4649e-01 0.098804

7.2091e-01 3.5965e-01 0.170365

We emphasize that the exhibited digits of 9.819153e-31 are accurate. The phenomenon
of two very small eigenvalues is independent of the choice of a, b. Note that the spurious
eigenvalues are not only small but about exponentially small as in the case of the constant
diagonal, i.e. ω1 = · · · = ωm = 2c, studied above.

Next we produce a series of graphically represented numerical results with

[a, b] = [M − δ,M + δ],

n = 100, δ = 0.5, and M taking the values 0.1, 1, 1.5, 1.8, 2.5, 3. They are contained in
Figure 4.

The upper line (blue) in a pair shows the spectrum of Hω and the lower (red) the one

of H̃ω, obtained from Hω as in (100).

Summarising we may say: For M ≈ 2 or so the punctured spectral gap shrinks to zero;
then it starts growing again, but small eigenvalues are no more present, because the matrix
Hω has now become quasi-definite.5 No theoretical explanation for the spurious small eigen-
values in this case seems to be available as yet. On the other hand, as expected, the matrix
H̃ω lacks the spurious small eigenvalues altogether. With H̃ω there is no more symmetry of
the spectrum with respect to zero.
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A Some auxiliary computations

Proof of equation (34)

Since the matrices of the type (33) appear to be the source of many illustrative examples
we here give an explicit formula for their eigenvalues (which come in plus/minus pairs). We
put

A =

[
a+ a
ā a−

]
, B =

[
b+ b
±b̄ b−

]
,

so that in the case of the minus sign in B the diagonal elements b± are purely imaginary.
A straightforward calculation gives

(
λ2
)
1,2

=
s

2
±
√
s2 − |a+a− − b+b− − |a|2 + |b|2|2 − |a+b− − b+a− − 2ℜ āb|2.

with

s =
a2+ + a2− + |b+|2 + |b−|2

2
+ |a|2 + |b|2.

Proof of equation (104)

We derive the formula (104). Substituting xj = A cos jα+B sin jα in (102) we get

A cos jα cosα + A sin jα sinαB sin jα cosα−B cos jα sinα

+ κ(A cos jα+B sin jα)

+A cos jα cosα − A sin jα sinαB sin jα cosα+B cos jα sinα

= 0

or
(A cos jα+B sin jα)(cosα+ cosα+ κ) = 0

thus implying
κ = −2 cosα.

The boundary conditions (103) yield

A = −A cosα−B sinα,

A cos(m+ 1)α+B sin(m+ 1)α = A cosmα+B sinmα,

which is a homogeneous linear system

(1 + cosα)A+B sinα = 0,

A(cos(m+ 1)α− cosmα) +B(sin(m+ 1)α− sinmα) = 0,

so its determinant must vanish:

(1 + cosα)2 cos
(2m+ 1)α

2
sin

α

2
+ 2 sinα sin

(2m+ 1)α

2
sin

α

2
= 0,

or equivalently,

0 = cos
α

2
cos

(2m+ 1)α

2
+ sin

α

2
sin

(2m+ 1)α

2
= cos

(
α

2
− (2m+ 1)α

2

)
= cosmα.

Hence

α = αk =
2k + 1

2m
π

and (104) follows.
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