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Summary. We propose a “one-sided” or “implicit” variant of the Jacobi
diagonalization algorithm for positive definite matrices. The variant is based
on a previous Cholesky decomposition and currently uses essentially one
square array which, on output, contains the matrix of eigenvectors thus
reaching the storage economy of the symmetric QL algorithm. The current
array is accessed only columnwise which makes the algorithm attractive
for various parallelized and/or vectorized implementations. Even on a serial
computer our algorithm shows improved efficiency, in particular if the Cho-
lesky step is made with diagonal pivoting. On matrices of order n=25-200
our algorithm is about 2-3.5 times slower than QL thus being almost on
the halfway between the standard Jacobi and QL algorithms. The previous
Cholesky decomposition can be performed with higher precision without
extra time or storage costs thus offering considerable gains in accuracy with
highly conditioned input matrices.

Subject Classifications: AMS(MOS): 65F15; CR: G1.3.

“QOne-sided” or “implicit” variants of the Jacobi eigenreduction on real symmet-
ric matrices have been proposed long ago ([4, 11, 12, 13]). One of their advantages
is that updated matrices are accessed only by columns which makes the methods
attractive for vectorized or parallel computing [3, 5, 6, 15, 16]. We propose
here a version based on a previous factorization of the given matrix which
we suppose to be positive definite. This idea, too, has its predecessor in [7].

Let A be symmetric and positive definite and let

A=LIL (1
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(this may or may not be a Cholesky decomposition). Set

A=IL @
and find an orthogonal matrix U diagonalizing A:
U'AU=U'L' LU =, (3)
where o is diagonal and positive definite. Set
S=LU, F=Sa % @)
Then F is obviously orthogonal and it diagonalizes A:
FIAF=0"*U'LLELUa *=0"3U'A?Uo t=a"t02q t=q. (5)
The Jacobi method consists of putting U =1 and iterating the step
A-R'AR, U-UR (6)
where R’s are conveniently chosen plane rotations. Our method sets

S:=L 7
and iterates only
S—SR. (®)

Such process is called one-sided or implicit, the current matrix being given
“implicitly” by the factor §. In order to perform the transformation (8) we
need the rotation parameter which is determined by the pivot elements of 4

— ol ot A ot
dkk-skska dkm—sksma Qim = SmSm (9)

where
S=(s(, ..., 5,).
Since the diagonal elements can be simply transformed as

dkk'—)akk-[—tdkma dmm"—')dmm_tdkmﬁ (10)

where ¢ is the tangent of the rotation angle the diagonal elements can be stored
and updated separately at a little extra cost. The main amount of work consists
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in computing s;s, in (9) and in the step (8). This makes 51 multiplications
per rotation (the classical Jacobi process needs 8)*. Note that the whole compu-
tation is made essentially on one square array which, on output, contains the
eigenvectors. Thus, our version of the Jacobi algorithm reaches the storage
economy of the symmetric QL. Note also that in this way at the end of the
process we obtain two sets of eigenvalues: the one contained in the current
diagonal and the one obtained by (9) from the final columns of S. The compari-
son of these two sets may serve as a test of the stability.

The novelty in our method consists in the transition from A4 to A(4 needs
not to be computed!)>. In our language [4, 12, 13] put S:=A instead of S:=L
in (7) thus diagonalizing implicitly the matrix 4. Apart of the gains in storage
and operational count described above our method avoids the squaring which
may cause large relative errors (see our experimental results below). In addition,
the transition from 4 to 4 is in fact a step of the symmetric LR algorithm
which usually has non-negligible diagonalization effects.

It is important to note that the stopping criterion should be of the form

Idkm’
Imax=MaX 4, Se, = —r——, (11
k<m ! y I/ dkk&mm
in other words
max|(F'F — Dl <e. (12)

This guarantees the good orthogonality of the matrix of eigenvectors.

The value ¢ is usually taken to be, say, 10 macheps (macheps is the machine
precision). However, the criterion (11) may fail to stop the process because
of rounding errors in computing the scalar product d,, =s.s,. An additional
stopping criterion consists in computing the maximum t,, of all encountered
trm during a sweep. It stops, if t,, is less than, say, ]/ macheps and is decreased
by less then 10 times in the next sweep. The value t,, is also used in designing.
a threshold strategy (we omit the details).

The use of the quantity t,,, in convergence considerations is further justified
by the following interesting property. Set

detA
A11022 ... Ayy

H(4)=

H(A) is the so-called Hadamard measure of the non-diagonality for a positive
definite matrix A. Indeed, one easily sees that

0<H(A)<I,

* The operational count is reduced to 3n, 4n, respectively if fast rotations are used (see Rath [14]
and de Rijk [15])
> Cf. [17] where a similar transition was made in a more complicated case of matrix pairs
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where the equality sign is taken if and only if 4 is diagonal. It can be shown
that after a Jacobi rotation H(A4) is divided by 1 —t2,,. This leads to a “multiplica-
tive” convergence proof for the Jacobi algorithm (cf. [9]).

The choice of the stopping criterion above also guarantees the relative accu-
racy of the eigenvalues. Indeed, as a consequence of [2], Prop. 2 we have

1—n8§-21§1+n3, (13)
where /; is the eigenvalue associated to d;;. Of course, this property is useful
only if the rounding errors during the process did not spoil the relative accuracy
of small eigenvalues (see the numerical results below).

Our implicit version carries efficiency improvements even on a serial com-
puter. We illustrate this on some examples. The experiments were done on
an MS-DOS-operated Tandon PCA personal computer with the Intel 80286
and 80287 processors using Turbo Pascal 3.0 with the macheps~2-10~1°. We
have tested three Jacobi versions:

jac is obtained by the Rutishauser code jacobi from [18] by modifying the
stopping criterion according to what is said above.

jacf is as jac above but with fast rotations (see Rath [14]).

jacfim consists of the Cholesky step, performed with (optimal) diagonal
pivoting and followed by the implicit algorithm, described above. Here fast
rotations, combined with the stability improving features of jac were taken over.

The test matrices are the type

A=Y v,

where the sum runs over n vectors of length n whose components are random
numbers from the interval (—1/2, 1/2). Such matrices have fairly scattered eigen-
values, beginning from rather small ones. The computing times were

n 25 50 100 200
jac 52 63 - -
jacf 31 37 - -
jacfim 2.5 25 27 34

Here the unit is the computing time needed by the standard QL algorithm
(including all eigenvectors) for the same matrix. The void positions mean that
in this case either the storage or the real time requirements were too large.
No significant differences in the computed eigenvalues were observed.

Thus, although the implicit Jacobi algorithm cannot reach the efficiency
of QL, it is clearly superior to the classical version.

The preparatory Cholesky decomposition (with or without pivoting) can
serve as a good preconditioner, if it is performed with higher precision. In fact,
the condition of the Cholesky factor is the square root of the condition of 4.
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As a typical example take the matrix

2721 2L 2020027
27 91 gpug9piieg]
27 91 216 216 216 216
= 10781
s 27 91 216 432 432 432 * ’
27 91 216 432 432 432

27 91 216 432 432 432

The two smallest eigenvalues of 4 are equal to 10~8. With diagonal pivoting
the implicit matrix is (rounded to 4 decimal places)

1424.8565 128.8565 34.5693 5.6607 0.0044 0.0025
128.8565 128.8565 34.5693 5.6607 0.0000  0.0000
345693  34.5693  57.2980 9.3826 —0.0000 —0.0000
5.6607 5.6607 9.3826 18.9890  0.0000  0.0000
0.0044 0.0000 —0.0000 0.0000 0.0000  0.0000
0.0025 0.0000 —0.0000 0.0000 0.0000 0.0000

oy
Il

Here the small and the large eigenvalues are neatly separated. It is clear
that a Jacobi method will work with increased efficiency on such matrices.

We tried here jsmfip with double precision Cholesky decomposition and
single precision Jacobi algorithm®. The smallest eigenvalues were reproduced
with 7 correct decimal places! Omitting the pivoting with the Cholesky step
did not change this result. The values obtained by double precision algorithms
were not more accurate. On the other hand, the single precision jsm, jsmf, QL
obtained no significant digit here whereas single precision jsmfip even monitored
the non-definiteness during the Cholesky decomposition.

The Cholesky decomposition with diagonal pivoting is closely related to
the QR decomposition with column pivoting preceding the SVD Jacobi algo-
rithm [10]. The counterexample given in [8], Example 6.4.2. shows that the
Cholesky step — even with pivoting — does not necessarily detect all small eigen-
values. As a rule, however, the diagonalizing effect of the diagonal pivoting
on matrices with high condition number is quite considerable.

If the diagonal pivoting is omitted, dangerous cancellations with the updating
formulae (10) can be expected if there are pathologically small eigenvalues. The
consequence are uncorrect rotating angles and the slowing down of the conver-
gence. This effect was indeed observed, but is simply cured due to the fact
that the condition number of the current matrix S is only the square root
of that of 4 or 4 so that the current implicit diagonals, obtained by (9) are
much more accurate”’.

® Here Turbo Pascal 4.0 was used with single precision ~ 10”7 and double precision ~10~1°
’ Note that even quite wrong rotation angles cannot ruin a reasonably conditioned matrix S because
of the orthogonality of the transformation
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Refreshing the current diagonals by (9) after each sweep proved to be quite
sufficient in the practice. This point might be of interest if the diagonal pivoting
is undesirable with a parallel implementation.

The double precision Cholesky decomposition followed by the single pre-
cision implicit Jacobi in jsmfip can be implemented without extra time or storage
costs®. Indeed, the Cholesky decomposition needs only the double precision
upper triangle which is the same amount of storage as the single precision
square array needed for the implicit Jacobi algorithm °. The appropriate storage
management may take some more time. However, the Cholesky decomposition
time is anyhow almost negligible in comparison with that for the implicit Jacobi
algorithm that follows.

For a general symmetric matrix 4 a spectral shift 1 (computed e.g. by the
Gershgorin theorem) will make 4— A1 positive definite. Then our method is
applicable, but the described improvements in accuracy will be lost. Thus, a
“shift-free” approach is desirable. This matter will be the subject of a future
work.
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8 There are other possibilities to get at a more accurate Cholesky factor e.g. for matrices generated
by finite elements [1] .
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Note Added in Proof

In the meantime a further extensive analysis of our Jacobi method has been made in the forthcoming
paper J. Demmel and K. Veseli¢, The Jacobi’s method is more accurate than QR, Courant Institute
preprint 1989, where it is shown that the relative errors of the computed eigenvalues are not essentially
larger than those already produced when initially storing the matrix in the working array. This property
is not shared by any known method, based on previous tridiagonalization (QR, divide-and-conquer
etc). In fact, it appears that all essential rounding errors are contained in the preparatory Cholesky
decomposition, if made with pivoting. The reasons for this important phenomenon go far beyond
those considered in this paper thus complementing them.



