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Abstract

The equilibrium of a standard catenary is solved without previous knowledge of the Vari-
ational Calculus. An elementary proof of the strict global minimum is provided.

The equilibrium of the catenary is serving as a beautiful example of constrained minimisation. We
have to minimise the functional

Ψ(y) = ρg

∫ x1

0

y
√

1 + y′2dx, (1)

where ρ (mass density) and g (acceleration of gravity) are positive constants, The minimisation is
made among all continuously differentiable functions y satisfying the constraint∫ x1

0

√
1 + y′2dx = d. (2)

We pose the boundary conditions as either

y(0) = 0, y(x1) = y1 (3)

(both ends fixed) or
y(0) = 0, y(x1) = −αx1, α > 0 (4)

(the right end sliding along the line y = −αx).

After introducing the fundamentals of the classical variational calculus the extremal hyperbolic
cosine is readily found, at least for the boundary conditions (3); the boundary conditions (4) need
more theory because the definition interval varies with the function y. Again more theory is needed
to prove that the obtained function is the unique minimiser. A way out of these inconveniencies is
to reformulate the problem in representing the sought curve not as a single function y = y(x) but
in the parameter form (cf. e.g. Troutman [1], Ch. 3)

x = x(s), y = y(s), s the arc length,

with x, y continuously differentiable and

x′(s)2 + y′(s)2 − 1 = 0, s ∈ (0, d). (5)
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This leads to the problem of minimising the functional

Ψ(x, y) = ρg

∫ d

0

yds (6)

under the constraint (5) and the boundary conditions

x(0) = 0, y(0) = 0, x(d) = x1, y(d) = y1, (7)

x(0) = 0, y(0) = 0, y(d) = −αx(d), α > 0, (8)

respectively. Already in [1] the obvious convexity simplifies establishing the global minimiser (at
least for (7)). However, the fact that the penalty (6) is a linear and the constraint a quadratic
function allows a further simplification which we present in the following.

Any pair x, y of continuously differentiable functions satisfying (5) and (7)/(8) will be shortly
called a configuration. For any two configurations x, y and x̃, ỹ and any function λ = λ(s) we have

Ψ(x̃, ỹ) =
∫ d

0

(
ρgỹ + (x̃′2 + ỹ′2 − 1)λ

)
ds

=
∫ d

0

(
(y + ỹ − y)ρg + (y′ + ỹ′ − y′)2λ+ (x′ + x̃′ − x′)2λ− λ

)
ds

= Ψ(x, y) +
∫ d

0

(
(ỹ − y)ρg + 2y′λ(ỹ′ − y′) + 2x′λ(x̃′ − x′) + (ỹ′ − y′)2λ+ (x̃′ − x′)2λ

)
ds.

By partial integration, assuming that x, y are twice continuously differentiable,

Ψ(x̃, ỹ) = Ψ(x, y) + (9)

+
∫ d

0

(ρg(ỹ − y)− 2(λy′)′(ỹ − y)− 2(λx′)′(x̃− x)) ds (10)

+ 2λ(d)y′(d)(ỹ(d)− y(d)) + 2λ(d)x′(d)(x̃(d)− x(d)) (11)

+
∫ d

0

λ
(
(x̃′ − x′)2 + (ỹ′ − y′)2

)
ds. (12)

It is immediately seen: if, we find x, y such that both (10) and (11) vanish for any configuration
x̃, ỹ and some positive function λ then x, y is the unique minimising configuration. That is, we
have to solve the following system of equations for x, y, λ

−(2λx′)′ = 0, ρg − (2λy′)′ = 0 (13)

with the boundary conditions

x(0) = 0, y(0) = 0, y(d) = y1, x(d) = x1, (14)

x(0) = 0, y(0) = 0, y(d) = −αx(d), y′(d) = x(d)/α, (15)

respectively, together with the equation (2). (The last boundary conditions at s = d say that at
the right end the catenary stays orthogonal to the sliding line.)

The rest is more or less standard. The equations are immediately integrated:

x(s) = c1

(
arsinh

s− c2
c1

+ arsinh
c2
c1

)
(16)

y(s) =
√
c21 + (s− c2)2 −

√
c21 + c22, (17)
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λ(s) = ρg
√
c21 + (s− c2)2. (18)

Here the constants c1, c2 are to be obtained from the boundary conditions on the right end. This
is best done by turning to the representation y = y(x). By setting b = −arsinh(c2/c1) we obtain

y = c1

(
cosh

(
x

c1
+ b

)
− cosh b

)
.

The necessary constants are determined from

d =
∫ x1

0

√
1 + y′2dx = c1 sinh

(x1

b
+ b
)
− c1 sinh b (19)

y(x1) = y1, or (20)

y(x1) = −αx1, y′(x1) = sinh
(x1

b
+ b
)

= 1/α. (21)

The case (20) is well-known; for completeness we give the formulae. If we divide (20) by (19) we
obtain

tanhµ =
y1
d
, µ =

x1

2c1
+ b (22)

which has a unique solution µ > 0 whereas (20), (19) also give√
d2 − y2

1

x1
=

sinh ν
ν

, ν =
x1

2c1
(23)

which has a unique solution ν. This completely determines c1, b.

In the case (21) there is one more unknown x1:

−αx1 = 2c1 sinh
(
x1

2c1
+ b

)
sinh

x1

2c1
(24)

1/α = sinh
(
x1

c1
+ b

)
(25)

d = 2c1 cosh
(
x1

2c1
+ b

)
sinh

x1

2c1
. (26)

Again by dividing above the first equation with the third one,

−αx1

d
= tanh

(
x1

2c1
+ b

)
(27)

b = arsinh
1
α
− x1

c1
(28)

d = 2c1 cosh
(
x1

2c1
+ b

)
sinh

x1

2c1
(29)

and by eliminating b,

−αx1

d
= tanh

(
arsinh

1
α
− x1

2c1

)
(30)

c1 =
d

√
1− α2x2

1
d2

2 sinh x1
2c1

. (31)

We set x1 = 2c1z, then

−αx1

d
= tanh

(
arsinh

1
α
− z
)
,
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x1

z
=

√
d2 − α2x2

1

sinh z
, or x1 =

d√(
sinh z
z

)2
+ α2

and eliminating x1 we finally obtain

α√(
sinh z
z

)2
+ α2

= tanh
(
z − arsinh

1
α

)

with an obviously unique solution z which is positive. This determines the unknowns x1, c1, b as
well. Their numerical computation is straightforward.

Conclusion. The present derivation (i) gives a complete answer to the stated problem: ex-
istence, computation and the uniqueness of the minimiser, (ii) avoids the complication with the
variable end point in a natural way and (iii) uses the fact that the constraint is quadratic which
allows the ’completing to squares’ and an algebraic proof of the strict global minimum.

The catenary is an example of a mechanical system under gravity with rigid constraints; such
systems can oft be described by a quadratic Lagrangian and then an elementary proof of strict
global minimum is possible, see for instance [2], where a finite catenary was considered.

One mostly takes this example after presenting fundamentals of variational calculus. In the
present approach it could also be used as a prelude because of its elementarity — we handle
quadratic functionals and solve linear differential equations (the only nonlinearities appear with
constants of integration). On the other hand, our argument in (9)–(12) already contains some
essential steps of what will be the method of Lagrange.
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