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Abstract

We derive a uniform bound for the difference of two contractive semigroups, if the
difference of their generators is form-bounded by the Hermitian parts of the generators
themselves. We construct a semigroup dynamics for second order systems with fairly
general operator coefficients and apply our bound to the perturbation of the damping
term. The result is illustrated on a dissipative wave equation. As a consequence the
exponential decay of some second order systems is proved.

1 Introduction

The aim of this paper is to derive a new perturbation bound for strongly continuous con-
tractive semigroups in a Hilbert space and to apply it to damped systems of second order.
Let eAt, eBt be strongly continuous contractive semigroups in a Hilbert space X . Their
generators are maximal dissipative in the sense that <(Aψ,ψ) ≤ 0 and that A is maximal
with this property and similarly with B. (That is, −A, −B are maximal accretive as de-
fined in [3]. In this paper we will follow the notations and the terminology of the Kato’s
monograph.)

We consider a rather restricted kind of perturbation, it reads formally

|(x, (B −A)y)|2 ≤ ε2<(−Bx, x)<(−Ay, y), ε > 0. (1)

As a result we obtain a uniform estimate for the semigroups:

‖eBt − eAt‖ ≤ ε

2
.

Note that here we have not the classical situation: ’unperturbed object plus a small pertur-
bation’ in which the perturbed object often has first to be constructed and then the distance
between the two is measured (see e.g. [3] Ch. XI, Th. 2.1). We impose no condition what-
soever on the size of the positive constant ε but we know that both A and B are dissipative,
and both operators appear in a symmetric way. Moreover, no requirements are made about
the size of the subspace D(A) ∩D(B), it could even be trivial. To this end, (1) is rewritten
in a ’weak form’ as

|(B∗x, y)− (x,Ay)|2 ≤ ε2<(−B∗x, x)<(−Ay, y).

This kind of perturbation will appear to be the proper setting for treating semigroups,
generated by second order systems

Mẍ+ Cẋ+Kx = 0. (2)
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Here M , C, K can be finite symmetric matrices, with the mass matrix M positive semidef-
inite, the stiffness matrix K positive definite and the damping matrix C accretive1 (our
result seems to be new even in the matrix case). Or, M , C, K may be differential operators
with similar properties. As a next result, a contractive semigroup, naturally attached to
(2), will be constructed, where M , C, K are understood as sesquilinear forms satisfying
some mild natural regularity conditions. This construction seems to cover damped systems,
more general than those treated in previous literature (cf. e.g. [1], [2], [4]), for instance,
M is allowed to have a nontrivial null-space and C need not be symmetric. We then use
our abstract semigroup bound to derive a bound for second order systems in which the
damping term C is subject to a perturbation of the same type as (1).2 As a consequence,
the exponential decay of some damped systems will be proved. In particular, under the
additional assumption that C be sectorial, a second order system is exponentially stable, if
and only if the system with the ’pure symmetric damping’ Ĉ = (C∗+C)/2 is such. In these
applications an important property of the condition (1) will be used: it is invariant under
the inversion of both operators.

The article is organised as follows. In Sect. 2 we prove the main result in a ’local’ and a
’global’ version. We also include an analogous bound for discrete semigroups, although we
have no application for it as yet.

In Sect. 3 we apply this theory to abstract damped systems of the form (2), including
the construction of the semigroup itself. In Sect. 4 we apply our theory to the damped wave
equation in one dimension.

2 An abstract perturbation bound

Let A be the generator of a strongly continuous semigroup in a Hilbert space X . By T (A)
we denote the set of all differentiable semigroup trajectories

S =
{
x = eAtx0, t ≥ 0

}
, for some x0 ∈ D(A).

Theorem 1 Let A, B be the generators of strongly continuous semigroups in a Hilbert space
X (then A∗, B∗ are also such). Suppose that there exist trajectories S ∈ T (A), T ∈ T (B∗)
and an ε > 0 such that for any y ∈ S, x ∈ T

|(B∗x, y)− (x,Ay)|2 ≤ ε2<(−B∗x, x)<(−Ay, y). (3)

Then for all such x, y

|
(
x, (eBt − eAt)y)

)
| ≤ ε

2
‖x‖‖y‖. (4)

(Note that in (3) it is tacitly assumed that the factors on the right hand side are non-
negative.)

Proof. For y ∈ S, x ∈ T we have

d

ds

(
eB
∗sx, eA(t−s)y

)
=

(
eB
∗sB∗x, eA(t−s)y

)
−
(
eB
∗sx, eA(t−s)Ay

)
,

which is continuous in s, so by integrating from 0 to t we obtain the weak Duhamel formula

(eB
∗tx, y)− (x, eAty) =

∫ t

0

[
(B∗eB

∗sx, eA(t−s)y)− (eB
∗sx,AeA(t−s)y)

]
ds.

1For simplicity we use the term ’damping matrix’ for C although it is not necessarily symmetric and thus
may include a gyroscopic component.

2A related perturbation result for finite matrices was proved in [5].
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By using (3) and the Cauchy-Schwarz inequality it follows

|
(
x, (eBt − eAty)

)
|2 ≤

(∫ t

0

|(B∗eB∗sx, eA(t−s)y)− (eB
∗sx,AeA(t−s)y)|ds

)2

≤

ε2

(∫ t

0

√
<(−B∗eB∗sx, eB∗sx)<(−AeA(t−s)y, eA(t−s)y)ds

)2

≤

ε2

∫ t

0

<(−B∗eB∗sx, eB∗sx)ds

∫ t

0

<(−AeAsy, eAsy)ds.

By partial integration we compute

I(A, y, t) =

∫ t

0

<(−AeAsy, eAsy)ds =

−‖eAsy‖2
∣∣∣
t

0
− I(A, y, t),

I(A, y, t) =
1

2

(
(y, y)− ‖eAty‖2

)
. (5)

Obviously

0 ≤ I(A, y, t) ≤ 1

2
(y, y)

and I(A, y, t) increases with t. Thus, there exist limits

I(A, y, t)↗ I(A, y,∞) =
1

2
(y, y)− P (A, y)) , t→∞

‖eAty‖2 ↘ P (A, y), t→∞
with

0 ≤ I(A, y,∞) ≤ 1

2
(y, y).

(and similarly for B∗). Altogether

|
(
x, (eBt − eAty)

)
|2 ≤ ε2

4
((x, x) − P (B∗, x)) ((y, y)− P (A, y)) (6)

≤ ε2

4
(x, x)(y, y).

Q.E.D.

Remark 1 As a matter of fact, in the proof above neither of the operators need be densely
defined. In this case the assertion of the theorem is valid only in the weak form

|(eB∗tx, y)− (x, eAty)| ≤ ε

2
‖x‖‖y‖.

Corollary 1 Suppose that (3) holds for all y from some S ∈ T (A) and all x ∈ D, where D
is a dense subspace, invariant under eB

∗t, t ≥ 0. Then

‖
(
eBt − eAty

)
‖ ≤ ε

2
‖y‖. (7)
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By setting ε = 0 in (7) we obtain the known uniqueness of the solution of a first order
differential equation:

eBty = eAty, t ≥ 0.

If there is a dense subspace D ∈ D(A), which is invariant under eAt, and on which A is
dissipative we set

P (A, y) = (P (A)y, y), P (A) = s- lim
t→∞

eA
∗teAt. (8)

The strong limit P (A) above exists by the dissipativity and obviously 0 ≤ P (A) ≤ I in the
sense of forms (and similarly for B∗).

Corollary 2 If (3) holds for all x ∈ D, y ∈ E, where D, E are dense subspaces, invariant
under eB

∗t, eAt, respectively, then

|
(
x, (eBt − eAt)y

)
|2 ≤ ε2

4
((x, x)− (P (B∗)x, x))) ((y, y)− (P (A)y, y)) . (9)

In particular,

‖eBt − eAt‖ ≤ ε

2
. (10)

Remark 2 The corollary above certainly holds, if (3) is fulfilled for all x ∈ D(B∗) and all
y ∈ D(A) (it is enough to require the validity of (3) on respective cores) and this will be the
situation in our applications. In any of these cases both B∗ and A (and then also B and
A∗) are, in fact, maximal dissipative.

The condition (3) has a remarkable property of being inversion invariant i.e. B∗ and A may
be replaced by their inverses.

Proposition 1 Suppose that both B∗ and A (and then also B and A∗) are (not necessarily
boundedly) invertible. Then (3), valid for all x ∈ D(B∗) and all y ∈ D(A) is equivalent to

|(B−∗ξ, η)−(ξ, A−1η)|2 ≤ ε2<(−B−∗ξ, ξ)<(−A−1η, η), ξ ∈ D(B−∗), η ∈ D(A−1). (11)

(here B−∗ is an abbreviation for (B−1)∗ = (B∗)−1).

Proof. Just set B∗x = ξ, Ay = η. Q.E.D.

Note that in all our results above no further restriction to the constant ε was imposed.
This is partly due to the fact that the perturbation is measured by both the “perturbed”
and the “unperturbed” operator in a completely symmetric way. This kind of perturbation
bound will prove particularly appropriate for our applications below. If ε is further restricted
important new conclusions can be drawn.

A semigroup is called exponentially stable3 or exponentially decaying, if

‖eAt‖ ≤ ce−βt, t ≥ 0 (12)

for some c, β > 0.

Corollary 3 If in Corollary 2 we have ε < 2 then the exponential decay of one of the
semigroups implies the same for the other.

Proof. Just recall that the exponential stability follows, if ‖eAt‖ < 1 for some t > 0. Q.E.D.

3Some authors call this property the uniform exponential stability.

4



Remark 3 In all that was said thus far there is an obvious symmetry: in (3) we may replace
A, B∗ by B, A∗, thus obtaining the dual estimate

|(Bx, y) − (x,A∗y)|2 ≤ ε2<(−Bx, x)<(−A∗y, y). (13)

with completely analogous results. Obviously, (3) and (13) are equivalent, if D(A) = D(A∗)
and D(B) = D(B∗).

Discrete semigroups. Every step of the perturbation theory, developed above can be
correspondingly extended to discrete semigroups. An operator T is called a contraction, if
‖T‖ ≤ 1. For any such operator T the strong limit

Q(T ) = s- lim
n→∞

T ∗nTn

obviously exists and satisfies
0 ≤ Q(T ) ≤ 1.

The following theorem sums up the most important facts.

Theorem 2 Let A, B be contractions and

|((B −A)x, y)|2 ≤ ε2((1−B∗B)x, x)((1 −AA∗)y, y) (14)

for all x, y and some ε ≥ 0 (note that in (14) the right hand side is always non-negative).
Then

|((Bn −An)x, y)|2 ≤ ε2((1−Q(B))x, x)((1 −Q(A∗))y, y) (15)

and, in particular,

‖Bn −An‖ ≤ ε
√
‖1−Q(A∗)‖‖1−Q(B)‖ ≤ ε. (16)

Proof. For any x, y we have

|((Bn −An)x, y)|2 = |(
n−1∑

k=0

Ak(B −A)Bn−k−1x, y)|2 ≤

(
n−1∑

k=0

|((B −A)Bn−k−1x,A∗ky)|
)2

≤ ε2

(
n−1∑

k=0

√
(Ak(1− AA∗)A∗ky, y)(B∗n−k−1(1−B∗B)Bn−k−1x, x)

)2

≤ ε2
n−1∑

k=0

(Ak(1−AA∗)A∗ky, y)

n−1∑

k=0

(B∗k(1−B∗B)Bky, y)

= ε2((1−AnA∗n)y, y)((1−B∗nBn)x, x)

and (15) follows. Here we have used the identity

n−1∑

n=0

Ak(1−AB)Bk = 1−AnBn. (17)

Q.E.D.
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It may be interesting to note that (17) appears to be a discrete analog of

∫ t

0

eAτ (A+B)eBτdτ = −
(
1− eAteBt

)
(18)

on which (5) was based.
Any contraction A is exponentially stable, if and only if ‖An‖ < 1 for some n. This leads

to a result, analogous to Cor. 3.

Corollary 4 Let A and B be contractions satisfying (15) with ε < 1. Then the exponential
stability of one of them implies the same for the other.

One might wonder that the bound (10) is uniform in t although the involved semigroups need
not be exponentially decaying. As a simple example consider dissipative operators A, B in
a finite dimensional space. Then each of these operators is known to be an orthogonal sum
of a skew-Hermitian part and an exponentially stable part. By (3) (which is now equivalent
to (1)) the skew-Hermitian parts of A and B coincide and the difference eBt − eAt decays
exponentially. The situation with discrete semigroups is similar.

In the infinite dimensional case the uniformity of the bound (10) is a more serious fact
as will be illustrated on applications from Mathematical Physics below.

3 Application to damped systems

An abstract damped linear system is governed by a formal second order differential equation
in a vector space Y0

µ(ÿ, v) + θ(ẏ, v) + κ(y, v) = 0, (19)

where µ, θ, κ are sesquilinear forms with the following properties:

• κ symmetric, strictly positive,

• µ symmetric, positive, κ-closable,

• θ κ-bounded, accretive.

A possible way to turn (19) into an operator equation is to take (u, v) = κ(u, v) as the scalar
product and to complete accordingly Y0 to a Hilbert space Y . By the known representation
theorems ([3]) we have

µ(u, v) = (Mu, v), θ(u, v) = (Cu, v), (20)

where M is (possibly unbounded) selfadjoint and positive and C is bounded accretive. We
now replace (19) by

Mÿ + Cẏ + y = 0, (21)

where the time derivatives ẏ, ÿ are taken in Y .4

To the equation (21) one naturally associates the phase space system, obtained by the
formal substitution

x1 = y, x2 = M1/2ẏ (22)

which leads to the first order equation

d

dt

(
x1

x2

)
= A

(
x1

x2

)

4Our choice of the underlying scalar product in Y0 is fairly natural but not the only relevant one. One
could show that very different, even topologically non-equivalent, choices of the scalar product still lead to
the essentially same semigroup dynamics, see [4].
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with

A =

(
0 M−1/2

−M−1/2 −M−1/2CM−1/2

)
. (23)

which then should generate a contractive semigroup which realises the dynamics. Our
conditions are far too general for this A to make sense as it stays (note that M may have a
nontrivial null-space). However, the formal inverse

A+ =

(
−C −M1/2

M1/2 0

)
(24)

is more regular, although not necessarily bounded. Considered in the ’total energy’ Hilbert
space X̂ = Y ⊕ Y , A+ has the following properties

A+ is maximal dissipative, (25)

D(A+) = D((A+)∗) = D(M1/2)⊕D(M1/2), (26)

N (A+) = N ((A+)∗). (27)

All this follows from the fact that A+ is a sum of the skew-selfadjoint operator

(
0 −M1/2

M1/2 0

)

and a bounded dissipative operator

−
(
C 0
0 0

)
.

Thus, N (A+) reduces both A+ and its adjoint, the same is the case with the space X ,
defined as

X = N (A+)⊥. (28)

More precisely, A+ is a direct sum of the null operator and a maximal dissipative invertible
operator A−1 in the Hilbert space X , defined on

X ∩ D(A+)

which is dense in X . Obviously, the operator A is again maximal dissipative and this is by
definition the generator of our semigroup. The space X may be called the physical phase
space for the system (21).5

Denoting by Q the orthogonal projection onto the space X in X̂ we have, in fact,

(λ−A)−1Q = A+(1− λA+)−1 =
1

λ
− 1

λ2

(
1

λ
−A+

)−1

, <λ > 0. (29)

Another useful identity is valid for the case of M bounded

(λ−A)−1Q =

(
1
λ −

K(λ)−1

λ K(λ)−1M−1/2

−M−1/2K(λ)−1 λM−1/2K(λ)−1M−1/2

)
, (30)

whenever K(λ) = µ2M + µC + 1 is positive definite. Both are immediately verified.

5A different but related construction was used in [4] where both M and C are symmetric, but possibly
unbounded.
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Proposition 2 The null-space N (A+) satisfies the inclusion

N (A+) ⊇ (N (C) ∩ N (M))⊕N (M). (31)

If, in addition, C is sectorial then we have the equality

N (A+) = (N (C) ∩ N (M))⊕N (M). (32)

Proof.6 Now, N (A+) is given by the equations

−Cx1 −M1/2x2 = 0, M1/2x1 = 0, x1,2 ∈ D(M1/2).

From this the inclusion (31) follows. Let now C be sectorial. The above equations imply
(Cx1, x1) = −(M1/2x2, x1) = 0. By the assumed sectoriality it follows Cx1 = 0, so (32)
follows. Q.E.D.

The fact that the semigroup dynamics exists only on a closed subspace X of X̂ is quite
natural, even in the finite dimensional space: one cannot prescribe velocity initial data on
the parts of the space where the mass is vanishing. If M is injective — no matter how
singular M−1 may be — our dynamics exists on the whole space X̂ .

It can be shown ([4]) that this semigroup provides an appropriate solution to the second
order system (21) via the formulae (22), at least in the special case of M, C bounded
symmetric. In our, more general situation we can show that A yields the “true” dynamics
by way of approximation. We approximate the operator M by a sequence Mn of bounded,
positive operators such that

M1/2
n x→M1/2x, x ∈ D(M1/2). (33)

If, in addition, all Mn are positive definite the operator (23)

An =

(
0 M

−1/2
n

−M−1/2
n −M−1/2

n CM
−1/2
n

)
(34)

is bounded dissipative in X̂ and its semigroup trivially reproduces the solution of the so
modified second order system

Mnÿ + Cẏ + y = 0, (35)

An example of such sequence is

Mn = fn(M), fn(λ) =





1
n , 0 ≤ λ ≤ 1

n
λ, 1

n ≤ λ ≤ n
n, n ≤ λ

Note that here, in addition, the operators Mn are both bounded and boundedly invertible,
being positive definite.

Proposition 3 For any x =

(
x1

x2

)
∈ X and any approximation sequence (33) we have

eAnx→ eAx, n→∞. (36)

uniformly on any compact interval in t. Choose, in addition, Mn as positive definite and
set (

yn(t)
un(t)

)
= eAnt

(
x1

x2

)
,

(
y(t)
u(t)

)
= eAt

(
x1

x2

)
.

6In the case of C symmetric and M bounded this formula was proved in [4].
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Then yn(t) solves (35) with un(t) = M
1/2
n ẏn(t) and

yn(t)→ y(t), M1/2
n ẏn(t)→M1/2ẏ(t), n→∞.

Proof. By (33) we have A−1
n → A+ in the strong resolvent sense (see [3], Ch. VIII, Th, 1.5)

i.e.
(λ−A−1

n )−1 → (λ−A+)−1, =λ 6= 0.

Hence by (29),

(λ−An)−1 =
1

λ
− 1

λ2

(
1

λ
−A−1

n

)−1

→

1

λ
− 1

λ2

(
1

λ
−A+

)−1

= (λ−A)−1Q.

all in the strong sense. Now the Trotter-Kato convergence theory ([3]) can be applied to
give

eAηtx→ eAtx, η → 0 (37)

for all x ∈ X . (The original Trotter-Kato theorem requires the injectivity of the strong limit
in (34), but the same proof is easily seen to accomodate our slightly more general setting.)
The remaining assertions are now straightforward. Q.E.D.

We now apply our abstract theory from Sect. 2 to a second order system with variable
damping.

Theorem 3 Let

A+ =

(
−C −M1/2

M1/2 0

)
, Â+ =

(
−Ĉ −M1/2

M1/2 0

)

where M is bounded, positive selfadjoint and C, Ĉ are bounded accretive operators satisfying

∣∣
(

(Ĉ − C)x, y
) ∣∣2 ≤ ε2<(Cy, y)<(Ĉx, x) (38)

for all x, y ∈ Y and some ε > 0. Then A+ and Â+ have the same null-space and the
respective contractive semigroup generators A and Â in X from (28) satisfy the assumptions
of Cor. 2, in particular,

‖eÂt − eAt‖ ≤ ε

2
. (39)

Proof. Obviously (38) is equivalent to

∣∣∣
(

(Â+ −A+)x, y
) ∣∣∣

2

≤ ε2<(−A+y, y)<(−Â+x, x) (40)

for all x, y ∈ D(A+) = D(Â+). From this it follows that A+ and Â+ have the same null-

space. Furthermore, by (26) the domains of the four operators A+, Â+, (A+)∗, (Â+)∗ coin-

cide and (40) is equivalent to both (3) and (13) for for A = A+ and B = Â+ and then also for

A = A−1 and B = Â−1 (note that in our situation we have <(−A+y, y) = <(−(A+)∗y, y)

and <(−Â+x, x) = <(−(Â+)∗x, x)). Now apply Prop. 1 and Cor. 2. Q.E.D.

Note the important role of the ’inverse-invariance property’ in Prop. 1 in the proof above
because we have no explicit formulae for the generators A and Â and there is no control on
their domains of definition.

We now prove some stability results for second order systems.
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Theorem 4 Let the system (21) be exponentially stable7 with a symmetric C = C(1) and
let

0 ≤ C(1) ≤ D ≤ αC(1), α ≥ 1.

Then the exponential stability holds with C = D and vice versa.

Proof. Set

Ck = C(1) +
k

n
(D − C(1)), k = 0, . . . , n.

Then C0 = C(1), Cn = D and

0 ≤ Ck+1 − Ck ≤
α− 1

n
C(1)

and
|((Ck+1 − Ck)x, y)|2 ≤ ((Ck+1 − Ck)x, x)((Ck+1 − Ck)y, y)

≤
(
α− 1

n

)2

(C(1)x, x)(C(1)y, y) ≤
(
α− 1

n

)2

(Ck+1x, x)(Cky, y).

Now choose n > (α − 1)/2 and use Theorem 3 and Corollary 3. Use induction: the expo-
nential stability carries over from Ck to Ck+1 and vice versa. Q.E.D.

In particular, the exponential stability with C implies the same with αC for any positive
α. A similar technique can be applied to gyroscopic systems:

Theorem 5 Suppose that in (21) the operator C is sectorial. Then the exponential stability
of this system is equivalent to the exponential stability of the ’purely damped’ system

Mÿ + Ĉẏ + y = 0, with Ĉ =
C∗ + C

2
. (41)

Proof. By sectoriality there exists N > 0 such that

|=(Cy, y)| ≤ N<(Cy, y) for all x, y. (42)

We have
<(Cx, x) = (Ĉx, x), −i=(Cx, x) = −i((Ĉ − C)x, x).

The operators Ĉ and −i(Ĉ − C) are symmetric, so the inequality (42) may be polarised to
read

((Ĉ − C)x, y)|2 ≤ N2<(Cy, y)<(Cx, x) = N2<(Cy, y)<(Ĉx, x).

Assume first N < 2. Then apply Theorem 3 and Corollary 3 to obtain the exponential
stability with C. Now drop the condition N < 2 and proceed by induction. Introduce the
sequence

Ck = Ĉ +
k

n
(C − Ĉ), k = 0, . . . , n.

Then obviously

|((Ck+1 − Ck)x, y)|2 =
1

n2
|((Ĉ − C)x, y)|2 ≤

N2

n2
<(Cy, y)<(Ĉx, x) =

N2

n2
<(Cky, y)<(Ck+1x, x).

7By the exponential stablity of a second order system we mean the exponential stablity of the generated
semigroup.
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Now choose n < 2/N and apply the above consideration to the consecutive pairs Ck, Ck+1.

We may begin at the bottom with C0 = Ĉ or at the top with Cn = C. Q.E.D.

The foregoing theorem can be nicely combined with the spectral shift techniques from
[6] to obtain further results on exponential stability.

Suppose first that in (21) both M and C are bounded and symmetric (the boundedness of
both operators is imediately seen to be a necessary condition for the exponential stability).
The key relation in the following will be

L(µ)Â+
µL(µ)−1 = (A− µ)−1Q. (43)

with µ < 0 and

L(µ) =

(
K(µ)−1/2 0

µM1/2K(µ)−1/2 1

)
, K(µ) = µ2M + µC + 1, (44)

Â+
µ =

(
K(µ)−1/2(C + 2µM)K(µ)−1/2 −K(µ)−1/2M1/2

M1/2K(µ)−1/2 0

)
, (45)

where µ is chosen in such a way that K(µ) remains positive definite.8 In this way both L(µ)
and L(µ)−1 are everywhere defined and bounded. The relation (43) is immediately verified
(use (30)) and it is an immediate generalisation of the one obtained in [6], (16).

Under the additional assumption that C+ 2µM be positive the operator Â+
µ is bounded

and dissipative, so it is reduced by the subspaces N (Â+
µ ) and N (Â+

µ )⊥ and we may write

Â+
µ = Â−1

µ P, (46)

where P is the orthogonal projection onto N (Â+
µ )⊥ and Âµ is maximal dissipative in the

Hilbert space N (Â+
µ )⊥. Thus, (43) implies

S−1AS = Âµ + µ. (47)

Here the linear operator

S = L(µ)
∣∣∣
N (Â+

µ )⊥
: N (Â+

µ )⊥ → N (A+)⊥

is bijective and bicontinuous. We summarise:

Theorem 6 Let the operators M and C from (21) have additional properties that M is
bounded, C sectorial and C − αM accretive for some α > 0. Then the system (21) is
exponentially stable. If, in addition, C is symmetric then

γ = sup
x∈Y,(Mx,x)>0

<−(Cx, x) +
√

(Cx, x)2 − 4(Mx, x)(x, x)

2(Mx, x)
< 0 (48)

and
‖eAt‖ ≤ ‖L(µ)‖‖L(µ)−1‖eµt. (49)

for any µ ∈ (γ, 0).

8By the assumed boundedness of both M and C there are negative µ’s with K(µ) positive definite.
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Proof. Take first C as symmetric. The value γ is the infimum of all µ such that C + 2µM
is positive and K(µ) is positive definite. The proof of this fact is the same as that of [6],
Proposition 1, so we omit it here. So, for any µ ∈ (γ, 0) (47) implies (49).

For non-symmetric C the above considerations will obviously be valid for its symmetric
part Ĉ from (41). By using Theorem 5 the exponential stability follows. Q.E.D.

Remark 4 (i) All conditions on M , C, Ĉ in the foregoing theorems can be readily expressed
in the language of the original forms in (19). For instance, (38) is equivalent to

∣∣(γ̂ − γ)(x, y)
∣∣2 ≤ ε2<γ(y, y)<γ̂(x, x). (50)

and so on.
(ii) Explicit bounds for the condition number, appearing in (49) may be taken over from

[6], Lemma 1.

4 The damped wave equation

Here we apply our general theory to the wave equation in one dimension

ρ(x)utt + γ(x)ut − (d(x)utx)x − (k(x)ux)x = 0 (51)

for the unknown function u = u(x, t), a < x < b and 0 < t < ∞. The functions
ρ(x), γ(x), d(x), k(x) are assumed to be non-negative and measurable; in addition, ρ(x), γ(x)
are bounded and

ess infa<x<bk(x) > 0, ess supa<x<b
d(x)

k(x)
<∞. (52)

The boundary conditions are

u(a, t) = 0, ux(b, t) + ζut(b, t) = 0, ζ ≥ 0. (53)

This is a formally dissipative equation which we shall understand in its weak form

µ(utt, v) + θ(ut, v) + κ(u, v) = 0 (54)

with u(a) = v(a) = 0 and

µ(u, v) =

∫ b

a

ρ(x)uv̄dx, (55)

θ(u, v) =

∫ b

a

(γ(x)uv̄ + d(x)u′v̄′) dx+ ζu(a)v̄(b), (56)

κ(u, v) =

∫ b

a

k(x)u′v̄′dx. (57)

The forms µ, θ are symmetric and positive. θ is obviously κ-bounded while µ is κ-closable.
As the underlying Hilbert space Y we take the functions with the scalar product

(u, v) = κ(u, v) =

∫ b

a

k(x)u′v̄′dx, u(a) = v(a) = 0. (58)

Then under our conditions,

µ(u, v) = (Mu, v), θ(u, v) = (Cu, v) (59)

12



where M, C are positive selfadjoint operators, with bounded C and M . Thus, we end up
with the second order system (21) and (54) gives rise to a contractive semigroup on the
space X which is determined from the null-spaces of M, C.

Note that in order for M to have a non-trivial null-space it is not sufficient that the
function ρ vanishes just on a set of positive measure, rather ρ must vanish on an interval
(and similarly for C). If ρ vanishes on an interval and γ does not, then (51) is of mixed
type (hyperbolic - parabolic). All such cases are covered by our theory.

Now for the perturbation. We perturb the damping parameters γ(x), d(x), ζ into

γ̂(x), d̂(x), ζ̂ , which satisfy the same conditions as γ(x), d(x), ζ above and are such that

|γ̂(x) − γ(x)| ≤ ε
√
γ̂(x)γ(x) (60)

|d̂(x)− d(x)| ≤ ε
√
d̂(x)d(x) (61)

|ζ̂ − ζ| ≤ ε
√
ζ̂ζ (62)

This is a ’relatively small’ change of the damping parameters, commonly encountered in
practice. The corresponding operators C and Ĉ are immediately seen to satisfy (38). Hence
Theorem 3 applies and the corresponding semigroups satisfy (39).

One might be interested to obtain perturbation results under the more common assump-
tions involving only the ’unperturbed’ data and the perturbation:

|γ̂(x) − γ(x)| ≤ ηγ(x) (63)

|d̂(x) − d(x)| ≤ ηd(x) (64)

|ζ̂ − ζ| ≤ ηζ (65)

with η < 1. This implies (60) – (62) with

ε =
η√

1− η .

But the real use of (63) – (65) consists merely in insuring the non-negativity of the perturbed
damping parameters and the conditions (52); all this is usually known in advance, so there
is no need to abandon the much less restrictive conditions (60) – (62).

In view of Corollary 1 we conclude that if the equation (51) decays exponentially with

the damping parameters γ(x), d(x), ζ, then the same will be the case with γ̂(x), d̂(x), ζ̂, if
the constant ε is less than 2. Theorem 4 also applies accordingly.

The situation in higher dimensions is similar and the results are completely analogous
and straightforward. The interval [a, b] ⊆ R will be replaced by a bounded domain Ω, so
the only additional issue is to insure that the boundary ∂Ω ⊆ Rn be smooth enough to
accomodate any of the boundary conditions from (52).

As a second example consider the equation (51) on the infinite interval 0 < x <∞ with
the boundary condition

u(0, t) = 0. (66)

For simplicity we take
k(x) = ρ(x) ≡ 1, (67)

whereas γ(x) ≥ 0 is supposed to satisfy

D = sup
u∈Y

∫∞
0 γ(x)|u(x)|2dx∫∞

0
|u′(x)|2dx <∞, (68)
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where Y is the set of all u which are absolutely continuous, vanish at zero and have a square
integrable u′; this is obviously a Hilbert space with the scalar product

(u, v) =

∫ ∞

0

u′(x)v̄′(x)dx.

The class of functions γ satisfying (68) is not void since it includes

γ(x) =
1

x2
, with D = 4

([3] Ch. VI 4.1). The form

µ(u, v) =

∫ ∞

0

u(x)v̄(x)dx

defined on D(µ) = L2(0,∞)∩Y is closed in Y , so (59) yields a positive unbounded operator
M with a trivial null-space and a bounded C. Hence our semigroup construction applies
and under the perturbation (60) the bounds (10), (9) hold.

Such semigroups are in general not exponentially decaying (they are usually extended to
uniformly bounded groups) and will give rise to a non-trivial scattering theory on an ’ab-
sorbing obstacle’ represented by the short range damping function γ. Further considerations
along these lines go beyond the scope of this article.
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