
NEW FAST AND ACCURATE JACOBI SVD ALGORITHM: I.

ZLATKO DRMAČ∗ AND KREŠIMIR VESELIĆ†

Abstract. This paper is the result of contrived efforts to break the barrier between numerical
accuracy and run time efficiency in computing the fundamental decomposition of numerical linear
algebra – the singular value decomposition (SVD) of a general dense matrix. It is an unfortunate
fact that the numerically most accurate one–sided Jacobi SVD algorithm is several times slower than
generally less accurate bidiagonalization based methods such as the QR or the divide and conquer
algorithm. Despite its sound numerical qualities, the Jacobi SVD is not included in the state of
the art matrix computation libraries and it is even considered obsolete by some leading researches.
Our quest for a highly accurate and efficient SVD algorithm has led us to a new, superior variant
of the Jacobi algorithm. The new algorithm has inherited all good high accuracy properties, and it
outperforms not only the best implementations of the one–sided Jacobi algorithm but also the QR
algorithm. Moreover, it seems that the potential of the new approach is yet to be fully exploited.

Key words. Jacobi method, singular value decomposition, eigenvalues

AMS subject classifications. 15A09, 15A12, 15A18, 15A23, 65F15, 65F22, 65F35

1. Introduction. In der Theorie der Säcularstörungen und der kleinen Oscil-
lationen wird man auf ein System lineärer Gleichungen gefürt, in welchem die Co-
efficienten der verschiedenen Unbekanten in Bezug auf die Diagonale symmetrisch
sind, die ganz constanten Glieder fehlen und zu allen in der Diagonale befindlichen
Coefficienten noch dieselbe Größe −x addirt ist. Durch Elimination der Unbekan-
nten aus solchen lineären Gleichungen erhält man eine Bedingungsgleichung, welcher
x genügen muß. Für jeden Werth von x, welcher diese Bedingungsgleichungen erfüllt,
hat man sodann aus den lineären Gleichungen die Verhältnisse der Unbekannten zu
bestimmen. Ich werde hier zuerst die für ein solches System Gleichungen geltenden
algebraischen Formeln ableiten, welche im Folgenden ihre Anwendung finden, und
hierauf eine für die Rechnung sehr bequeme Methode mittheilen, wodurch man die
numerischen Werthe der Größen x und der ihnen entsprechendes Systems der Un-
bekannten mit Leichtigkeit und mit jeder beliebigen Schärfe erhält.

The above was part of the opening paragraph of the 1846. paper by Jacobi [41]
who introduced a new simple and accurate method for solving a system of linear
equations with coefficients symmetric about the diagonal, and with the value of −x
added to all diagonal entries. The system to be solved is, in Jacobi’s notation,





{(a, a)− x}α + (a, b)β + (a, c)γ + · · ·+ (a, p)ω̃ = 0,
(b, a)α + {(b, b)− x}β + (b, c)γ + · · ·+ (b, p)ω̃ = 0,
(c, a)α + (c, b)β + {(c, c)− x}γ + · · ·+ (c, p)ω̃ = 0,
(p, a)α + (p, b)β + (p, c)γ + · · ·+ {(p, p)− x}ω̃ = 0,

where the coefficients are symmetric, (a, b) = (b, a), (a, c) = (c, a), . . . , (b, c) = (c, b)

∗Department of Mathematics, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatia. The
work of the author is supported by the Croatian Ministry of Science and Technology under grant
0037120 (Numerical Analysis and Matrix Theory), and by the Volkswagen–Stiftung grant Designing
Highly Accurate Algorithms for Eigenvalue and Singular Value Decompositions.

†Lehrgebiet Mathematische Physik, Fernuniversität Hagen, Postfach 940, D–58084 Hagen, Ger-
many. The work of the author is supported by the Volkswagen–Stiftung grant Designing Highly
Accurate Algorithms for Eigenvalue and Singular Value Decompositions.

1



etc. In our notation, preferring λ over x and setting

H =




(a, a) (a, b) (a, c) · · · (a, p)
(b, a) (b, b) (b, c) · · · (b, p)
(c, a) (c, b) (c, c) · · · (c, p)

...
...

...
. . .

...
(p, a) (p, b) (p, c) · · · (p, p)




= ( Hij )n
i,j=1 , u =




α
β
γ
...
ω̃




, (H = HT )

we obtain the equation (H − λI)u = 0 , which is to be solved for λ and u 6= 0. The
algorithm starts with H(0) = H and then it generates a sequence of congruences,
H(k+1) = (V (k))T H(k)V (k), where V (k) is plane rotation, i.e. V (k) differs from the
identity only at the cleverly chosen positions (pk, pk), (pk, qk), (qk, pk), (qk, qk), where

(
V

(k)
pk,pk V

(k)
pk,qk

V
(k)
qk,pk V

(k)
qk,qk

)
=

(
cos φk sinφk

− sin φk cos φk

)
.

The angle φk is determined to annihilate the (pk, qk) and (qk, pk) positions in H(k),
(

cos φk − sin φk

sinφk cos φk

)(
H

(k)
pkpk H

(k)
pkqk

H
(k)
qkpk H

(k)
qkqk

)(
cosφk sin φk

− sin φk cosφk

)
=

(
? 0
0 ∗

)
.

Simple trigonometry reveals that in the nontrivial case (H(k)
pkqk 6= 0) we can take

cot 2φk =
H

(k)
qkqk −H

(k)
pkpk

2H
(k)
pkqk

, and tanφk =
sign(cot 2φk)

| cot 2φk|+
√

1 + cot2 2φk

∈ (−π

4
,
π

4
],

where φk is the smaller of two angles satisfying the requirements. (If H
(k)
pkqk = 0, then

V (k) = I, the identity.) In fact, Jacobi used plane rotations in his earlier work [40]
as preconditioner for iterative solution of linear systems of normal equations, and as
an application he used system generated by least squares where the matrix is, in our
notation, H = AT A with some A.

The advent of electronic computing machinery opened new chapter in numeri-
cal mathematics and the Jacobi method became attractive tool for computing the
eigenvalues of symmetric matrices. Goldstine, Murray and von Neumann [27] redis-
covered the method and had detailed implementation and error analysis around 1950.
According to [5] and [28], it was used by Hessenberg in 1940., by Wilkinson at the
National Physical Laboratory in 1947. and by Bodewig in 1949.

Many interesting questions related to convergence, better choices of pivot posi-
tions (pk, qk), and various generalizations triggered fruitful research. The convergence
is easily monitored by using the off–norm, Ω(H) =

√∑
i 6=j H2

ij for which one easily

shows the monotonicity Ω(H(k+1)) = Ω(H(k))− 2(H(k))2pk,qk
≤ Ω(H(k)). Under suit-

able pivot strategies k 7→ (pk, qk), k = 0, 1, . . . , the sequence (H(k))∞k=0 converges to
diagonal matrix Λ and the accumulated product V (0)V (1) · · ·V (k) · · · converges to the
orthogonal matrix V of eigenvectors of H, HV = V Λ.

Jacobi proved the convergence of a greedy approach that annihilates the abso-
lutely largest off–diagonal entry at each step. The greedy strategy is usually replaced
with the row–cyclic strategy, first used by Gregory [29], which is periodic and in
one full sweep of n(n − 1)/2 rotations it rotates row–by–row at the pivot positions
(1, 2), (1, 3), . . . (1, n); (2, 3), . . . , (2, n); (3, 4), . . . , (3, n); . . . , (n− 2, n); (n− 1, n).

2



Similarly, column–cyclic strategy scans the strict upper triangle of the matrix
in column–by–column fashion. These two strategies define cyclic or serial Jacobi
methods. Forsythe and Henrici [24] proved the convergence of serial methods and
gave a general convergence theory for Jacobi iterations for eigenvalue computations
of complex matrices. Schönhage [58] and Wilkinson [67] proved quadratic convergence
of serial method in case of simple eigenvalues, and Hari [33] extended the result to
the general case of multiple eigenvalues.1 Mascarenhas [46] and Rhee and Hari [53]
showed that certain modification of row–cyclic strategy achieves cubic convergence.
Rutishauser [56] described detailed implementation of the method for real symmetric
matrices, with many subtleties related to floating point computation.

Hestenes [35] noted that the Jacobi method can be used to compute the SVD of
general matrices. Namely, if A is of full column rank2 and if we define H = AT A, then
the application of the method to H, H(k+1) = (V (k))T H(k)V (k) can be represented
by the sequence A(k+1) = A(k)V (k). To determine the parameters of V (k) we only
need the four pivot elements of H(k), that is, the 2× 2 Gram matrix of the pk–th and
the qk–th column of A(k). The limit matrix of (A(k))∞k=0 is UΣ, where the columns
of orthonormal U are the left singular vectors and the diagonal matrix Σ carries the
singular values along its diagonal. The accumulated product of Jacobi rotations is
orthogonal matrix V of the eigenvectors of H. The SVD of A is A = UΣV T .

The development of the QR method and other fast methods based on reduction
of H to tridiagonal form (or reduction of general A to bidiagonal form) in the 1960s
reduced the interest in further development and use of the Jacobi method – it was
simply too slow. Simple, elegant, beautiful, but slow.

But, in applications such as structural mechanics, digital signal processing, con-
trol, computational chemistry, the scientists and engineers have not abandoned the
Jacobi method. And, simplicity is not the only attribute that Jacobi method can
claim in its favor. It performs well on almost diagonal matrices. Further, the num-
ber of correct digits in computed approximations of smallest eigenvalues and singular
values makes a big difference in favor of Jacobi. Rosanoff et al [54] compared the
QR and the Jacobi method in computational mechanics and explicitly stated that the
Jacobi method was more accurate than QR. Mathematical theory that explained the
difference in numerical accuracy was given by Demmel and Veselić [13]. The main
fact from this development is that some classes of matrices that appear ill–conditioned
with respect to singular value computation in fact define its SVD perfectly well and
that the ill–conditioning is artificial. The same observation holds for the spectral
decomposition of symmetric positive definite matrices. Jacobi method correctly deals
with artificial ill–conditioning (e.g. grading), while the bidiagonalization or tridi-
agonalization based methods do not. This makes the bidiagonalization based SVD
computation numerically inferior to the Jacobi SVD algorithm [13].

The perception of the Jacobi method as slowest of all diagonalization methods
goes some fifty years back to the pioneering age of numerical linear algebra. The
inferiority in terms of run time efficiency made Jacobi method less attractive, and
fast methods have been receiving full attention of leading researches. As a result, the
recent development of bidiagonal SVD methods has been impressive, with ingenious
mathematics, and the gap in efficiency versus Jacobi method widens. Highly optimized
bidiagonalization based routines xGESVD and xGESDD from LAPACK [1] can be

1Some authors refer to van Kempen [65] for this result. It should be noted that van Kempen’s
proof of quadratic convergence is not correct.

2This is only a temporary assumption for the sake of simplicity.

3



in some cases ten or even fifteen times faster than the best implementation of the
one–sided Jacobi SVD. Faster, but less accurate. As Kahan [42] put it, the fast drives
out the slow, even if the fast is wrong.

There seems to be a latent barrier that causes unfortunate trade off between
accuracy and speed – as we approach higher accuracy the drag measured in flops
becomes prohibitive. The goal of our efforts is to break that barrier. Today we know
much more about the convergence of the Jacobi algorithm, as well as how to use
preconditioning to accelerate the convergence rate. We have deeper understanding
of numerical stability which allows us to introduce nontrivial modifications of the
algorithm in order to make it more efficient. Rich matrix theory can be exploited to
control important switches in the algorithm.

To make our case, we have started new research program to develop a new variant
of the Jacobi SVD algorithm. Our goal is set rather high: Mathematical software
implementing the new algorithm should be numerically sound and competitive in
efficiency with the LAPACK’s implementations of the QR and the divide and conquer
algorithms, or any other bidiagonalization based procedure. In the first stage of the
research, we have revised our previous work [13], [15], [16], [18], and then set the
following general guidelines for the development at this stage:

(i) Substantial modifications of the classical Jacobi SVD algorithm are necessary
to reduce its complexity. This means that we need to study the convergence and
find ways to improve it by preconditioning. We use rank revealing QR factorizations
as efficient and versatile preconditioner. We must seek for zero and almost diagonal
structure that can be utilized by specially tailored pivot strategy. Pivot strategy
in general must be adaptive and and with higher order of convergence. The singular
vectors can be computed more efficiently as shown in [18]. Both the numerical analysis
and matrix theory should be deployed.

(ii) The design of the algorithm should be open for further improvements. It
should be based on building blocks which can benefit from the development of basic
matrix computational routines (BLAS, LAPACK etc.) and blocked versions of Jacobi
rotations, but without trading the numerical accuracy. In other words, we will first
set up the basic scheme and introduce further improvements in subsequent stages.

The current state of the affairs of the aforementioned program is presented in
this report as follows: In §2 we give quick introduction to the numerical analysis of
the symmetric definite eigenvalue problem and the SVD, and we point out important
differences between the classical algorithms. This material defines necessary guides
for the algorithmic design, and we consider it as second part of the Introduction. In
§3 we give detailed description of the preconditioning. Important detail of choosing
A or AT as input to the new algorithm is discussed in §4. The dilemma ”A or
AT ” generates interesting mathematical questions leading us to study certain concave
functions on the set of diagonals of the adjoint orbit of a positive definite matrix. The
basic structure of the new Jacobi SVD algorithm is developed in §5. Large part of
the computation is lifted up to the level of BLAS 3, but in such a way that the high
relative accuracy is not at risk. Numerical properties are rigorously analyzed in §6.
Implementation details and numerical results are given in the follow–up report [20].

The authors acknowledge generous support by the Volkswagen Science Foundation
and the Croatian Ministry of Science and Technology. We are also indebted to P. Ar-
benz (Zürich), J. Barlow (State College), J. Demmel (Berkeley), F. Dopico (Madrid),
V. Hari (Zagreb), W. Kahan (Berkeley), J. Moro (Madrid), B. Parlett (Berkeley), I.
Slapničar (Split) for their comments, criticisms and many fruitful discussions.

4



2. Accuracy and backward stability in SVD computations. Jacobi solved
7 × 7 eigenvalue problem related to computing the trajectories of the seven planets
of our solar system3 and compared the results with previously published results by
Leverrier. In fact, Jacobi used perturbation theory to guarantee numerical accuracy
and noted that his method was more accurate than the method of Leverrier.4

Here we give a brief survey of the accuracy issues in solving the symmetric pos-
itive definite eigenvalue problem and computing the SVD. At this point, we prefer
simplicity over the sharpness of the presented results, and we analyze only the com-
puted singular values. For relevant perturbation theory we refer the reader to [44],
[45] and to the excellent survey [39].

Let H be n × n symmetric positive definite matrix with spectral decomposition
H = V ΛV T , Λ = diag(λi)n

i=1, λ1 ≥ · · · ≥ λn, V T V = V V T = I. If a backward stable
diagonalization algorithm is applied to H, then the computed Ṽ , Λ̃ have the following
property: There exist an orthogonal matrix V̂ and a symmetric perturbation δH such
that H̃ ≡ H + δH = V̂ Λ̃V̂ T , Λ̃ = diag(λ̃i)n

i=1, λ̃1 ≥ · · · ≥ λ̃n, where ‖Ṽ − V̂ ‖ ≤ ε1
and ‖δH‖ is small compared to ‖H‖. Here ‖ · ‖ denotes the spectral operator norm
induced by the vector Euclidean norm, which is also denoted by ‖ · ‖. Small non–
negative parameter ε1 equals machine roundoff ε times a moderate function of n. Note
that H̃ is not necessarily positive definite. From the Weyl’s theorem we conclude that

max
i=1:n

|λ̃i − λi|
‖H‖ ≤ ‖δH‖

‖H‖ .(2.1)

If H = LLT is the Cholesky (or some other, e.g. square root, L =
√

H) factor-
ization, then H̃ = L(I + L−1δHL−T )LT . Assume that H̃ is positive definite (e.g.
‖L−1δHL−T ‖ < 1). Then we can factor I + L−1δHL−T = KKT with positive def-
inite square root (or Cholesky factor) K. Using the similarity of H̃ and KT LT LK,
the similarity of H and LT L, and the Ostrowski theorem [48], we conclude that

max
i=1:n

|λ̃i − λi|
λi

≤ ‖L−1δHL−T ‖.(2.2)

The nice error bounds (2.1,2.2) hold for all backward stable algorithms, but with
particularly structured δH for each algorithm.

Similarly, an algorithm that computes the singular values σ1 ≥ · · · ≥ σn of
A = UΣV T , actually returns the singular values σ̃1 ≥ · · · ≥ σ̃n of a nearby matrix
A + δA, where ‖δA‖ ≤ ε‖A‖ with some small ε. Again, Weyl’s theorem implies

max
i=1:n

|σ̃i − σi|
‖A‖ ≤ ‖δA‖

‖A‖ ≤ ε,(2.3)

and in the case of full column rank A, A + δA = (I + δAA†)A yields the bound

max
i=1:n

|σ̃i − σi|
σi

≤ ‖δAA†‖.(2.4)

This again is the property of the singular values and can be applied to any SVD
algorithm. The difference between the algorithms comes from different structures of

3The Neptune was discovered in 1846. (publication year of Jacobi’s paper) and the Pluto in
1930. Leverrier had predicted the position of Neptune.

4It is interesting to note that Leverrier also used divide and conquer technique by considering
4× 4 and 3× 3 submatrices and ignoring the coupling between them.

5



the produced backward errors. In general, δA is dense with no particular structure
which means that in the expression δAA† = δAV Σ†UT large singular values of A† =
V Σ†UT may get excited by δA. For instance, bidiagonalization based SVD algorithm
produces δA for which the best general upper bound is5 ‖δA‖ ≤ εB‖A‖ and thus

‖δAA†‖ ≤ ‖δA‖
‖A‖ κ(A) ≤ εBκ(A), κ(A) = ‖A‖‖A†‖.

In other words, if σ1 ≥ · · · ≥ σk À σk+1 ≥ · · · ≥ σn > 0, then the dominant singular
values σ1, . . . , σk will be computed accurately in the sense that

max
i=1:k

|σ̃i − σi|
σi

≤ ‖δA‖
‖A‖

σ1

σk
, ‖δA‖ ≤ O(ε)‖A‖,(2.5)

but the smallest one will have the error bound
|σ̃n − σn|

σn
≤ ‖δA‖

‖A‖
σ1

σn
. Thus, if for

some i it holds σi ≈ εσ1 ¿ σ1 = ‖A‖ then we cannot expect any correct digit
in σ̃i, even in the case where smallest singular values are well determined functions
of the entries of A. An obvious way of resolving this situation is to keep the same
algorithm and to use double precision arithmetic to ensure ‖δA‖/‖A‖ ≤ O(ε2). While
this is plausible and completely legal, a numerical analysts’s criticism of this is best
expressed using the arguments from [54]. Namely, enforcing sixteen digit arithmetic
to extract eigenvalues or singular values to e.g. guaranteed two accurate digits which
are determined to that accuracy by data given to four or five digits of accuracy raises
many questions related to the adequacy of the approach. In some cases of graded
matrices even doubling the precision cannot improve the accuracy in the smallest
singular values. Another problem is that doubling the precision doubles the memory
consumption which increases the execution time.

Another issue that must be mentioned is the relevancy of smallest singular values
in applications. If we google the term small singular values most of the retrieved
documents are about neglecting small singular values and contain expressions6 like:
discard, neglect, irrelevant, should be ignored, should be edited to zero,... In fact,
some information retrieval techniques (search engines) based on matrix models use
the SVD of the term×document matrix and replace it with low rank approximation
by neglecting small singular values, see e.g. [4]. However, it should be stressed that
neglecting small singular values is not as simple as it may seem. This is an important
issue and we feel compelled to discuss it in this introductory part of the report.

A common technique in solving least squares problem ‖Ax − b‖ → min is to
first compute the SVD, A ≈ Ũ Σ̃Ṽ T , and then to declare the smallest singular values
as noise which should not dominate in the least squares solution. By doing that,
certain information content is removed from A, which is declared rank deficient and
replaced by its lower rank approximation. The technique is theoretically justified by
the Schmidt–Eckart–Young–Mirsky7 theorem, which gives optimal low rank approxi-
mation in the spectral ‖ · ‖ and the Frobenius ‖ · ‖F =

√
Trace(·T ·) matrix norms.

Theorem 2.1. Let A be m× n matrix of rank r with the SVD A = UΣV T . For
k ∈ {1, . . . , r} set Ak = U(:, 1 : k)Σ(1 : k, 1 : k)V (:, 1 : k)T . Then

‖A−Ak‖ = min
rank(X)≤k

‖A−X‖, ‖A−Ak‖F = min
rank(X)≤k

‖A−X‖F .

5An improvement of this bound is given by Barlow [2].
6just picked at random from the retrieved documents
7Cf. historical remarks in [60].

6



So, why should we care about small singular values? But, how small is small, for
instance in dealing with numerical rank of a matrix. Which k is the best choice in
a particular application? Will it be small enough so that (2.5) assures that the first
k singular values are computed accurately enough? Stewart [59] very clearly and
strongly points out that one should exercise caution in dealing with the problem.
Usually, one determines the numerical rank by looking for the smallest index k with
the property that σk À σk+1 or σ1 À σk+1 (with some hardwired tolerance) and then
by setting σk+1, . . . , σn to zero. But what if there is no such a clean cut, or if we have
the devil’s stairs (see [61])

σ1 ≥ · · · ≥ σk1 À σk1+1 ≥ · · · ≥ σk2 À σk2+1 ≥ · · · ≥ σk3 À σk3+1 ≥ · · · À σn,

with σkj+1/σkj
≈ O(ε). What if we have good (statistical or other) reasons to change

the variables in the least squares problems by diagonal scaling z = Dx, thus replacing
A with AD−1 – the distribution of singular values changes dramatically? What if the
application dictates minimization ‖W (Ax− b)‖ → min with given diagonal matrix W
of violently varying weights?

What if the decision how many singular values are needed is based on several cri-
teria derived from the application? An important example where the numerical rank
issue is rather tricky is numerical solution of integral equations, where compactness
is synonym for ill–conditioning.

Example 2.1. Consider the Fredholm integral equation of the first kind, y(ξ) =∫ b

a
K(ξ, ζ)x(ζ)dζ. Here y denotes measured unknown function x distorted by the instru-

ment with known kernel K(·, ·). Using sufficiently accurate quadrature, one obtains
linear regression model y = KDx+e, x ∈ Rn, y, e ∈ Rm, with vector e dominated by
statistically independent measurement errors from N (0, S2), where positive definite
S = diag(si)n

i=1 carries standard deviations of the ei’s. A good estimate of S is usually
available. The weights of the quadrature formula are in the diagonal matrix D. (See
Example 2.2.) Wanted is an estimate x̃ of x. To normalize the error variances, the
model is scaled with S−1 to get b = Ax+e′, where b = S−1y, A = S−1KD, e′ = S−1e.
Since e′ ∼ N (0, Im), the squared residual ‖b−Ax‖2 is from the chi–squared distribu-
tion with m degrees of freedom. Thus, the expected value of the squared residual is
m with standard deviation

√
2m. If A = UΣV T is the SVD of A, and if we use rank k

approximation of A to define x̃ = A†kb, then the residual is r̃2 =
∑m

i=k+1(U
T b)2i . Since

the implicit assumption in linear regression is that A is accurate and b is contami-
nated, it does not seem right that information from A is thrown away independent
of anything we might know about b. According to [32], [43] the index k should be
chosen so that r̃2 < m, that ‖x̃‖ is not too big, and that the kept singular values are
not too small. Further, from UT b = ΣV T x + UT e′, with UT e′ ∼ N (0, Im), Rust [55]
concludes that it would be sensible to compute the solution as x̃ = V Σ†(UT b)trunc,
where the truncation is done in the vector (UT b)trunc following statistical reasoning.

It is also very often forgotten that matrix entries represent (sometimes different)
physical quantities represented in some unit system and that high condition number is
simply a consequence of chosen units and not of inherent near rank deficiency. Another
tricky point is that under certain classes of perturbations the smallest singular values
tend to change with a considerable upward bias, see [60]. We must realize that there
cannot be a single black box threshold mechanism for performing the cutoff. So,
strictly speaking, even if we are going to discard the smallest singular values, in
some applications we first have to determine them sufficiently accurately. This may
not always be easy, but we must have the distinction between well determined (as

7



functions of the matrix in the presence of perturbations) and accurately computed (by
an algorithm, with certain backward error).

Of course, in many important applications the smallest singular values are really
only the noise excited by the uncertainty in the data and computing them to high
relative accuracy is meaningless and illusory. In such cases the Jacobi SVD algorithm
has no advantage with respect to accuracy. But, given the adaptivity of the Jacobi
algorithm to modern serial and parallel computing machinery, it is exciting and chal-
lenging task to improve the efficiency of the algorithm to make it competitive with
bidiagonalization based algorithms in terms of speed and memory usage, even if the
high relative accuracy of the smallest values is not an issue. In other words, the goal
is to make accurate and fast implementation of the Jacobi SVD algorithm capable of
running in two modes of accuracy – the standard absolute and high relative accuracy.

2.1. Basic floating point error analysis. It is rather surprising how little of
floating point error analysis is needed to prove high relative accuracy of the Jacobi
SVD algorithm. Here we give few basic facts which we need to start the discussion
and analysis. We use standard model of floating point arithmetic with the roundoff
unit ε and assume no underflow nor overflow exceptions. (See [37, Chapters 2, 3]
for the basics.) We write computed(expression) to denote the computed value of
the expression, where the computer implementation of the algorithm evaluating the
expression is clear from the context. It is always assumed that ε < 10−7 and that
maximal dimension of matrices in the computation is at most 0.01/ε. More compli-
cated details of error analysis and perturbation theory will be introduced in parallel
with the development of the new algorithm in §5. We start with the following three
facts of floating point computations with orthogonal matrices.

Fact 1. If numerically orthogonal matrix Q̃ (‖Q̃T Q̃ − I‖ ¿ 1) is applied to an
m×1 vector x in floating point arithmetic, then computed(Q̃x) = Q̂(x+δx), where Q̂
is orthogonal matrix, close to Q̃, and ‖δx‖ ≤ ε‖x‖, ε ≤ f(k)ε. Here k is the number
of coordinate directions changed under the action of Q̃ (i.e. Q̃ acts as identity on the
remaining m− k coordinates), and f(k) is low order polynomial. If Q̃ is approximate
plane rotation, then ε ≤ 6ε. In the case of k × k Householder reflection, ε ≤ O(k)ε.

Fact 2. (This elegant observation is due to Gentleman [25].) If (numerically
orthogonal) transformations Q̃1, . . . , Q̃p are applied to disjoint parts of an vector x,

x 7→ y = (Q̃1 ⊕ · · · ⊕ Q̃p)x, x =




x(1)

...
x(p)


, computed(Q̃ix

(i)) = Q̂i(x(i) + δx(i)), then

ỹ ≡ computed(y) = (Q̂1 ⊕ · · · ⊕ Q̂p)(x + δx),
‖δx‖
‖x‖ ≤ max

i=1:p

‖δx(i)‖
‖x(i)‖ . (

0
0
≡ 0)

Fact 3. If Q̃1, . . . , Q̃r are numerically orthogonal transformations, and if we need
to compute y = Q̃r · · · Q̃1x, then the computed approximation ỹ satisfies

ỹ = Q̂r · · · Q̂1(x + δx), ‖δx‖ ≤ ((1 + ε)r − 1) ‖x‖,

where ε is maximal relative backward error in application of any of Q̃1, . . . , Q̃r, and
Q̂i is orthogonal matrix close to Q̃i.

Using the above, the proofs of the following two propositions are straightforward.

Proposition 2.2. Let the Givens or Householder QR factorization A = Q

(
R
0

)

of A ∈ Rm×n, m ≥ n, be computed in the IEEE floating point arithmetic with rounding
relative error ε < 10−7. Let the computed approximations of Q and R be Q̃ and R̃,

8



respectively. Then there exist an orthogonal matrix Q̂ and a backward perturbation

δA such that A + δA = Q̂

(
R̃
0

)
, where ‖Q̃(:, i) − Q̂(:, i)‖F ≤ εqr and ‖δA(:, i)‖ ≤

εqr‖A(:, i)‖, 1 ≤ i ≤ n, hold with
i) εqr ≤ O(mn)ε for the Householder QR factorization ;
ii) εqr ≤ (1 + 6ε)p − 1 for the Givens factorization. Here p is related to certain

parallel ordering of Givens rotations, i.e. the maximal number of commuting rotations.
For the usual column–wise ordering of Givens rotations we have p = m + n− 3.

Proposition 2.3. Let the cyclic one-sided Jacobi algorithm with row or column
cyclic pivot strategy be applied to an m×n matrix X in floating point arithmetic with
roundoff ε, and let the iterations stop at the matrix X̃(k) during the s-th sweep. Then
there exist an orthogonal matrix V̂ and a backward error δX such that:

X̃(k) = (X + δX)V̂ , where for all i = 1, . . . , n(2.6)
‖δX(i, :)‖ ≤ εJ‖X(i, :)‖, εJ ≤ (1 + 6ε)s` − 1, ` = 2n− 3.(2.7)

Remark 2.1. Note that the relative norm–wise backward error is small in each
row of X. The size of the error is at most O(snε), despite the fact that the algorithm
applies n(n−1)/2 rotations per sweep. Moreover, the result of the proposition remains
true if plane rotations are replaced with any other type of orthogonal transformations
such as block–rotations or Householder reflections. The only change is that we use
corresponding value of ε from Fact 1 and change the factor s` using Fact 2.

2.2. Condition number. Scaling. Preserving information contained in all
columns is certainly necessary for computing the singular values to high relative ac-
curacy. It also influences which condition number will determine the forward error.

As we already discussed, it is very often that the matrix is composed as A = BD,
D = diag(di)n

i=1, and the uncertainty is A + δA = (B + δB)D. In such a case,
δAA† = δBB† and D, however ill–conditioned it might be, does not influence the
forward perturbation of the singular values. It is then desirable that floating point
computation respects that fact.

Example 2.2. Integral equation y(ξ) =
∫ b

a
K(ξ, ζ)x(ζ)dζ will once more provide

good illustration. If the equation is discretized at ξ1 < · · · < ξm, and the integral is
computed using quadrature rule with the nodes ζ1 < · · · < ζn and weights d1, . . . , dn,

then y(ξi) =
n∑

j=1

djK(ξi, ζj)x(ζj) + ei, ei = error, i = 1, . . . , m. Set y = (y(ξi))m
i=1,

K = (K(ξi, ζj)) ∈ Rm×n. An approximation x = (xj)n
j=1 of (x(ζj))n

j=1 is obtained
by ignoring the ei’s and solving ‖KDx − y‖ → min. Thus, independence of column
scaling means that the weights cannot spoil the solution of the algebraic problem.
This is important because the weights must cope e.g. with the problems of singular
integrals and in this way we have complete freedom in choosing appropriate numerical
integration formulae. Perturbation of K is separated from D, A+ δA = (K + δK)D.

So, for instance, after we compute the QR factorization of an m× n full column
rank matrix A we can conclude that the backward perturbation δA (see Proposition
2.2) satisfies ‖δAA†‖ = ‖(δAD−1)(AD−1)†‖ ≤ ‖δAD−1‖‖(AD−1)†‖ ≤ √

nεqr‖A†c‖,
where D = diag(‖A(:, i)‖)n

i=1 and Ac = AD−1.
Corollary 2.4. Let A and R̃ be as in Proposition 2.2. If σ1 ≥ · · · ≥ σn and

9



σ̃1 ≥ · · · ≥ σ̃n are the singular values of A and R̃, respectively, then

max
i=1:n

|σ̃i − σi|
σi

≤ √
nεqr‖A†c‖ ≤ nεqr min

S=diag
det(S)6=0

κ(AS).

Here we used the fact that the spectral condition number κ(A) = ‖A‖‖A†‖ of A is
at most

√
n times larger than the minimal condition number of all matrices AS with

diagonal nonsingular S. (See [64].) Conclusion from this is: If A is such that κ(AS) is
moderate for some diagonal matrix S, then floating point QR factorization preserves
all singular values, they are safely passed to the computed triangular factor R̃.

Corollary 2.5. Let A and R̃ be as in Proposition 2.2, and let X = R̃T in
Proposition 2.3. If σ̃′1 ≥ · · · ≥ σ̃′n are the singular values of X̃(k), then

max
i=1:n

|σ̃′i − σ̃i|
σ̃i

≤ √
nεJ‖R̃−1

c ‖ ≤ √
nεJ

‖A†c‖
1−√nεqr‖A†c‖

.

Conclusion from this corollary is: Jacobi rotations in the column space of R̃T intro-
duce perturbation of the singular values not larger than the initial uncertainty in the
singular values of R̃, caused by the QR factorization of A.

Remark 2.2. The matrix X̃(k) from Proposition 2.3 should be of the form ŨxΣ̃,
where Ũx is numerically orthogonal and Σ̃ is diagonal matrix of the column norms of
X̃(k). This immediately suggests that the index k should be chosen so that

max
i 6=j

∣∣∣(X̃(k)(:, j))T X̃(k)(:, i)
∣∣∣

‖X̃(k)(:, i)‖‖X̃(k)(:, j)‖ ≤ tol,(2.8)

where the tolerance tol is usually taken as mε. This guarantees that the computed
matrix Ũx is numerically orthogonal and that the column norms of X̃(k) approximate
its singular values to high relative accuracy. If the singular vectors of X are not
needed, then we can use perturbation theory to loosen stopping criterion.

3. Preconditioned Jacobi SVD algorithm. In case of m À n, the QR factor-

ization of A, A = Q

(
R
0

)
, reduces the computational complexity of all classical SVD

methods. For instance, the R–bidiagonalization algorithm of Chan [7] first computes
the matrix R, then it bidiagonalizes R and easily assembles the bidiagonalization of
A. This reduces the cost of bidiagonalization whenever m ≥ 5n/3.

Bidiagonalization based SVD algorithms reduce A (or R) to bidiagonal form in
4mn2 − 4n3/3 flops (without accumulation of orthogonal transformations). Recent
implementation [38] of the bidiagonalization substantially reduces the data transfer
between main memory and cache, reaching the BLAS 2.5 level. Thus, iterative part
of those algorithms runs on a bidiagonal matrix, and completes by assembling (multi-
plying) the orthogonal matrices from the QR factorization (for R–bidiagonalization),
bidiagonalization and from the bidiagonal SVD. This last stage is also cache efficient.
If we add the fact that the full SVD of bidiagonal matrix can be computed very effi-
ciently as described by Dhillon and Parlett [14], Großer and Lang [30], the picture is
complete. Efficient preprocessing reduces the problem to the one with super fast and
ingenious solution, and efficient postprocessing assembles all elements of the SVD.

On the other hand, the Jacobi SVD algorithm transforms full m × n matrix. It
is clear that in the case m À n, the QR factorization is an attractive preprocessor

10



for the Jacobi SVD algorithm as well. For, the most expensive iterative part of the
Jacobi SVD algorithm transforms n–dimensional vectors (columns of R) instead of m–
dimensional ones (columns of A). Recall, to compute the upper triangular factor R,
Householder QR algorithm requires 2mn2−2n3/3 flops. One sweep of the Jacobi SVD
algorithm with fast rotations requires 3mn2 flops for a m×n matrix if the rotations are
not accumulated. Thus, if only the singular values are needed, the QR factorization
as preprocessor is paid off (in terms of flops) in one full sweep if m > 7n/3, and it
will be paid off in two sweeps if m > 4n/3. Further, efficient implementation of the
QR factorization uses the memory hierarchy of modern computer architectures (such
as the xGEQRF procedure in LAPACK [1]), by using machine optimized BLAS 3
operations. It is obviously justified to explore the QR factorization as a preprocessor
for the Jacobi iterations.

3.1. QR factorization as preconditioner. Using the QR factorization as effi-
cient preprocessor for the Jacobi SVD routine is more subtle for several reasons. First,
the matrix R is not only smaller than A (in case m > n), but it is also triangular
which allows additional savings. For instance, if we partition R as

R =
(

R[11] R[12]

0 R[22]

)
,(3.1)

where R[11] is k×k, k = bn/2c, then during the first sweep k(k−1)/2 rotations of the
columns of R[11] can be performed in a canonical k–dimensional subspace – before the
eventual fill–in. We exploit this in combination with certain pivot strategies in [?].

Further, since the Jacobi algorithm iterates on full matrices, we are interested not
only in preprocessing (in the sense of dimension reduction as described above), but
also in preconditioning in the sense of inducing faster convergence. This opens the
question of using QR factorization(s) to precondition the initial matrix A.

Since our goal is high relative accuracy, we should not and will not trade accu-
racy for any speedup. Therefore, the preconditioner should not violate the principles
outlined in §2. Moreover, we can go further and ask is it possible to achieve faster
convergence, and get high relative accuracy in larger class of matrices?

But there is more. Let R = URΣV T
R be the SVD of R, where VR is the (infinite)

product of Jacobi rotations, and let both sets of singular vectors be required. If R
is nonsingular, then VR = R−1URΣ. It is tempting to implement Jacobi algorithm
without accumulation of Jacobi rotations and to compute VR from triangular matrix
equation using BLAS 3 operation STRSM. To illustrate the temptation, recall that
one fast rotation of two n× 1 vectors has 4n flops, one sweep of n(n− 1)/2 rotations
has 2n3 − 2n2 BLAS 1 flops, while STRSM has n3 BLAS 3 flops. Of course, the
crucial question is how to ensure that the equation defining VR is well–conditioned.

How can the QR factorization serve as a preconditioner for better, faster, conver-
gence of the Jacobi algorithm? This is achieved if the factorization is computed with
column pivoting of Businger and Golub [6],

AP = Q

(
R
0

)
, P permutation such that |Rii| ≥

j∑

k=i

R2
kj , 1 ≤ i < j ≤ n.(3.2)

Now, note that SVD of R is implicit diagonalization of the matrix RT R, and apply
one step of the Rutishauser LR diagonalization method RT R −→ RRT , which has a
nontrivial diagonalizing effect. This means that RRT is closer to diagonal form than

11



RT R, see [57]. Note that
(

RRT 0
0 0

)
= QT (AAT )Q, while RT R = PT (AT A)P .

These two orthogonal similarities are substantially different.
If we translate this in terms of the Jacobi algorithm, we conclude that the one–

sided Jacobi SVD on RT should have better convergence than applied to R. Thus,
the preconditioning step is performed simply by taking RT instead of R as input to
the one–sided procedure.

A nonexpert may wonder how simply transposing a matrix can make big difference
in a diagonalization process. There are several ways to simply feel when and why it
has to be so. Instead of being rigorous, we offer an informal discussion:

Observation 1. Let a nonsingular upper triangular R be with some k ∈
{1, . . . , n} partitioned as in (3.1) and let H = RT R, M = RRT be partitioned in
conformal way with k×k and (n−k)× (n−k) diagonal blocks H[11], H[22] and M[11],
M[22], respectively. Thus

H =
(

H[11] H[12]

H[21] H[22]

)
=

(
RT

[11]R[11] RT
[11]R[12]

RT
[12]R[11] RT

[12]R[12] + RT
[22]R[22]

)
,

M =
(

M[11] M[12]

M[21] M[22]

)
=

(
R[11]R

T
[11] + R[12]R

T
[12] R[12]R

T
[22]

R[22]R
T
[12] R[22]R

T
[22]

)
.(3.3)

Since all matrices of interest are positive definite, we use the trace norm and conclude
that the (1, 1) block is increased and the (2, 2) block is decreased, i.e.

Trace(M[11]) = Trace(H[11]) + ‖Y ‖2F , Trace(M[22]) = Trace(H[22])− ‖Y ‖2F .

This redistribution of the mass of the diagonal blocks makes the gap between the
dominant and subdominant part of the spectrum more visible on the diagonal. In fact,
using the monotonicity property, we also conclude that properly ordered eigenvalues
of the diagonal blocks satisfy λi(M[11]) ≥ λi(H[11]), λj(M[22]) ≤ λj(H[22]), 1 ≤ i ≤ k,
1 ≤ j ≤ n− k. (Similar argumentation is used by Fernando and Parlett [22], Mathias
and Stewart [47].) Moreover,

‖M[21]‖F = ‖R[22]R
T
[12]‖F ≤ (‖R[22]‖‖R−1

[11]‖)‖RT
[12]R[11]‖F =

σmax(R[22])
σmin(R[11])

‖H[21]‖F .

Let ζ = σmax(R[22])/σmin(R[11]). If ζ < 1, then ‖M[21]‖F ≤ ζ‖H[21]‖F < ‖H[21]‖F .
Thus, smaller value of ζ implies more block diagonal structure in M than in H. Now,
it is the task of the rank revealing pivoting in the QR factorization to find index k
for which ζ ¿ 1. If the pivoting is done right, and if the singular values of R are
distributed so that σk À σk+1 for some k, then ζ will be much smaller than one. See
eg [8] for detailed analysis. If we compute the LQ factorization of R,

(
R[11] R[12]

0 R[22]

)
=

(
L[11] 0
L[21] L[22]

)
QL = LQL,(3.4)

then, by comparison, L[21] = R[22]R
T
[12]L

−T
[11]. Thus

‖L[21]‖F ≤ σmax(R[22])
σmin(L[11])

‖R[12]‖F ≤ σmax(R[22])
σmin(R[11])

‖R[12]‖F .(3.5)

12



Further, noting that M = LLT and defining M (1) = LT L we immediately obtain

‖M (1)
[21]‖F ≤ σmax(L[22])

σmin(L[11])
σmax(R[22])
σmin(R[11])

‖H21‖F .(3.6)

Now it is clear that the Jacobi algorithm should run faster on M (1) than on H. Note
that Jacobi computation on M (1) (implicitly by the one–sided transformations of L)
does not depend on the gaps in the spectrum in the way the QR iterations do.

Observation 2. The next argument is related to the fact that in many natural
senses the left singular vectors of upper triangular matrix behave better than the
right singular vectors. This observation is due to Chandrasekaran and Ipsen [9] –
the left singular vectors are more canonical than the right ones. We repeat their
argumentation. Let the SVD of block–partitioned R be

R =
(

R[11] R[12]

0 R[22]

)
=

(
U[11] U[12]

U[21] U[22]

)(
Σ1 0
0 Σ2

)(
V[11] V[12]

V[21] V[22]

)T

,(3.7)

where the diagonal blocks are k× k and (n− k)× (n− k). We compare the canonical
angles between the subspace of left singular vectors belonging to the singular values in
Σ1 and the subspace of the first k columns of the identity matrix. The mutual position

between this two subspaces (Span(
(

U[11]

U[21]

)
) and Span(

(
Ik

0

)
)) is determined by the

minimal singular value σmin(UT
[11]Ik) = σmin(U[11]) = σmin(cos Θu), where Θu is the

matrix of canonical angles. Thus, ‖ sin Θu‖ =
√

1− σ2
min(U[11]). If R is nonsingular

and if one of U[11] or V[11] is also nonsingular, then U−1
[22]U[21] = −Σ2V

T
[12]V

−T
[11] Σ

−1
1 .

From the CS decomposition of U , we conclude ‖U−1
[22]U[21]‖ = ‖U−1

[11]U[12]‖ = ‖ tanΘu‖.
If Θv is defined analogously by using the columns of V , then we finally have

‖U−1
[22]U[21]‖ ≤

σk+1

σk
‖V −1

[11]V[12]‖ ⇐⇒ ‖ tanΘu‖ ≤ σk+1

σk
‖ tanΘv‖.(3.8)

Observation 3. This observation is believed to be new. We invoke the theory
of symmetric quasi–definite matrices. Let M = RRT be as in (3.3) and let there exist
a gap, λmin(M[11]) > λmax(M[22]). Take ξ = 0.5 · (λmin(M[11]) + λmax(M[22])) and
note that the shifted matrix M − ξI is quasi–definite (M[11] − ξI, ξI −M[22] positive
definite). Since the eigenvectors are shift–invariant, the structure of the matrix U
in (3.7) is that of the eigenvector matrix of quasi–definite matrices. Using [26], we
have that in the Löwner partial order UT

[11]U[11] Â UT
[21]U[21] and UT

[11]U[11] Â 0.5Ik,
provided that Σ1 and Σ2 in (3.7) remain separated by

√
ξ. Thus, if we apply Jacobi

rotations to M (one–sided rotations from the right on RT ) then the product of Jacobi
rotations has the structure of the matrix U , which is valuable information. In the
following example we illustrate the above phenomena.

Example 3.1. We generate n×n pseudo–random matrix with entries uniformly
distributed over [0, 1], scale its columns with diagonal matrix diag(i3)n

i=1, and then

permute the columns randomly. Then we compute 1. AP = Q

(
R
0

)
; 2. RT = Q1R1;

3. RT P1 = Q2R2. Figure 3.1 shows, with n = 50, the entry–wise absolute off–
diagonal values of the scaled Gram matrices of Rc and RT

r (that is, |RT
c Rc|, |RrR

T
r |)

respectively. Here Rc (Rr) is obtained from R by scaling the columns (rows) to
13



0

10

20

30

40

50

0

20

40

60

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Initial matrix

0

10

20

30

40

50

0

20

40

60

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

After first QR factorization (with pivoting)

Fig. 3.1. The structure of the off–diagonals of the scaled Gram matrices. After the first QR
factorization, the largest off–diagonal entries are located close to the diagonal. The initial matrix is
50× 50.

0

10

20

30

40

50

0

20

40

60

0

0.1

0.2

0.3

0.4

0.5

After second QR factorization (no pivoting)

0

10

20

30

40

50

0

20

40

60

0

0.1

0.2

0.3

0.4

0.5

After second QR factorization (with pivoting)

Fig. 3.2. Second QR factorization. Note that column pivoting brings no substantial difference
in the structure of the Gram matrix.

make them unit in Euclidean norm. Figure 3.2 shows the effect of the second QR
factorization, both with and without column pivoting. Pivoting tremendously slows
down BLAS 3 implementation of the QR factorization because it precludes efficient use
of memory hierarchy. Figure 3.2 indicates that pivoting in the second QR factorization
does not contribute enough to pay off the extra cost. In this example, κ(R) ≈ 9.3 ·106,

14



κ(Rc) ≈ 1.04 · 103, κ(Rr) ≈ 5.75, κ((R1)r) ≈ 1.96, κ((R2)r) ≈ 1.95. In fact, closer
look at the permutation matrix P1 shows that pivoting is local – usually only close
neighbors are permuted.

This elegant preconditioning of the Jacobi algorithm was first used by Veselić and
Hari [66]. (In the case of symmetric positive definite matrices, Cholesky factorization
with pivoting corresponds to the QR factorization with column pivoting.)

It should also be noted that replacing AT A with PT (AT A)P , thus incorporating
pivoting in the classical cyclic strategies, has nontrivial consequences on the speed
of convergence. It is known that simply sorting the columns of A in non–increasing
order (in Euclidean norm) improves the convergence. The best elaborated pivoting is
the one by de Rijk [11] and we use it in the row–cyclic strategy. Note however that
the matrices PT (AT A)P and AT A have the same departure from diagonal form.

The following proposition shows how the pivoting (3.2) influences the condition
number of the row–scaled matrix R.

Proposition 3.1. Let R be a nonsingular upper triangular matrix and let (3.2)
hold. Let R = ∆RRr, where ∆R is the diagonal matrix of the Euclidean lengths of
the rows of R, and let R = RcDR, DR = diag(‖R(:, i)‖2). Then

‖ |Rr
−1| ‖2 ≤

√
n + max

i<j

(∆R)jj

(DR)ii
· ‖ |Rc

−1 −Diag(Rc
−1)| ‖2

≤ √
n (1 + max

i<j

|Rjj |
|Rii| · ‖ |Rc

−1 −Diag(Rc
−1)| ‖2),(3.9)

‖ |Rr
−1| ‖2 ≤

√
n‖ |Rc

−1| ‖2,(3.10)

where the matrix absolute value is defined element–wise. Moreover, ‖R−1
r ‖ is bounded

by a function of n, independent of A.
Proof. Note that Rr = ∆−1

R RcDR. Taking the inverse of Rr we have

|(R−1
r )ij | = |D−1

R R−1
c ∆R|ij =

(∆R)jj

(DR)ii
|R−1

c |ij ≤
√

n− j + 1
|Rjj |
|Rii| |R

−1
c |ij(3.11)

for all 1 ≤ i < j ≤ n, and |(R−1
r )ii| ≤

√
n− i + 1, 1 ≤ i ≤ n. Now, using the

monotonicity of the spectral norm we easily get (3.9) and (3.10).
Note that this proof does not fully use the property (3.2), but only the diagonal

dominance and the non–increasing order of the |Rii|’s.
Example 3.2. To illustrate the behavior of the condition number ‖R−1

r ‖, we use
the following experiment. We use multidirectional and Nelder–Mead simplex methods
from the N. Higham’s MATLAB toolbox [36], and try to maximize ‖R−1

r ‖. After many
thousands of iterations of the two methods, starting with a random 50 × 50 matrix
the largest value of ‖R−1

r ‖ was about 22.064. After using the MATLAB function qr()
with pivoting again (ie computing RT P1 = Q2R2, where R is the worst case found in
the previous search), the new R := R2 had the value of ‖R−1

r ‖ about 2.0258.
Remark 3.1. It is known that repeated application of the step ”do QR factor-

ization and transpose R” is actually an efficient way to approximate some elements
of the SVD, see [47], [23], and [61].

The price for the improved convergence of the preconditioned Jacobi algorithm is
the cost of the preconditioner. The good news for the future of our new Jacobi SVD
algorithm is that the prices of new and improved preconditioners are going down.
It should be stressed here that the improvement of the pivoted, rank revealing, QR

15



factorizations is fascinating. This great development is due to Bishof, G. Quintana–
Ort́ı and E. S. Quintana–Ort́ı [52], [51], Chandrasekaran and Ipsen [8], Pan and Tang
[49]. The main features are BLAS 3 version of the pivoted QR factorization of Businger
and Golub, and windowed pivoting with postprocessing on triangular matrices. In
the future we can expect that efficient implementation of the rank revealing QR
factorization with more sophisticated column pivoting will be available.

Our implementation of the Jacobi SVD algorithm will benefit from any improve-
ment of rank revealing QR factorization. But it is also our hope that the new devel-
opment in the Jacobi SVD algorithm will strongly motivate such development.

Remark 3.2. Our understanding of the rank revealing property of the QR
factorization is somewhat different from the classical one. In the spirit of [8] we can
state it as the following optimization problem: If upper triangular factor in the column
pivoted QR factorization is written as R = DY with diagonal D (D = diag(|Rii|)n

i=1

or D = diag(‖R(i, :)‖)n
i=1, Dii ≥ Di+1,i+1) then determine the pivoting to minimize

κ(Y ) = ‖Y −1‖‖Y ‖. Minimizing κ(Y ) certainly leads to rank revealing since the
singular values σ1 ≥ · · · ≥ σn of R satisfy

max
i=1:n

|σi −Dii|√
σiDii

≤ ‖Y −1 − Y T ‖.

Minimizing κ(Y ) pushes Y toward orthogonality, D reveals the distribution of the
singular values of R and the Jacobi SVD algorithm on RT = Y T D will converge
swiftly. Since the choice of D and the diagonal dominance ensure that ‖Y ‖ is bounded
by O(n), the problem actually reduces to minimizing ‖Y −1‖. For instance, pivoting
of Gu and Eisenstat [31] has theoretical bound for ‖Y −1‖ which is comparable to the
Wilkinson’s pivot growth factor O(n

1
4 log2 n) in Gaussian eliminations with complete

pivoting. Note that this bound is function of the dimension and it holds for any
initial matrix. (In fact this holds even if A is singular. Then the matrix R is upper
trapezoidal and Y −1 is replaced with Y †.) The bound in the case of the Businger–
Golub pivoting is exponential in n and it is almost attainable on an pathological
matrix, but in practice ‖Y −1‖ is typically bounded by O(n).

Remark 3.3. If m À n, then the cost of the QR factorization dominates the
overall complexity of the SVD computation. Since the pivoting can slow–down the
QR factorization with a considerable factor, it is reasonable that in the case m À n
the computation starts with the QR factorization without pivoting just to reduce the
dimension. For example, in computing electronic states of a semiconductor nanocrys-
tal, one uses the SVD to determine good orthonormal basis for certain subspace, see
e.g. [63]. The typical dimension of the matrix is several millions rows by several hun-
dreds or several thousands of columns (m > 500n). In that case, an out–of–core QR
factorization without pivoting reduces the dimension so that the SVD computation
is done in–core. On a single processor machine this initial QR factorization can take
more than one day to complete. To mimic the effects of pivoting, we can do initial

sorting of the columns and rows, that is we compute SrASc = 〈Q〉
(

R
0

)
. Permuta-

tion matrix Sr sorts the rows in decreasing `∞ norms, while Sc sorts the columns in
decreasing Euclidean norms. The initial sorting A 7→ SrASc is not very important
from the numerical point of view if A is composed as A = BD with well–conditioned
B and arbitrary diagonal D. So, if A is large and sparse with m À n, then the
permutations Sr and Sc can be used to exploit sparsity, reduce fill–in and, at lowest
priority, to act as preconditioner. If A = D1BD2 with well–conditioned B and diag-

16



onal weighting matrices D1, D2, then the numerical stability of the QR factorization
depends on pivoting, see [10], [18].

Remark 3.4. In large sparse computation one can equip sparse multi-frontal
QR factorization with an ICE device (incremental condition estimator) thus obtaining
rank revealing property, see [50]. Such factorization can be useful preconditioner for
positive definite eigenvalue problems Kx = λx where the n × n (stiffness) matrix K
is given by m× n natural factor A (K = AT A) which is sparse and with m À n.

Remark 3.5. Fernando and Parlett [22] were first to realize that ” the use of a
preconditioner for cyclic Jacobi is not a futile effort.” Here we stress the use of the
term preconditioner and explicit use of their implicit Cholesky SVD as preconditioner
for Jacobi iterations. However, they concluded the discussion by putting more faith
in the preconditioner than in Jacobi SVD: ” Once we have taken the fateful step
of conteplating a preconditioner for a Jacobi process we are lead inexorably to the
message of this paper. Why not use the implicit Cholesky algorithm with shifts as a
preconditioner? There is no loss of accuracy. The next question is: if the shifts are
well chosen why switch to Jacobi? Time will tell.”

One of the results of this paper is that switching to the Jacobi SVD algorithm
can be a good idea, provided the algorithm is modified to fully exploit the work that
can be done by various preconditioners.

4. Simple question: A or AT ?. The title question may sound trivial, for the
SVD of AT is trivial to obtain from the SVD of A and vice versa. If A is m× n with
m > n (and especially m À n) then we (clearly) prefer starting the computation with
the QR factorization of A. If m < n, then we choose to start with AT . But, what if A
is square nonsingular n×n matrix. Consider an extreme situation: A = DQ where D
is diagonal and Q is orthogonal. In that case working with A is implicit diagonalization
of QT D2Q, while taking AT implicitly diagonalizes diagonal matrix D2. We want to
know which of the matrices AT A and AAT is ’closer to the diagonality’, or which
one is better input to the pivoted QR factorization preconditioner. (This of course is
useful if A is not normal.) Thus we would submit either the matrix A or its transpose
to our new Jacobi SVD algorithm and obtain an improvement in efficiency.

Due to computational constraints we are allowed to make a decision in at most
O(n2) flops. This complexity corresponds to computing the diagonal entries of H =
AT A and M = AAT . As we will se shortly, this poses interesting and challenging
mathematical questions. We believe that in the design of an ultimate SVD algorithm
details like this one should be considered. Of course, we cannot expect that low
complexity computation with limited information yields correct decision in all cases.
In this section we give only a few ideas on how to quickly decide between A and AT .
Additional details are given in [20].

To start, we note that H and M are orthogonally similar, and therefore ‖H‖F =
‖M‖F . Then simply compute the values s(H) =

∑n
i=1 h2

ii = Trace(H ◦H), s(M) =
Trace(M ◦M). (Here ◦ denotes the Hadamard matrix product.) Larger value (s(H) or
s(M)) implies smaller corresponding off–norm off(H) =

∑

i 6=j

h2
ij or off(M) =

∑

i 6=j

m2
ij .

In fact, s(·) attains its maximum over the set of matrices orthogonally similar to H
only at diagonal matrices. In the standard symmetric Jacobi algorithm the value of
off(H)
‖H‖2F

= 1− Trace(H◦H)
Trace(HH) = 1− s(H)

‖H‖2F
is used to measure numerical convergence. Hence,

s(·) is one one possible choice of function for simple decision between A and AT , but
with respect to the standard matrix off–norm. Note, however, that s(·) in floating
point computation with round–off ε completely ignores diagonal entries below

√
ε

17



times the maximal diagonal entry.
On the other hand, better choice (of AT A or AAT ) will have smaller off–diagonal

part and the diagonals should reveal the spectrum in the sense that their distribution
should mimic the distribution of the spectrum as much as possible. This desirable
spectrum revealing property implies that we prefer columns with less equilibrated
norms. Otherwise, the preconditioning is weaker and larger angles of Jacobi rotations
(causing slower convergence) are more likely to appear during the process.

4.1. Entropy of the diagonal of the adjoint orbit. Let us recall some in-
teresting relations between the diagonal entries of positive definite H and its eigen-

values. From the spectral decomposition H = UΛUT we have hii =
n∑

j=1

|uij |2λj ,

i = 1, . . . , n. If we define vectors d(H) = ( h11, . . . , hnn )T , λ(H) = ( λ1, . . . , λn )T ,
then the above relations can be written as d(H) = (U ◦ U)λ(H), where the matrix
S = U ◦ U is doubly–stochastic, in fact, ortho–stochastic. (If H is complex Hermi-
tian, then S = U ◦ U , where U is entry–wise complex conjugate of U .) This relation
equivalently states that d(H) is majorised by λ(H) (d(H) ≺ λ(H)) which is known
as the Schur theorem. If we use normalization by the trace of H 6= 0,

d(H)
Trace(H)

= S
λ(H)

Trace(H)
, and define d′(H) =

d(H)
Trace(H)

, λ′(H) =
λ(H)

Trace(H)
,(4.1)

then d′(H) and λ′(H) are two finite probability distributions connected via the doubly
stochastic matrix S. Thus, d′(H) has larger (Shannon) entropy than λ′(H). For a
probability distribution p = ( p1, . . . , pn )T (pi ≥ 0,

∑
i pi = 1) the entropy of p is

η(p) = − 1
log n

n∑

i=1

pi log pi ∈ [0, 1]. For any doubly stochastic matrix S it holds that

η(Sp) ≥ η(p) with the equality if and only if S is a permutation matrix. The entropy
is symmetric concave function on the compact and convex set of finite probability
distributions. It is maximal, η(p) = 1, if and only if pi = 1/n for all i. Also, η(p) = 0
if and only if the probability distribution for some k ∈ {1, . . . , n} degenerates to
pk = 1, pi = 0, i 6= k.

Define entropy of positive semi–definite H 6= 0 as η(H) ≡ η(d′(H)). Since η(H) =
0 implies H = hkkekeT

k for some canonical vector ek, η is strictly positive on the cone
of positive definite matrices. η(H) = 1 if and only if all diagonal entries of H are
equal. Note that η(H) is computed in time O(n).

Consider the real adjoint orbit O(H) =
{
WT HW : W orthogonal

}
. Note that

if H = AT A, then AAT ∈ O(H). Our hope is that the behavior of η on O(H) can
give some useful information in the context of analysis of the Jacobi algorithm.

Proposition 4.1. The entropy η always attains its maximum 1 on O(H). Fur-
ther, it holds η(O(H)) = {1} if and only if H is a scalar (H = scalar · I). If H has
s different eigenvalues with multiplicities n1, . . . , ns, then η attains its minimal value

on O(H) at each of
n!∏s

i=1 ni!
different diagonal matrices in O(H), and nowhere else.

Proof. Recall that there exists an orthogonal W such that WT HW has constant
diagonal. The remaining properties are more or less obvious. Note that the number
of minimal points represents the number of possible affiliations of n diagonal entries
with s different eigenvalues.

Example 4.1. We will give a small dimension example just to get more intuitive
understanding of the relation between the entropy and the spectral information along

18



the diagonal of the matrix. We take A to be the upper triangular factor from the
QR factorization of the 4 × 4 Hilbert matrix, and we set H = AT A. The condition
number of A is about 1.55 · 104 and the eigenvalues of H computed using MATLAB
as squares of the singular values of A have about 12 correct digits. If we compare
them with the diagonal elements of H we have

λ1 ≈ 2.250642886093672e + 000 h11 = 1.423611111111111e + 000
λ2 ≈ 2.860875237800109e− 002 h22 = 4.636111111111111e− 001
λ3 ≈ 4.540433118609211e− 005 h33 = 2.413888888888888e− 001
λ4 ≈ 9.351335603278711e− 009 h44 = 1.506859410430839e− 001.

If we compute M = AAT , then the diagonal elements are

m11 = 2.235511337868481e + 000 m22 = 4.365545837070163e− 002
m33 = 1.302206067717328e− 004 m44 = 3.530824094344483e− 008.

Of course, if we look only the diagonal entries of the matrix, we cannot say how
close is the diagonal to the spectrum. After all, the matrix can be diagonal, thus
with minimum entropy in its orbit, and we cannot detect that (since the minimum
entropy is not known in advance – we do not know the spectrum). But if we have two
orthogonally similar matrices, H and M , then we see huge difference between the two
diagonals. If we compute the entropies, η(H) ≈ 7.788e− 001 > η(M) ≈ 8.678e− 002.
Let us do one more thing. Let us compute the QR factorization AT = QR and define
K = RRT . The diagonal elements of K are

k11 = 2.250449270933330e + 000 k22 = 2.880226324126862e− 002
k33 = 4.550862529487731e− 005 k44 = 9.354301629002920e− 009

and the entropy is η(K) = 6.192193161288968e − 002. In this example the minimal
entropy is η(λ′(H)) ≈ 6.158440384796982e− 002.

Remark 4.1. Just looking at the vectors d(H) and d(M) in Example 4.1 and
knowing that they are diagonals of unitarily similar matrices is enough to tell that
d(H) cannot be the spectrum (not even its close approximation), and that one should
bet on d(M). For, if H is close to diagonal, then the condition number of H is
O(1), while the condition number of M is more than 108. In other words, orthogonal
similarity can hide the high spectral condition number of diagonal matrix (so that
is not seen on the diagonal of the similar matrix), but it cannot produce it starting
from nearly equilibrated almost diagonal matrix. In some sense, with respect to the
problem of guessing the spectrum, the diagonal of M has less uncertainty than the
diagonal of H.

Remark 4.2. Non–diagonal matrix H with (nearly) maximal entropy is not nice
also because of the fact that there is no substantial difference between the condition
numbers κ(H) and κ(Hs), where (Hs)ij = hij/

√
hiihjj . Let us only mention that

minimizing the entropy by orthogonal similarities also means minimizing the number
κ(Hs) toward 1. Increasing the entropy could mean introducing instability of the
spectrum with respect to floating–point perturbations. A way to explain this is to
note that larger entropy corresponds to more equilibrated diagonal, thus having the
scaled condition number closer to the ordinary condition number.

Remark 4.3. The fact that the entropy η(·) of the diagonal of H is larger than
the entropy of the vector of the eigenvalues holds for any symmetric concave function
in place of η(·). To see that, recall the relation d′(H) = Sλ′(H), where S is doubly–
stochastic. By Birkhoff theorem, S is from the convex hull of permutation matrices,

19



thus S =
∑

k Pk, where Pk’s are permutation matrices and αk’s are nonnegative with
sum one. Thus, d′(H) belongs to the convex polyhedral set spanned by permutations
of the vector λ′(H). Hence, a concave function on d′(H) cannot have smaller value
than is its minimal value on the vectors Pkλ′(H).

Example 4.2. Let us see how one single Jacobi rotation changes the entropy of
H. Without loss of generality, let the pivot position be (1, 2) and let

Ĥ =
(

h11 h12

h21 h22

)
=

(
a c
c b

)
, a ≥ b, c 6= 0, Ĵ =

(
cos φ sin φ
− sin φ cos φ

)
,

where in the Jacobi rotation sign(tanφ) = −sign(c). Then

ĴT ĤĴ =
(

a− c tan φ 0
0 b + c tan φ

)
=

(
a′ 0
0 b′

)
,(4.2)

(
a
b

)
=




a− b′

a′ − b′
−c tanφ

a′ − b′

−c tan φ

a′ − b′
a′ − b

a′ − b′




(
a′

b′

)
= Ŝ

(
a′

b′

)
.(4.3)

It is known that Jacobi rotation increases the larger diagonal element and decreases
the smaller one by the same amount, thus preserving the trace. Reading this fact
backward in time, we see that old diagonal entries (a, b) are result of averaging of
a′, b′ – a clear increase of entropy. One can easily check that the matrix Ŝ in (4.3)
is doubly stochastic. If we set J = Ĵ ⊕ In−2, S = Ŝ ⊕ In−2, H ′ = JT HJ , then
d(H) = Sd(H ′), which means η(H ′) < η(H). It is clear that the Jacobi rotation
gives maximal reduction of entropy among all 2 × 2 orthogonal similarities in given
coordinate planes on H. This generalizes to any k× k submatrix – the optimal k× k
orthogonal transformation is the diagonalizing one.

5. The algorithm. We now describe the structure of the Jacobi SVD algorithm
with QR factorization serving as preconditioner and preprocessor. At this point we do
not consider the details of the application of the one–sided Jacobi rotations. Instead,
we use it as a black box and give the details in [20]. On input to the black box we
have matrix X which is of full column rank, and the box computes X∞ = XV , where
X∞ = UΣ, X = UΣV T is the SVD of X, and V is the product of the Jacobi rotations.
If the box does not compute V , but only X∞, we simply write X∞ = X 〈V 〉. We keep
that notations in other situations as well. If in a relation some matrix is enclosed
in 〈·〉 then that matrix is not computed and no information about it is stored. For

example, A = 〈Q〉
(

R
0

)
would denote computing only R in the QR factorization

of A. We will try to design the algorithm so that we avoid accumulation of Jacobi
rotations whenever possible.

5.1. Computing only Σ. We first describe the algorithm for computing only
the singular values of A. In Algorithm 1 we use two QR factorizations with pivoting
and then apply the one–sided Jacobi SVD algorithm. We do not specify which rank–
revealing QR factorization is used – the rule is to use the best available.

Remark 5.1. The pivoting in the second QRF is optional, and P1 = I works
well. If efficient QR factorization with local pivoting is available, it can be used to
compute R1. If the columns of A are nearly orthogonal, the second QR factorization is
unnecessary. Such situation is easily detected by inspecting the matrix R, see [20].

20



Algorithm 1 σ = SV D(A)

(PrA)P = 〈Q〉
(

R
0

)
; ρ = rank(R) ;

R(1 : ρ, 1 : n)T P1 = 〈Q1〉R1 ; X = RT
1 ;

X∞ = X 〈Vx〉 ;
σi = ‖X∞(:, i)‖, i = 1, . . . , ρ ; σ = (σ1, . . . , σρ, 0, . . . , 0) .

Remark 5.2. Determining the numerical rank of the matrix A is rather tricky.
It depends on the structure of the initial uncertainty of the matrix A, on the required
level of accuracy, algorithm, details of application etc. If the application requires
high relative accuracy, then the QR factorization is not authorized to declare rank
deficiency, except in the case od exact zeroes at relevant positions in the computed
R. If the singular values are needed with the standard absolute error bound, then
the smallest singular values can be deflated with controlled perturbation. We discuss
these details in §6.5.

5.2. Computing Σ and V . If we need singular values and the right singular
vectors, direct application of right–handed Jacobi rotation to A or R requires the
accumulated product of rotation to construct the right singular vector matrix V . To
avoid explicit multiplication of Jacobi rotations in this case we use the following al-
gorithm: The beauty of the preconditioning R Ã RT in the case of Algorithm 2 is

Algorithm 2 (σ, V ) = SV D(A)

(PrA)P = 〈Q〉
(

R
0

)
; ρ = rank(R) ;

X = R(1 : ρ, 1 : n)T ;
X∞ = X 〈Vx〉 ;
σi = ‖X∞(:, i)‖, i = 1, . . . , ρ ; σ = (σ1, . . . , σρ, 0, . . . , 0) ;

Ux(:, i) =
1
σi

X∞(:, i), i = 1, . . . , ρ; V = PUx .

in the fact that the set of the right singular vectors is computed without accumulat-
ing Jacobi rotations, and at the same time fewer rotations are needed to reach the
numerical convergence. In some cases (e.g. ρ ¿ n) the second QR factorization is
advisable. Accumulation of rotations can be avoided using 5.4.2.

5.3. Computing Σ and U . If Σ and U are needed, then we need to think
harder. Clearly, if we apply the right handed Jacobi on X = A or X = R, then we
do not need the product of Jacobi rotations. The problem is that in case m À n the
rotations on A are too expensive, and that in both cases (A or R) the convergence
may be slow, much slower than in the case X = RT .

On the other hand, in some cases X = A is perfect choice. For instance, if
H is symmetric positive definite matrix and PT HP = AAT is its pivoted Cholesky
factorization with lower triangular matrix A, then AT has the same properties as
R from Proposition 3.1. Thus AV = UΣ will be efficient Jacobi SVD and since
H = (PU)Σ2(PU)T is the spectral decomposition of H, V is not needed.

To simplify the notation in in Algorithm 3 we define for a matrix M its property
τ(M) to be true if M is of full column rank and the right–handed Jacobi algorithm

21



applied to M converges quickly. For instance, if A is the Cholesky factor of positive
definite matrix, computed with pivoting, then τ(A) = true. If evaluation of τ(A)
would require more than O(mn) flops, or if we do not know how to judge A, then by
definition τ(A) = false.

Algorithm 3 (σ,U) = SV D(A)
if τ(A) then

X = A; X∞ = X 〈Vx〉 ;
σi = ‖X∞(:, i)‖, i = 1, . . . , n ; σ = (σ1, . . . , σn) ;

U(:, i) =
1
σi

X∞(:, i), i = 1, . . . , n ;

else

(PrA)P = Q

(
R
0

)
; ρ = rank(R) ;

if τ(R) then
X = R ; X∞ = X 〈Vx〉 ;
σi = ‖X∞(:, i)‖, i = 1, . . . , ρ ; σ = (σ1, . . . , σρ, 0, . . . , 0) ;

Ux(:, i) =
1
σi

X∞(:, i), i = 1, . . . , ρ; U = PT
r Q

(
Ux

0(m−ρ)×ρ

)
;

else
R(1 : ρ, 1 : n)T P1 = 〈Q1〉R1 ;
X = RT

1 ; X∞ = X 〈Vx〉 ;
σi = ‖X∞(:, i)‖, i = 1, . . . , ρ ; σ = (σ1, . . . , σρ, 0, . . . , 0) ;

Ux(:, i) =
1
σi

X∞(:, i), i = 1, . . . , ρ; U = PT
r Q

(
P1Ux

0(m−ρ)×ρ

)
;

end if
end if

In the case X = RT , we need the accumulated product of Jacobi rotations and
the cost of the product of only one sweep of rotations is 2nρ(ρ− 1) = 2nρ2− 2nρ. To
this we should also add the cost of heavier memory traffic and increased cache miss
probability because two square arrays are being transformed. All this is avoided by
an extra QR factorization. (Since we do not use Q1, R1 is computed in 2nρ2 − 2ρ3/3
flops on BLAS 3 level.) Clearly, if ρ ¿ n, the saving is much bigger.

5.4. Computation of U , Σ and V . In this section we are interested in effi-
cient implementation of the Jacobi SVD algorithm for computing the full SVD of a
real matrix. Classical implementation of the Jacobi SVD algorithm transforms two
matrices, one of them approaching the matrix of left singular vectors scaled by the
corresponding singular values, and the second one is the accumulated product of the
Jacobi rotations. On computer level, columns of two square arrays are repeatedly
moved from memory via cache to processor and BLAS 1 dot product and two plane
rotations are executed at each step. From the software engineering point of view,
this is disappointingly inefficient computation. Our goal is to replace part of this
computation with BLAS 3 operation with as little overhead as possible.

Following [18], we will not accumulate Jacobi rotation, and the right singular
vectors will be computed a posteriori from a well–conditioned matrix equation. In

22



this way, the expensive iterative part has less flops and more cache space.
Let X be square, triangular and nonsingular. The Jacobi algorithm computes the

SVD of X in the form XV = UΣ, where V is the product of Jacobi rotations, and
UΣ = limk→∞X(k). Obviously, V = X−1(UΣ), but the numerical stability of this
formula is not so obvious. In fact, it explicitly uses the inverse of X to compute nu-
merically orthogonal approximation of V – both the experts and the less experienced
will call for caution. Recall that our goal is high relative accuracy for all singular
values and vectors, independent of the magnitudes of the singular values. This means
that we allow that X has high spectral condition number κ(X) = σmax(X)/σmin(X).
If the SVD of X is well–determined (see §2), we want to have the maximal numerically
feasible accuracy. If that is not the case, the SVD is computed with absolute error
bounds. In any case, the computed singular vectors should be numerically orthogonal.

5.4.1. Classical computation of V by accumulation. Let the Jacobi itera-
tions stop at index k and let X̃∞ = X̃(k). Let Ṽ be the computed accumulated product
of Jacobi rotations used to compute X̃∞. Row–wise backward stability implies that

X̃∞ = (X + δX)V̂ ,(5.1)

where V̂ is orthogonal, ‖V̂ − Ṽ ‖ ≤ O(nε) and (see Proposition 2.3) ‖δX(i, :)‖ ≤
εJ‖X(i, :)‖, εJ ≤ O(nε). The matrix Ṽ can be written as Ṽ = (I +E0)V̂ , where ‖E0‖
is small. In fact, maxi ‖E0(i, :)‖ ≤ εJ . Note that the matrix V̂ is purely theoretical
entity – it exists only in the proof of the backward stability. If we want to recover V̂ ,
the best we can do is to compute

X−1X̃∞ = (I + E1)V̂ , E1 = X−1δX,(5.2)

since we do not have δX. Thus, we can come ‖E1‖ close to V̂ . To estimate E1, we
write X = DY , where D is diagonal scaling, Dii = ‖X(i, :)‖, and Y has unit rows in
Euclidean norm. We obtain

‖E1‖ = ‖Y −1D−1δX‖ ≤ ‖Y −1‖‖D−1δX‖ ≤ ‖Y −1‖√nεJ ≤ ‖Y −1‖O(n3/2ε).(5.3)

Finally, the matrix X̃∞ is written as Ũ Σ̃. The diagonal entries of Σ̃ are computed
as σ̃i = computed(‖X̃∞(:, i)‖) = ‖X̃∞(:, i)‖(1 + νi), |νi| ≤ O(nε), and then Ũ(:, i) is
computed by dividing X̃∞(:, i) by σ̃i. Thus,

Ũ Σ̃ = X̃∞ + δX̃∞, |δX̃∞| ≤ 3ε|X̃∞|.(5.4)

If σ̃i is computed using double accumulated dot product, then |νi| ≤ O(ε) and the
columns of Ũ are unit up to O(ε). The following proposition explains how well the
computed SVD resembles the matrix X.

Proposition 5.1. The matrices Ũ , Σ̃, Ṽ , V̂ satisfy residual relations

Ũ Σ̃V̂ T = X + F = X(I + X−1F ),(5.5)
Ũ Σ̃Ṽ T = (X + F )(I + ET

0 ),(5.6)

where for all i, ‖F (i, :)‖ ≤ (εJ +3ε(1+ εJ ))‖X(i, :)‖, ‖E0‖ ≤
√

nεJ ≤ O(n3/2ε), and
‖X−1F‖ ≤ ‖Y −1‖√n(εJ + 3ε(1 + εJ)).

Proof. From the relations (5.1) and (5.4) we obtain Ũ Σ̃V̂ T = X + F , F =
δX + δX̃∞V̂ T , and for (5.6) we use Ṽ = (I + E0)V̂ .

23



5.4.2. Computation of V from matrix equation. Suppose we decide to use
an approximation of V̂ instead of Ṽ . The matrix X−1X̃∞ is a good candidate, but
we cannot have the exact value of X−1X̃∞. Instead, we solve the matrix equation
and take V̆ = computed(X−1X̃∞). Since X is triangular, the residual bound for V̆ is

E2 = XV̆ − X̃∞, |E2| ≤ εT |X||V̆ |, εT ≤ nε

1− nε
.(5.7)

From (5.2) and (5.7) we conclude that

V̆ = (I + E3)V̂ = V̂ (I + V̂ T E3V̂ ), E3 = E1 + X−1E2V̂
T ,(5.8)

where only the symmetric part Sym(E3) = 0.5(E3+ET
3 ) contributes to the first order

departure from orthogonality of V̆ , ‖V̆ T V̆ − I‖ ≤ 2‖Sym(E3)‖+ ‖E3‖2.
Since V̆ approximates an exactly orthogonal matrix, it is useful to explicitly

normalize the columns of the computed V̆ .
The following proposition shows that we have also computed a rank revealing

decomposition of X (in the sense of [12]).
Proposition 5.2. The matrices Ũ , Σ̃, V̆ satisfy the following residual relations

Ũ Σ̃V̆ T = (X + F )(I + ET
3 ), E3 = E1 + X−1E2V̂

T(5.9)
Ũ Σ̃V̆ −1 = X + F1, F1 = E2V̆

−1 + δX̃∞V̆ −1,(5.10)

where F is as in Proposition 5.1, ‖E3‖ ≤ ‖Y −1‖(√nεJ + nεT ), and it holds for all i,
‖F1(i, :)‖ ≤ (εT ‖|V̆ |‖+ 3ε(1 + εJ ))‖V̆ −1‖‖X(i, :)‖ .

Remark 5.3. There is a simple way to check and correct the orthogonality of
V̆ . Since X ≈ Ũ Σ̃V̆ T is an accurate rank revealing decomposition of X, we focus to
the SVD of the product Ũ Σ̃V̆ T = Ũ(V̆ Σ̃)T . Let J be the product of Jacobi rotations
used to improve the orthogonality of the columns of V̆ Σ̃ (this the right–handed Jacobi
SVD applied to V̆ Σ̃) and let (V̆ Σ̃)J = V̆ ′Σ̃′ with diagonal Σ̃′ and ‖V̆ ′(:, i)‖ = 1 for
all i. Then Ũ Σ̃V̆ T = Ũ ′Σ̃′(V̆ ′)T where Ũ ′ = ŨJ remains numerically orthogonal.

This analysis shows that the quality of the computed right singular vector matrix
V̆ depends on the condition number ‖Y −1‖, where X = DY . This means that the
rows of the triangular matrix X must be well–conditioned in the scaled sense. If
X is computed from the initial A using the QR factorization with column pivoting,

AP = Q

(
R
0

)
, then X = R can be written as X = DY with well–conditioned

Y . Thus, we expect that V̆ can be computed accurately, but immediately notice a
drawback. The Jacobi rotations implicitly transform the matrix PT (AT A)P , which
means that we do not have the preconditioning effect – for that the input matrix to
Jacobi procedure should be XT = Y T D.

We conclude that the initial matrix should be of the form X = DY = ZC where
D, C are diagonal and both Y and Z well–conditioned. Well–conditioned Z implies
fast convergence, while well–conditioned Y ensures stable a posteriori computation of
the right singular vectors. Therefore, we define X in the following way:

AP = Q

(
R
0

)
; RT P1 = Q1R1; X = RT

1 .

The matrix R can be written as R = DrRr with well–conditioned Rr, and if we write
R1 = (R1)c(D1)c, then κ((R1)c) = κ(Rr), thus X = DY with D = (D1)c, Y = (R1)T

c .
Further, R1 = (D1)r(R1)r with the expected value of κ((R1)r) smaller than

κ((R1)c), thus X = ZDc with well–conditioned Z. In fact, ZT Z is very strongly
24



diagonally dominant. We have strong numerical evidence that the pivoting in the
second QR factorization is not worth the overhead it brings by precluding cache
efficient factorization. However, if we have an efficient QR factorization with local
pivoting, such overhead is negligible and pivoting should be used. Note that X = R1

also has required properties. However, if we do not use column pivoting in the second
QR factorization (P1 = I) then we cannot give a theoretical bound on the condition
number of Y . Putting all together, we obtain Algorithm 4.

Several comments are in order here. For the sake of simplicity, we have given
slightly simplified version of the algorithm. For instance, initial scaling to prevent
overflow and underflow and the decision between A and AT are not included in the
description of the algorithm.

Since the key matrices in the algorithm are all triangular, various condition es-
timators can be used to control the program flow. We can decide which matrix is
best input to the one–sided Jacobi algorithm, or which matrix equation to solve.
For instance, in the case ρ = n and small κ1, the SVD RT

1 = UxΣV T
x implies

Vx = R−T
1 (UxΣ), but we also note that R(Q1Vx) = (UxΣ). It can be shown (as

in §5.4.2) that computing W = Q1Vx very efficiently as R−1X∞ is numerically as
accurate as first computing Vx = R−T

1 X∞ and then multiplying Q1Vx. (Similar situ-
ations occurs in the case well conditioned Y and X = L2, where QT

2 Vx is computed
directly as R−1

1 X∞.) Since in each major step we have estimates of relevant condi-
tion number (of scaled matrices), the algorithm can be authorized (an input option)
to drop some small singular values if the condition number test shows that they are
highly sensitive. More details on this can be found in [20].

The last line of defense in Algorithm 4 is an extra safety device for mission critical
applications. So far, we know of no example in which accumulation of Jacobi rotation
is needed because the previous three preconditioning steps failed to produce X which
is structured as X = DY with moderate ‖Y −1‖. In fact, we never had the case that
required X = LT

2 . The worst case example, which probably already have crossed the
reader’s mind, is the Kahan’s matrix.

Example 5.1. It is instructive to see how our algorithm deals with the upper
triangular matrix K = K(m, c) with Kii = si−1 and Kij = −c · si−1 for i < j,
where s2 + c2 = 1. Using MATLAB, we generate K(100, 0.9998). It is estimated that
κ1 ≈ ‖R−1

r ‖ is bigger than 1016. Now, the trick here is that our entropy test will
transpose the matrix automatically and take A = KT instead of A = K. In that
case the estimated κ1 is around one. Suppose now that the transposing mechanism
is switched off, or that e.g. A = K(1 : m, 1 : n), n < m, so that no transposition is
allowed. Let A be equal the first 90 columns of K. Again, κ1 > 1016, but κY ≈ 1.

Remark 5.4. Note that in the above example initial matrix K(100, 0.9999) gives
κ1 < 20. This is due to the fact that rounding errors have changed the permuta-
tion matrix of the column pivoting away from identity, which brings us back to the
discussion on best column pivoting, see §3.

6. Assessing the accuracy of the computed SVD. The composition of the
QR factorization and the one–sided Jacobi SVD algorithm maps A to its numerical
SVD in numerically sound way. This section explains the details. To simplify the
notation, we drop the permutation matrices, thus assuming that A is replaced with
the permuted matrix PrAP . Also, for the sake of brevity we will not analyze all
variants of algorithms given in §5.

6.1. Backward error analysis. The following proposition is central for the
analysis of Algorithm 1 and Algorithm 2. It gives backward stability with rather

25



Algorithm 4 (U, σ, V ) = SVD(A)

(PrA)P = Q

(
R
0

)
; ρ = rank(R) ;

if max
i=2:n

‖R(1 : i− 1, i)‖/|Rii| small then {columns of A almost orthogonal, see [20]}
X = R ; κ0 = estimate(‖A†c‖) ;{At this point, κ0 ¿ n. AT A is γ–s.d.d.}
X∞ = X 〈Vx〉 ; Vx = R−1X∞ ; σi = ‖X∞(:, i)‖, i = 1, . . . , n ; V = PVx ;

Ux(:, i) =
1
σi

X∞(:, i), i = 1, . . . , n; U = PT
r Q

(
Ux 0
0 Im−n

)
;

else
κ0 = estimate(‖A†c‖) ; κ1 = estimate(‖R†r‖) ;
if κ1 small then {e.g. κ1 small ⇐⇒ κ1 < n}

R(1 : ρ, 1 : n)T = Q1

(
R1

0

)
{second preconditioning}; X = RT

1 ;

else

R(1 : ρ, 1 : n)T P1 = Q1

(
R1

0

)
{second preconditioning};

R1 = L2 〈Q2〉 {third preconditioning: LQ factorization}; X = L2;
κY = estimate(‖Y −1‖) ; if κY ≥ n then κZ = estimate(‖Z−1‖) ; end if

end if
if Y well conditioned then

X∞ = X 〈Vx〉 ; σi = ‖X∞(:, i)‖ ; Ux(:, i) =
1
σi

X∞(:, i), i = 1, . . . , ρ;

if ρ = n and κ1 small then

W = R−1X∞; {here W ≡ Q1Vx}; V = PW ; U = PT
r Q

(
Ux 0
0 Im−ρ

)
;

else if κ1 small then {R rectangular, ρ < n}

Vx = R−T
1 X∞; V = PQ1

(
Vx 0
0 In−ρ

)
; U = PT

r Q

(
Ux 0
0 Im−ρ

)
;

else {here X = L2 and W ≡ QT
2 Vx}

W = R−1
1 X∞; V = PQ1

(
Ux 0
0 In−ρ

)
; U = PT

r Q

(
P1W 0

0 Im−ρ

)
;

end if
else if κZ < n then

X = LT
2 ; X∞ = X 〈Vx〉; σi = ‖X∞(:, i)‖ ; Ux(:, i) =

1
σi

X∞(:, i), i = 1, . . . , ρ;

Vx = L−T
2 X∞ ; V = PQ1

(
Vx 0
0 In−ρ

)
; U = PT

r Q

(
P1Q

T
2 Ux 0
0 Im−ρ

)
;

else {last line of defense: use X = L2 and accumulate Jacobi rotations}
X∞ = XVx ; σi = ‖X∞(:, i)‖ ; Ux(:, i) =

1
σi

X∞(:, i), i = 1, . . . , ρ ;

V = PQ1

(
Ux 0
0 In−ρ

)
; U = PT

r Q

(
P1Q

T
2 Vx 0
0 Im−ρ

)
;

end if
end if

26



strong column–wise result on backward error. From this result we derive relative
error bounds for the computed elements of the SVD.

Proposition 6.1. Let the SVD of the real m × n matrix A be computed by

reducing A to triangular form, A = Q

(
R
0

)
, and then applying the right–handed

Jacobi SVD algorithm to X = RT . If only the singular values or singular values and
the right singular vectors are needed, then the backward stability of the computation
can be described as follows:

i) Let X ≈ ŨxΣ̃
〈
Ṽ T

x

〉
be the computed SVD of the computed matrix X. Then

there exist perturbation ∆A and orthogonal matrices Q̂, V̂x such that

A + ∆A = Q̂

(
V̂x 0
0 I

)(
Σ̃
0

)
ŨT

x , where(6.1)

‖∆A(:, i)‖ ≤ η̃‖A(:, i)‖, i = 1, . . . , n, η̃ = εqr + εJ + εqrεJ .(6.2)

(The parameters εqr and εJ are from Proposition 2.2 and Proposition 2.3.)
ii) In addition to i), let εu ≡ ‖ŨT

x Ũx−I‖F < 1/(2
√

2). Then there exist backward
perturbation E and orthogonal matrix Û such that ‖Ũx − Û‖F ≤ √

2εu and
the SVD of A + E is

A + E = Q̂

(
V̂x 0
0 I

)(
Σ̃
0

)
Û , where for all i(6.3)

‖E(:, i)‖ ≤ η̂‖A(:, i)‖, η̂ = η̃ +
√

2nεu + O(ε2).(6.4)

Proof. Let Q̃ and R̃ be the computed numerically orthogonal and the triangular
factor of A, respectively. Then there exists an orthogonal matrix Q̂ and there exists

backward perturbation δA such that A + δA = Q̂

(
R̃
0

)
, where for all column indices

‖δA(:, i)‖ ≤ εqr‖A(:, i)‖. Let the one–sided Jacobi SVD be applied to X = R̃T . By
Proposition 5.1, X + F = ŨxΣ̃V̂ T

x , ‖F (i, :)‖ ≤ εJ‖X(i, :)‖, and therefore

A + δA + Q̂

(
FT

0

)

︸ ︷︷ ︸
∆A

= Q̂

(
V̂x 0
0 I

)(
Σ̃
0

)
ŨT

x .(6.5)

In relation (6.5), the backward perturbation ∆A has column-wise bound

‖∆A(:, i)‖ ≤ εqr‖A(:, i)‖+ εJ‖R̃(:, i)‖, ‖R̃(:, i)‖ ≤ (1 + εqr)‖A(:, i)‖,
and (6.1, 6.2) follow. Note that the right hand side in relation (6.5) is not an SVD.
To obtain a relation with the SVD of a matrix in the vicinity of A, we need to
replace Ũx with a nearby orthogonal matrix. However, since the backward error ∆A
is column–wise small, we need to do this carefully and preserve this fine structure of
the backward error. Since Ũx is on the right hand side of A, correcting its departure
from orthogonality implies certain linear combinations of the columns of A. If A
has very large and very small columns, then such linear combinations may introduce
large perturbations into the small ones. This is the reason why we cannot use the
orthogonal polar factor of Ũx as closest orthogonal matrix. We proceed as follows.

Let Π be the matrix representation of the permutation π such that the columns
of AΠ have decreasing Euclidean lengths. Let ΠT Ũx = (I + GT

0 )Ûx be the RQ
27



factorization of ΠT Ũx, with lower triangular G0 and orthogonal Ûx. Since Ũx is
numerically orthogonal, we can nicely estimate G0. Since

(I + G0)(I + G0)T = I + Ûx(ŨT
x Ũx − I)ÛT

x

we conclude, using [19], that ‖G0‖F ≤ √
2εu. Thus, I + G0 is regular. Let I + G =

(I + G0)−1. Obviously, G is lower triangular. Since G = −G0 + G2
0(I + G0)−1, it

holds that ‖G‖1 ≤ ‖G0‖1 + ‖G0‖21/(1− ‖G0‖1). From (6.5) we obtain the SVD

(A + ∆A)(I + ΠGΠT ) = Q̂

(
V̂x 0
0 I

)(
Σ̃
0

)
(ΠÛx)T .(6.6)

Note that small ‖ΠGΠT ‖1 = ‖G‖1 ≈ ‖G0‖1 does not automatically mean column–
wise small backward perturbation in A. Let us estimate the columns of AΠGΠT . For
the sake of clarity and the readers’ convenience, we will illustrate the principle using
small dimension example. Let n = 4 and π = (3, 1, 2, 4). Then ‖A(:, 3)‖ ≥ ‖A(:, 1)‖ ≥
‖A(:, 2)‖ ≥ ‖A(:, 4)‖ and

AΠGΠT = ( A(:, 3), A(:, 1), A(:, 2), A(:, 4) )




g11 0 0 0
g21 g22 0 0
g31 g32 g33 0
g41 g42 g43 g44







0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1


 .

Note that in the multiplication AΠG each column of A gets contribution only from
columns that are smaller in norm, i.e.

AΠG(:, i) =
n∑

k=i

gkiA(:, π(k)), ‖AΠG(:, i)‖ ≤
n∑

k=i

|gki|‖A(:, π(k))‖ ≤ ‖G‖1‖A(:, π(i))‖.

Now it is easy to check in our n = 4 example that the permutation matrix ΠT , that
is π−1 = (2, 3, 1, 4), redistributes the columns back to the original order. We have

‖(AΠGΠT )(:, i)‖ = ‖(AΠG)(:, π−1(i))‖ ≤ ‖G‖1‖A(:, i)‖.(6.7)

In fact, the bound is even sharper because

‖AΠG(:, i)‖ ≤
n∑

k=i

|gki|‖A(:, π(k))‖ ≤ ‖A(:, π(i))‖
n∑

k=i

|gki| ‖A(:, π(k))‖
‖A(:, π(i))‖︸ ︷︷ ︸

≤ 1

.

By the same token, ‖∆AΠG(:, i)‖ ≤ η̃‖G‖1‖A(:, i)‖. Note that from the relation
Ũx = (I + ΠGT

0 ΠT )(ΠÛx) we easily find that the matrix Û = ΠÛx satisfies ‖Û −
Ũx‖F ≤ ‖G0‖F . Finally, note that equation (6.6) defines E from equation (6.3).

Consider now the computation of the full SVD.

Proposition 6.2. Let A ≈ Q̃

(
R̃
0

)
be the computed QR factorization of A. Let

the computed SVD of X = R̃T be X ≈ ŨxΣ̃V x, where
a) V x = Ṽx if V x is computed as accumulated product of Jacobi rotations

(Proposition 5.1). In that case ‖V x − V̂x‖F ≤ √
nεJ .

b) V x = V̆x if V x is computed from triangular matrix equation (Proposi-
tion 5.2). In that case ‖V x − V̂x‖F ≤ ‖Y −1‖(√nεJ + nεT ), where Y =
diag(1/‖X(i, :)‖)X.

28



Let Ṽa = Ũx, V̂a = Û , where Û is as in Proposition 6.1 and let

Ûa = Q̂

(
V̂x 0
0 I

)
, Ũa = computed(Q̃

(
V x 0
0 I

)
).

Then ‖Ũa − Ûa‖ ≤
√

mεqr + ‖V x − V̂x‖F , ‖Ṽa − V̂a‖ ≤
√

2εu, and the residual (that
is, the backward error)

∆′A = Ũa

(
Σ̃
0

)
Ṽ T

a −A = (I + (Ũa − Ûa)ÛT
a︸ ︷︷ ︸

ŨaÛT
a

)(A + ∆A)−A(6.8)

satisfies ‖∆′A(:, i)‖ ≤ η̃′‖A(:, i)‖, η̃′ = η̃ + ‖Ũa − Ûa‖+ η̃‖Ũa − Ûa‖.
Proof. To estimate Ũa − Ûa we first note that Ũa is computed using Householder

vectors computed in the QR factorization, and then replace V x with V̂x + (V x − V̂x).

6.2. Backward errors for two preconditionings. Now we analyze backward
stability of the variant with two preconditioning steps. Our goal is to relate the
computed matrix X̃∞ ≈ ŨxΣ̃ and some matrix in a neighborhood of the initial matrix
A. One of the difficulties we have to deal with is the fact that composition of two
backward stable operations is not necessarily a backward stable mapping.

To ease the notation we assume that the matrix A is already (column–wise and
row–wise) permuted so that the first QR factorization does not need column or row
interchanges. The computed matrices are denoted by tildas, and by hats we denote
matrices whose existence is obtained during backward error analysis (those matrices
are never computed and they are usually close to the corresponding matrices marked
with tildas). The first QR factorization

A = Q

(
R
0

)
is computed as A + δA = Q̂

(
R̃
0

)
,(6.9)

where for all column indices i

‖δA(:, i)‖ ≤ εqr(A)‖A(:, i)‖, and ‖Q̃− Q̂‖F ≤ εqr(A).(6.10)

In the next step

RT P1 = Q1R1 is computed as (R̃T + δR̃T )P̃1 = Q̂1R̃1(6.11)

where ‖δR̃(i, :)‖ ≤ εqr(R̃T )‖R̃(i, :)‖. And finally, Jacobi rotations are applied to
X = R̃T

1 which yields X̃∞ = (X + δX)V̂x, ‖δX(i, :)‖ ≤ εJ‖X(i, :)‖. This means that
R̃1 is changed backward to R̃1 + δR̃1 with column–wise bound ‖δR̃1(:, i)‖ ≤ εJ‖R̃1(:
, i)‖. To push δR̃1 further backward we have to change R̃. It is easy to check that
∆R̃ = δR̃ + P̃1δR̃

T
1 Q̂T

1 has the property

(R̃T + ∆R̃T )P̃1 = Q̂1(R̃1 + δR̃1).(6.12)

Note that (6.11) implies that ‖R̃1(:, i)‖ ≤ (1 + εqr(R̃T ))‖(P̃T
1 R̃)(i, :)‖ for all i. Let

∆A = δA + Q̂

(
∆R̃
0

)
. Then we have explicit backward relationship

(
ŨxΣ̃

0

)
≈

(
X̃∞
0

)
=

(
P̃T

1 0
0 Im−n

)
Q̂T (A + ∆A)Q̂1V̂x(6.13)

29



with small ‖∆A‖/‖A‖. However, such matrix norm bound is not satisfactory and we
would like to have column–wise estimate similar to (6.10). This is much harder to get
because, unlike in the case of one QR factorization, we transform the matrices from
both sides. We proceed as follows. Write R̃+∆R̃ = R̃(I +E) with E = R̃−1∆R, and
let R̃ = DrR̃r with Dr = diag(‖R̃(i, :)‖)n

i=1. It is easily shown that

‖E‖F ≤ √
n(εqr + εJ (1 + εqr))‖R̃−1

r ‖, εqr = εqr(R̃T ).(6.14)

Note that this bound depends on ‖R̃−1
r ‖. Thus, we can write

A + ∆A = (A + δA)(I + E) = (I + δAA†)A(I + E).(6.15)

Note that I + E represents multiplicative backward perturbation which immediately
and cleanly exposes its corresponding forward error. However, additive backward
perturbation might be more desirable and interpretable. Therefore, we are going to
transform the multiplicative part into additive one.

Remember that proving backward stability is Gedankenexperiment with certain
rules and lot of freedom. If the columns of A+ δA are not ordered from large to small
in Euclidean norm, then we order them using permutation Π and write

(A + δA)(I + E) = (A + δA)Π(I + ΠT EΠ)ΠT .

If I + ΠT EΠ = LW is the LQ factorization (L lower triangular, W orthogonal), then
we can write L = I + F with lower triangular F and ‖F‖ ≤ O(1)‖E‖. Then we have

(A + δA)(I + E) = (A + δA)Π(I + F )WΠT = ((A + δA)Π + (A + δA)ΠF )WΠT ,

where

‖((A + δA)ΠF )(:, i)‖ ≤ ‖((A + δA)Π)(:, i)‖
n∑

k=i

|Fki| ‖((A + δA)Π)(:, k)‖
‖((A + δA)Π)(:, i)‖

≤ ‖F‖1‖((A + δA)Π)(:, i)‖.

If we permute the columns of A + δA back to the original order, we obtain

A + ∆A = (A + δA)(I + E) = (A + δA + δ1A)ΠWΠT ,(6.16)

where ‖δ1A(:, i)‖ ≤ (1 + εqr(A))‖F‖1‖A(:, i)‖, i = 1, . . . , n. Thus,
(

ŨxΣ̃
0

)
≈

(
X̃∞
0

)
=

(
P̃T

1 0
0 Im−n

)
Q̂T (A + δA + δ1A)ΠWΠT Q̂1V̂x.(6.17)

This means that ŨxΣ̃ is computed using orthogonal transformations on A+δA+δA1,
where the perturbation δA+ δ1A is column–wise small. The practical value of this is:
no matter how badly the columns of A are scaled, the algorithm computes the SVD
of A with backward column–wise small relative error.

6.3. Forward relative errors in the computed SVD. Precise error bounds
give not only mathematical evidence of the quality of the computed approximations.
They can be used to stop an iterative process when the desired (or numerically fea-
sible) accuracy is attained, thus avoiding unnecessary computation. For the Jacobi
SVD algorithm such ”just in time” stopping criterion is of interest. Therefore, we

30



are interested in obtaining relative error bounds as sharp as possible. The following
proposition gives more detailed structure of the relative perturbation of the computed
singular values.

Proposition 6.3. Consider full column rank m × n matrix A with the SVD

A = U

(
Σ
0

)
V T and singular values σ1 ≥ · · · ≥ σn. Let σ̃1 ≥ · · · ≥ σ̃n be the singular

values of the perturbed matrix Ã = A + δA = (I + Γ)A, Γ = δAA†, and let ‖Γ‖ < 1.
(i) It holds that

max
j=1:n

|σ̃j − σj |√
σ̃jσj

≤ ‖Sym(Γ)‖+
1
2
‖Γ‖2

1− ‖Γ‖ ≤ ‖Γ‖+ O(‖Γ‖2),(6.18)

where Sym(Γ) = 0.5(Γ + ΓT ).
(ii) Let I +Ξ = diag(‖(I +Γ)U(:, i)‖)n

i=1, Ŭ = (I +Γ)U(I +Ξ)−1, ŬT Ŭ = I +Ω, and
Ω̂ = Ω(1 : n, 1 : n). Let the singular values of Ã be written with multiplicities as

σ̃1 = . . . = σ̃s̃1 > σ̃s̃1+1 = . . . = σ̃s̃2 > . . . > σ̃s̃˜̀−1+1 = . . . = σ̃s̃˜̀, s̃˜̀ = n, s̃0 ≡ 0,

and let the relative gaps be defined by

γ̃i = min
j 6=i

|σ̃2
s̃i
− σ̃2

s̃j
|

σ̃2
s̃i

+ σ̃2
s̃j

, i = 1, . . . , ˜̀; γ̃ = min
i

γ̃i.

If ‖Ω̂‖ < γ̃/3 then for all i and σ̆j = σj‖(I + Γ)U(:, j)‖
√√√√

s̃i∑

j=s̃i−1+1

∣∣∣∣
σ̃s̃i − σ̆j

σ̆j

∣∣∣∣
2

≤

√√√√√
s̃i∑

j=s̃i−1+1

∣∣∣∣∣1−
σ̃2

s̃i

σ̆2
j

∣∣∣∣∣

2

≤ 2
γ̃i
‖Ω̂‖2.

In particular, max
j=1:n

|σ̃j − σ̆j |
σ̆j

≤ 2
γ̃
‖Ω̂‖2.

Proof. Since I + Γ is nonsingular, we can use [44] and relation (I + Γ)−1 =
(I − Γ) + Γ2(I + Γ)−1 to conclude that

max
1≤j≤n

|σ̃j − σj |√
σ̃jσj

≤ 1
2
‖(I + Γ)−1 − (I + Γ)T ‖ =

1
2
‖ − 2Sym(Γ) + Γ2(I + Γ)−1‖.

(In fact, for the last relation to be true, we need only the assumption that I + Γ is
nonsingular.) Relation (6.18) follows using the fact that ‖Γ‖ < 1.

Let A = U

(
Σ
0

)
V T be the SVD of A. Write

Ã = (I + Γ)U
(

Σ
0

)
V T = Ŭ(I + Ξ)

(
Σ
0

)
V T(6.19)

where (I + Γ)U = Ŭ(I + Ξ) with diagonal matrix Ξ determined so that Ŭ has unit
columns. Obviously, |Ξii| ≤ ‖ΓU(:, i)‖ for all i, and ‖Ξ‖ ≤ ‖Γ‖. We now write Ã as

Ã = Ŭ

(
Σ̆
0

)
V T ,

(
Σ̆
0

)
= (I + Ξ)

(
Σ
0

)
, Σ̆ = diag(σ̆j)n

j=1.(6.20)

31



Note that ŬT Ŭ = I + Ω with Ωii = 0 for all i. Now,

ÃT Ã = V ( Σ̆ 0 ) (I + Ω)
(

Σ̆
0

)
V T = V Σ̆(In + Ω̂)Σ̆V T ,(6.21)

where Ω̂ = Ω(1 : n, 1 : n). Using the orthogonal similarity in the last relation,
we can compare the eigenvalues of ÃT Ã and the corresponding eigenvalues of the
matrix M ≡ Σ̆(In + Ω̂)Σ̆. Second look at the relations (6.19,6.20,6.21) reveals the
transformation of the multiplicative perturbation I +Γ of A into the nonorthogonality
of the left singular vector matrix U and then splitting the nonorthogonality of (I+Γ)U
into the column length changes and angle changes. The changes of the unit lengths
of the columns of U are then taken as perturbation of Σ thus defining Σ̆.

Note that the matrix M is ‖Ω̂‖–s.d.d. [3] with eigenvalues σ̃2
1 ≥ · · · ≥ σ̃2

n and
diagonal entries σ̆2

1 ≥ · · · ≥ σ̆2
n. Using [34, Corollary 3.2] we conclude that

s̃i∑

j=s̃i−1+1

∣∣∣∣1−
σ̃2

s̃i

(σ̆j)2

∣∣∣∣
2

+
s̃i∑

j=s̃i−1+1

s̃i∑

k=s̃i−1+1

Ω̂2
jk ≤

4
γ̃2

i




s̃i∑

j=s̃i−1+1

(
s̃i−1∑

k=1

Ω̂2
jk +

n∑

k=s̃i+1

Ω̂2
jk)




2

.

(6.22)

Remark 6.1. It is natural that only the symmetric part of Γ enters the linear part
of the perturbation. If Skew(Γ) = Γ−Sym(Γ), then the matrix W ≡ exp(Skew(Γ)) is
orthogonal and (I +Γ)A = W (I−WT Υ+WT Sym(Γ))A, where Υ = exp(Skew(Γ))−
(I + Γ) =

∑∞
k=2 Skew(Γ)k, ‖Υ‖ ≈ O(‖Γ‖2). Another symmetric part of I + Γ can

be used via the polar decomposition I + Γ = OS with orthogonal O and symmetric
definite S. In both cases the orthogonal matrices W and O are from the group of
invariant transformations of the SVD, and only the corresponding symmetric parts
remain to act as perturbations of the singular values.

Remark 6.2. The part ii) in Proposition 6.3 can be stated using A = Ã −
δA = (I + Γ′)Ã, Γ′ = −δAÃ†. In that case, the singular values of A are indexed as
σ1 = . . . = σs1 > σs1+1 = . . . = σs2 > . . . > σs`−1+1 = . . . = σs`

, s` = n, s0 ≡ 0, and
the relative gaps γi and γ as well as other details are from the proof are analogous.

Remark 6.3. Note that ΓU(:, i) = δAV (:, i)σ−1
i and that

‖ΓU(:, i)‖ ≤ ‖δAc‖‖DAV (:, i)σ−1
i ‖ = ‖δAc‖‖A†cU(:, i)‖,

where DA = diag(‖A(:, i)‖)n
i=1, Ac = AD−1

A , δAc = δAD−1
A . The term ‖DAV (:

, i)σ−1
i ‖ also appears in [13], but there it was obtained from the first order perturbation

relation valid only for simple singular values.
Remark 6.4. The norm of Ω can be bounded as ‖Ω‖ ≤ 2(‖Ξ‖ + ‖Γ‖) +

higher–order–terms.
Consider the right–handed Jacobi SVD algorithm on n×n matrix X. Let X̃∞ ≡

X̃(k) = (X+δX)V̂ be the computed matrix and X̃∞+δX̃∞ = Ũ Σ̃ as in relation (5.4).
Let max

i6=j

∣∣∣(ŨT Ũ)ij

∣∣∣ ≤ τ , max
i

∣∣∣1− ‖Ũ(:, i)‖
∣∣∣ ≤ ν. We wish to know how the sizes of

τ and ν influence the relative distance between the σ̃i = Σ̃ii and the corresponding
exact singular value σ̂i of Ũ Σ̃.

As in the proof of Proposition 6.3, we split the perturbation (ie the departure
from orthogonality of Ũ) into two parts. Let Ũ = Ŭ(I +Ξ) where Ŭ has unit columns
and Ξ is diagonal matrix with ‖Ξ‖ ≤ ν. Write Ũ Σ̃ as Ŭ Σ̆, where Σ̆ is diagonal matrix
with diagonal entries σ̆i = σ̃i(1 + Ξii). Note that ν can be as small as O(ε) with

32



the cost of doubly accumulated dot products, and O(nε) if no extra precision is used.
The potentially larger and harder to control value τ enters the estimate quadratically,
and that opens a possibility for sharper stopping criterion.

As in Proposition 6.3, we note that Σ̆ŬT Ŭ Σ̆ has diagonal entries σ̆2
i and eigen-

values σ̂2
i , i = 1, . . . , n. Let Ω = ŬT Ŭ − I and let ‖Ω‖ < γ̂/3 where the gaps between

the σ̂2
i ’s are defined as in Proposition 6.3. Then maxij |Ωij | ≤ τ/(1− ν)2 and for all i

|σ̂i − σ̆i|
σ̆i

≤ 2
γ̂i

k̂i(n− k̂i)
τ2

(1− ν)4
≤ 1

γ̂i

n2τ2

2(1− ν)4
(6.23)

where k̂i is the multiplicity of σ̂i.
Example 6.1. We illustrate the application of the relation (6.23) in stopping

the Jacobi SVD algorithm. Since we do not have the σ̂i’s, the relative gaps will be
estimated using the computed σ̃i’s as follows. We first note that the gap γ̂i can be
approximated by γ̃i, using the σ̃j ’s, with absolute error ε if the σ̃j ’s approximate the
corresponding σ̂j ’s with relative error at most ε.

Let ε ≈ 10−16, n = 1000 and τ = 10−8. Then ‖Ω‖ ≤ ‖Ω‖F ≤ ω ≡
√

n(n− 1)τ/(1−
ν)2 < 9.9950 · 10−6 and

max
i=1:n

|σ̂i − σ̃i|√
σ̂iσ̃i

≤ ‖(I + Ω)−1/2 − (I + Ω)1/2‖ ≤ ω1 ≡ ω√
1− ω

< 9.9951 · 10−6.

From this we conclude that for all i

|σ̂i − σ̃i|
min{σ̂i, σ̃i} ≤ ω2 ≡ ω1

1− ω1
=

ω√
1− ω − ω

< 9.996 · 10−6,

|σ̂i − σ̃i|
σ̂i + σ̃i

≤ ω1

2
< 4.998 · 10−6.

Suppose that we have n different values σ̃1 > · · · > σ̃n > 0 and that they are well
separated relative to their uncertainty in approximating the σ̂i’s, i.e. let

max
i 6=j

|σ̃i − σ̃j |
σ̃i + σ̃j

> 5ω > 4.997 · 10−5. Then γ̃i ≡ min
j 6=i

|σ̃2
i − σ̃2

j |
σ̃2

i + σ̃2
j

∈ (5ω, 10ω) .

Using the fact that the σ̂i’s are O(ω) close to the σ̃i’s, we easily estimate that the σ̂i’s
are simple and that

γ̂i ≡ min
j 6=i

|σ̂2
i − σ̂2

j |
σ̂2

i + σ̂2
j

≥ γ̃i

(
1− ω2

5ω

) 1− ω2

(1 + ω2)2︸ ︷︷ ︸
≡ξ≈3.99986

> 3.999ω > 3‖Ω‖.

Since σ̆i = σ̃i(1 + O(10−13)), we have σ̆1 > · · · > σ̆i > σ̆i+1 > · · · > σ̆n > 0. We can
now apply the quadratic bound which yields for each i

|σ̂i − σ̆i|
σ̆i

≤ 2
3.999

1
γ̃i

(n− 1)
τ2

(1− ν)4
≤ 1

γ̃i
2.498 · 10−13.(6.24)

Thus, if for instance γ̃i > 10−3 we can claim that σ̃i coincides with the corresponding
σ̂i to about ten decimal places which actually doubles the previous number of about
five known correct digits.

33



Consider now the computed singular vectors. How accurate are they? Fortu-
nately, the structure of the backward error in our algorithm is such that we can use
well developed and sharp perturbation theory [21], [45]. Our starting point is the
relation (6.3) in Proposition 6.1,

A + E = Q̂

(
V̂x 0
0 I

)(
Σ̃
0

)
Û ≡ Ûa

(
Σ̃
0

)
V̂ T

a ,(6.25)

which is the SVD of A + E with the computed singular values in diagonal Σ̃, and
exactly orthogonal matrices Q̂, V̂x, Û which are close to the corresponding computed
approximations Q̃, V x, Ũx, respectively. We first deal with the singular vector per-
turbations in case of simple well separated singular values. If σ1 ≥ · · · ≥ σn are the

singular values of A = U

(
Σ
0

)
V T , then the relative separation is defined as

ρi = min
{

2,min
j 6=i

|σj − σi|
σi

}
, i = 1, . . . , n.(6.26)

If the singular values are simple, then each ρi is positive and the singular vectors define
one–dimensional singular subspaces. If the perturbed matrix also has only simple
singular values then we can use the angles between the original and the perturbed
subspaces as natural error measure. Let θi and ϑi denote the error angle in the i–th
left and right singular vector, respectively. In case of the perturbation from relation
(6.25), θi = ∠(U(:, i), Ûa(:, i)), ϑi = ∠(V (:, i), V̂a(:, i)).

Proposition 6.4. Let A = U

(
Σ
0

)
V T be the SVD of A and let (6.25) be the

SVD of a perturbed matrix with ‖E(:, i)‖ ≤ η̂‖A(:, i)‖, i = 1, . . . , n.(Cf. Proposition
6.1.) Let Φ = EA†, ζ = ‖Φ + ΦT + ΦΦT ‖, ζ ≤ 2‖Sym(Φ)‖+ ‖Φ‖2. If ζ < ρi, then

max {sin θi, sinϑi} ≤
√

2
{

ξ

ρi − ζ
+ ‖Φ‖

}
,(6.27)

where ξ ≤ 2‖Sym(Φ)‖+ O(‖Φ‖2), and ‖Φ‖ ≤ √
nη̂‖A†c‖.

Proof. Apply [21, Theorem 3.3].
Application of the above estimates to the actually computed matrices Ũa, Ṽa

follows by combining Proposition 6.4 and Proposition 6.2, since the angles ∠(Ũa(:
, i), Ûa(:, i)) and ∠(Ṽa(:, i), V̂a(:, i)) are small, with bounds sharper than in (6.27).

In cases of clustered or multiple singular values, singular vectors are not right
object to be sought for. Instead, we try to compute well defined singular subspaces,
spanned by multiple or tightly grouped singular values. Here again the structure of
the backward perturbation in the Jacobi SVD algorithm fits into the perturbation es-
timates. For the sake of simplicity, we will give only one perturbation result, following
[45]. Other interesting bounds can be derived from the fact that A + E = (I + Φ)A,
where ‖Φ‖ is independent of the column scaling of A.

Proposition 6.5. Let Σ = Σ1⊕Σ2, Σ̃ = Σ̃1⊕Σ̃2 be conformal block diagonal par-
titions with Σ1 = diag(σ1, . . . , σk), Σ2 = diag(σk+1, . . . , σn), Σ̃1 = diag(σ̃1, . . . , σ̃k),
Σ̃2 = diag(σ̃k+1, . . . , σ̃n). Let

% = min




|σi − σ̃k+j |√

σ2
i + σ̃2

k+j

: i = 1, . . . , k, j = 1, . . . , n− k



 .

34



In the rectangular case, m > n, replace % with min{%, 1}. Let U1, Û1, V1, V̂1 be
the subspaces spanned by the columns of U1 ≡ U(:, 1 : k), Ûa(:, 1 : k), V (:, 1 : k),
V̂a(:, 1 : k), respectively. If % > 0 then

∥∥∥∥
( ‖ sinΘ(U1, Û1)‖F

‖ sinΘ(V1, V̂1)‖F

)∥∥∥∥
F

≤
√
‖ΦT U1‖2F + ‖ − ΦU1 + Φ2(I − Φ)−1U1‖2F

%
.(6.28)

Thus, the error angles are bounded by O(‖Φ‖/%).

6.4. The case of two–sided scaling. If the matrix A cannot be written as
A = BD with diagonal D and well–conditioned B, then the information on column–
wise small backward error does not guarantee high relative accuracy of the computed
SVD. But suppose that we can write A as A = D1CD2 with some diagonal matrices
D1, D2 and in some sense well–behaved C. If we do the first QR factorization with
column pivoting then the backward error relationship reads

D1(C + δC)D2 = Q̂

(
R̃
0

)
, ‖δC‖ ≤ η‖C‖.(6.29)

In the ideal case η will be small, the diagonal entries of D1 and D2 will be ordered
from large to small, and C will allow accurate Gaussian eliminations without pivoting.
There are many tricky details regarding this conditions and the practice is usually
much better than our theoretical understanding. We will not go into such details
here, instead we will assume the ideal case and show that the rest of the algorithm
preserves this structure of the backward error. For the details of the error analysis
of the QR factorization with respect to two–sided scalings we refer to [10], [18], [17].
We go back to relation (6.15) and rewrite is as

A + ∆A = (A + δA)(I + E) = D1(C + δC)D2(I + E).(6.30)

If I + E = (I + F )W is (as before) the LU factorization then

A + ∆A = D1(C + δC)(I + F1)D2W, F1 = D2FD−1
2 .(6.31)

Since F is lower triangular and D2 properly ordered, |F1|ij = |Fij(D2)ii/(D2)jj | ≤
|F |ij , and η1 ≡ ‖F1‖ is of the order of ‖E‖. If we let ∆C = δC + CF1 + δCF1, then
‖∆C‖ ≤ (η + η1 + ηη1)‖C‖ and

(
ŨxΣ̃

0

)
≈

(
X̃∞
0

)
=

(
P̃T

1 0
0 Im−n

)
Q̂T D1(C + ∆C)D2︸ ︷︷ ︸

A + ∆A

WQ̂1V̂x.(6.32)

Note that A = BD is a special case of A = D1CD2 and that (6.32) includes (6.17) as
a special case with permutation Π omitted for the sake of simplicity.

We close this discussion with an illustration of the forward error analysis of the
ideal case A = D1CD2 and perturbation A + ∆A = D1(C + ∆C)D2. Let C = LU
and C + ∆C = (L + δL)(U + δU) be the exact and the perturbed LU factorizations.
From the assumption that C has stable LU factorization it follows that (see [62]) the
lover triangular δLL−1 and the upper triangular U−1δU are small. Now we can write

A + ∆A = (I + G1)A(I + G2), G1 = D1(δLL−1)D−1
1 , G2 = D−1

2 (U−1δU)D2,

where |(G1)ij | =
∣∣∣∣
(D1)ii

(D1)jj

∣∣∣∣ |(δLL−1)ij | ≤ |(δLL−1)ij |, |(G2)ij | ≤ |(U−1δU)ij |. Thus

‖G1‖ and ‖G2‖ will be small and multiplicative perturbation theory guarantees ac-
curate SVD approximation.

35



6.5. Computation with standard accuracy. In many applications of the
SVD the matrix A is numerically rank deficient and its smallest singular values are
pure noise which is to be discarded after the SVD is computed. In such applications,
the high relative accuracy of the Jacobi algorithm is of no advantage because all
the computed singular value σ̃i must satisfy is |σ̃i − σi| ≤ εσmax(A), where ε is of
the order machine precision times moderate function of the dimensions. The extra
accuracy provided by the Jacobi algorithm does not pay off and it is reasonable to
provide modified algorithm which exploits this relaxation and delivers the results more
efficiently and exactly to the required accuracy. We give discuss some modifications
and related numerical issues. (Since the framework is determined by absolute error
bound, the analysis is straightforward.)

Consider the first rank revealing QR factorization. The computed R̃, Q̃ satisfy

(A + δA)Π = Q̂

(
R̃
0

)
, ‖δA‖F ≤ εqr‖A‖F , ‖Q̃− Q̂‖F ≤ εqr, Q̂T Q̂ = I.

Suppose there is an index k ∈ {1, . . . , n} such that R can be partitioned as

R̃ =
(

R̃[11] R̃[12]

0 R̃[22]

)
, |r̃k+1,k+1| ≤ τ |r̃11|,(6.33)

where τ denotes given threshold value, eg τ = ε. Due to pivoting,8 ‖R̃[22]‖F ≤√
n− kτ |r̃11|. If we decide to set the R̃[22] block to zero, then we will implicitly

continue working with the matrix

Q̂

(
R̃[11] R̃[12]

0 0

)
= A + δA− Q̂

(
0 0
0 R̃[22]

)
≡ A + ∆A,(6.34)

where ‖∆A‖F ≤ (εqr +
√

n− kτ(1 + εqr))‖A‖F . In the context of singular value
approximation to high absolute accuracy, there is no difference between A + δA and
A + ∆A – replacing R̃[22] with zero is backward stable in matrix norm. Further,
(6.34) is the QR factorization of A + ∆A, where for the computed orthogonal factor
we can keep Q̃. If we choose to proceed with A + ∆A, the second QR factorization
works on the k×n matrix ( R̃[11] R̃[12] ), instead of the n×n matrix R̃. If the index
k is found to be much smaller than n (A of low numerical rank) then the second
QR factorization is faster and moreover the Jacobi iterations work on substantially
smaller k × k matrix.

Remark 6.5. Note that even the first QR factorization can be stopped earlier
because computation of R̃[22] in (6.33) is not necessary after the position k has been
found. Note here that we do not seek for a gap between two consecutive diagonals of
R̃, i.e. |r̃k+1,k+1| ≤ τ |r̃kk|. In that case, the backward perturbation of the singular
values due to brute force deflation would behave more like (if the factorization is
really rank revealing)

√
n− kτσk(R̃), which can be better than the required level

of accuracy. Thus, we can provide three levels of accuracy: high relative, classical
absolute, and pseudo–relative. We also note that using shifts, as advocated in [22], is
an attractive option.

Remark 6.6. It is also important to note that bidiagonalization based SVD
algorithms cannot use this early deflation by brute force because bidiagonalization is

8It is reasonable to assume in this analysis that the computed R̃ ≈ R has the diagonal dominance
implied by the Businger–Golub pivoting.

36



not rank revealing unless pivoted or preprocessed by a rank revealing QR factorization.
In each case, the simplicity and efficiency of the reduction to bidiagonal form are lost.
Consider now Jacobi iterations on a k×k (triangular) matrix X. Let H = XT X. The
question is when we can treat H as diagonal, i.e. no Jacobi rotation is needed in the
column space of X. If the left singular values of X are needed, then they are obtained
by normalizing the columns of X which means that Jacobi rotation terminate at

X if max
i 6=j

|hij |√
hiihjj

≤ kε, which guarantees both the numerical orthogonality of the

singular vectors and the high relative accuracy of the computed singular values. If the
left singular values of X are needed, then we have no choice and this stopping criterion
remains active. But, if we do not need the singular vectors, we can relax this criterion
as follows. Let H = Diag(H) + Ω(H). To guarantee high absolute accuracy, we need
‖Ω(H)‖ ≤ ελmax(H) with some small tolerance ε. We can decide to be slightly more
conservative and choose ‖Ω(H)‖F ≤ εmaxi |hii|, which is satisfied if

max
i6=j

|hij |
max` h``

≤ ε

k
, or e.g. max

i6=j

|hij |
max{hii, hjj} ≤

ε

k
.

It is easily seen than we can use stopping criterion which does not guarantee rela-
tive accuracy (thus avoids many rotations) but it does give more than the standard
absolute accuracy requires.

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum,
S. Hammarling, A. McKenny, S. Ostrouchov, and D. Sorensen, LAPACK users’
guide, second edition, SIAM, Philadelphia, PA, 1992.

[2] J. Barlow, More accurate bidiagonal reduction for computing the singular value decomposi-
tion, SIAM J. Matrix Anal. Appl., 23 (2002), pp. 761–798.

[3] J. Barlow and J. Demmel, Computing accurate eigensystems of scaled diagonally dominant
matrices, SIAM J. Num. Anal., 27 (1990), pp. 762–791.

[4] M. Berry, Z. Drmač, and E. Jessup, Vector models ...., SIAM Review, 27 (1989), pp. 191–
213.

[5] E. Bodewig, Matrix Calculus, North–Holland Publishing Company, Amsterdam, 1959.
[6] P. A. Businger and G. H. Golub, Linear least squares solutions by Householder transforma-

tions, Numer. Math., 7 (1965), pp. 269–276.
[7] T. F. Chan, An improved algorithm for computing the singular value decomposition, ACM

Trans. Math. Soft., 8 (1982), pp. 72–83.
[8] Sh. Chandrasekaran and I. C. F. Ipsen, On rank–revealing factorizations, SIAM J. Matrix

Anal. Appl., 15 (1994), pp. 592–622.
[9] , Analysis of a QR algorithm for computing singular values, SIAM J. Matrix Anal. Appl.,

16 (1995), pp. 520–535.
[10] A. J. Cox and N. J. Higham, Stability of Householder QR factorization for weighted least

squares problems, in Numerical Analysis 1997, Proceedings of the 17th Dundee Biennial
Conference, D. F. Griffiths, D. J. Higham, and G. A. Watson, eds., vol. 380 of Pitman
Research Notes in Mathematics, Addison Wesley Longman, Harlow, Essex, UK, 1998,
pp. 57–73.

[11] P. P. M. de Rijk, A one–sided Jacobi algorithm for computing the singular value decomposition
on a vector computer, SIAM J. Sci. Stat. Comp., 10 (1989), pp. 359–371.

[12] J. Demmel, M. Gu, S. Eisenstat, I. Slapničar, K. Veselić, and Z. Drmač, Computing
the singular value decomposition with high relative accuracy. Technical report CS-97-348,
Department of Computer Science, University of Tennessee, Knoxville (LAPACK Working
Note 119), Lin. Alg. Appl., to appear, 1997.

[13] J. Demmel and K. Veselić, Jacobi’s method is more accurate than QR, SIAM J. Matrix Anal.
Appl., 13 (1992), pp. 1204–1245.

[14] I. S. Dhillon and B. N. Parlett, Orthogonal eigenvectors and relative gaps, SIAM J. Matrix
Anal. Appl., 25 (2004), pp. 858–899.

37



[15] Z. Drmač, Computing the Singular and the Generalized Singular Values, PhD thesis, Lehrge-
biet Mathematische Physik, Fernuniversität Hagen, 1994.

[16] , Implementation of Jacobi rotations for accurate singular value computation in floating
point arithmetic, SIAM J. Sci. Comp., 18 (1997), pp. 1200–1222.

[17] , On principal angles between subspaces of Euclidean space. Department of Computer Sci-
ence, University of Colorado at Boulder, Technical report CU-CS-838-97. SIAM J. Matrix
Anal. Appl., to appear, March 1997.

[18] , A posteriori computation of the singular vectors in a preconditioned Jacobi SVD algo-
rithm, IMA J. Numer. Anal., 19 (1999), pp. 191–213.

[19] Z. Drmač, M. Omladič, and K. Veselić, On the perturbation of the Cholesky factorization,
SIAM J. Matrix Anal. Appl., 15 (1994), pp. 1319–1332.

[20] Z. Drmač and K. Veselić, New fast and accurate Jacobi SVD algorithm: II., tech. report,
Department of Mathematics, University of Zagreb, Croatia, June 2005.

[21] S. Eisenstat and I. Ipsen, Relative perturbation techniques for singular value problems, SIAM
J. Num. Anal., 32 (1995), pp. 1972–1988.

[22] K. V. Fernando and B. N. Parlett, Accurate singular values and differential QD algorithms,
Numer. Math., 67 (1994), pp. 191–229.

[23] , Implicit Cholesky algorithms for singular values and vectors of triangular matrices,
Numerical Linear Algebra with Applications, 2 (1995), pp. 507–531.

[24] G. E. Forsythe and P. Henrici, The cyclic Jacobi method for computing the principal values
of a complex matrix, Trans. Amer. Math. Soc., 94 (1960), pp. 1–23.

[25] W. M. Gentleman, Error analysis of QR decompositions by Givens transformations, Linear
Algebra Appl., 10 (1975), pp. 189–197.

[26] A. George, Kh. Ikramov, and A. B. Kucherov, Some properties of symmetric quasi–definite
matrices, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1318–1323.

[27] H. H. Goldstine, H. H. Murray, and J. von Neumann, The Jacobi method for real symmetric
matrices, J. Assoc. Comp. Mach., 6 (1959), pp. 59–96. (Also in J. von Neumann,Collected
Works, vol. V, pages 573-610, Pergamon Press, New York,1973 ).

[28] G. H. Golub and H. A. van der Vorst, Eigenvalue computation in the 20th century, J. of
Computational and Applied Mathematics, 123 (2000), pp. 35–65.

[29] R. T. Gregory, Computing eigenvalues and eigenvectors of a symmetric matrix on the IL-
LIAC, Math. Tables and Other Aids to Comput., 7 (1953), pp. 215–220.

[30] B. Großer and B. Lang, An o(n2) algorithm for the bidiagonal SVD, preprint BUGHW –
sc 2000/4, Fachbereich Mathematik, Bergische Universität GH Wuppertal, 2000.

[31] M. Gu and S. Eisenstat, An efficient algorithm for computing a strong rank–revealing QR
factorization, SIAM J. Sci. Comput., 17 (1996), pp. 848 – 869.

[32] R. J. Hanson, A numerical method for solving Fredholm integral equation of the first kind
using singular values, SIAM J. Num. Anal., 8 (1971), pp. 616–622.

[33] V. Hari, On sharp quadratic convergence bounds for the serial Jacobi methods, Numer. Math.,
60 (1991), pp. 375–406.

[34] V. Hari and Z. Drmač, On scaled almost diagonal Hermitian matrix pairs, SIAM J. Matrix
Anal. Appl., 18 (1997), pp. 1000–1012.

[35] M. R. Hestenes, Inversion of matrices by biorthogonalization and related results, J. SIAM, 6
(1958), pp. 51–90.

[36] N. J. Higham, The Matrix Computation Toolbox.
http://www.ma.man.ac.uk/ higham/mctoolbox.

[37] , Accuracy and Stability of Numerical Algorithms, SIAM, 1996.
[38] G. W. Howell, J. W. Demmel, C. T. Fulton, S. Hammarling, and K. Marmol, Cache

efficient bidiagonalization using BLAS 2.5 operators, Technical Report ??, Hewlett Packard
Corporation, 2003.

[39] I. C. F. Ipsen, Relative perturbation results for matrix eigenvalues and singular values, in Acta
Numerica, Cambridge University press, 1998, pp. 151–201.

[40] C. G. J. Jacobi, Über eine neue Auflösungsart der bei der Methode der kleinsten Quadrate
vorkommenden lineären Gleichungen, Astronomische Nachrichten, 22 (1845), pp. 297–306.

[41] , Über ein leichtes Verfahren die in der Theorie der Säcularstörungen vorkommenden
Gleichungen numerisch aufzulösen, Crelle’s Journal für reine und angew. Math., 30 (1846),
pp. 51–95.

[42] W. Kahan, The baleful effect of computer benchmarks upon applied mathematics, physics and
chemistry, tech. report, 1995.

[43] C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, Prentice–Hall Inc., Engle-
wood Cliffs, N. J., 1974.

[44] Ren-Cang Li, Relative perturbation theory: I. Eigenvalue and singular value variations, SIAM

38



J. Matrix Anal. Appl., 19 (1998), pp. 956–982.
[45] , Relative perturbation theory: II. Eigenspace and singular subspace variations, SIAM J.

Matrix Anal. Appl., 20 (1998), pp. 471–492.
[46] W. F. Mascarenhas, On the Convergence of the Jacobi Method for Arbitrary Orderings,

PhD thesis, Dept. of Mathematics, Massachusetts Institute of Technology, Cambridge,
Massachusetts, 1991. ( Numerical Analysis Report 91–2 ).

[47] R. Mathias and G. W. Stewart, A block QR algorithm for singular value decomposition,
Linear Algebra Appl., 182 (1993), pp. 91–100.

[48] A. M. Ostrowski, A quantitative formulation of Sylvester’s Law of Inertia, Proc. National
Acad. Sciences (USA), 45 (1959), pp. 740–744.

[49] C. Pan and P. Tang, Bounds on singular values revealed by QR factorizations, BIT, 39 (1999),
pp. 740–756.

[50] D. J. Pierce and J. G. Lewis, Sparse multifrontal rank revealing QR factorization, Tech.
Report MEA-TR-193-Revised, Seattle, WA, 1995.

[51] G. Quintana-Orti and E. S. Quintana-Orti, Guaranteeing termination of Chandrasekaran
and Ipsen’s algorithm for computing rank–revealing QR factorizations, Argonne Preprint
MCS–P564–0196, Argonne National Laboratory, 1990.

[52] G. Quintana-Orti, X. Sun, and C. H. Bischof, A BLAS 3 version of the QR factorization
with column pivoting, Argonne Preprint MCS–P551–1295 and PRISM Working note 26,
Argonne National Laboratory, 1990.

[53] N. H. Rhee and V. Hari, On the global and cubic convergence of a quasi–cyclic Jacobi method,
Numer. Math., 66 (1993), pp. 97–122.

[54] R. A. Rosanoff, J. F. Gloudeman, and S. Levy, Numerical conditions of stiffness matrix
formulations for frame structures, in Proc.of the Second Conference on Matrix Methods
in Structural Mechanics, WPAFB Dayton, Ohio, 1968.

[55] B. W. Rust, Truncating the singular value decomposition for ill–posed problems, Technical Re-
port NISTIR 6131, Mathematical and Computational Sciences Division, National Institue
of Standards and Technology, U.S. Department of Commerce, NIST, Gaithersburg, MD
20899, 1998.

[56] H. Rutishauser, The Jacobi method for real symmetric matrices, Numer. Math., 9 (1966),
pp. 1–10.

[57] , Vorlesungen über numerische Mathematik, Band 2., Differentialgleichungen und Eigen-
wertprobleme, Birkhäuser Verlag, Basel und Stuttgart, 1976. Lehrbücher und Monogra-
phien aus dem Gebiete der exakten Wissenschaften, Math. Reihe, Band 57.

[58] A. Schönhage, On convergence of the Jacobi process, Numer. Math., 3 (1961), pp. 374–380.
[59] G. W. Stewart, Rank degeneracy, SIAM J. Sci. Stat. Comp., 5 (1984), pp. 403–413.
[60] , Perturbation theory for the singular value decomposition, Technical Report UMIACS–

TR–90–124, Department of Computer Science and Institute for Advanced Computer Stud-
ies, University of Maryland, College Park, MD 20742, 1990.

[61] , The QLP approximation to the singular value decomposition, Technical Report TR–
97–75, Department of Computer Science and Institute for Advanced Computer Studies,
University of Maryland, College Park, MD 20742, 1997.

[62] Ji-Guang Sun, Componentwise perturbation bounds for some matrix decompositions, BIT, 32
(1992), pp. 702–714.

[63] S. Toledo and E. Rabani, Very large electronic structure calculations using an out–of–core
filter–diagnalization method, technical report, Schol of Computer Science, Tel Aviv Uni-
versity, March 2002.

[64] A. van der Sluis, Condition numbers and equilibration of matrices, Numer. Math., 14 (1969),
pp. 14–23.

[65] H. P. M. van Kempen, On quadratic convergence of the classical Jacobi method for real sym-
metric matrices with nondinstinct eigenvalues, Numer. Math., 9 (1966), pp. 11–18.

[66] K. Veselić and V. Hari, A note on a one–sided Jacobi algorithm, Numer. Math., 56 (1989),
pp. 627–633.

[67] J. H. Wilkinson, Note of the quadratic convergence of cyclic Jacobi process, Numer. Math., 4
(1964), pp. 296–300.

39


