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Abstract. This paper presents new implementation of one–sided Jacobi SVD for triangular
matrices and its use as the core routine in a new preconditioned Jacobi SVD algorithm, recently
proposed by the authors. New pivot strategy exploits the triangular form and uses the fact that the
input triangular matrix is the result of rank revealing QR factorization. If used in the preconditioned
Jacobi SVD algorithm, it delivers superior performance leading to the currently fastest method
for computing SVD decomposition with high relative accuracy. Furthermore, the efficiency of the
new algorithm is comparable to the less accurate bidiagonalization based methods. The paper also
discusses underflow issues in floating point implementation, and shows how to use perturbation
theory to fix the imperfectness of machine arithmetic on some systems.
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1. Introduction. Jacobi iteration is one of the time-honored methods to com-
pute the spectral decomposition H = V ΛV T of a real symmetric matrix H. The early
discovery in 1846. is certainly due to the simplicity and the elegance of the method
as well as to the geniality of the 19’th century computing matador C. G. J. Jacobi
who called it ’Ein leichtes Verfahren’ and applied it to compute the secular pertur-
bations of the planets. Jacobi’s original article [18] is a very masterpiece of applied
mathematics and may even today be read with profit by both students and scientists.
The simplicity of the Jacobi method is not only theoretical (it may even be used to
prove the existence of the spectral decomposition) but also computational, in this
aspect it may well be compared with the Gaussian elimination. Thus, upon coming of
automatic computation Jacobi method was soon rediscovered by Goldstine, Murray
and von Neumann [14] who provided first detailed implementation and error analysis.

In our recent work [13] we reviewed Hestenes variant [17] of the Jacobi method
for SVD computation of general matrix A by implicit diagonalization of H = AT A.
Briefly, if V T HV = Λ, then AV = UΣ, where Σ =

√
Λ is diagonal and U is orthogonal.

Orthogonal matrix V is the limit product of Jacobi rotations. In [13] we have presented
a novel approach to the Jacobi SVD computation with the goal of making the method
more efficient, while retaining superior numerical properties. We have shown that rank
revealing QR factorization can serve as versatile preconditioner which enables efficient
execution of the iterative part (Jacobi rotations) on a structured triangular matrix.

The idea of QR iterations as preconditioner for SVD computation is well known,
but it is not fully exploited in the context of Jacobi method. It is both simple and

powerful: If AP = Q

(
R
0

)
, and RT P1 = Q1R1 are rank revealing QR factorizations

of A and RT respectively, then the Hestenes one–sided Jacobi algorithm applied to
X = RT or X = RT

1 converges much faster than applied to A. This iterative part
on triangular matrix is in [13] used as a black–box procedure: starting with X(0) =
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X, the sequence X(k+1) = X(k)V (k) converges to X∞ = UΣ and the product of
Jacobi rotations V (0)V (1) · · · converges to V . The SVD of X is X = UΣV T , where
the matrix V is obtained not from the accumulated product of Jacobi rotations but
rather a posteriori, based on the relation V = X−1X∞. Assembling the SVD of A is
straightforward.

In this report we unwrap the black–box and show how it performs in the frame-
work of the new preconditioned Jacobi SVD algorithm [13]. In that sense, this report
is a continuation of [13], and it is organized as follows.

In §2 we describe a new pivot strategy for the Hestenes one–sided Jacobi SVD on
triangular matrices. It is based on the state of the art knowledge of the asymptotic
convergence of Jacobi iterations. We use triangular and scaled diagonal dominance
structures to reduce flop count and memory traffic, as well as to achieve faster con-
vergence. It should be stress here that the global structure of the algorithm in [13] is
such that we are completely free to choose pivot strategy (for both serial and parallel
computing, open for blocking to enhance efficient use of cache memory) and have all
numerical properties described in [13]. In §3 we explore certain functions of column
and row norms of A, which can be used to guess the off-diagonal structure of AT A and
AAT . Such functions can be useful for advanced control of the flow of the algorithm.
The results of detailed numerical testing of mathematical software implementing the
new algorithm, as well as modifications prompted by the tests are presented in §4.
The material of §4.2.1, 4.2.2 is an example of that tricky part of scientific computing
where we have to deal with the peculiarities of the floating point arithmetic. One
has to use many little tricks and facts that perhaps are not worth to be wrapped up
in forms of propositions, not to mention theorems, but all of them together make a
big difference. Concluding remarks and comments on the future development of SVD
computations are given in §5.

The authors acknowledge generous support by the Volkswagen Science Foundation
and the Croatian Ministry of Science and Technology. We are also indebted to P. Ar-
benz (Zürich), J. Barlow (State College), J. Demmel (Berkeley), F. Dopico (Madrid),
V. Hari (Zagreb), W. Kahan (Berkeley), J. Moro (Madrid), B. Parlett (Berkeley), I.
Slapničar (Split) for their comments, criticisms and many fruitful discussions.

2. One–sided Jacobi on preconditioned triangular matrices. Since in our
algorithm Jacobi iterations start with preconditioned matrix with special structure
(triangular with certain diagonal dominance properties), pivot strategy should not
blindly control the order of rotations following hardwired rule. Instead, pivoting
should be highly adaptive, with optimal use of current structure of the matrix.

We have several structural adaptations in mind. First, we will use triangular
form and avoid trivial computations with zero blocks as long as possible. This will
save unnecessary computation before eventual fill in. Secondly, proper pivoting could
lead to faster convergence, given the fact that the matrix has been preconditioned.
This means that the matrix nearly satisfies certain asymptotic assumptions for higher
order convergence (quadratic or even cubic) of some pivot strategies, and that the
positions of the largest off–diagonal entries are predictable, see [13]. The question is
how to choose pivot strategy to exploit this structure. Next, since one dot product is
necessary to determine if pivot columns should be rotated, dot products not followed
by rotation are the overwhelming cost of the later stages as the algorithm approaches
numerical convergence. Proper pivot strategy should monitor and use the structure
of the matrix to predict (and thus avoid) many unnecessary dot products.

Complete description and full explanation of our new pivot strategy is rather
2



technical, and we will not present it here with all details. Instead, we will just sketch
the main ideas and discuss relevant issues.

2.1. Review of asymptotic convergence. For the reader’s convenience, we
first offer a brief review of the main facts about the asymptotic convergence of the
Jacobi method. Understanding asymptotic behavior of the Jacobi process helps in
devising efficient stoping criteria and it also indicates which mechanisms create higher
order convergence and thus helps in constructing better pivot strategies.

For simplicity, we state all results in equivalent form of diagonalization of symmet-
ric matrices. Our symmetric matrix H will always be given implicitly as H = XT X,
and the Jacobi rotations are applied to X from the right–hand side in usual way. As
basic strategy we take the row–cyclic one, which is periodic and in one full sweep of
n(n−1)/2 rotations it rotates row–by–row at the pivot positions (1, 2), (1, 3), . . . (1, n);
(2, 3), . . . , (2, n); (3, 4), . . . , (3, n); . . . , (n− 2, n); (n− 1, n). There is a particular rea-
son why we place the row–cyclic pivoting as the basic strategy for future development
– the transformation pattern mimics the one of the modified Gram–Schmidt (MGS)
orthogonalization, which is finite (one sweep) algorithm. In fact, in the case of ex-
tremely graded matrices, the one–sided Jacobi SVD behaves almost as the MGS.1

2.1.1. Quadratic convergence. The symmetric Jacobi algorithm with row–
cyclic strategy is quadratically convergent. This is a well known fact, and the proof
of the general case of multiple eigenvalues is given by Hari [15]. Using the off-norm
Ω(·) = ‖ · −diag(·)‖F , the quadratic convergence is stated as follows:

Theorem 2.1. Let {H(k) : k = 0, 1, 2, . . .} be the sequence of matrices generated
by the symmetric Jacobi algorithm with row–cyclic strategy and with the initial matrix
H = H(0) with diagonal entries ordered from large to small. Let the eigenvalues of
H be2 λ1 ≥ · · · ≥ λn, and let the absolute gap in the spectrum be d = min

λi 6=λj

|λi − λj |.

Then Ω(H(0)) ≤ d
3

=⇒ Ω(H(n(n−1)/2)) ≤ 9
5

Ω(H(0))2

d
.

For the high relative accuracy, we need small off–diagonal part of scaled matrices
(H(k)

s )ij = (H(k))ij/
√

(H(k))ii(H(k))jj . The following theorem from [21] describes
the asymptotic behavior of scaled matrices in the Jacobi algorithm.

Theorem 2.2. Let {H(k) : k = 0, 1, 2, . . .} be the sequence of matrices generated
by the symmetric Jacobi algorithm with row–cyclic strategy and with the initial positive
definite matrix H = H(0). Let the corresponding scaled matrices be H

(k)
s , k ≥ 0. If

H has only simple eigenvalues λ1 > · · · > λn > 0 and if h11 ≥ · · · ≥ hnn, then

‖H(0)
s − I‖F ≤ 1

4
min

{
1
n

,g
}

=⇒ ‖H(n(n−1)/2)
s − I‖F ≤ 0.715

‖H(0)
s − I‖2F

g
,

where g = min
i6=j

|λi − λj |
λi + λj

is the minimal relative gap in the spectrum.

One important ingredient of the quadratic convergence is proper affiliation of the
diagonal entries of H with the corresponding eigenvalues. The assumption on the
off–diagonal part of H, combined with the Weyl’s theorem, implies that the diagonals
of H are partitioned by belonging to disjoint intervals around the eigenvalues, where
each interval contains the number of affiliated diagonals equal the multiplicity of
that eigenvalue. Diagonal entries affiliated with the same eigenvalue should occupy

1That is, symmetric Jacobi becomes similar to Gaussian eliminations.
2We always assume that H has at least two different eigenvalues.
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successive positions along the diagonal. We shall always try to enforce this condition,
independent of other modifications we may undertake.

Remark 2.1. It is important to keep in mind that the reality of floating point
implementation of the implicit Jacobi SVD looks quite differently from the above
description of the convergence. The problem is that the zeros are introduced implicitly,
thus the higher order corrections are not added to zeroes but to small quantities at
the round–off level. (Floating point rotation in general makes the pivot columns at
most numerically orthogonal, and not exactly orthogonal.)

2.1.2. Cubic convergence. Mascarenhas [20] used the fact that off–diagonal
entries converge to zero at different rates and showed that using special quasi-cyclic
strategies Jacobi method can perform cubic asymptotic convergence per quasi-cycle.
Here the term quasi–cycle refers to a modified row–cyclic strategy where in a cycle
some (slowly convergent) positions are visited more than once. The complexity of the
quasi-cycle is about 1.25 times the complexity of classical cycle. Rhee and Hari [23]
proved, under certain asymptotic conditions, the global and the cubic (per quasi-cycle)
convergence of such modified method.

The cubic convergence is asymptotic, which means that the matrix XT X needs
to be sufficiently close to diagonal form. Since our initial X has been preconditioned
twice, we can expect that XT X is such that the effects of the higher order convergence
will be non–negligible. Let the initial matrix be H = XT X and let us introduce two
levels of partitions of H:

H =

(
H [11] H [12]

H [21] H [22]

)
=




H[11] H[12] H[13] H[14]

H[21] H[22] H[23] H[24]

H[31] H[32] H[33] H[34]

H[41] H[42] H[43] H[44]


 .(2.1)

The quasi–cyclic strategy means, choosing pivot positions in row–cyclic fashion inside
the submatrices, respectively, H[33], H[44], H[34], H[33], H[44], H[11], H[22], H[12], H[11],
H[22], H [12]. Let H ′ be the matrix computed after such quasi–cycle.

Theorem 2.3. Let the diagonal entries of H in (2.1) be ordered form large to
small, and let no two diagonal entries from different blocks H[ii], H[jj] be affiliated
with the same eigenvalue. Let

Γ1 =

√
Ω(H [11])2 + Ω(H [22])2

d/3
, Γ2 =

(‖H [12]‖F

d/3

)2/3

, Γ ≡ Γ(H) = max{Γ1,Γ2}.

If Γ(H) < 1/4, then Γ(H ′) < (49/25)Γ(H)3. Further, if Γ(H) = Γ1 < 1/4, then

Ω(H ′)
d

≤ 18
(

Ω(H)
d

)3

.

Theorem 2.3 states that the convergence is cubic in the Γ measure, and in the Ω
measure things look slightly differently. In fact, Rhee and Hari pointed out that the
convergence of Ω(H) is only quadratic if Γ2 dominates Γ1. One of the key points
in our development is that preconditioning makes the dominance of Γ2 over Γ1 very
unlikely, see [13, §3.]. Intuitively, it is then reasonable strategy to take care of Γ1 first,
thus reducing Γ down to the level which initiates cubic convergence. Briefly, we dare
to hope for effects of cubic convergence very early in the process.

Here we also note that the presented results on cubic convergence hold for the
unscaled off–norm. That the principle can be extended to the scaled off–norm Ω(Hs)
is only a technical matter.

4



2.2. How to exploit triangular form. Strategy of choosing Jacobi rotations
is usually not designed to preserve any zero pattern of the input matrix. In fact, the
incapability to preserve created zeros is the main reason for the poor performance,
as compared with tridiagonalization and bidiagonalization based methods. Strong
criticism of this is given in [22, §9.6]. In our new algorithm, we exploit a possibility to
partially use and preserve the zero structure during one–sided transformations, if the
initial matrix is triangular. We illustrate this in the case of lower triangular matrix.

In the scheme (2.2), X is the array in the memory occupied by the iterates in
the Jacobi SVD algorithm. (That is, the input matrix X and all matrices computed
by application of right–handed Jacobi rotations to X are denoted by X.) Let the
columns of X be partitioned in four blocks X1, X2, X3, X4, of dimensions n × ni,
respectively, where each ni is approximately n/4.

X =




¥ 0 0 0 0 0 0 0
¥ ¥ 0 0 0 0 0 0
¥ ¥ ¥ 0 0 0 0 0
¥ ¥ ¥ ¥ 0 0 0 0
¥ ¥ ¥ ¥ ¥ 0 0 0
¥ ¥ ¥ ¥ ¥ ¥ 0 0
¥ ¥ ¥ ¥ ¥ ¥ ¥ 0
¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥




≡ (X1, X2, X3, X4) .(2.2)

We will say that rotations are applied in the column space of Xi if we implicitly
transform XT

i Xi, following some pivot strategy. Further, for two blocks of columns Yi

and Yj of X, rotating in Yi ↔ Yj means implicit (one sided) transformations inside the

off–diagonal blocks in the matrix


 Y T

i Yi Y T
i Yj

Y T
j Yi Y T

j Yj


, following some pivot strategy.

In other words, each pivot pair has one column from Yi and one from Yj . Here Yk

can be some Xi or e.g. (X1, X2).
Consider the most natural greedy approach. Rotating in the column space of

X4 is efficient because all columns are and remain (during rotations) in a canonical
subspace of dimension n4 ≈ n/4. Thus, only the submatrix X4(n1 + n2 + n3 +
1 : n, 1 : n4) is transformed, and for simplicity pivot pairs can be chosen in the
row–cyclic manner. In the same way, transformation of the columns of X3 by any
strategy is computation in a subspace of dimension of approximately n/2, as well
as the transformation of the columns of the sub–array (X3, X4). It is trivial to see
that the savings in floating point operations and the effects of better use of memory
are nontrivial. Repeated transformations of the columns of X3 (and independently
X4) are still in the lower dimensional subspace, thus very efficient. Savings in the
transformations of the columns of X2 are modest, but not worthless.

This greedy approach leads to another nontrivial improvement of the convergence.
Namely, rotating, respectively, in spaces of X3, X4, X3 ↔ X4, X3, X4, X1, X2,
X1 ↔ X2, X1, X2, and finally in (X1, X2) ↔ (X3, X4) leads, as discussed in §2.1.2,
to cubically convergent process.

Remark 2.2. Our goal is to initiate synergy of the positive effects of precondi-
tioning, improved memory traffic, lower flop count (due to triangular form) and higher
order convergence. Because of the preconditioning, we expect that with some partition
(2.1) H = XT X is a good candidate for cubic reduction of the off–diagonal entries.
However, the block partition (2.2) is motivated by flop count savings and regardless of
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the almost diagonal structure of XT X and the distribution of its eigenvalues, which
is important for the cubic convergence. A more careful partitioning of X would try
to estimate the distribution of its singular values, match the column norms and the
corresponding singular values (by column permutations if needed), and then partition
so that multiple or clustered singular values are approximated from single column
block. This can be done, but we choose not to change the initial partition too much.
We combine different devices and therefore reasonable trade–offs are unavoidable.

Obviously, X becomes dense after rotating a full sweep, and this block–quasi–
cyclic strategy cannot use any zero structure of X in the next sweep. However, there
is another, more subtle, structure which can be exploited and which becomes clearly
visible if we study the Gram matrix XT X.

2.3. How to adapt to the nearly band structure?. Now, X is dense, but
Xc = Xdiag(1/‖X(:, i)‖)n

i=1 is close to orthogonal and the largest off-diagonal entries
of XT

c Xc are located close to the diagonal. That is, we expect that XT X is γ–
s.d.d. matrix in the sense of [2], and the off–diagonal mass is distributed close to the
diagonal. In fact, XT X is also expected to be shifted quasi–definite matrix, see [13].
This is typical non–pathological situation. Pathological case occurs if the singular
values are poorly separated, that is, the spectrum is composed of many clusters of
singular values. We first discuss the case of well separated singular values.

The scheme (2.3) gives the main idea how pivot strategy can dynamically adapt
to the structure of XT X. The basic strategy is row–cyclic, but if in a row i certain
number of consecutive rotations is skipped (because the stopping criterion is satisfied),
the control of the row–cycling moves to the next row. This means that the remaining
pivot positions of the i–th row are not tested against the tolerance. This strategy

XT X =




¥ ¢ ¯ ¯ ⊗ ⊗ ⊗ ⊗
¥ ¯ ¢ ¯ ¯ ⊗ ⊗

¥ ¯ ¯ ⊗ ⊗ ⊗
¥ ¢ ¯ ¯ ⊗

¥ ¢ ¯ ¢
¥ ¢ ¯

¥ ¢
¥




,
¢ rotated
¯ rotation skipped after test
⊗ dot product test skipped

(2.3)

Fig. 2.1. Example of modified row–cyclic strategy: if two consequtive rotations in a row are
skipped, then the remaining pivot positions in that row are not even tested against the threshold.

is motivated by the following reasons. First, it is very likely that the ⊗–positions in
the scheme (2.3) will pass the tolerance check, so we save unnecessary dot products.
(See [13].) Secondly, even if the ⊗–positions would not satisfy the tolerance criterion,
they are expected to be much smaller than the pivot positions closer to the diagonal
and it is more useful for the overall convergence to reduce those positions close to
the diagonal. Certainly, this modification of the row–cyclic strategy may bring no
substantial savings if the initial matrix has close singular values. But, it does no
harm – in that case it simply reduces to the classical strategy. Also, this modification
is in general not convergent, so an additional switch returns the control to a convergent
strategy after at most 3 or 4 modified sweeps. In a non–pathological case the expected
total number of rotations in 3 or 4 sweeps of this predict–and–skip strategy is O(n).
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There are more good reasons to avoid even to probe the pivots at the ⊗ positions.
It is known that the convergence of Jacobi iterations is improved if the threshold for
the rotation is set higher at the beginning of the process and then gradually reduced
to the final level. Such strategy is not suitable for the implicit Jacobi SVD algorithm
because checking the pivot against the threshold value is extremely expensive – some
O(n) flops per pivot. Our predict–and–skip strategy produces the positive effect of
variable threshold, but avoids dot products.

Our next rationale is related to the convergence of the scaled matrices H
(k)
s . Note

that in general the sequence ‖H(`)
s −I‖F , ` ≥ 0, does not converge monotonically. The

transition from H
(`)
s to H

(`+1)
s introduces two zeros at the pivot positions, but the

transformation is not orthogonal. Let us analyze one step. To simplify notation, con-
sider the transformation H ′ = V T HV , where V is the Jacobi rotation that annihilates
the position (p, q). Let the corresponding scalings be H = DHsD, H ′ = D′H ′

sD
′.

Then H ′
s = (D′)−1V T DHsDV (D′)−1. The matrix S = (D′)−1V T D differs from the

identity only at the pivot positions where it takes the form

Ŝ =




√
hpp

h′pp
cosφ −

√
hqq

h′pp
sin φ

√
hpp

h′qq
sin φ

√
hqq

h′qq
cos φ


 =

(
spp spq

sqp sqq

)
.(2.4)

Let ∆ = ‖H ′
s − I‖2F − ‖Hs − I‖2F , and let yp and yq be the p–th and the q–th row of

the (n−2)× (n−2) matrix obtained from Hs by deleting its pivot rows and columns.
Direct calculation, similar as in [12], gives

∆
2

= ‖yp‖2(s2
pp + s2

qp − 1) + ‖yq‖2(s2
pq + s2

qq − 1) + 2yT
p yq(sppspq + sqpsqq)−

h2
pq

hpphqq
.

Using the formulas for the Jacobi rotation and the definition of S, we obtain

s2
pp + s2

qp − 1 =

h2
pq

hpphqq

1− h2
pq

hpphqq

= s2
pq + s2

qq − 1,

sppspq + sqpsqq =
1
2

√
hpphqq

(
1

h′qq

− 1
h′pp

)
sin 2φ = −

hpq√
hpphqq

1− h2
pq

hpphqq

.

Proposition 2.4. Let H(`+1) be computed from H(`) by rotating at pivot position
(p, q). Then the difference ‖H(`+1)

s − I‖2F − ‖H(`)
s − I‖2F equals

2
(

(H(`)
s )2pq

1−(H
(`)
s )2pq

∑′((H(`)
s )2pk + (H(`)

s )2qk)− 2(H(`)
s )pq

1−(H
(`)
s )2pq

∑′(H(`)
s )pk(H(`)

s )qk − (H(`)
s )2pq

)
,

where the sums
∑′ are

∑n
k=1

k 6=p,q
.

The next corollary gives a necessary condition for the growth of Ω(H(k)
s ).

Corollary 2.5. Let in one step of the Jacobi algorithm Ω(H(`+1)
s ) > Ω(H(`)

s ),

and let ω =
n∑

k=1
k 6=p,q

((H(`)
s )2pk + (H(`)

s )2qk) + (H(`)
s )2pq < 1, where (p, q) is the pivot posi-

tion. Then
∣∣∣(H(`)

s )pq

∣∣∣ ≤ 2
1− ω

n∑
k=1

k 6=p,q

(H(`)
s )pk(H(`)

s )qk, which means that the pivot was

quadratically small. The increase of the scaled off norm is also at most quadratic.
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Fairly simple proof is omitted. The corollary suggests that only too small pivot
(relative to the remaining entries in pivot rows) can lead to an increase of the scaled
off–norm. But even if the rotation does not increase the scaled off–norm, too small
pivot cannot make the reduction substantial. That is exactly what we can expect in
the ⊗–positions in (2.3).

The predict–and–skip idea can be transferred to checking the numerical conver-
gence which occurs after n(n − 1)/2 consecutive rotations have been skipped. Note
that this means computation of n(n − 1)/2 dot products not followed by rotations,
an O(n3) cost that is not negligible. Of course, all dot products must be computed
in order to declare numerical convergence, there is no possibility in saving flops by
skipping some of them. However, if the dot products are computed as composite
BLAS 3 [9] operation xSYRK, information needed to check the convergence is gath-
ered much faster. For that, we need to predict that such an empty sweep is ahead
and then we can interrupt the pivot strategy by the call to xSYRK. If the predictor
is right, this means drastic reduction of the cost of the last sweep. In the case of false
alarm, more rotations are needed, but we can use the information on the structure
of XT X. If extra rotations are non–overlapping, they will lead to numerical conver-
gence. If not, the control is returned to the main pivot strategy until the predictor
issues next interrupt. This schema can be constructed in many different ways (with
two or more collaborating predictors) and we omit the details which will be given
elsewhere, together with the details of the predictor based on convergence theory of
Jacobi processes.

We finally note that the tolerance in the pivot strategy can be modified to give
better performance in the case that only the singular values are needed, and with the
classical absolute error bounds, see [13].

2.4. Cache–aware pivot strategy. From the early days of scientific computing
it was clear that memory references play significant role in the run time. Having to
read from (or even first manually replace) the magnetic tape to access matrix elements
needed for operations but at the moment not in computer memory certainly kills the
performance of any matrix algorithm. Nowadays, we do not use magnetic tapes in
matrix computations, but even for matrices that fit into the main memory the penalty
of having to perform operations on data not in fast cache memory is still severe.

Since the CPU speed is not matched by the memory speed, the patterns of memory
traffic during the run time are of the utmost importance. Well designed algorithm
will use the cache memory wisely and avoid various sorts of cache misses. The basic
principle to improve temporal and spatial data locality has led to development of a
bag of tricks and tips for cache efficient matrix computations. Of course, optimal
performance on a particular machine is obtained by an additional profiling with given
tools and technical data of the cache system.

Row cyclic pivoting in one–sided Jacobi SVD algorithm is an embarrassing exam-
ple of violation of main principles of good cache–aware matrix computation. Fairly
simple reasoning reveals that the processor is very often stalled due to cache misses.
Fortunately, a simple idea of tiling taken from the bag of tricks changes that.

Introduce a parameter b (block size expressed in number of columns) and partition
the columns of X. This introduces dn/be × dn/be block partition in H = XT X and
the new strategy is to visit all blocks in the usual row–cyclic fashion, and inside each
block all positions are visited row by row. This strategy is equivalent (in the sense
of equivalence of pivot strategies in convergence theory of Jacobi processes) to the
row–cyclic strategy: both strategies compute the same matrix after

(
n
2

)
rotations.
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This block–cyclic strategy can be modified following the lines of §2.2, 2.3 and we
omit the technical details which can be found in the software source code. Let us
just mention one out of many additional options. At the beginning of the r–th block
row, after rotating in the diagonal block (r, r) we allow the possibility to transform
next k diagonal blocks before entering the block (r, r + 1). The parameter k is small
integer (typically 0, 1, 2) depending on X, n, b and cache parameters. It influences
convergence rate (this is easily seen, take e.g. k = 1) and memory access patterns.
The proof of global convergence of this strategy is probably only a technical matter.

Algorithm 1 Example of tiling for a modified row–cyclic strategy with tile size b.
{Simplified description of one full sweep}
Nbl = dn/be
for r = 1 to Nbl do

i = (r − 1) · b + 1
for d = 0 to k do {Do the blocks (r, r), . . . , (r + k, r + k)}

i = i + d · b
for p = i to min{i + b− 1, n} do

for q = p + 1 to min{i + b− 1, n} do
rotate pivot pair (p, q)

end for
end for

end for
i = (r − 1) · b + 1
for c = r + 1 to Nbl do

j = (c− 1) · b + 1
for p = i to min{i + b− 1, n} do

for q = j to min{j + b− 1, n} do
rotate pivot pair (p, q)

end for
end for

end for
end for

3. Guessing the off–diagonal structure. In [13], we used the diagonal entries
of AT A and AAT (that is, the column norms γ1, . . . , γn and the row norms ρ1, . . . , ρn

of A) to decide which of the two matrices, A or AT , would be better input to the
new Jacobi SVD algorithm. This was useful in case of non–normal square matrix A.
The general idea is to use certain functions of A which hare computed in at most
quadratic time, and which give useful information about the off–diagonal structures
of AT A and AAT . As shown in [13], the Shannon entropy computed at the γi’s
and ρi’s (normalized by the trace) can provide useful information. Here we continue
exploration of that idea, try new interesting functions and in particular consider
application to triangular matrices.

3.1. Hadamard measure. The Hadamard measure of a positive definite matrix

H = (hij), defined as χ+(H) =
∏n

i=1 hii

det(H)
has the property of being one for a diagonal
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H, otherwise it is greater than one. We then define

χ(A) =
√

χ+(AT A) =
∏n

i=1 γi

|det(A)| .(3.1)

If we compute the QR factorization of A, A = QR, then obviously χ(A) = χ(R) =∏n
i=1(γi/|rii|). Now we immediately conclude that χ(A) ≥ 1 and χ(A) = 1 iff the

columns of A are mutually orthogonal. Further, χ(A) does not change if we scale the
columns of A, permute them, or premultiply A by an orthogonal matrix.

Proposition 3.1. Let D be diagonal n × n matrix, det(D) 6= 0, and let A′ =

AD. Then n−1
√

χ(A) ≤ 1
2
(κ2(A′) +

1
κ2(A′)

). Further, if Ac = Adiag(1/γi), then

χ(A) ≥ ‖A−1
c ‖/

√
exp(1).

Proof. The first claim uses the column scaling invariance of χ(A) and the fact

that q ≡ 2κ2(A′)
κ2

2(A′) + 1
satisfies the inequality

√
det((A′)T A′) ≥ qn−1

∏n
i=1 ‖A′(:, i)‖.

Moreover, a geometric point of view reveals that

1
χ(A)

=
n∏

i=2

‖(I −PSpan{a1,..,ai−1})
ai

‖ai‖‖ =
n∏

i=2

sin ∠(ai, Span{a1, .., ai−1}),(3.2)

where ai = A(:, i) and P is the orthogonal projection onto the indicated space. Re-
lation (3.2) shows that linear dependencies (small angles) between the columns of A
will be reflected through large value of χ(A).

Note that the values γi/rii are easily computed after we have the QR factorization
of A. They can then be used to estimate the angles between the columns of R (that
is, of A), which is relevant for the decision whether or not the second preconditioning
step is necessary (cf. Algorithm 4. in [13]).

Proposition 3.2. Let Ã = ( A(:, 1 : k − 1), Ã(:, k : l), A(:, l + 1 : n) ), where A(:
, k : l) = Ã(:, k : l)T̂ is the QR factorization of A(:, k : l). Then

χ(Ã) = χ(A)
l−k+1∏

j=2

‖(I −PSpan{ak,..,ak+j−2})
ak+j−1

‖ak+j−1‖‖.(3.3)

Let A = [a1, . . . , ak, ak+1, . . . , an], Â = [a1, . . . , ak] and let Ã = A(S
⊕

In−k). If the
columns of ÂS are mutually orthogonal, then χ(Ã) = χ(A)/χ(Â).

Proof. Obviously, |T̂11| = ‖ak‖, and |T̂jj | = ‖(I −PSpan{ak,..,ak+j−2})ak+j−1‖ for
2 ≤ j ≤ l−k+1. Let T = Ik−1⊕ T̂ ⊕In−l, A = ÃT , and let A = QR, Ã = Q̃R̃ be the
QR factorizations of A, Ã. From Q̃T QR = R̃T follows Q̃T Q = diag(±1), since Q̃T Q
is orthogonal and the QR factorization is essentially unique. Now |Rjj | = |R̃jj ||Tjj |,
1 ≤ j ≤ n, implies (3.3).

Corollary 3.1. Let Ã = AU , where U is the Jacobi plane transformation which
makes the columns ak and al orthogonal. Then χ(Ã) = χ(A)

√
1− cos2 ∠(ak, al).

These properties of the function χ(A) indicate that it is a reasonable measure for
the diagonality of AT A. Note that for our purposes we do need to compute det(A)
because we need to compare χ(A) and χ(AT ), eg. it is enough to have χ(A)/χ(AT ) =∏

i(γi/ρi). (Note that this expression is independent of the column and row orderings
and that in floating point it is safely computed in the log scale.)
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3.1.1. Estimating the scaled off–norm. There is more. Once the first QR-
decomposition of A is made, we have the Hadamard measure of both AT A and AAT

— cheaply! Equally cheaply we may compute the Hadamard measure before each
Jacobi cycle (or even update it after each rotation!) and decide how diagonal the,
otherwise invisible, matrix AT A is. Note that after Jacobi has started, the matrix
A is not triangular anymore. We will show that the Hadamard measure bounds the
scaled diagonal dominance of the QR triangular factor of A. More precisely, we have

Proposition 3.3. Let AT A = DBD such that B has unit diagonals. Let B =
RT R, R = (rij), be the Cholesky decomposition of B. Then

‖Ω(R)‖2E ≤ (n− 1)

(
1−

(
1

(χ+(AT A))

)1/(n−1)
)
≤ ln

(
χ+(AT A)

)
,(3.4)

where Ω(R) is the off-diagonal part of R. This estimate is asymptotically sharp for
χ+(AT A) close to one.

Proof. By r2
1j + · · ·+ r2

jj = 1, j = 1, . . . , n, we have

χ+(AT A) = χ+(B) = χ+(RT R) =
1

(1− α2) · · · (1− αn)
(3.5)

with αj = r2
1j + · · ·+ r2

j−1j , j = 2, . . . , n. Obviously, 0 ≤ αi < 1. Now,

‖Ω(R)‖2E = α2 + · · ·+ αn = (n− 1)
(

n− 1− ((1− α2) + · · ·+ (1− αn))
n− 1

)

≤ (n− 1)


1− n−1

√√√√
n∏

j=2

(1− αj)


 ≤ (n− 1)

(
1− n−1

√
1

χ+(AT A)

)
.

Here we have used (3.5) as well as the fact that the arithmetic means dominates the
geometric one. Thus, the first inequality from (3.4) follows. To prove the second one
we consider the function 0 < x 7→ g(x) = x(1 − b

1
x ), where b = 1/χ+(AT A) < 1.

By use of the L’Hospital rule we see that limx→∞ g(x) = − ln b. Also, this function

is increasing with x. This is seen from its derivative g′(x) = 1− e
ln b
x

(
1− ln b

x

)

which is positive by the known inequality 1 + y < ey with y = −(ln b)/x > 0.
Thus, the second inequality from (3.4) follows. Finally, observe that χ+(AT A) is
close to one, if and only if all αi are small, in this case (3.5) reads asymptotically
χ+(AT A) ≈ 1 + α2 + · · ·+ αn = 1 + ‖Ω(R)‖2E . Hence ‖Ω(R)‖2E ≈ ln(χ+(AT A)), and
the last assertion follows as well.

There are now various possibilities: we may easily check/update χ+(AT A) at
every desired stage of the process (it may be necessary to work with logarithms) and
stop when it is close enough to one. Or, if we fear rounding errors in its computed
value (they will be fairly small on Jacobi after a pivoted QR decomposition, as our
preliminary experiments have indicated) we may make a final check by computing
AT A explicitly. Another difficulty is that the Hadamard measure must be ε2-close to
one in order to insure the ε-diagonal dominance.

3.2. Diagonal means measure. The normalization by the invariant det(·) may
be replaced by another one, which is easier to compute and this is, for instance, a
function of the trace. With H = AT A we set

µ+(H) =
n
√∏n

i=1 hii

Trace(H)/n
, µ(A) =

√
µ+(H).
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Obviously, as long we run over a set of mutually similar matrices the two measures
χ(·) and µ(·) are just proportional – AT A, AAT are orthogonally similar! µ(A) is
equal to one if and only if the diagonal of H is constant. Otherwise µ(A) is less than
one and takes its minimum, if and only if H is diagonal.

The difference between µ(·) and the Hadamard measure lies in the fact that µ(·)
cannot be used absolutely i.e. on a given single matrix. It has the value one on any
diagonally constant matrix while its minimum depends on the (generally unknown)
spectrum. On the contrary, the Hadamard measure equals to one, iff the matrix
is diagonal. Our, ’purely diagonal’, measure µ(·) just helps to decide which of the
mutually similar matrices is better diagonal. There are many such diagonal measures.

Theorem 3.4. Let f be a twice continuously differentiable function on [0,∞)
with f,−f ′′ > 0. Let S be set of mutually orthogonally similar positive definite real
symmetric matrices of order n. With A = (aij) ∈ S set h(A) = g (

∑n
i=1 f(aii)), where

g is any strictly increasing continuous positive valued function. Then h(A) takes its
minimum, if and only if A is diagonal and its maximum, if and only if A has constant
diagonal i.e. aii = Trace(A)/n, i = 1, . . . , n.

Proof. Without loss of generality we may assume that g(x) ≡ x. We consider
first the case n = 2. Again, without loss of generality we may assume that the
eigenvalues of A are µ1 6= µ2. We are looking for the extrema of the function h(A) =
f(a11) + f(a22) under the conditions

a11 + a22 = const.1 > 0 a11a22 − a2
12 = const.2 > 0.(3.6)

By the compactness argument there exist a minimum and a maximum. We apply the
Lagrange formalism. Let L = f(a11)+f(a22)+λ1 (a11 + a22)+λ2

(
a11a22 − a2

12

)
. The

differential of the conditions (3.6) is




1 a22

1 a11

0 −2a12


. This has rank 2 (except in the case

a12 = 0, a11 = a22 which is excluded). Setting grad L = 0 gives f ′(a11)+λ1 +λ2a22 =
0, f ′(a22) + λ1 + λ2a11 = 0, and −2λ2a12 = 0. Thus, we have the alternative:

1. λ2 = 0: this implies a11 = a22 =
µ1 + µ2

2
, and f(a11) + f(a22) = 2f(

µ1 + µ2

2
).

2. λ2 6= 0: this implies a12 = 0 and f(a11) + f(a22) = f(µ1) + f(µ2).

By µ1 6= µ2 and f ′′ < 0 we conclude
f(µ1) + f(µ2)

2
< f

(
µ1 + µ2

2

)
. Thus, in the

first case we have a maximum and in the second a minimum.
Consider now the case of a general n. On minimum the matrix must be diagonal.

Indeed, if e.g. a12 6= 0 then we can annihilate a12 by a plane rotation A′ = UT AU .
Then h(A) goes into h(A′) = f(a′11) + f(a′22) + f(a33) + · · · + f(ann) and f0(a′11) +
f0(a′22) < f0(a11) + f0(a22) as we have proved above. Similarly, on maximum the
diagonal is seen to be constant. The proof is completed by recalling that the function
h is constant on all diagonal matrices from S and also on all matrices from S which
have constant diagonal.

4. Numerical testing. In this section we present mathematical software that
implements the new algorithm described in [13, Algorithm 4] and in this report. We
give the results of preliminary testing of the algorithm with respect to numerical
accuracy and efficiency (run time compared with existing algorithms). Our goal is
numerically reliable software implemented to reach reasonable fraction of the efficiency
of the less accurate bidiagonalization based methods. In other words, to make the high
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accuracy of the Jacobi SVD algorithm so affordable that the new algorithm becomes
attractive as one of the methods of choice for dense full SVD computation.

High performance matrix computation is usually achieved by using machine op-
timized BLAS library. It is our impression that the developers of these libraries are
mainly interested in gaining high flop count per second at any price, and that some
numerical properties can be silently lost in the release after release after release fixes
and improvements. It seems that the potentials of the processors with respect to
numerical accuracy are sometimes sacrificed in favor of potential for optimization
for speed. The criticism of such tendencies in hardware and software developments is
best expressed by Kahan [19]. Memory leaks are sometimes considered acceptable risk
for gaining higher execution speed. Bugs in such libraries are considered as unlucky
accidents to be resolved in the next releases.

Here we assume that we can trust that the compiler, the implemented machine
arithmetic and the BLAS library are bug free. One should be aware that this is
not always warranted, and that implementing and testing a theoretically completed
algorithm into mathematical software is far from being a routine software engineer-
ing task, even if we use building blocks from the BLAS and the LAPACK libraries.
Sometimes, it requires tedious and frustrating work even to get commercial compiler
suite to link properly. The criticism expressed in the 1973. review paper of F. Bauer
[3] applies today as well.

4.1. Why and how to test an SVD algorithm. Why do we need to test
software implementation of a numerical algorithm if we have numerical analysis prov-
ing its accuracy? Once we are sure that there are no pure programming errors in the
software and if we assume that the arithmetic is implemented according to the model
(standard) used in the analysis, everything should run as predicted by the theory.

The problem is that the assumptions of the developed theory are not always met
in the practice. Typical example is expectation that implemented arithmetic behaves
following simplified model which ignores (perhaps of really low probability but not
impossible) occurrences of underflow (flush to zero or denormalized) in the error anal-
ysis. Good starting point in the study of these problems is [6]. Further, there is a
dangerous possibility of a gap between numerical properties of standard implementa-
tion o some elementary matrix factorization (used in the theoretical analysis) and its
highly optimized version used to get optimal performance.

Carefully designed testing of the software is also test of the theory. It shows
how sharp are the theoretical bounds and it also gives new insights in the cases of
input matrices which are on the boundaries of the theoretical assumptions. Good
test cases (accidentally found or cleverly designed) give insights into the behavior
of the algorithm and may induce modifications which improve the efficiency of the
algorithm. The feedback loop created in this way is part of the research process. In
fact, before giving any test result, in §4.2 we describe modification of the algorithm,
prompted by numerical tests of an early version of the code.

Finally, testing different algorithms can help in deciding which one is the method
of choice in particular situations, with respect to numerical properties (accuracy,
stability) and efficiency (speed, memory requirements).

We test single precision (32 bit representation, ε ≈ 5.3 · 10−8) implementation
because lower precision computation increases the probability of encountering unfore-
seen numerical difficulties related to finite precision arithmetic. Underflow threshold
is denoted by ν and overflow by ω. It is always assumed that the nonzero entries of
input matrix are normalized floating point numbers.

13



4.1.1. Measuring error – distance to what. Once we compute A ≈ Ũ Σ̃Ṽ T ,
Σ̃ = diag(σ̃1, . . . , σ̃n), we can immediately estimate the quality of the computed de-
composition using the following computed quantities

r = computed(
‖A− Ũ Σ̃Ṽ T ‖F

‖A‖F
) (should be at most f(m,n)ε, f moderate);

oU = computed(max
i,j

|(ŨT Ũ)ij − δij |) (should be at most O(mε));

oV = computed(max
i,j

|(Ṽ T Ṽ )ij − δij |) (should be at most O(nε)).

These measures are useful to test the correctness of the code (bug free in the usual
sense) and backward stability in the matrix norm sense. It is easy to show that r, oU

and oV can be computed sufficiently accurately (best using higher precision) to be
used as relevant measures of the quality of the computed decomposition. Thus, the
standard error bound can be a posteriori numerically checked. On the other hand, the
column–wise backward error (that is, residual bounds for each column of A) cannot
be easily checked. Namely, it holds that

computed(Ũ Σ̃Ṽ T ) = Ũ Σ̃Ṽ T + E, |E| ≤ O(nε)|Ũ | · Σ̃ · |Ṽ |T ,(4.1)

which means that small columns of Ũ Σ̃Ṽ T are not necessarily computed to sufficient
accuracy, so even if the backward error in some column is small, we are not able
to detect that fact by using computed residuals. Note that even double precision
computation of the residual may not be enough if the condition number of A is large.

One difficulty in testing a new SVD software on a large set of pseudo–random
matrices is how to provide reference (exact) values of Σ, U and V which are used
to estimate the accuracy of the computed approximations Σ̃, Ũ , Ṽ . One could start
by generating pseudo–random numerically orthogonal U , diagonal Σ and numerically
orthogonal V and then define A = computed(U Σ V

T
). But as the relation (4.1)

shows, the numerical SVD of A may be very much different from U Σ V
T
. Using

the same algorithm in higher precision is useful but not always – depending on the
matrix, it is possible that both procedures compute with large errors. We should also
keep in mind that working in higher precision generates different numerical process
in finite precision environment and that double precision procedure also needs to be
tested. The alternative is to use existing, tested (!) and trusted double precision
software to compute the SVD of a given test matrix A. In our case, this means
DGESVD and/or DGESDD3 from LAPACK, but this will be useful only as long
these procedures guarantee at least eight digits of accuracy, that is for (roughly)
κ(A) < 1/ε ≈ 108. Our choice of the reference procedure is classical one–sided Jacobi
SVD with de Rijk’s pivoting, implemented in double precision.

If σ̃1 ≥ · · · ≥ σ̃n and σ̂1 ≥ · · · ≥ σ̂n are the computed and the reference singular
values computed in higher precision, then the forward errors of interest are4

ei =
|σ̃i − σ̂i|

σ̂i
, i = 1, . . . , n, e = max

i=1:n
ei.(4.2)

3During the testing we have accidentally found an example of serious failure of DGESDD pro-
cedure from the SUN performance library – a ghost singular value of the size of the largest one
appeared in the dominant part of the spectrum.

4Here is by definition 0/0 = 0.
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We should not forget that the double precision and the single precision procedure do
not have the same matrix on input, as the single precision version Asingle of a double
precision matrix Adouble is generally from an ε–neighborhood of Adouble.

4.1.2. Test matrices. Our primary target are matrices of the form A = BD,
where D is diagonal and B is well conditioned with equilibrated (unit in Euclidean
norm) columns. In that case the relative error in the output is governed by the condi-
tion number κ(B) independent of D. To illustrate this property we need to generate
test matrices A = BD where B has given κ(B) and unit columns. Moreover, the
matrices should be generated so systematically that the maximal measured forward
errors attain the predicted theoretical bounds, and that experimental data show that
no accuracy can be guaranteed if the assumptions of the theory are not satisfied. In
that case we will have experimental evidence that both the theory and the numerical
testing are done properly.

We use the algorithm of Stewart [24] to generate random orthogonal matrices dis-
tributed uniformly according to the Haar measure over the orthogonal group O(n). If
W1 and W2 are two such matrices, and if S is diagonal with given condition number
κ(S), we compute C = W1SW2. Then we use the fact that for the matrix CT C there
always exists an orthogonal W3 such that the diagonal entries of WT

3 (CT C)W3 are
all equal to Trace(CT C)/n. Then the matrix B = CW3 has equilibrated columns
and condition number κ. If we generate diagonal D, then A = BD. There are
several ways to generate the matrix W3, see e.g. [4], [5]. The distributions of the
diagonal entries of S and D can be chosen in different ways. We use the modes pro-
vided in the LAPACK test matrix generators (parameter MODE in DLATM1) and
the chosen modes are denoted by µ(S) and µ(D). Thus, each generated matrix A
has four parameters, p(A) = (κ(S), µ(S), κ(D), µ(D)). For each fixed p(A), we use
three different random number generators provided in LAPACK testing library (LA-
PACK/TESTING/MATGEN/), and with each of them we generate certain number
of samples (test matrices). In this way, we have an automated generator of pseudo–
random matrices with certain relevant parameters varying systematically in given
range, for instance κ(S)(= κ(B)) is set to take the values 10, 102, 103, . . . , 108.

4.2. Underflow and overflow – problems and solutions by perturbation
theory. In error analysis of matrix algorithms we usually assume that the data are
so scaled that no overflow and underflow exceptions occur during the computation.
So, for instance, LAPACK’s driver routine SGESVD computes α = maxi,j |Aij | and
scales A with (1/α)

√
ν/ε (if α <

√
ν/ε) or (1/α)ε

√
ω (if α > ε

√
ω).

Since our implementation of Jacobi rotations uses the column norms and the
cosines of the angles between the columns, we can compute the singular values almost
in the entire range (ν, ω) of floating point numbers. This means that we need to
insure that A is scaled so that its maximal column is not larger than ω/

√
n. (Note

that largest value of any column norm of an m×n A is
√

mω.) However, since we use
computational routines from other libraries (such as BLAS and LAPACK) which may
implicitly use elements of AT A, we choose to be on the safe side and scale A to make
sure that its maximal column is not larger than

√
ω/
√

n in Euclidean norm. If the
spectrum of singular values spreads over the full range of normalized numbers (which
can be detected for instance by discovering columns with very small (near ν) as well
as very large (near ω) Euclidean length) and if all of them are wanted to high relative
accuracy then enforcing

√
ω/
√

n as the maximum column norm wipes out smallest
singular values. In that case ω/

√
n is better choice, provided that no computational

routine in linked libraries squares the column norms. In any case, the scaling factor c
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can also be modified to represent the closest exact power of the base of the arithmetic.
An extension of this is to use diagonal scalings – we can think of A = A0D0 with

diagonal D0 and such that A cannot be stored because of underflow/overflow, but
both A0 and D0 can. Fast scaled rotations work on the pair A0, D0 and deliver the
result in factored form.

Underflow problems can be dangerous, tricky and not removable by scaling. In the
case of Jacobi algorithm, underflow can cause non–convergence and loss of accuracy.
A catastrophic instance of this is flushing Jacobi rotation to identity, even if its action
is needed and substantial. Solution of this problem, independent of the mode the
denormals are treated (gentle or flush to zero underflow) is given in [11], and we
present it here for the readers convenience.

4.2.1. What if rotation underflows?. Recall that in each step the Jacobi
rotation implicitly diagonalizes the Gram matrix

G =
(

a c
c b

)
=

(
xT

yT

)
( x y ) , x, y ∈ Rm \ {0}.(4.3)

The rotation is defined by

J =
1√

1 + t2

(
1 t
−t 1

)
, where t =

sign(ζ)

|ζ|+
√

1 + ζ2
, and ζ =

b− a

2c
.(4.4)

In practice, one first computes the parameters a, b, c, and then carefully implements
the formulas (4.4). We use slightly modified strategy for the following reasons:

• The range of the computational routine should be the largest possible. This
means that singular values should be computed with theoretical accuracy if they
are between the underflow and the overflow thresholds. Since the computation of
the Gram matrix (4.3) squares the column norms, using the formulae (4.3), (4.4) in
general reduces the computation range to the interval (

√
underflow,

√
overflow). We

find this an unnecessary restriction that should be removed. One obvious way to do
that is to use higher precision (single to double, double to extended) to compute G.
We prefer more intrinsic modification of the formula for ζ, namely

ζ =

√
b

a
−

√
a

b

2
c√
ab

=

‖y‖2
‖x‖2 −

‖x‖2
‖y‖2

2 cos ∠(x, y)
.(4.5)

Since σmin ≤ ‖x||, ‖y‖ ≤ σmax, the column norms will not overflow (underflow) unless
σmax (σmin) overflows (underflows).

• One sided algorithm introduces the zeros implicitly by orthogonalizing the pivot
columns. This means that inaccuracies in the rotation parameters (due to roundoff) do
not affect the accuracy of a single floating point rotation – the constructed rotation
is numerically orthogonal and its application is stable. But, to reach the eventual
convergence, each rotation must increase toward π/2 the acute angle between pivot
columns. The formula (4.5) clearly reveals potential source of problem. If e.g. ‖x‖ À
‖y‖ so that ‖x‖/‖y‖ overflows, then ζ̃ = computed(ζ) overflows and the computed
t is flushed to zero (thus, the computed rotation is identity) or denormalized (thus,
with loss of relative accuracy). Note that denormalized nonzero t̃ = computed(t) is
possible if it is first computed in higher precision arithmetic and then rounded back
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to working precision. From the formulas

ζ =

√
b

a
−

√
a

b

2
c√
ab

=

‖y‖2
‖x‖2 −

‖x‖2
‖y‖2

2 cos ∠(x, y)
, t =

sign(ζ)

|ζ|+
√

1 + ζ2

we concluded that, for ‖x‖ À ‖y‖, ζ̃ or ζ̃2 may overflow, thus causing t̃ to underflow,
independent of the value of cos∠(x, y). Here we do not mean only the trivial mistake
to use the straightforward formula for t as function of ζ in cases of big ζ (e.g. if ζ̃2

overflows, but ζ̃ does not) – the correct formula is then t̃ = computed(0.5/ζ̃).
If ζ̃ overflows, the problem is subtle. For, even if we go over to the higher precision

to compute the rotation, its satisfactory working precision representation may not
exist. If we keep it in higher precision, then its application to the working precision
data would be inefficient because of the type conversion.

Important thing to realize here is that floating point matrix representation of the
rotation is identity, but the rotation itself performs nontrivial action. To solve this
problem, we first analyze the geometry behind the rotation as ‖x‖/‖y‖ grows toward
infinity. In fact, useful insight into the geometric structure of the transformation in
such situation is already possible for ‖x‖ > ‖y‖/√ε. In that case

cot 2φ =

‖y‖
‖x‖ −

‖x‖
‖y‖

2
yT x

‖x‖‖y‖

≈
−‖x‖‖y‖

2
yT x

‖x‖‖y‖

, | cot 2φ| ≥ 1
2
√

ε

and, with relative error of order ε, tanφ ≈ 1
2

1
cot 2φ

≈ − yT x

‖x‖2 = − yT x

‖x‖‖y‖
‖y‖
‖x‖ . Thus,

| tanφ| ≤ √
ε and cos φ will be computed as one. Note that in fact the transforma-

tion y′ = y + x tan φ ≈ y − x
yT x

‖x‖2 performs the Gram–Schmidt orthogonalization of

y against x and that the transformation x′ = x− y tan φ changes x only by

| tan φ|‖y‖ ≈ |yT x|
‖x‖‖y‖

‖y‖2
‖x‖ ≤ ‖y‖2

‖x‖2 ‖x‖ ≤ ε‖x‖.

This modification can be rigorously analyzed and it works very well in practice. See
[11] for more details on this and other issues related to floating point Jacobi rotation.

Now we discuss a different sort of problems – denormalized values are just an-
noying small numbers which have no influence on the result (they are added to larger
values, or can be treated as tiny perturbation) but do have influence on the execution
time if not properly handled by the computer.

4.2.2. Just annoying underflows. Denormalized numbers are a clever way to
fill the interval around zero free of normalized numbers. From the mathematical point
of view this is much more than a neat idea, see [6]. Unfortunately, the implementation
of this extension (and some other exceptions) on modern processors and operating
systems is not very efficient and it is possible that many denormalized numbers, which
in the algorithm may be as good as zeros, drastically slowdown the computation.
Depending on the computational task, the set to zero option may solve the problem,
provided it exists and works properly. It also helps to scale the matrix with maximal
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factor which will not cause overflow. (For a discussion on how to deal with floating
point exceptions in numerical algebra see [6], [7].) However, if the mechanism that
creates denormalized numbers is invariant under scaling, the problem persists.

Let us first describe the genesis of the unwanted denormalized numbers in our
algorithm. Their first occurrence is possible in the QR factorization of A, even if
all non–zero entries of A are deep in the range of the normalized numbers. The
easiest illustrative example is sparse A where many Householder reflections hit a very
sparse vector. (Think of a 1000×1000 lower triangular matrix (plus some random very
sparse upper triangular) and consider application of a series of Householder reflections
to its last column. In the same way, the reconstruction of the Q factor can have
the same problem.) Once we have computed R̃ with some denormalized entries we
transpose it and compute the QR factorization again. The same mechanism generates
new denormals and there it is! The second QR factorization can be extremely slow
if the arithmetic with denormalized numbers is not well implemented. (The first
QR factorization too, but this kind of problem with general dense A occurs with
lower probability.) From the point of view of numerical accuracy, these denormalized
numbers are as good as zeros – backward stability and the forward errors are given
with respect to column norms and these are well preserved if the entries of the initial
A are normalized numbers.

To make things worse, there is another mechanism that produces denormals – the
QR iteration which we used as preconditioner. If the matrix A is such that at some

index k it holds σk À σk+1 and if the RRQR factorization AP = Q

(
R
0

)
is good,

then we expect separation to be seen in R. Thus, the second QR factorization on RT

may produce even more denormalized numbers.
An finally, the Jacobi rotations of the columns of lower triangular factor are the

last victims of the small villains. The dot product needed to compute the rotation
angle can be extremely slow (many of the summands can be denormalized and are
as good as zeros in the final result), and rotations with small angles may generate
additional denormalized matrix entries, especially if sparse vectors are involved.

The problems described above are very likely to appear if the columns of A are
heavily graded or if A is large and sparse with most nonzero entries in the lower
triangle. In that case the convergence of the Jacobi iterations is swift, the total number
of rotation is very small and the run time is unacceptably long. We have found this
situation rather frustrating – the worst performance in cases of swift convergence!

How to deal with this problem? The first natural idea would be to set small
off–diagonal matrix entries to zero, but it is immediately clear that this is not the
solution of the problem. First, inspecting individual entries after each transformation
in QR factorization in order to set denormalized numbers to zero kills the performance
of highly optimized blocked code. Secondly, the denormals would keep reappearing
because they actually grow in places of zero entries. We choose quite the opposite
approach – using artificial perturbation we destroy all zeros and increase small entries.

Let X be n × n lower triangular and nonsingular transposed upper triangular
factor from the QR factorization. Our goal is to replace X with X + δX where the
perturbation δX is: (i) small enough so that it does not introduce errors larger than
the initial uncertainty of the SVD caused by computing X; (ii) big enough to prevent
underflows in the next QR factorization or Jacobi iterations; (iii) small enough so
that it does not interfere with the preconditioner and that it does not prevent the
use of the lower triangular structure; (iv) small enough so that it does not preclude
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stable a posteriori computation of the right singular vectors. Clearly, the set of active
constrains depends on the moment in the algorithm and the task to be completed with
given X. We list the relevant cases and discuss the structure of perturbation that fits
our needs. We use ζ to denote appropriate threshold value used in construction of
δX ≡ δXζ , for instance ζ =

√
ν/ε, or ζ =

√
ν, or ζ = ε/n.

Case 1. In the next step we need QR factorization of X (with or without column
pivoting) or we apply the right–handed Jacobi SVD algorithm but without computation
of the right singular vectors. Here X is the result of the first or the second QR factor-
ization with pivoting, thus with known nontrivial structure. (Some of the ideas apply
to general lower triangular matrix with no other known structure.) We first describe
the lower triangle of δXζ . Each Xij with the property |Xij | < ζ|Xjj | is replaced with
sign(Xij)ζ|Xjj |, thus (δXζ)ij = −Xij +sign(Xij)ζ|Xjj | for all i > j. Simultaneously,
the position Xji in the upper triangle is set to (δXζ)ji = −sign(Xij)ζ|Xii|. (Here ζ
can be replaced with a random number of the order of magnitude of ζ.) Note that
‖δXζ(:, j)‖ ≤

√
nζ|Xjj | which means that computations with X and X + δXζ are

almost indistinguishable from the backward and forward error points of view.
Case 2. In the next step we compute the SVD of X using right–handed Jacobi ro-

tations and the right singular vectors are computed a posteriori from matrix equation.
In this case we also have to preserve the stability of the matrix equation solved for
the right singular vectors. This means that the perturbation δXζ has to be also row–
wise small. This is achieved by taking (δXζ)ij = −Xij +sign(Xij)ζ min{|Xii|, |Xjj |},
(δXζ)ji = −sign(Xij)ζ min{|Xii|, |Xjj |} for all i > j. It is interesting that after
introducing δXζ we simply ignore it and treat X̃ = X +δXζ as lower triangular. This
is because the pivot strategy tailored for lower triangular matrix is important for the
overall performance and losing its effects is not an option. To justify this manipula-
tion with δXζ , we first note that the upper triangle of δXζ contains tiny row–wise
relative error in X. Indeed, for i < j we have

|(δXζ)ij |
‖X(i, :)‖ ≤ ζ

|Xjj |
‖X(i, :)‖ ≤ ζ (since |Xjj | ≤ |Xii|)

where in case of graded matrix |Xjj |/‖X(i, :)‖ ¿ 1. Consider now any (k, n−k) block
partition of X̃,

X̃ =
(

X̃11 X̃12

X̃21 X̃22

)
=

(
X̃11 0
X̃21 X̃22

)
+

(
0 X̃12

0 0

)
≡ X̃x + δX̃x.

Obviously, ‖X̃12(i, :)‖ ≤
√

n− kζ‖X(i, :)‖ for all i = 1, . . . , k. Suppose we are to
rotate last n − k columns of X̃, following some pivot strategy, but decide to think
of X̃ as if it was X̃x (that is, we do not transform X̃12). The computed matrix is
represented by the backward perturbation analysis as

X̃ ′ =
(

X̃11 0
X̃21 X̃22 + δX̃22

)(
I 0
0 Ŵ

)
+

(
0 X̃12

0 0

)
=

=
(

X̃11 X̃12Ŵ
T

X̃21 X̃22 + δX̃22

)(
I 0
0 Ŵ

)
, ŴT Ŵ = I,

where ‖δX̃22(i, :)‖ ≤ εJ‖X̃22(i, :)‖, i = 1, . . . , n− k,

which means that ignoring X̃12 is equivalent to replacing it with X̃12Ŵ
T . Since right–

handed orthogonal transformation does not change the Euclidean lengths in the row
space of the involved matrices, the row–wise backward stability is preserved.
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Remark 4.1. Adding artificial perturbation to avoid underflows can be applied
for instance in computing the orthogonal Q from stored reflections by multiplying
perturbation of the identity by the reflections constructed during the QR factorization
or bidiagonalization. Note that, also in this case, the perturbation is constructed,
applied and ignored in exploiting the special structure of the unperturbed matrix.

4.3. Test results. Our new algorithm is implemented in a LAPACK–style rou-
tine SGEPVD, which is in an early stage of the development. We have done no serious
profiling in order to optimize it for a particular architecture. The most consuming
part of the code (rotations) is still on BLAS 1 level and we have plans to change this in
near future. Nevertheless, the obtained results are surprisingly good and encouraging.

4.3.1. Computing the full SVD. The test matrices of the form A = BD
are generated as follows. We take A = ((W1SW2)W3)D as described in §4.1.2, and
κ(S) = 10i, i = 1, . . . , 8 and κ(D) = 102j , j = 0, . . . , 7. For each fixed pair (i, j) we
generate diagonal S and D each with four different distributions of the diagonal entries
(as specified by the parameter MODE). This gives for each fixed (κ(S) = 10i, κ(D) =
102j) 16 different types of matrices, giving the total of 64 · 16 = 1024 classes. The
matrices are generated in four nested loops, the outer loop controls κ(B) = κ(S).
Hence, the matrices are divided in eight groups with fixed κ(B).5 Finally, we choose
the row and the column dimensions, m and n, and the test procedure is ready.

Before we go over to the comparison of the new procedure SGEPVD6 with
SGESVD and SGESDD from LAPACK, we should point out that SGEPVD computes
the SVD to higher accuracy and it also provides an estimate of the maximal relative
error by computing an approximation of ‖B†‖. Also, after computing the singular
vectors, SGEPVD computes their norms using doubly accumulated dot products and
explicitly normalizes those with Euclidean length deviating from unity by more than
3ε. Note that SGEPVD returns the singular vectors numerically orthogonal up to mε
which, as in other algorithms dealing with numerical orthogonality, for large m and
n may not look satisfactory in single precision (ε ≈ 10−7 and e.g. m = n = 4000).

We show only two out of many tests performed during code development. Or first
test ran with m = 1500, n = 1300, and with one pseudo–random matrix in each class.
Compare the maximal relative errors in computed singular values for all 1024 test
cases, shown on Figure 4.1. It is clearly seen that the accuracy of SGEPVD depends
on κ(B), while the other two methods depend on κ(A). Any SVD algorithm that
starts with bidiagonalization is at risk to have error behaving like the SGESVD and
SGESDD errors in this Figure. The best caption for this figure is the title of [8]. Note
that SGESVD returns much better results than SGESDD. To our best knowledge,
this fact is not mentioned elsewhere in the literature. Also, note the considerable
upward bias in the relative errors of the bidiagonalization based procedures (cf. [25]).

The timings for this example are shown on Figure 4.2. We immediately note that
the new Jacobi SVD algorithm is not at all much slower than the bidiagonalization
based fast methods. In fact, it outperforms the QR algorithm and it is on average
less than twice slower than the divide and conquer algorithm. The worst case perfor-
mance for SGEPVD is on matrices with weak column scaling and singular spectrum
composed of many tight clusters (examples above the 1.5 mark on Figure 4.2). In all

5This helps in the interpretation of the results of the experiments and explains the shapes of the
graphs on the figures given here.

6PVD is the acronym for Principal Value Decomposition, an old name of the SVD.
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relative errors: SGEPVD (green) vs. SGESVD (blue) and SGESDD (red)

Fig. 4.1. Maximal relative errors for 1500×1300 matrices. The top curve (worst case) describes
the accuracy of SGESDD. The middle curve represents the errors of SGESVD, and the lowest curve
(smallest relative errors) belongs to SGEPVD.

other cases the time of SGEPVD is on average 1.5 times the time of SGESDD. Here,
again, we stress the fact that the results obtained by SGEPVD enjoy much better
numerical properties and that the time of SGEPVD includes computed error bound –
better result and additional information are computed in reasonable time. Thus, for
a fair comparison one should consider both Figure 4.1 and Figure 4.2.

In the second test we have 500× 350 matrices, with two examples in each of 1024
classes. The results are on Figure 4.3 and Figure 4.4.

Remark 4.2. Note few outliers above mark 2 on Figures 4.2, 4.4. They corre-
spond to matrices on which SGEPVD actually performed very well, with low number
of rotations and swift convergence. (We have checked that by inspecting the details of
those particular runs. In fact, on these matrices even the classical one–sided Jacobi,
usually much slower, comes close to our new method.) However, since our threshold
for perturbation used to trap denormals was set to ζ =

√
ν ≈ 10−19, some of them

were not captured and imperfect denormalized arithmetic caused considerable slow-
down. We used this value of ζ to illustrate the problem. In practice the threshold
can be set higher, e.g. if in those cases ζ = ε/n the run time reflects the actual flop
count. If set to zero underflow is in function, this kind of problems disappears.

Remark 4.3. We have noted that using double accumulated dot product in
preparation of Jacobi rotation reduces the total number of rotations, especially in
case of multiple or tightly clustered singular values. Unfortunately, in optimized
BLAS libraries DSDOT performs poorly in comparison to SDOT and the saving in
number of rotations does not reduce the total run time.

Remark 4.4. The results may vary on the same machine with different BLAS
libraries. We note that with the GOTO BLAS all routines run faster (as compared to
MKL library), but the relative speedup is smallest in our algorithm. This is because
GOTO BLAS 3 outperforms MKL 6.1 BLAS 3, but GOTO BLAS 1 is no match
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Fig. 4.2. Computing full SVD: Relative timings for 1500 × 1300 matrices on a Pentium 4
machine with Intel MKL 6.1 library. The crosses denote timeSGEPV D/timeSGESV D and the pluses
are timeSGEPV D/timeSGESDD.

for really efficient MKL 6.1 BLAS 1. Since our code still depends on BLAS 1 (dot
products and plane rotations), switching to GOTO BLAS has mixed consequences.
A hybrid of the two libraries would be much better for our algorithm.

4.3.2. Computing only Σ. We have established that the singular values are
computed by the new algorithm as predicted by the theory – our variant of the Jacobi
SVD complies with [8], [10]. In the previous section we showed that it computes the
full SVD with efficiency comparable with fast bidiagonalization–based approaches.

If only the singular values are needed, reaching similar level of relative efficiency
seems to be mission impossible. For, we need Jacobi–based algorithm that computes
Σ in time comparable to the time needed to bidiagonalize the matrix!

We immediately note that in the case m À n both methods start with the QR
factorization which is the most expensive part of the computation. So, this is one
example where Jacobi–based approach can be competitive. Further, our approach
should have some advantage in case of matrices of low numerical rank, because we
start with a rank revealing factorization. (Bidiagonalization is not rank revealing
unless enhanced with pivoting which would make it more expensive.) Also, if only
the standard absolute error bound is required, then Jacobi iterations can be controlled
by a loosened stopping criterion, thus allowing satisfactory approximation with less
computational effort.

The test matrices of the form A = BD are generated as in §4.3.1, with 2048
examples in each test run. We show the results of two tests, in the first the matrices
were 500×350 and in the second m = 1000, n = 700. The maximal measured relative
errors e are not shown because they behave as shown in §4.3.1. We display the relative
timings and compare SGEPVD with SGESDD (or SGESVD) and with the classical
one–sided Jacobi SVD with de Rijk’s pivoting (SGESVJ). See Figures 4.5, 4.6. (We
note that SGEPVD computes Σ and also an estimate of the scaled condition number.)
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Fig. 4.3. Maximal relative errors for 500× 350 matrices. The top curve (worst case) describes
the accuracy of SGESDD. The middle curve represents the errors of SGESVD, and the lowest curve
(smallest relative errors) belongs to SGEPVD.

5. Conclusion and future work. The most important message of the results
in this report is that the question of the ultimate dense non–structured full SVD
method is still open. Wanted is the most efficient algorithm capable of computing
the SVD to optimal (numerically feasible) accuracy warranted by the data. In the
first stage of our program we have shown that a new preconditioned Jacobi–type
SVD algorithm can be competitive with fast bidiagonalization based methods without
trading accuracy for speed. Moreover, if only the absolute accuracy suffices, our
algorithm can take advantage of the rank revealing property of the preconditioner
and thus run very efficiently. Because of that, our quest for ultimate dense non–
structured SVD algorithm will follow the Jacobi idea.

Another approach could be to try to improve the accuracy of the bidiagonaliza-
tion. An improvement suggested by Barlow preprocesses the bidiagonalization using
QR factorization with complete pivoting, the bidiagonalization itself must use pivot-
ing and in some cases Givens rotations instead of reflections. This in fact works very
well in practice, and it is only partially understood, see Barlow [1]. Hence, it improves
the accuracy of the bidiagonalization and in many cases it enables bidiagonalization
based SVD methods to deliver the decomposition as accurately as the Jacobi SVD
method. However, these modifications increase the total time of any bidiagonalization
based algorithm by (i) the time of the QR factorization with complete pivoting; (ii)
the time of multiplication by the orthogonal factor of this initial QR factorization, to
get the left singular vectors; (iii) the additional time of pivoting and replacing reflec-
tions by rotations in the bidiagonalization. The question is how these improvements
of accuracy impact the efficiency.

On the other hand, the most expensive part of our method are BLAS 1 Jacobi
rotations which means that there is more potential for optimization. This and other
relevant issues will be explored in the second stage of our program. One simple
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Fig. 4.4. Computing full SVD: Relative timings for 500×350 matrices on a Pentium 4 machine
with Intel MKL 6.1 library. The crosses denote timeSGEPV D/timeSGESV D and the pluses are
timeSGEPV D/timeSGESDD.

improvement will be possible once optimized combinations of AXPY and DOT, and
combination of two linked AXPY’s operations are available in single calls. Nontrivial
improvement will be obtained by using block rotations. We expect that the fast scaled
block rotations designed by Hari [16] and currently under further development and
implementation at the Department of Mathematics in Zagreb will fully exploit the
potential of our approach. Other issues include new rank–revealing QR factorization
and using shifts in the second QR (and third in some cases) factorization if only
classical absolute error bounds are required.

The second stage will complete with the release of a high performance LAPACK–
style software. The question is whether or not we will be able to reach the efficiency
of SGESDD. Time will tell.
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Fig. 4.6. Computing only Σ: Relative timings for 1000× 700 matrices on a Pentium 4 machine
with Intel MKL 6.1 library. The blue crosses denote timeSGEPV D/timeSGESV D and the red dots
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