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Abstract

We give a sharp estimate for the eigenvectors of a positive definite Hermitian matrix
under a floating-point perturbation. The proof is elementary.

Recently there have been a number of papers on eigenvector perturbation bounds that in-
volve a perturbation of the matrix which is small in some relative sense, including the typical
rounding errors in matrix elements ([1], [2],[9],[7],[3],[4]...). Some of these have complicated
proofs and all of them involve the notion of ‘the relative gap’ between the eigenvalues. i.e.
a relative distance of the unperturbed eigenvalue to the rest of the spectrum. Several such
relative gaps are in use. Anyway, in any such estimate it is only the nearest eigenvalue that
matters, one does not care for distant eigenvalues and their influence. Our bounds control
primarily the matrix of the angles between the perturbed and the unperturbed eigenvectors,
standard bounds with relative gaps may be derived from them any time. In particular, in our
bounds the distant eigenvalues naturally damp out the perturbation of the corresponding
components of the eigenvector. Or bounds are asymptotically sharp i.e. for small perturba-
tions they reach the first term of the perturbation theory. Our proof is simple (of all works
cited above ([4]) is closest to our idea) - its only technical tool is taking the square root of a
positive definite matrix. The simplicity of our proof may make it useful in a classroom.

Theorem 1 Let H = UΛU∗ and H̃ = H + δH = Ũ Λ̃Ũ∗ be positive definite. Assume that
U and Ũ are unitary and that Λ and Λ̃ are diagonal. Let S = U∗Ũ and assume

η = ‖H−1/2δHH−1/2‖ < 1. (1)

Then for any j and for any set S not containing j we have(∑
i∈S
|sij|2

)1/2

≤ max
i∈S

λ
1/2
i λ̃

1/2
j

|λi − λ̃j|
η√

1− η
(2)
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and, in particular,

|sij| ≤
λ
1/2
i λ̃

1/2
j

|λi − λ̃j|
η√

1− η
(3)

Proof: Let X = Λ−1/2U∗δHUΛ−1/2. Then

‖X‖ = ‖Λ−1/2U∗δHUΛ−1/2‖
= ‖UΛ−1/2U∗δHUΛ−1/2U∗‖
= ‖H−1/2δHH−1/2‖
= η.

Also

Ũ Λ̃Ũ∗ = H̃

= H + δH

= UΛ1/2(I + Λ−1/2U∗δHUΛ−1/2)Λ1/2U∗

= UΛ1/2(I +X)Λ1/2U∗

That is
Ũ Λ̃Ũ∗ = UΛ1/2(I +X)Λ1/2U∗ (4)

Now multiplying on the left by U∗ and on the right by Ũ gives

SΛ̃ = ΛS + Λ1/2XΛ1/2S .

Taking the ij element of this identity we obtain

sij =
λ
1/2
i

λ̃j − λi
(XΛ1/2S)ij (5)

Thus, we need a bound on XΛ1/2S. (4) can be written as

I = (Λ̃−1/2S∗Λ1/2)(I +X)(Λ1/2SΛ̃−1/2)

and hence
‖Λ1/2SΛ̃−1/2‖ = ‖(I +X)−1‖−1/2 ≤ (1− η)−1/2

Let Y·j denote the j-th column of the matrix Y . Then

‖(XΛ1/2S).j‖ = ‖(XΛ1/2SΛ̃−1/2)Λ̃1/2).j‖
= λ̃

1/2
j ‖(XΛ1/2SΛ̃−1/2).j‖

≤ λ̃
1/2
j ‖X‖ ‖(Λ1/2SΛ̃−1/2)‖

≤ λ̃
1/2
j η(1− η)−1/2
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Thus,

∑
i∈S
|sij|2 =

∑
i∈S

 λ
1/2
i

λi − λ̃j

2

|(XΛ1/2S)ij|2

≤ max
i∈S

 λ
1/2
i

λi − λ̃j

2∑
j∈S
|(XΛ1/2S)ij|2

≤ max
i∈S

 λ
1/2
i

λi − λ̃j

2

‖(XΛ1/2S).j‖2

≤ max
i∈S

 λ
1/2
i

λi − λ̃j

2

λ̃jη
2(1− η)−1.

Taking square roots yields (2) which then implies (3). 2

The last inequality can be used to obtain a bound for the perturbation of the eigenvectors.
We can obviously always choose Ũ such that sii ≥ 0 for all j. Then we have

||Ũ·j − U·j|| =
√

2
√

1− s11

=
√

2

√
1−

√
1− |s1i|2 − · · · − |s1,i−1|2 − s|1, i+ 1|2 − · · · − |s1n|2 .

Then by (2)

||Ũ·j − U·j|| ≤ (6)

≤
√

2

√√√√√√1−

√√√√√1− η2

1− η
max
i(6=j)

λiλ̃j

(λi − λ̃j)
2 (7)

≤ η
√

2√
1− η

max
i( 6=j)

λ
1/2
i λ̃j

1/2

|λi − λ̃j|
(8)

(9)

Different choices of S would allow estimates for invariant subspaces.
The bounds (2,3) involve λ̃j and λj in a symmetric way. One can write the bounds

entirely in terms of the eigenvalues of H by using the fact ([2, 5])

λj(1− η) ≤ λ̃j ≤ λj(1 + η), (10)

Since the proof is also very simple, we repeat it here for convenience. Note that (1) is
equivalent to |x∗δHx| ≤ ηx∗Hx for any vector x. Thus,

(1− η)x∗Hx ≤ x∗(H + δH)x ≤ (1 + η)x∗Hx
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and (10) follows from the monotonicity property for the eigenvalues.1 If η is small then
λ̃j ≈ λj.

2 In this case the right hand side in (3) reads asymptotically

λ
1/2
i λ

1/2
j

|λi − λj|
η. (11)

On the other hand, for a simple eigenvalue λi the perturbation theory gives

u∗i ũj =
u∗i δHuj
λi − λj

+ higher terms .

Taking here e.g. δH = η0λ
1/2
i λ

1/2
j (uiu

∗
j + uju

∗
i ), η0 < 1, we obtain

u∗i ũj =
λ
1/2
i λ

1/2
j

λi − λj
η0 + higher terms .

Since here η = η0 we see that our bound is asymptotically sharp.
Since the space dimension n does not enter the main estimates (2,3) they will hold for

corresponding perturbations of Hilbert space operators with compact resolvent as well.
Relative bounds in the computational practice are seldom found in the genuine form (1).

Most common is the componentwise bound

|δHij| ≤ ε|Hij| (12)

where ε is e.g. the machine precision. It can be shown (see e.g. [9]) that (12) implies (1) with

η = ‖|A|‖ ‖A−1‖ε ≤
√
nκ(A)ε , (13)

where ‖ · ‖ is the spectral norm and D is any diagonal matrix. One chooses D so as to
make the condition number κ(A) as small as possible. As was shown in [8] a nearly optimal

(within a factor
√
n) choice is D =

√
diag(H). A proof that the growth factor

√
n in (13)

cannot be dispensed with, is provided in [6].
For the convenience of the reader we will derive the first inequality in (13):

|x∗δHx| ≤ |x|T |δH||x| ≤ ε|x|T |A|D|x| ≤ ε|||A|||x∗D2x ≤ ε|||A|||||A−1||x∗Hx .

This implies (1) with η from (13).

Although the same type of eigenvector estimates can be expected for indefinite Hermitian
matrices as well (cf. e.g. [9]), we were not able to extend our simple way of proof to this case
as yet.

1The monotonicity is, of course, a consequence of the minimax theorem. Most perturbation estimates for
the eigenvalues of Hermitian matrices, however, follow more directly from the monotonicity which, in turn,
is a fact much easier to keep in mind and memorize. This may be of relevance in teaching this matter.

2Of course, here we assume that Λ and Λ̃ are equally ordered.
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