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aus Zagreb (Kroatien)

Hagen 2003





Eingereicht im September 2002

1. Berichterstatter und Mentor: Prof. Dr. K. Veselić, Hagen
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Chapter 1

Introduction

1.1 Motivation

Scientific treatment of vibration and damping goes back at least to the cel-

ebrated German physicist H. Helmholtz who wrote a book entitled ”On the

Sensations of Tone”, first published in 1885, constituting one of the first scien-

tific treatises of the subject of vibration. The study of vibration and damping is

concerned with oscillatory motions of bodies and particles and the attenuation

of those vibrations. Both engineered machines and natural physical systems

have the property of being subject to a vibration all or part of the time.

Dangerous vibrations are frequent practical problem. In the design of a

bridge, for example, one must pay attention to the resonances of the bridge

with the wind–induced oscillatory forces. For the majority of the structural

vibrations, engineering applications dictate that resonance and sustained oscil-

lations are not desirable because they may result in structural damage.

One way to reduce resonance is through damping. Actually, the damping

is present in nearly all vibrational systems. Its presence may be attributed to

medium impurities, small friction and viscous effects, or artificially imposed

1
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damping materials or devices.

Recent scientific and technological advances have generated strong interest

in the field of vibrational systems governed by the partial differential equations.

There is a vast literature in this field of research. Particulary the engineer-

ing literature is very rich. For a brief insight we give some older references:

[Bes76], [Mül79], [BB80],[IA80], [Mül88] and [NOR89], and some more recent:

[FL98], [DFP99], [PF00b] and [PF00a]. Among mathematical references we

emphasize two books by G. Chen and J. Zhen [CZ93a] and [CZ93b], where a

thorough presentation of techniques and results in this area is given. Among

references concerning abstract second order differential equations which will be

our abstract setting, we mention classical books by H. O. Fattorini [Fat83] and

[Fat85]. The book [Shk97] possesses more then 350 references on the abstract

second order differential equations. Other authors which significantly improved

the knowledge in this field are S. J. Cox, J. Lagnese, D. L. Russell, R. Trig-

giani and K. Veselić, among others. Some more recent references, besides those

cited in the thesis, are [CZ94], [CZ95], [LG97], [Fre99], [FL99], [Gor97], and

[BDMS98].

For conservative systems without damping, the mathematical analysis has

been developed to a substantial degree of completeness. Such systems usu-

ally correspond to evolution equations with an skew–adjoint generator with an

associated complete set of orthonormal eigenfunctions, yielding a Fourier rep-

resentation for the solution. In applications such eigenfunctions are refereed to

as the normal modes of vibration.

When the vibrational system described by a partial differential equation
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contains damping terms, whether appearing in the equation per se (called dis-

tributed damping) or in the boundary conditions (called boundary damping),

the generating operator in the evolution system will no longer be skew–adjoint.

Thus the powerful Fourier series expansion method is not available any more.

In the extreme case, the operator can have empty spectrum, hence the spectral

methods are inadequate.

The initial motivation for the research described in this thesis was to develop

a functional–analytic theory for a particular type of the vibrational systems,

those which can be described by an abstract second order differential equation

with symmetric non–negative sesquilinear forms as coefficients. Examples of

such vibrational systems are mechanical systems.1

The simplest system of this type is the mass–spring–damper system de-

scribed by

mẍ(t) + dẋ(t) + kx(t) = 0, (1.1.1)

x(0) = x0, ẋ(0) = ẋ0,

where m, d, k > 0 are the mass, damping and stiffness coefficient, respectively,

and x(t) is the displacement from the equilibrium position.

We will concentrate on the following subjects:

• stability of the system,

• optimal damping of the system.

Among many types of stability, we will use the most desirable one: uniform

1The important class, the class of electromagnetic damping systems unfortunately does
not satisfy our abstract setting since in these systems the damping form usually contains an
imaginary part.
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exponential stability. This means that there is a uniform exponential decay of

the solutions of the system.

As an optimization criterion we will use the criterion governed by the min-

imization of the average total energy of the system, but also some other opti-

mization criteria will be mentioned.

The two subjects mentioned above are closely connected. This will become

evident by our choice of the Hilbert space setting. We will use the most natural

Hilbert space – the one having the energy of the system as the scalar product.

More precisely, in our setting the system will be stable if and only if the energy

of the system has an uniform exponential decay. Hence, in the treatment of

both subjects, the energy of the system plays a prominent role.

To emphasize the importance of choosing the appropriate scalar product,

we give a simple example.

Example 1.1.1. It is well–known (see, for example page 141 of this thesis) that

the finite–dimensional system has an energy decay, if and only if the correspond-

ing generating operator A satisfies

Re(Ax, x) ≤ 0. (1.1.2)

If we set y(t) = ẋ(t) and z(t) =
(

x(t)
y(t)

)
, the equation (1.1.1) can be written as

ż(t) = Az(t),

where

A =




0 1

−k −d


 .

If we choose the usual scalar product on R2, (1.1.2) is not satisfied. However,

we could introduce the new scalar product given by 〈( x1
y1 ) , ( x2

y2 )〉 = kx1x2+y1y2.
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In this case 1
2

∥∥∥
(

x(t)
y(t)

)∥∥∥
2

= 1
2
kx(t)2 + 1

2
ẋ(t)2, i.e. the norm of the solution equals

one half of the energy of the system. With this scalar product (1.1.2) holds.

For the equation (1.1.1) the most popular optimization criteria lead to the

same optimal damping parameter given by d = 2
√

mk.

Although our primary aim is the investigation of infinite–dimensional sys-

tems, we also present some new results in the finite–dimensional case.

The central results of this thesis are:

• Theorem 2.2.1, which treats the problem of finding the optimal damping

in the matrix case,

• its infinite–dimensional analogue, Theorem 4.2.2, and

• the characterization of the uniform exponential stability of the abstract

vibrational systems given in Subsections 3.3.3 and 3.3.4.

The obtained results will be applied to a number of concrete problems.

Most results in this thesis can be interpreted as a generalization of the

results from [Ves88], [Ves90] and [VBD01] to the infinite–dimensional case. An

approach similar to ours is also taken in [FI97].

Throughout this thesis results will be applied to a vibrating string which

serves as our basic model.

1.2 Organization of the thesis

In this section we give an overview of the organization of this thesis, so that the

interested reader can set his or her favorite route through the results.
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Chapter 2: The matrix case

This chapter deals with the vibrational systems described by a second order ma-

trix differential equation. These are so–called lumped parameter systems. This

chapter consists of two parts. The first part (Sections 2.1 and 2.3) is primarily

used as a motivation for our study of the infinite–dimensional systems, and our

motivation indeed was to try to generalize known result in finite–dimensional

case to the infinite–dimensional case. The main importance of the matrix case

lies in the approximation of the infinite–dimensional problems.

The second part (Section 2.2) is devoted to the finding of a global mini-

mum of a penalty function corresponding to the optimization of the damping.

Especially, this result gives an affirmative answer to a conjecture of Veselić–

Brabender–Delinić from [VBD01]. This result also has importance in the study

of infinite–dimensional systems.

The results of this chapter, with exception of Section 2.2 are mostly well–

known and are collected for the sake of the completeness.

Chapter 3: Abstract vibrational system

This is a central chapter of this thesis. Here a general framework for the stability

of an abstract second order differential equation involving sesquilinear forms is

given. We show how to translate this equation into a linear Cauchy problem,

and we solve this problem in terms of a semigroup. The scalar product is

chosen in such a way that the norm of the semigroup equals one half of the

energy of the solution of the original differential equation, and that the original

differential equation has a solution if and only if there exists a solution for the

Cauchy problem. We also give necessary and sufficient conditions for an uniform

exponential stability of this semigroup. It is shown that in the generic situation
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we can investigate the stability of the system in terms of the eigenvalues and

eigenvectors of the corresponding undamped system and the damping operator.

The main ideas and nearly all proofs of the first two sections of this chapter

are due to A. Suhadolc and K. Veselić [SV02]. We express our gratitude for

their permission to include their results into this thesis.

Chapter 4: Optimal damping

In this chapter the ideas from Chapter 2 are generalized to the infinite–dimensional

case. For the system which is uniformly exponentially stable it is shown that,

analogously to the matrix case, an optimal damping problem can be alge-

braically described. It is also shown how our previous knowledge about danger-

ous vibrations can be implemented into the mathematical model.

In the case of systems which possess an internal damping, we find the optimal

damping operators.

Also, an optimal damping in the case of the so–called modal damping is

found, hence generalizing the result from the matrix case.

The author thanks prof. Veselić for the help in the process of writing Section

4.4.

Chapter 5: Applications

In this chapter we illustrate the theory developed in the previous chapters by

applying it to various concrete problems. Those include the problems described

by one–dimensional as well as multidimensional models.

Appendix: Semigroup theory

In the appendix we introduce the basic concepts and results of the semigroup

theory which we use in this thesis.
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Notation

Here we give a list of notation which is used but not defined in the thesis.

∂Ω the boundary of the set Ω

D(A) the domain of the operator A

R(A) the range of the operator A

N (A) the null–space of the operator A

σ(A) the spectrum of the operator A

ρ(A) the resolvent set of the operator A

σp(A) the point spectrum of the operator A

σr(A) the residual spectrum of the operator A

σc(A) the continuous spectrum of the operator A

σap(A) the approximate spectrum of the operator A

σess(A) the essential spectrum of the operator A

∗ the adjoint (on C) or the transpose (on R)

L2(H) the Lebesgue space of H–valued functions

∇ the gradient

div the divergence operator

tr the trace

↘ the right limit

R+ the set {x ∈ R : x ≥ 0}



Chapter 2

The matrix case

In this chapter we give an introduction to the optimal damping problem in the

finite–dimensional case, as well as present a brief survey of the main ideas and

results. We also find a solution to the optimal damping problem, i.e. we find

the set of matrices for which the system produces minimal damping.

In the Section 2.3 we give a brief survey of numerical methods.

2.1 Introduction and a review of known results

We consider a damped linear vibrational system described by the differential

equation

Mẍ + Dẋ + Kx = 0, (2.1.1a)

x(0) = x0, ẋ(0) = ẋ0, (2.1.1b)

where M , D and K (called mass, damping and stiffness matrix, respectively)

are real, symmetric matrices of order n with M , K positive definite, and D

positive semi–definite matrices. In some important applications (e.g. with so–

called lumped masses in vibrating structures) M , too, is only semi–definite.

9
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This can be easily reduced to the case with a non–singular M at least if the

null-space of M is contained in the one of D.

To (2.1.1) there corresponds the eigenvalue equation

(λ2M + λD + K)x = 0. (2.1.2)

An example is the so–called n–mass oscillator or oscillator ladder given on the

Figure 2.1, where

M = diag(m1, . . . , mn), (2.1.3a)

K =




k0 + k1 −k1

−k1 k1 + k2 −k2

. . . . . . . . .

. . . . . .

−kn−1 kn−1 + kn




, (2.1.3b)

D = de1e
∗
1, (2.1.3c)

where e1 is the first canonical basis vector.

Figure 2.1: The n–mass oscillator with one damper

Here mi > 0 are the masses, ki > 0 the spring constants or stiffnesses and

d > 0 is the damping constant of the damper applied to the mass m1 (Fig. 2.1).

Note that the rank of D is one. Such damping is called one–dimensional.

Obviously, all eigenvalues of (2.1.2) lie in the left complex half–plane. Equa-

tion (2.1.2) can be written as a 2n–dimensional linear eigenvalue problem. This
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can be done by introducing

y1 = L∗1x, y2 = L∗2ẋ,

where

K = L1L
∗
1, M = L2L

∗
2.

It can be easily seen that (2.1.1) is equivalent to

ẏ = Ay, (2.1.4a)

y(0) = y0, (2.1.4b)

where y = ( y1
y2 ), y0 =

(
L∗1x0

L∗2ẋ0

)
, and

A =

(
0 L∗1L

−∗
2

−L−1
2 L1 −L−1

2 DL−∗2

)
, (2.1.5)

with the solution y(t) = eAty0. The eigenvalue problem Ay = λy is obviously

equivalent to (2.1.2).

The basic concept in the vibration theory is its stability. We say that the

matrix A is stable if Reλ < 0 for all λ ∈ σ(A).

In the literature the term ”asymptotically stable” is also used. The famous

result of Lyapunov states that the solution y(t) of the Cauchy problem (2.1.4)

satisfies y(t) → 0 for t → ∞ if and only if A is stable. The following result is

easily proved ([MS85], [Bra98]).

Proposition 2.1.1. The matrix ( 2.1.5) is stable if and only if the form x∗Dx

is non–degenerate on every eigenspace of the matrix M−1K.

This result will be generalized to the infinite–dimensional case in Subsections

3.3.3 and 3.3.4.



12

Our aim is to optimize the vibrational system described by (2.1.1) in the

sense of finding an optimal damping matrix D so as to insure an optimal evanes-

cence.

There exist a number of optimality criteria. The most popular is the spectral

abscissa criterion, which requires that the (penalty) function

D 7→ s(A) := max
k

Reλk

is minimized, where λk are eigenvalues of A (so they are the phase space complex

eigenfrequencies of the system). This criterion concerns the asymptotic behavior

of the system and it is not a priori clear that it will favorably influence the

behavior of the system in finite times, too. More precisely, the asymptotic

formula ‖y(t)‖ ≤ Me−s(A)t holds for all t ≥ 0, where M ≥ 1. There are examples

in which for the minimizing sequence Dn the corresponding coefficients Mn tend

to infinity.

The shortcoming of this criterion is that in the infinite–dimensional case

the quantity s(A) does not describe the asymptotic behavior of the system

accurately (see Remark A.1).

A similar criterion is introduced in [MM91], and is given by the requirement

that the function

D 7→ max
k

Reλk

|λk|
is minimized, where λk are as above. This criterion is designed to minimize the

number of oscillations before the system comes to rest.

Both of these criteria are independent of the initial conditions of the system.

Another criterion is given by the requirement for the minimization of the

total energy of the system. The energy of the system (as a sum of kinetic and
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potential energy) is given by the formula

E(t; x0, ẋ0) (= E(t; y0)) =
1

2
ẋ(t)∗Mẋ(t) +

1

2
x(t)∗Kx(t).

Note that

y(t)∗y(t) = ‖y(t)‖2 = 2E(t; y0).

In other words, the Euclidian norm of this phase-space representation equals

twice the total energy of the system. The total energy of the system is given by

∞∫

0

E(t; y0)dt. (2.1.6)

Note that this criterion, in the contrast to the criteria mentioned above, does

depend on the initial conditions. The two most popular ways to correct this

defect are:

(i) maximization (2.1.6) over all initial states of unit energy, i.e.

max
‖y0‖=1

∞∫

0

E(t; y0)dt, (2.1.7)

(ii) taking the average of (2.1.6) over all initial states of unit energy, i.e.

∫

‖y0‖=1

∞∫

0

E(t; y0)dtdσ, (2.1.8)

where σ is some probability measure on the unit sphere in R2n.

In some simple cases all these criteria lead to the same optimal matrix D,

but in general, they lead to different optimal matrices.

The criterion with the penalty function (2.1.8), introduced in [Ves90], will

be used throughout this thesis. The advantage of this criterion is that we can,



14

by the choice of the appropriate measure σ, implement our knowledge about

the most dangerous input frequencies.

To make this criteria more applicable we proceed as follows.

∞∫

0

E(t; y0)dt =
1

2

∞∫

0

y(t; y0)
∗y(t; y0)dt =

1

2

∞∫

0

y∗0e
A∗teAty0dt

=
1

2
y∗0Xy0,

where

X =

∞∫

0

eA∗teAtdt. (2.1.9)

The matrix X is obviously positive definite. By the well–known result (see, for

example [LT85]) the matrix X is the solution of the Lyapunov equation

A∗X + XA = −I. (2.1.10)

There exists another integral representation of X [MS85] given by

X =
1

2π

∞∫

−∞

(−iη − A∗)−1(iη − A)−1dη. (2.1.11)

This formula will be generalized to the infinite–dimensional case in Section 4.5.

The equation (2.1.10) has the unique solution if and only if A is stable. The

expression (2.1.7) now reads

1

2
max
‖y0‖=1

y∗0Xy0,

which is simply 1
2
‖X‖, so in this case we minimize the greatest eigenvalue of X.

The expression (2.1.8) now can be written as

1

2

∫

‖y0‖=1

y∗0Xy0dσ.
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Since with the map

X 7→
∫

‖y0‖=1

y∗0Xy0dσ

is given a linear functional on the space of the symmetric matrices, by Riesz

theorem there exists a symmetric matrix Z such that

∫

‖y0‖=1

y∗0Xy0dσ = tr(XZ), for all symmetric X.

Let y ∈ R2n be arbitrary. Set X = yy∗. Then

0 ≤
∫

‖y0‖=1

y∗0Xy0dσ = tr(XZ) = tr(yy∗Z) = tr(y∗Zy),

hence Z is always positive semi–definite.

For the measure σ generated by the Lebesgue measure on R2n, we obtain

Z = 1
2n

I.

Hence the criterion given by the penalty function (2.1.8) can be written as

tr(XZ) → min, (2.1.12)

where X solves (2.1.10), and the matrix Z depends on the measure σ.

Since A is J–symmetric, where J =
(

I 0
0 −I

)
, it follows that

tr(XZ) = tr(Y ), (2.1.13)

where Y is the solution of another, so–called ”dual Lyapunov equation”

AY + Y A∗ = −Z. (2.1.14)

In some cases, instead of (2.1.9) one can use the expression

∞∫

0

eA∗tQeAtdt,
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where Q is symmetric (usually positive semi–definite) matrix. We interpret the

matrix Q as a weight function in the total energy integral. In this case the

corresponding Lyapunov equation reads

A∗X + XA = −Q.

A possible choice of the matrix Q is given in Section 4.5.

To fix the ideas let us consider the simple problem described on Figure 2.2.

Figure 2.2: Simple system

If we suppose unit masses and stiffnesses, we arrive at the mass, stiffness

and damping matrices

M =

(
1 0

0 1

)
, K =

(
2 −1

−1 2

)
, D =

(
d 0

0 f

)
.

We plotted the contours of the function (d, f) 7→ tr(X(D)) on Figure 2.3.

This strictly convex function attains its minimum at d = f =
√

6.

The solution X of (2.1.10) also gives an estimate [Ves02a] of the exponential

decay of the solution y(t):

‖y(t)‖ ≤ e
1
2
+ 1

2‖X‖γ(A) e−
t

2‖X‖ ,



17

–1

1

2

3

4

5

6

f

–1 1 2 3 4 5 6d

Figure 2.3: Contours of the function (d, f) 7→ tr(X(D))

where γ(A) = 2 inf‖x‖=1 x∗Ax.

Let L−1
2 L1 = U2ΩU∗

1 be SVD–decomposition of the matrix L−1
2 L1, with Ω =

diag(ω1, . . . , ωn) > 0. We can assume ω1 ≤ ω2 ≤ · · · ≤ ωn. Set U =
(

U1 0
0 U2

)
.

Then

Â = U∗AU =

[
0 Ω

−Ω −C

]
, (2.1.15)

where C = U∗
2 L−1

2 DL−∗2 U2 is positive semi–definite. If we denote F = L−∗2 U2,

then F ∗MF = I, F ∗KF = Ω. Thus we have obtained a particularly convenient,

the so–called modal representation of the problem (2.1.2). In the following we

assume that the matrix A has the form given in (2.1.15).

Modally damped system are characterized by the generalized commutativity

property

DK−1M = MK−1D.

In the modal representation (2.1.15) this means that C and Ω commute. It has
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been shown in [Cox98b] that

X =

[
1
2
CΩ−2 + C−1 1

2
Ω−1

1
2
Ω−1 C−1

]
. (2.1.16)

Hence, the optimal matrix C, for the criterion with the penalty function (2.1.7)

with Z = I, as well as for the criterion given by (2.1.12), is C = 2Ω. This can

be easily seen in the case when ωi 6= ωj, i 6= j, since then the matrix C must

be diagonal.

This result is generalized to the infinite–dimensional case in Section 4.4. In

the matrix case, this result can be generalized to the case when the matrix

Z has the form Z =
( eZ 0

0 eZ )
, where Z̃ is diagonal with zeros and ones on the

diagonal.

The case of the friction damping i.e. when D = 2aM , a > 0 was considered

in [Cox98b], where it was shown that the optimal parameter for the criterion

with the penalty function (2.1.7) is a =
√

ω1

√√
5−1
2

.

The set of damping matrices over which we optimize the system is deter-

mined by the physical properties of the system. The maximal admissible set

is the set of all symmetric matrices C for which the corresponding matrix A is

stable. Usually, the admissible matrices must be positive semi–definite. The

important case is when the admissible set consists of all positive semi–definite

matrices C for which the corresponding matrix A is stable. For this case Braben-

der [Bra98] (see also [VBD01]) had shown that the following theorem holds.

Theorem 2.1.2. Let the matrix Z be of the form Z =
( eZ 0

0 eZ )
, where Z̃ = ( Is 0

0 0 ),

1 ≤ s ≤ n. Denote by M the set of all matrices of the form

2




Ωs 0

0 H


 , Ωs = diag(ω1, . . . , ωs),
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where H varies over the set of all symmetric positive semi–definite matrices

of order n − s such that the corresponding matrix A is stable. On the set M
the function X 7→ tr(XZ), where X solves ( 2.1.10), achieves a strict local

minimum. In particular, this function is constant on M.

For s = n the set M reduces to a single matrix 2Ω, hence in this case, the

function X 7→ tr(XZ) attains in C = 2Ω local minimum.

In [VBD01] it was conjectured that the minimum from Theorem 2.1.2 is

global. We will give an affirmative answer to this conjecture in Section 2.2.

In the applications the set of admissible matrices is often much smaller. In

the particular case when the set of admissible matrices is parameterized by

C = C(a) =
k∑

j=1

ajCj, (2.1.17)

where a = (a1, . . . , as) ∈ Rk, k ≤ n2 and Cj, 1 ≤ j ≤ k are linearly indepen-

dent positive semi–definite matrices, the following theorem has been proved in

[CNRV02].

Theorem 2.1.3. Set Rk
+ = {a ∈ Rk : ai > 0, 1 ≤ i ≤ k}. We have

(i) If A(a) is stable for some a ∈ Rk
+, then A(a) is stable for all a ∈ Rk

+.

(ii) If A(a) is stable for some a ∈ Rk
+, and if C+ denotes the open component

containing Rk
+ on which the equation A(a)∗X + XA(a) = −I is solvable,

then a 7→ trX(a) takes its minimum there.

In [Rit] examples are given where the optimal damping is achieved for the

damping matrix which is not positive semi–definite. This phenomenon occurs

when the matrices Cj are badly chosen.
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In the case of one–dimensional damping, i.e when C = cc∗ Veselić had shown

in [Ves90] that the corresponding penalty function is convex and a (unique)

minimum has been found. Also in the one–dimensional case, in [Ves88] it has

been shown that for any sequence of 2n eigenvalues λ1, . . . , λ2n (symmetric

with respect to the real axis), situated in the left half–plane, there exists a

corresponding Ω and a vector c such that the eigenvalues of the corresponding

matrix A are λ1, . . . , λ2n. An analogous inverse spectral problem was solved in

[Ves90] for the case of n–mass oscillator.

2.2 Global minimum

The Lyapunov equation (2.1.10) can be written as

(A0 −BCB∗)∗X + X(A0 −BCB∗) = −I, (2.2.1)

where

A0 =

[
0 Ω

−Ω 0

]
, B =

[
0

I

]
.

The dual Lyapunov equation (2.1.14) is given by

(A0 −BCB∗)Y + Y (A0 −BCB∗)∗ = −Z (2.2.2)

Let

Cs = {C ∈ Rn×n : C = C∗, Re{σ(A0 + BCB∗)} < 0},

D+
s = {C ∈ Rn×n : C ≥ 0, Re{σ(A0 + BCB∗)} < 0},

and let Ds be the connected component of Cs which contains D+
s .

To emphasize the dependence of X and Y of the parameter C we write

X(C) and Y (C). We are interested in the following optimization problems:
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(OD) minimize tr(X(C)) subject to C ∈ Ds and (2.2.1),

and

(OD+) minimize tr(X(C)) subject to C ∈ D+
s and (2.2.1) .

Let us define the function f : Ds → R by

f(C) = tr(X(C)Z), where X(C) solves (2.2.1). (2.2.3)

Let Z̃ = diag(α1, . . . , αs, 0, . . . , 0), where 1 ≤ s ≤ n and αi > 0, i = 1, . . . , s.

Set Z =
( eZ 0

0 eZ )
. We also define Ωs = diag(ω1, . . . , ωs, 0, . . . , 0).

Theorem 2.2.1. For the matrix Z given above, the problem (OD+) has a so-

lution, and the set on which the minimum is attained is

Cmin =





C =




2Ωs 0

0 H


 : H ≥ 0, C ∈ Cs





.

Note that the solution of (OD+) depends only on number s.

Proof. Let C ∈ D+
s be arbitrary. Since Z commutes with J =

(
I 0
0 −I

)
and

A0 −BCB∗ is J-symmetric,

f(C) = tr(X(C)) (2.2.4)

holds, where X(C) solves the Lyapunov equation

(A0 −BCB∗)∗X + X(A0 −BCB∗) = −Z. (2.2.5)

Let Z̃i be a diagonal matrix with all entries zero except the i-th which is αi.

Set Zi =
( eZi 0

0 eZi

)
. Let Xi be the solution of the Lyapunov equation

(A0 −BCB∗)∗X + X(A0 −BCB∗) = −Zi. (2.2.6)
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Then it is easy to see that the solution of the Lyapunov equation (2.2.5) is

X =
s∑

i=1

Xi. (2.2.7)

Our aim is to show

min{tr(X(C)) : X(C) solves (2.2.6), C ∈ D+
S } ≥

2αi

ωi

, i = 1, . . . , s (2.2.8)

First observe that by simple permutation argument we can assume i = 1. Sec-

ondly, we can assume αi = 1 (just multiply (2.2.6) by 1/αi). Let us decompose

the matrix X ∈ R2n×2n in the following way:

X =




x11 X12 x13 X14

X∗
12 X22 X23 X24

x13 X∗
23 x33 X34

X∗
14 X∗

24 X∗
34 X44




, (2.2.9)

where x11, x33, x13 ∈ R, X12, X14, X34 ∈ R1×(n−1), X22, X24, X44 ∈ R(n−1)×(n−1),

and X23 ∈ R(n−1)×1. Next we partition the Lyapunov equation

(A0 −BCB∗)∗X + X(A0 −BCB∗) = −Z1
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in the same way as we did with X. We obtain

−x13ω1 − ω1x
∗
13 + 1 = 0 (1,1)

−ω1X
∗
23 −X14Ωn−1 = 0 (1,2)

−ω1x33 + x11ω1 − x13c11 −X14C
∗
12 = 0 (1,3)

−ω1X34 + X12Ωn−1 − x13C12 −X14C22 = 0 (1,4)

−Ωn−1X
∗
24 −X24Ωn−1 = 0 (2,2)

−Ωn−1X
∗
34 + X∗

12Ω1 −X23c11 −X24C
∗
12 = 0 (2,3)

−Ωn−1X44 + X22Ωn−1 −X23C12 −X24C22 = 0 (2,4)

ω1x13 − c11x33 − C12XC∗
34 + x∗13ω1 − x33c11 −X34C

∗
12 + 1 = 0 (3,3)

ω1X14 − c11X34 − C12X44 + X∗
23Ωn−1 − x33C12 −X34C22 = 0 (3,4)

Ωn−1X24 − C∗
12X34 − C22X44 + X∗

24Ωn−1 −X∗
34C12 −X44C22 = 0, (4,4)

where ω1, c11 ∈ R, C12 ∈ R1×(n−1), and C22, Ωn−1 ∈ R(n−1)×(n−1).

From (1,1) we obtain x13 = 1
2ω1

. One can easily see that c11 = 0 implies

C12 = 0, hence (3,3) reads 2 = 0, a contradiction. Hence, c11 > 0. From (3,3)

we now get

x33 =
1−X34C

∗
12

c11

. (2.2.10)

The relation (4,4), together with the facts X44 ≥ 0, C22 ≥ 0, implies

tr(C∗
12X34 + X∗

34C12) ≤ tr(Ωn−1X24 + X∗
24Ωn−1),

and the relation (2,2) implies tr(X24Ωn−1) = 0, hence we obtain

tr(X∗
34C12) = tr(X34C

∗
12) ≤ 0. (2.2.11)

From the relation (1,3) we obtain

x11 = x33 + x13c11ω
−1
1 + ω−1

1 X14C
∗
12.
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From relation (2,4) we obtain

X22 = Ωn−1X44Ω
−1
n−1 + X23C12Ω

−1
n−1 + X24C22Ω

−1
n−1,

hence

trX22 = trX44 + tr(X23C12Ω
−1
n−1) + tr(X24C22Ω

−1
n−1).

From the relation (2,2) we obtain

X24 =
1

2
SΩ−1

n−1,

where S ∈ R(n−1)×(n−1) is a skew–symmetric matrix.

Hence

trX = x11 + trX22 + x33 + trX44

= 2x33 + 2trX44 +
c11

2ω2
1

+
1

ω1

X14C
∗
12 + tr(X23C12Ω

−1
n−1) +

1

2
tr(SΩ−1

n−1C22Ω
−1
n−1)

= 2x33 + 2trX44 +
c11

2ω2
1

+
1

ω1

X14C
∗
12 + tr(X23C12Ω

−1
n−1).

From the relation (1,2) follows X23 = − 1
ω1

Ωn−1X
∗
14, hence

trX = 2x33 + 2trX44 +
c11

2ω2
1

.

Now (2.2.10) and (2.2.11) imply

trX = 2
1−X34C

∗
12

c11

+
c11

2ω2
1

+ 2trX44 ≥

≥ 2

c11

+
c11

2ω2
1

≥ 2

ω1

.

(2.2.12)

The last inequality follows from the following observation. Let us define the

function g(x) = 2
x

+ x
2ω2

1
. Then the function g attains its unique minimum 2

ω1
in

x = 2ω1.

Hence, we have shown (2.2.8). Now (2.2.7) and (2.2.4) imply

tr(X(C)Z) ≥ 2
s∑

i=1

αi

ωi

.
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Since tr(X(2Ω)Z) = 2
∑s

i=1
αi

ωi
, this is indeed the global minimum.

Assume that C ∈ D+
s is such that tr(X(C)Z) = 2

∑s
i=1

αi

ωi
. Then (2.2.12)

and (2.2.7) imply trXi = 2
ωi

. Observe the matrix X1 which we decompose as in

(2.2.9). Then (2.2.12) implies X44 = 0. Since X1 ≥ 0, it follows X14 = X24 =

X34 = 0. From the relation (1,2) follows immediately X23 = 0. The relation

(1,3) implies x11 = 3
2

1
ω1

, which implies trX22 = 0. Hence X22 = 0. This implies

X12 = 0. Finally, from (1,4) now follows C12 = 0.

By repeating this procedure for i = 2, . . . , s we obtain C ∈ Cmin.

On the other hand, it is easy to see that tr(X(C)Z) = 2
∑s

i=1
αi

ωi
, for all

C ∈ Cmin.

2.3 Numerical aspects

A general algorithm for the optimization of damping does not exist. Available

algorithms optimize only the viscosities of dampers, not their positions, i.e.

they deal with the cases when D is parameterized by some function Rk 3 a 7→
C(a) ∈ Rn×n, where k is usually much smaller then n.

Two types of numerical optimization algorithms are currently in use. One

type are the algorithms which rely on the use of Newton–type algorithms for

higher–dimensional (constrained or unconstrained) problems on the function

f defined by (2.2.3) with the use of some Lyapunov solver. The second type

algorithms are ones which bypass the solving of the Lyapunov equation by

explicitly calculating the function f .

The algorithms of the second type, when available, are faster, but harder to

construct. One algorithm of this type is constructed for the case when rank of
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D is one. In [Ves90] Veselić has given an efficient algorithm which calculates

an optimal ε, where D = εdd∗. Moreover, the optimal viscosity ε is given by a

closed formula.

Recently, a sort of generalization of this algorithm is given in [TV02]. This

algorithm can be used to calculate the optimal viscosity ε if D = εD0.

Note that both of these algorithms only deal with the case when the set of

admissible matrices is parameterized by a real–valued function.

If we want to treat more complex cases, only the algorithms of the first type

are available so far. A major computational effort is spent on the calculation

of the solution of the Lyapunov equation. The standard algorithm is given in

[BS72]. A variant of this general algorithm designed for the Lyapunov equation

is given in [Ham82]. Another algorithm is given in [GNVL79]. There also exist

algorithms based on the iterative methods, see, for example [Saa90], [Wac88]

and [HTP96].

A Newton–type algorithm is developed in [Bra98]. The gradient and the

Hessian of the penalty function can be explicitly calculated.



Chapter 3

Abstract vibrational system

In this chapter we will introduce the notion of an abstract vibrational system

in terms of an abstract second–order differential equation involving quadratic

forms. We will show how we can translate this equation into a linear Cauchy

problem, and we will solve this problem in terms of a semigroup. It turns out

that the norm of the semigroup equals one half of the energy of the solution

of the original differential equation, and that the original differential equation

has a solution if and only if there exists a solution for the Cauchy problem. We

will give necessary and sufficient conditions for uniform exponential stability

of this semigroup in terms of the original coefficients. In generic situation,

uniform exponential stability can be easily checked, if we know the eigenvalues

and eigenvectors of the corresponding undamped system.

3.1 Setting the problem

We start with three symmetric, non–negative sesquilinear forms µ, γ and κ in

a vector space X0 over the complex field. The forms µ, γ and κ correspond to

the mass, damping and stiffness, respectively. We assume that the sesquilinear

27
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form κ is positive, i.e. κ(x, x) > 0 for all x 6= 0. We also assume that X1 =

D(µ)∩D(γ)∩D(κ) is a non–trivial subspace of X0. We equip the vector space

X1 with the scalar product

(x, y) = κ(x, y), x, y ∈ X1.

This is a natural choice, since it enables us to work in a Hilbert space setting

with the scalar product which corresponds to the energy of the system (see

Example 1.1.1).

Let Z denote the completion of the space (X1, (·, ·)). The norm generated

by this scalar product will be denoted by ‖ · ‖. Obviously, X1 is dense in Z.

For our purposes it will suffice to suppose that the Hilbert space Z is sepa-

rable.

We also assume that µ and γ are closable in Z, and we denote these closures

also by µ and γ. Set X = D(µ) ∩D(γ). The subspace X is obviously dense in

Z. The following definition slightly generalizes the notion of the closability of

forms, introduced in [Kat95] for positive forms.

Definition 3.1.1. Let χ and ξ be symmetric non–negative sesquilinear forms

in a vector space X . We say that χ is ξ–closable if for an arbitrary sequence

(xn), xn ∈ D(ξ) ∩D(χ) with

ξ(xn, xn) → 0, χ(xn − xm, xn − xm) → 0, as n,m →∞,

there exist x ∈ X such that

ξ(x, x) = 0, χ(x− xn, x− xn) → 0.

The following proposition is obvious.
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Proposition 3.1.1. The sesquilinear forms µ and γ are closable in Z if and

only if µ and γ are κ–closable.

The following formal Cauchy problem

µ(ẍ(t), z) + γ(ẋ(t), z) + (x(t), z) = 0, for all z ∈ Z, t ≥ 0,

x(0) = x0, ẋ(0) = ẋ0,
(3.1.1)

where x : [0,∞) → Z, x0, ẋ0 ∈ Z, and µ, γ and κ satisfy the assumptions given

above, is called an abstract vibrational system.

Note that the stiffness form κ is indirectly present in (3.1.1); it defines the

geometry of the underlying space.

We introduce the energy function of the system described by (3.1.1) by

E(t; x0, ẋ0) =
1

2
µ(ẋ(t), ẋ(t)) +

1

2
κ(x(t), x(t)), (3.1.2)

where x(t) is the solution of (3.1.1).

The Cauchy problem (3.1.1) and the energy function (3.1.2) will be central

objects of the investigation in this thesis.

The corresponding undamped system is described by

µ(ẍ(t), z) + (x(t), z) = 0, for all z ∈ Z, t ≥ 0,

x(0) = x0, ẋ(0) = ẋ0.

Example 3.1.1 (Vibrating string). As an illustrative example, throughout this

chapter we will study the following differential equation

∂2

∂t2
u(x, t)− ∂2

∂x2
u(x, t) = 0, x ∈ [0, π], t ≥ 0, (3.1.3a)

u(0, t) = 0, (3.1.3b)

∂

∂x
u(π, t) + ε

∂

∂t
u(π, t) = 0, (3.1.3c)

u(x, 0) = u0(x),
∂

∂t
u(x, 0) = u1(x), (3.1.3d)
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where ε > 0, and u0, u1 initial data. The equation (3.1.3) describes a homo-

geneous vibrating string with linear boundary damping on its right end. We

multiply equation (3.1.3a) by any continuously differentiable function v with

v(0) = 0, and then partially integrate. Using (3.1.3c) we obtain

π∫

0

∂2

∂t2
u(x, t)v(x)dx + ε

∂

∂t
u(π, t) +

π∫

0

∂

∂x
u(x, t)v′(x)dx = 0.

Thus, we set

µ(u, v) =

π∫

0

u(x)v(x)dx,

γ(u, v) = εu(π)v(π),

κ(u, v) =

π∫

0

u′(x)v′(x)dx,

with X0 := D(µ) = D(γ) = D(κ) = {u ∈ C2([0, π]) : u(0) = 0}. Hence X1 =

X0. Poincar inequality implies Z = {u ∈ L2([0, π]) : u′ ∈ L2([0, π]), u(0) = 0},
i.e. Z is the space of all functions from the Sobolev spaceH1([0, π]) which vanish

in π. Also, the scalar product generated by κ and standard scalar product in

H1([0, π]) are equivalent.

Next we will show that µ and γ are κ–closable. Indeed, κ(un, un) → 0

implies u′n → 0 in L2–norm, and µ(un − um, un − um) → 0 for n,m → ∞
implies the existence of u ∈ L2([0, π]) such that un → u in L2–norm. From

Poincar inequality now follows u = 0, hence µ is κ–closable. From γ(un −
um, un − um) → 0 and Poincar inequality follows |un(π)|2 ≤ ‖u′n‖2

L2 → 0, so γ

is also κ–closable. Obviously, the closures of µ and γ (which we again denote
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by µ and γ) are defined on all Z. Hence, the system (3.1.3) can be written as

µ(ü, v) + γ(u̇, v) + (u, v) = 0, for all v ∈ Z,

u(0) = u0, u̇(0) = u1, u0, u1 ∈ Z.

(3.1.4)

For (3.1.1), the formal substitution x(t) = eλty leads to

λ2µ(y, z) + λγ(y, z) + (y, z) = 0.

The form µλ = λ2µ + λγ + I is densely defined (with the domain X ) closed

(as a sum of closed symmetric forms) positive form for all λ > 0.

For λ ≥ 0, the second representation theorem [Kat95, pp. 331] implies the

existence of selfadjoint non–negative operators M and C such that

D(M1/2) = D(µ), µ(x, y) = (M1/2x, M1/2y), x, y ∈ D(µ),

D(C1/2) = D(γ), γ(x, y) = (C1/2x, C1/2y), x, y ∈ D(γ),

and a selfadjoint positive operator Mλ such that

D(Mλ
1/2) = D(µλ), µλ(x, y) = (Mλ

1/2x,Mλ
1/2y), x, y ∈ D(µλ).

Obviously,

D(Mλ
1/2) ⊂ D(M1/2) and D(Mλ

1/2) ⊂ D(C1/2) for all λ > 0,

and

µλ(x, x) ≥ ‖x‖2 for all λ ≥ 0. (3.1.5)

We write

Mλ = λ2M + λC + I,
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in the form–sum sense. From (3.1.5) follows that M
−1/2
λ exists and is everywhere

defined bounded operator, and ‖M−1/2
λ ‖ ≤ 1 holds for all λ ≥ 0. This obviously

implies ‖M−1
λ ‖ ≤ 1 for all λ ≥ 0. Note also that M0 = I.

Now (3.1.1) can be written as

(M1/2ẍ(t),M1/2z) + (M1/2ẋ(t),M1/2z) + (x(t), z) = 0, for all z ∈ Z, t ≥ 0,

x(0) = x0, ẋ(0) = ẋ0,

(3.1.6)

and the energy function (3.1.2) can be written as

E(t; x0, ẋ0) =
1

2
‖M1/2ẋ(t)‖2 +

1

2
‖x(t)‖2 (3.1.7)

Example 3.1.2 (Continuation of Example 3.1.1). A straightforward computation

gives

(Mu)(x) =

π∫

0

G(x, ξ)u(ξ)dξ,

(Cu)(x) = εu(π)x,

where G is the Green function of the corresponding undamped system given by

G(x, ξ) =





x, x ≤ ξ,

ξ, x ≥ ξ

.

Both operators are everywhere defined, and M is compact. Obviously,

N (M) = {0}. The operator C has one–dimensional range spanned by the

identity function. Observe that M1/2 and C1/2 cannot be written in a closed

form.

The energy function of the system (3.1.3) is given by

E(t; u0, u1) =
1

2

π∫

0

(|x(t)|2 + |ẋ(t)|2) dx. (3.1.8)
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3.2 The pseudoresolvent

From D(Mλ
1/2) ⊂ D(M1/2) follows that M1/2M−1

λ is a closed operator defined

on all Z, hence by

Bλ = M1/2M
−1/2
λ

is given a bounded operator in Z, for all λ > 0.

The adjoint B∗
λ of Bλ is then also bounded, and it is the closure of the

densely defined operator M
−1/2
λ M1/2, i.e.

B∗
λ = M

−1/2
λ M1/2.

To prove this, first note that D(M
−1/2
λ M1/2) = D(M1/2). From [Wei76, Satz

4.19] we have

(M
−1/2
λ M1/2)∗ = M1/2M

−1/2
λ = Bλ.

Hence from [Wei76, Satz 4.13] follows

M
−1/2
λ M1/2 = (M

−1/2
λ M1/2)∗∗ = B∗

λ.

For λ > 0 we have

µ ≤ µ +
1

λ
γ +

1

λ2
I =

µλ

λ2
,

hence

‖Bλx‖2 = (M1/2M
−1/2
λ x,M1/2M

−1/2
λ x) = µ(M

−1/2
λ x) ≤

≤ µλ(M
−1/2
λ x)

λ2
=
‖x‖2

λ2
.

This implies

‖Bλ‖ ≤ 1

λ
, ‖B∗

λ‖ ≤
1

λ
, for all λ > 0.
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In the finite–dimensional case the corresponding equation (3.1.1) reads

Mẍ + Cẋ + x = 0. (3.2.1)

Substituting y1 = x, y2 = M1/2ẋ, it is easy to see that (3.2.1) is equivalent with

the matrix differential equation

ẏ = Afy,

where y = ( y1
y2 ), and

Af =

[
0 M−1/2

−M−1/2 −M−1/2CM−1/2

]
.

By a straightforward computation one can obtain

(Af − λ)−1 =

[
1
λ
(M−1

λ − I) −M−1
λ M1/2

M1/2M−1
λ −λM1/2M−1

λ M1/2,

]
, (3.2.2)

which is a well-known formula.

In the general case the operator given by (3.2.2) may not exist. Hence, to

bypass this, we define a family of bounded operators in Z ⊕Z, which, in some

sense, generalizes (3.2.2), by

R0(λ) =

[
1
λ
Mλ

−1 − 1
λ
−Mλ

−1/2B∗
λ

BλMλ
−1/2 −λBλB

∗
λ

]
, λ > 0. (3.2.3)

In the matrix case, it is easy to see that (3.2.3) is equivalent with (3.2.2).

Next we will show that R0(λ) is a pseudoresolvent.

Lemma 3.2.1. For all λ, ν > 0, and all x, y ∈ Z we have

(λMλ
−1x−νM−1

ν x, y) = (λ−ν)
[
−λν(BνM

−1/2
ν x,BλMλ

−1/2y) + (M−1
ν x,Mλ

−1y)
]
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Proof. We have

µλ(M
−1
ν x,M−1

λ y) = (Mλ
1/2M−1

ν x,Mλ
−1/2y) = (M−1

ν x, y),

µν(M
−1
ν x,M−1

λ y) = (M−1
λ x, y).

Hence,

(λM−1
λ x− νM−1

ν x, y) = λ(M−1
λ x, y)− ν(M−1

ν x, y)

= λµν(M
−1
ν x,M−1

λ y)− νµλ(M
−1
ν x, M−1

λ y)

= (λ− µ)
[−λνµ(M−1

ν x,M−1
λ y) + (M−1

ν x,M−1
λ y)

]
.

Now, from

µ(M−1
ν x,M−1

λ y) = (M1/2M−1
ν x,M1/2M−1

λ y) = (BνM
−1/2
ν x,BλMλ

−1/2y),

our claim follows.

Proposition 3.2.2. The operator family {R0(λ) : λ > 0} satisfies the resolvent

equation

R0(λ)−R0(ν) = (λ− ν)R0(λ)R0(ν), (3.2.4)

i.e. R0(λ) is a pseudoresolvent.

Proof. Let us denote the operator matrix on the left hand side and the right

hand side of (3.2.4) by




b11 b12

b21 b22


 and




a11 a12

a21 a22,


 ,
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respectively. From the straightforward computation we get

a11 =
λ− ν

λν
(M−1

λ M−1
ν −M−1

λ −M−1
ν + I)− (λ− ν)(Mλ

−1/2B∗
λBνM

−1/2
ν ),

a12 =
λ− ν

ν
(BλMλ

−1/2M−1
ν −BλMλ

−1/2)− λ(λ− ν)BλB
∗
λBνM

−1/2
ν ,

a21 = −λ− ν

λ
M−1

λ M−1/2
ν B∗

ν +
λ− ν

λ
M−1/2

ν B∗
ν + ν(λ− ν)Mλ

−1/2B∗
λBνB

∗
ν ,

a22 = (λ− ν)(−BλMλ
−1/2M−1/2

ν B∗
ν + λνBλB

∗
λBνB

∗
ν).

Let x, y ∈ D(M1/2) be arbitrary, and let us denote u = M1/2x, v = M1/2y.

Then B∗
νx = M

−1/2
ν u and B∗

λy = Mλ
−1/2v.

First we show that a22 = b22. Let us now calculate (a22x, y). Using Lemma

3.2.1 we obtain

(a22x, y) = (λ− ν)
[
−(BλMλ

−1/2M−1/2
ν B∗

νx, y) + λν(BλB
∗
λBνB

∗
νx, y)

]

= (λ− ν)
[
−(Mλ

−1/2M−1
ν u,Mλ

−1/2v) + λν(B∗
λBνM

−1/2
ν u,Mλ

−1/2v)
]

= (λ− ν)
[
λν(BνM

−1/2
ν u, BλMλ

−1/2v)− (M−1
ν u,M−1

λ v)
]

= −λ(M−1
λ u, v) + ν(M−1

ν u, v)

= −λ(M1/2M−1
λ M1/2x, y) + ν(M1/2M−1

ν M1/2x, y)

= −λ(BλB
∗
λx, y) + ν(BνB

∗
νx, y) = (b22x, y).

Since D(M1/2) is dense in Z, and operators a22 and b22 are bounded we have

(a22x, y) = (b22x, y) for all x, y ∈ Z, hence a22 = b22.
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Next we show a12 = b12. Again, using Lemma 3.2.1 we obtain

(a12x, y) = −λ− ν

λ

[
(M−1

λ M−1
ν u, y)− (M−1

ν u, y)− λν(Mλ
−1/2B∗

λBνM
−1/2
ν u, y)

]

= −λ− ν

λ

[
(M−1

ν u,M−1
λ y)− (M−1

ν u, y)− λν(BνM
−1/2
ν u,BλMλ

−1/2y)
]

= −1

λ
(λM−1

λ u− νM−1
ν u, y) +

λ− ν

λ
(M−1

ν u, y)

= −1

λ

[
λ(M−1

λ u, y)− ν(M−1
ν u, y)− λ(M − ν−1u, y) + ν(M − ν−1u, y)

]

= (M−1
ν u, y)− (M−1

λ u, y) = (M−1
ν uB∗

νx, y)− (M−1
λ uB∗

λx, y) = (b12x, y),

hence again a12 = b12.

Similarly, one can also prove that a21 = b21.

The term (a11x, y) can be written as

(a11x, y) = −1

λ
+

1

ν
+

+
λ− ν

λν

[
(M−1

ν x,M−1
λ y)− (M−1

λ x, y)− (M−1
ν x, y)− λν(BνM

−1/2
ν x,BλM

−1/2
λ y)

]
,

and since

(b11x, y) = −1

λ
+

1

ν
+

1

λ
(M−1

λ x, y)− 1

ν
(M−1

ν x, y),

to see that (a11x, y) equals (b11x, y), we have to show that

λ− ν

λν

[
(M−1

ν x,M−1
λ y)− (M−1

λ x, y)− (M−1
ν x, y)− λν(BνM

−1/2
ν x,BλM

−1/2
λ y)

]

=
1

λ
(M−1

λ x, y)− 1

ν
(M−1

ν x, y).

But this easily follows from Lemma 3.2.1.

Let us define

J =

[
I 0

0 −I

]
, in Z ⊕ Z.

Proposition 3.2.3. The operators R0(λ) and R0(λ)∗ are dissipative and J–

selfadjoint, for all λ > 0.
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Proof. Let u = ( x
y ) ∈ Z ⊕ Z. Then

(R0(λ) ( x
y ) , ( x

y )) = −1

λ
‖x‖2 +

1

λ
(M−1

λ x, x) + 2iIm(BλM
−1/2
λ x, y)− ‖B∗

λy‖2.

Now,

Re (R0(λ) ( x
y ) , ( x

y )) = −1

λ
‖x‖2 +

1

λ
(M−1

λ x, x)− ‖B∗
λy‖2 ≤

≤ −1

λ
‖x‖2 +

1

λ
‖x‖2 − ‖B∗

λy‖2 ≤ 0,

hence R0(λ) is dissipative.

On the other hand

Re(R0(λ)∗x, x) = Re(x,R0(λ)x) = Re(R0(λ)x, x) = Re(R0(λ)x, x) ≤ 0.

The fact that R0(λ) is J–selfadjoint is obvious.

Proposition 3.2.4. The null–space of the operator R0(λ) is given by

N (R0(λ)) =
{
u ∈ Z ⊕ Z : u = ( x

y ) , x ∈ N (M1/2) ∩N (C1/2), y ∈ N (B∗
λ)

}
,

where

N (B∗
λ) =

(
M1/2(D(M1/2) ∩D(C1/2))

)⊥
. (3.2.5)

Remark 3.2.1. 1. The set N (R0(λ)) is independent of λ, which is a property

shared by all pseudoresolvents, see for example [Paz83].

2. If D(M1/2) ∩ D(C1/2) is a core of the operator M1/2 then N (B∗
λ) =

N (M1/2), but in general we have only N (B∗
λ) ⊃ N (M1/2). This is a

mild regularity condition which will be fulfilled in most applications.

Proof of Proposition 3.2.4. From the equation R0(λ)u = 0, where u = ( x
y ), it

follows

1

λ
M−1

λ x− 1

λ
x−M

−1/2
λ B∗

λy = 0,

BλM
−1/2
λ x− λBλB

∗
λy = 0.
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Multiplying the first equation by λx, and second by λy and then conjugate, we

get

(M−1
λ x, x)− (x, x)− λ(M

−1/2
λ B∗

λy, x) = 0, (3.2.6)

λ(M
−1/2
λ B∗

λy, x)− λ2(BλB
∗
λy, y) = 0. (3.2.7)

Adding (3.2.6) and (3.2.7) we obtain

(M−1
λ x, x)− (x, x)− λ2(BλB

∗
λy, y) = 0,

which implies

(M−1
λ x, x)− (x, x) = λ2(BλB

∗
λy, y) ≥ 0. (3.2.8)

Since ‖M−1
λ ‖ ≤ 1, it follows (x, x) ≥ (M−1

λ x, x) ≥ (x, x), hence

(M−1
λ x, x) = (x, x), (3.2.9)

and since N (R0(λ)) is independent of the choice of λ, this equation holds for

all λ > 0. Also, from (3.2.8) follows B∗
λy = 0.

Let us denote z = M
−1/2
λ x. Then (3.2.9) reads (z, z) = (Mλ

1/2z,Mλ
1/2z).

Hence,

(z, z) = λ2(M1/2z,M1/2z) + λ(C1/2z, C1/2z) + (z, z).

This implies

λ2(M1/2z, M1/2z) + λ(C1/2z, C1/2z) = 0, for all λ > 0,

so we obtain M1/2z = C1/2z = 0. Hence, (λ2M1/2 + λC1/2)z = 0, for all λ > 0,

which implies Mλ
1/2z = z. This implies M

−1/2
λ x = x, hence λ2M1/2x+λC1/2x =

0 for all λ > 0, so we finally obtain M1/2x = C1/2x = 0. Hence we have shown

N (R0(λ)) ⊂ {
u ∈ Z ⊕ Z : u = ( x

y ) , x ∈ N (M1/2) ∩N (C1/2), y ∈ N (B∗
λ)

}
.
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The other inclusion is straightforward.

And finally, from N (B∗
λ) = R(Bλ)

⊥ and

R(Bλ) = M1/2M
−1/2
λ Z = M1/2D(M

1/2
λ ) = M1/2D(µλ) = M1/2(D(µ) ∩D(γ))

= M1/2(D(M1/2) ∩D(C1/2)),

(3.2.5) follows.

Remark 3.2.2. If D(M1/2) ∩ D(C1/2) is a core of M1/2 and N (M1/2) = {0},
then N (R0(λ)) = {0}, hence R0(λ) is a resolvent.

Let us denote Y = (N (R0(λ)))⊥. This is the so–called phase space. Ob-

viously, the subspace Y reduces the operator R0(λ). Let us denote by PY :

Z ⊕ Z → Y the corresponding orthogonal projector to the subspace Y.

Let R(λ) = PYR0(λ)|Y denote the corresponding restriction of the operator

R0(λ) to the phase space. It is easy to see that R(λ) also satisfies the resolvent

equation and has trivial null space. Then from the theory of pseudoresolvents

[Paz83] it follows that there exists an unique closed operator A : Y → Y such

that R(λ) = (λ − A)−1 for all λ ≥ 0. Since R(λ) is dissipative and bounded,

Proposition A.2 implies that A is maximal dissipative.

The subspace Y can be decomposed by Z1 ⊕ Z2, where Z1 = (N (M1/2) ∩
N (C1/2))⊥, Z2 = (N (B∗

λ))
⊥. Since N (M1/2) = N (M) and N (C1/2) = N (C),

we can also write Z1 = (N (M) ∩N (C))⊥.
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3.3 Uniform exponential stability

3.3.1 The operator A−1

Since A is maximal dissipative, the Lumer–Phillips theorem A.3 implies that A

generates a contractive strongly continuous semigroup.

Our next aim is to explore properties of the semigroup generated by the

operator A and to explain the connection of this semigroup with our quadratic

problem. We also find necessary and sufficient conditions which ensure that our

semigroup is uniformly exponentially stable.

To achieve this goal, we have to find some suitable representation of A in

the space Z1 ⊕ Z2. Unfortunately, in general, the operator A does not have

block–matrix representation in the product space Z1 ⊕Z2, but its inverse has.

First we will show that a necessary condition for the uniform exponential

stability of the semigroup generated by A is that M and C are bounded.

We will need the following lemma.

Lemma 3.3.1. For an arbitrary x ∈ Z and λ > 0 we have

lim
λ→0

M
−1/2
λ x− x → 0, (3.3.1)

lim
λ→0

M−1
λ x− x → 0. (3.3.2)

Proof. Let x ∈ D(Mλ
1/2) be arbitrary. We have

‖M−1/2
λ x− x‖ = ‖M−1

λ Mλ
1/2x−Mλ

1/2x + Mλ
1/2x− x‖ ≤

≤ (‖M−1
λ ‖+ 1)‖Mλ

1/2x− x‖ ≤ 2‖Mλ
1/2x− x‖.

Now first observe that ‖x‖ ≤ ‖Mλx‖ implies (using Heinz inequality) (x, x) ≤
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(Mλ
1/2x, x). Next we have

‖Mλ
1/2x− x‖2 = (Mλ

1/2x− x,Mλ
1/2x− x)

= (Mλ
1/2x,Mλ

1/2x)− 2(Mλ
1/2x, x) + (x, x)

= λ2(M1/2x,M1/2x) + λ(C1/2x,C1/2x) + 2((x, x)− (Mλ
1/2x, x)) ≤

≤ λ2(M1/2x,M1/2x) + λ(C1/2x,C1/2x) → 0, for λ → 0.

This implies (3.3.1) for all x ∈ D(Mλ
1/2). Since D(Mλ

1/2) is dense in Z and

‖M−1/2
λ ‖ is bounded as a function in λ, (3.3.1) follows for all x ∈ Z.

From the sequentially strong continuity of operator product [Kat95] (3.3.2)

immediately follows.

Theorem 3.3.2. Assume that the operator A generates an uniformly exponen-

tially stable semigroup. Then the operators M and C are bounded.

Proof. A necessary condition for the uniform exponential stability is 0 ∈ ρ(A),

so let us assume 0 ∈ ρ(A).

Since R(λ) is a continuous function in λ, we have

R(λ) → R(0) = A−1, as λ ↘ 0, (3.3.3)

hence R(λ)x has a norm limit for λ ↘ 0. This implies that BλM
−1/2
λ x also has

a norm limit for λ ↘ 0, for all x ∈ Z1.

Note that BλM
−1/2
λ = M1/2M−1

λ . Next we introduce the operator F in Z
defined by F = limλ↘0 M1/2M−1

λ , i.e. by

D(F ) = {x ∈ Z : ∃ lim
λ↘0

M1/2M−1
λ x}, Fx = lim

λ↘0
M1/2M−1

λ x.

Let x ∈ D(F ) be arbitrary. From (3.3.2) and from the fact that M1/2 is closed,

it follows that M1/2Mλ
−1x has a norm limit for λ ↘ 0, so D(F ) ∩ Z1 = Z1.



43

This implies Z1 ⊂ D(F ) ⊂ D(M1/2), i.e. (N (M1/2)∩N (C1/2))⊥ ⊂ D(M1/2).

Since N (M1/2) ∩ N (C1/2) ⊂ D(M1/2), we obtain D(M1/2) = Z, i.e. M is a

bounded operator.

Now we turn our attention to the entry (1, 1) in (3.2.3). For x ∈ D(Mλ)

(= D(C) now) we have

1

λ
(M−1

λ − I)x = −M−1
λ (λM + C)x,

hence
∥∥∥∥

1

λ
(M−1

λ − I)x + Cx

∥∥∥∥ ≤ λ‖M−1
λ ‖‖Mx‖+ ‖Cx−M−1

λ Cx‖ → 0,

as λ ↘ 0.

Let us define C0 = − limλ↘0
1
λ
(M−1

λ − I). Obviously, C0 is a symmetric

operator (as a limit of symmetric operators) and D(C) ⊂ D(C0). Since C is a

selfadjoint operator, we have C0 = C, i.e.

C = − lim
λ↘0

1

λ
(M−1

λ − I).

Using similar considerations as given above, we obtain that operator C is also

bounded.

Remark 3.3.1. 1. If the operator M is bounded, then N (B∗
λ) = N (M1/2),

hence Z2 = (N (M1/2))⊥.

2. If M is bounded, then Mλ can be regarded as a usual operator–sum, and

D(Mλ) = D(C) holds.

Remark 3.3.2. In terms of the forms µ, γ and κ, Theorem 3.3.2 says that if

A generates an uniformly exponentially stable semigroup, then µ and γ are

necessarily κ–bounded, i.e. there exists ∆ > 0 such that

µ(x, x) ≤ ∆κ(x, x) and γ(x, x) ≤ ∆κ(x, x), for all x ∈ Z.
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From now on, in the rest of thesis, we assume the following:

The operators M and C are bounded.

Note that now M
−1/2
λ B∗

λ = M−1
λ M1/2.

Using previous considerations and the fact that R(C) ⊂ Z1 and R(M1/2) ⊂
Z1, we obtain

A−1 =

[
−C|Z1 −M1/2|Z2

M1/2|Z1 0

]
.

Note that the phase space now becomes Y = Z1⊕Z2 = (N (M1/2)∩N (C1/2))⊥⊕
(N (M1/2))⊥. The operators C|Z1 and M1/2|Z1 are obviously bounded symmetric

operators in the space Z1, hence they are selfadjoint.

To avoid technicalities and simplify the proofs, we assume N (M1/2) ⊂
N (C1/2), i.e. there is no damping on the positions where mass vanishes. All the

results of this thesis remain valid also in the case when N (M1/2) * N (C1/2).

This assumption implies Y := Z1 = Z2, so now Y = Y ⊕ Y . Also, from

now on let C denote the operator C : Y → Y , and let M denote the operator

M : Y → Y . Letters M and C will denote operators in the spaces Z or Y
depending on the context.

Hence we can write

A−1 =

[
−C −M1/2

M1/2 0

]
.

From

A−1

[
x

M1/2y

]
=

[
−Cx−M1/2y

M1/2x

]

follows that D(A) = R(A−1) = (R(C) +R(M1/2))⊕R(M1/2), hence the oper-

ator A is not bounded in general.
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Remark 3.3.3. The operator A cannot, in general, be written in the block-matrix

form in Y ⊕ Y . Indeed, let us suppose that the operator A can be written in

the block–matrix form. Then we obtain R(C) ⊂ R(M1/2), and this does not

hold in general, as we can see from the following example.

Example 3.3.1 (Continuation of Example 3.1.2). As we have seen, M and C are

bounded, hence satisfy our assumption. Since N (M) = {0} we have Y = Z.

Next we show that A cannot be written in block–matrix form. To see this, it

is sufficient to show that the identity function is not in R(M1/2). First observe

that

(M−1/2u,M−1/2v) =

π∫

0

u′′(x)v′′(x)dx.

Let us assume that u(x) = x is in R(M1/2). Then there exists v ∈ Y such that

u = M1/2v. Hence

(v, v) = (M−1/2u,M−1/2u) =

π∫

0

|u′′(x)|2dx = 0,

a contradiction.

Observe also that R(C) +R(M1/2) 6= Y , hence A is not bounded.

Next we want to compute the resolvent of the operator A. Since A is maxi-

mal dissipative, the spectrum of A is contained in the left complex half–plane.

Our candidate for the resolvent of A is R(λ). Obviously, R(λ) is resolvent of A

for all λ ≥ 0. Next we show that R(λ) can be written as a block–matrix in Y Y
by

(A−λ)−1 ( x
y ) = R(λ) ( x

y ) =

[
1
λ
(M−1

λ − I) −M−1
λ M1/2

M1/2M−1
λ −λM1/2M−1

λ M1/2

] [
x

y

]
, for all x, y ∈ Y ,

(3.3.4)
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i.e.

(M−1
λ − I)x ∈ Y , M−1

λ M1/2x ∈ Y ,

M1/2M−1
λ x ∈ Y , M1/2M−1

λ M1/2x ∈ Y ,

holds for all x ∈ Y and all λ ≥ 0. The last two assertions are trivial. To prove

the first one, decompose (M−1
λ −I)x as (M−1

λ −I)x = y1+y2, where y1 ∈ N (M),

y2 ∈ Y . Then −λ2Mx−λCx = y1 +Mλy2, hence y1 ∈ Y , so y1 = 0. The second

assertion can be proved similarly. It is evident that R(λ) is well defined and

bounded operator for all λ such that 0 ∈ ρ(Mλ).

Let λ ∈ ρ(A) be such that 0 ∈ ρ(Mλ). Then it follows (I−λA−1)R(λ) = A−1,

hence R(λ)x ∈ D(A), for all x ∈ Y , which implies (A − λ)R(λ)x = x for all

x ∈ Y .

Similarly one can also prove R(λ)A−1 = A−1R(λ), hence R(λ)(I − λA−1) =

A−1. This implies R(λ)(A− λ)x = x, for all x ∈ D(A).

3.3.2 The spectrum of the operator A

Our aim in this section is to establish the correspondence between various types

of spectra of the operator A and the operator function λ 7→ Mλ.

Let us denote by ρ, σ, σp, σap and σr the resolvent set, spectrum, point spec-

trum, approximate point spectrum and residual spectrum of the operator func-

tion λ 7→ Mλ = λ2M + λC + I in the space Z, respectively. The point λ is in

the point spectrum of the operator function L if zero is in the point spectrum

of the operator L(λ), and analogous definitions hold for the other parts of the

spectrum. Note that now Mλ can be viewed as an operator sum.
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Theorem 3.3.3. The following holds:

ρ = ρ(A), σ = σ(A), σp = σp(A), σap = σap(A) and σr = σr(A).

Proof. Since 0 ∈ ρ(A) and M0 = I, we can assume λ 6= 0.

First we consider the point spectrum. Let λ ∈ σp, λ 6= 0 be arbitrary. Then

there exists x 6= 0 such that λ2Mx+λCx+x = 0, hence x = −λ2Mx−λCx ∈ Y .

Let us denote y = λM1/2x ∈ Y . Then ( x
y ) ∈ Y. From

A−1




x

y


 =



−Cx− λMx

M1/2x


 =

1

λ




x

y




follows 1
λ
∈ σp(A

−1), hence λ ∈ σp(A).

On the other hand, let λ ∈ σp(A), λ 6= 0 be arbitrary. Then there exists

( x
y ) 6= 0 such that 


−C −M1/2

M1/2 0







x

y


 =

1

λ




x

y


 ,

hence

−Cx−M1/2y =
1

λ
x,

M1/2x =
1

λ
y.

From this one can easily obtain λ2Mx + λCx + x = 0. We can assume x 6= 0,

since x = 0 implies y = 0, so λ ∈ σp holds.

Let now λ ∈ σap, λ 6= 0 be arbitrary. Then there exists a sequence (xn),

‖xn‖ = 1 such that Mλxn → 0 as n →∞. We decompose xn as xn = x1
n + x2

n,

with x1
n ∈ Y , x2

n ∈ N (M) = N (M) ∩N (C). Then

Mλxn = λ2Mx1
n + λCx1

n + x1
n + x2

n → 0,
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which implies λ2Mx1
n + λCx1

n + x1
n → 0 and x2

n → 0, hence we can assume

xn ∈ Y . Let us define yn = λM1/2xn. We have

(A−1−1

λ
)




xn

yn


 =



−Cxn − 1

λ
xn −M1/2yn

M1/2xn − 1
λ
yn


 =

1

λ



−λ2Mxn − λCxn − xn

0


 → 0,

as n →∞. Since ‖( xn
yn )‖ ≥ 1, we have λ ∈ σap(A).

On the other hand, let be λ ∈ σap(A), λ 6= 0 be arbitrary. Then there exists

a sequence ( xn
yn ) ∈ Y, ‖xn‖2 + ‖yn‖2 = 1 such that (A−1 − 1

λ
) ( xn

yn ) → 0 as

n →∞. This implies

Cxn − 1

λ
xn −M1/2yn → 0, (3.3.5)

M1/2xn − 1

λ
yn → 0. (3.3.6)

Multiplying (3.3.6) by λM1/2 we obtain

λMxn −M1/2yn → 0. (3.3.7)

Subtracting (3.3.7) from (3.3.6), we obtain

λ2Mxn + λCxn + xn → 0,

so to prove λ ∈ σapp, we have to exclude the possibility of xn tending to zero.

But xn → 0 and (3.3.6) imply yn → 0, which leads to a contradiction.

Let us denote by B[∗] the adjoint of the operator B in the scalar product

generated by the operator J =
(

I 0
0 −I

)
: Y → Y. Obviously, A−1 (and hence

also A) is a J–selfadjoint operator. Hence the following sequence of equivalences

hold: if λ 6= 0 then

λ ∈ σr ⇐⇒ 0 ∈ σr(Mλ) ⇐⇒ 0 ∈ σp(Mλ
∗) ⇐⇒ 0 ∈ σp(Mλ),
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and

0 ∈ σp(Mλ) ⇐⇒
1

λ
∈ σp(A

−1) ⇐⇒ 1

λ
∈ σr(A

−[∗]) ⇐⇒ 1

λ
∈ σ(A−1) ⇐⇒ λ ∈ σr(A).

Theorem 3.3.3 implies that (3.3.4) for all λ ∈ ρ(A).

Note that the spectrum of the corresponding undamped system (i.e. when

we set C = 0) is given by
{
±i

1√
λ

: λ ∈ σ(M) \ {0}
}

.

3.3.3 Characterization of the uniform exponential sta-

bility

The main result of this subsection will be the following theorem.

Theorem 3.3.4. The operator A generates an uniformly exponentially stable

semigroup if and only if

(i) for each β ∈ σ(M), and for each singular (the other term in use is ”ap-

proximate eigenvector”) sequence (xn) (i.e. a sequence such that ‖xn‖ = 1,

(M − β)xn → 0, as n →∞) we have inf ‖Cxn‖ > 0, and

(ii) supλ∈iR ‖M1/2M−1
λ ‖ < ∞ holds.

Remark 3.3.4. 1. The condition (i) is equivalent to the assumption that iR ⊂
ρ(A), or, equivalently, iR ⊂ ρ.

2. If the operator M has discrete spectrum, the condition (i) is equivalent

to the assumption that

Cx 6= 0 for all eigenvectors x of M, (3.3.8)
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hence the operator C does not vanish on the eigenvectors of the corre-

sponding undamped system.

3. In the finite–dimensional case the assumption (3.3.8) is necessary and suf-

ficient condition for the uniform exponential stability of the corresponding

semigroup (see Proposition 2.1.1).

4. The condition (ii) is the consequence of the well–known fact that in the

infinite–dimensional case the location of the spectrum of the generator

does not characterize the behavior of the semigroup.

5. Since (M1/2M−1
λ )∗ = M−1

−λM1/2, the condition (ii) is equivalent to

(ii)’ supλ∈iR ‖M−1
λ M1/2‖ < ∞.

6. The conditions (i) and (ii) are equivalent with the condition

sup
Reλ>0

‖M1/2Mλ
−1‖ < ∞.

Proof of the Theorem 3.3.4. For A to generate an uniformly exponentially sta-

ble semigroup it is necessary that iR ⊂ ρ(A).

First we will show that the condition (i) is necessary and sufficient for the

absence of the spectrum of the operator A on the imaginary axis.

Since M0 = I and 0 ∈ ρ(A), we exclude zero from our observations.

If there exists β ∈ σ(M) and a sequence (xn), ‖xn‖ = 1 such that (M −
β)xn → 0 and Cxn → 0, then obviously Mλxn → 0 for λ = i√

β
, hence λ ∈ σ(A).

On the other hand, let us assume that iλ ∈ σap(A) for some λ 6= 0. Then

iγ := 1
iλ
∈ σap, hence there exists a sequence (xn), ‖xn‖ = 1, such that

−γ2Mxn − iγCxn + xn → 0
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as n →∞. Multiplying by xn we obtain

−γ2(Mxn, xn)− iγ(Cxn, xn) + (xn, xn) → 0,

which implies (Cxn, xn) → 0, hence Cxn → 0. This implies that (I−γ2M)xn →
0, hence (M − 1

γ2 )xn → 0.

If iλ ∈ σr(A), then i 1
λ
∈ σp, so this case reduces to the already proved case.

From Corollary A.5 we know that a sufficient and necessary condition for

the uniform exponential stability is that supλ∈iR ‖R(λ)‖ < ∞ holds.

From the representation of the resolvent (3.3.4) it is obvious that condition

(ii) is necessary. To see that condition (ii) is also sufficient, first note that it

is sufficient to show that (1, 1) and (2, 2) entries in (3.3.4) are bounded on the

imaginary axis.

Let us assume that the condition (ii) is satisfied.

Let λ ∈ iR, x ∈ Y be arbitrary. Set

y = M−1
λ M1/2x. (3.3.9)

Then

(M1/2x, y) = (Mλy, y) = λ2‖M1/2y‖2 + λ(Cy, y) + ‖y‖2

= −‖λM1/2y‖2 + λ(Cy, y) + ‖y‖2.

Hence

‖λM1/2y‖2 = ‖y‖2 − Re(M1/2x, y). (3.3.10)

From (3.3.10) follows

‖λM1/2y‖2 ≤ ‖M1/2x‖‖y‖+ ‖y‖2. (3.3.11)

From (3.3.11) and (3.3.9) we get

‖λM1/2M−1
λ M1/2x‖2 ≤ ‖M−1

λ M1/2x‖2 + ‖M1/2x‖‖M−1
λ M1/2x‖. (3.3.12)
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Hence, the condition (ii) implies that entry (2, 2) is bounded.

To show that the entry (1, 1) is bounded, we proceed similarly. Let λ ∈ iR,

λ 6= 0, x ∈ Y be arbitrary. Set

y = M−1
λ x. (3.3.13)

Then

(x, y) = λ2‖M1/2y‖2 + λ(Cy, y) + (y, y). (3.3.14)

From (3.3.14) follows

(y−x, y−x) = (y, y)+(x, x)−2Re(x, y) = −Re(x, y)−λ2‖M1/2y‖2−λ(Cy, y),

hence ∥∥∥∥
1

λ
(y − x)

∥∥∥∥ = ‖M1/2y‖2 − 1

|λ|2 Re(x, y). (3.3.15)

If Re(x, y) ≥ 0 holds then obviously

∥∥∥∥
1

λ
(y − x)

∥∥∥∥ ≤ ‖M1/2y‖2,

and hence (3.3.13) implies

∥∥∥∥
1

λ
(Mλ

−1 − I)x

∥∥∥∥ ≤ ‖M1/2M
−1/2
λ x‖.

The case Re(x, y) < 0 we treat in the following way. From (3.3.14) and

Re(x, y) < 0 it follows

‖y‖ < |λ|‖M1/2y‖ (3.3.16)

Suppose |λ| ≥ 1. Then from (3.3.15) and (3.3.16) follows that

∥∥∥∥
1

λ
(y − x)

∥∥∥∥
2

≤ ‖M1/2y‖2 + ‖M1/2y‖2,

hence ∥∥∥∥
1

λ
(Mλ

−1 − I)x

∥∥∥∥
2

≤ ‖M1/2M
−1/2
λ x‖2 + ‖M1/2M

−1/2
λ x‖.
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Suppose now |λ| < 1. Then from (3.3.16) follows ‖y‖ ≤ ‖M1/2y‖, and hence

‖M−1/2
λ x‖ ≤ ‖M1/2M

−1/2
λ x‖.

This implies

∥∥∥∥
1

λ
(Mλ

−1 − I)x

∥∥∥∥ ≤ ‖M1/2M
−1/2
λ x‖(‖M‖+ ‖C‖).

When we put together the estimates given above, we get

∥∥∥∥
1

λ
(Mλ

−1 − I)x

∥∥∥∥ ≤

max

{√
‖M1/2M

−1/2
λ x‖2 + ‖M1/2M

−1/2
λ x‖, ‖M1/2M

−1/2
λ x‖(‖M‖+ ‖C‖)

}
.

(3.3.17)

Hence we have proved that the entry (1, 1) is also bounded.

Corollary 3.3.5. Assume that 0 ∈ ρ(M) and that the condition (i) from The-

orem 3.3.4 is satisfied. Then the condition (ii) from Theorem 3.3.4 is also

satisfied.

Proof. Obviously, it is sufficient to show that

sup
λ∈iR

‖M−1
λ ‖ < ∞.

Let us assume that the last relation is not satisfied. From the uniform bounded-

ness theorem it follows that there exists x, ‖x‖ = 1 such that supλ∈iR ‖M−1
λ x‖ =

∞, hence there exists a sequence (βn), βn ∈ R, such that

‖M−1
iβn

x‖ → ∞. (3.3.18)

Obviously, |βn| → ∞. By choosing a subsequence, if necessary (and denot-

ing this subsequence again by βn) relation (3.3.18) implies ‖M−1
iβn

x‖ ≥ n =
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n‖x‖, for all n ∈ N. Let us define xn =
M−1

iβn
x

‖M−1
iβn

x‖ . Then Miβnxn → 0, ‖xn‖ = 1

follows, and we have

−β2
nMxn + xn + iβnCxn → 0.

Multiplying the previous relation by xn, and using the fact that C is bounded,

we obtain

βnCxn → 0,

hence

−β2
nMxn + xn → 0. (3.3.19)

Let us define yn = Mxn. Then (3.3.19) reads

(M−1 − β2
n)yn → 0. (3.3.20)

Since 0 ∈ ρ(M), the sequence yn does not tend to zero, hence we can assume

that (3.3.20) holds with ‖yn‖ = 1. But then

‖M−1yn − β2
nyn‖ ≥ β2

n − ‖M−1yn‖ ≥ β2
n − ‖M−1‖ → ∞,

a contradiction with (3.3.20).

Assume that the assumptions of Theorem 3.3.4 are satisfied, and set

∆ = sup
λ∈iR

‖M−1
λ M1/2‖. (3.3.21)

Then the following proposition holds.

Proposition 3.3.6. We have

ω(A) ≤ − 1

max{√∆2 + ∆, ∆(‖M‖+ ‖C‖)}+ 2∆ +
√

∆2 + ‖M1/2‖∆ .



55

Proof. From Lemma A.7 follows that it is enough to show

‖R(λ)‖ ≤ max{
√

∆2 + ∆, ∆(‖M‖+ ‖C‖)}+ 2∆ +
√

∆2 + ‖M1/2‖∆. (3.3.22)

Since

‖R(λ)‖ = sup
‖x‖2+‖y‖2=1

∥∥∥∥∥∥∥




1
λ
(M−1

λ − I)x−M−1
λ M1/2y

M1/2M−1
λ x− λM1/2M−1

λ M1/2y




∥∥∥∥∥∥∥
≤

≤
√∥∥∥∥

1

λ
(M−1

λ − I)

∥∥∥∥
2

+ 2‖M−1
λ M1/2‖2 + ‖λM1/2M−1

λ M1/2‖2 ≤

≤
∥∥∥∥

1

λ
(M−1

λ − I)

∥∥∥∥ + 2‖M−1
λ M1/2‖+ ‖λM1/2M−1

λ M1/2‖,

estimates (3.3.12) and (3.3.17) imply (3.3.22).

Proposition 3.3.6 roughly says:

smaller ∆ ⇐⇒ faster exponential decay of the semigroup.

Our next goal is to show how the condition (ii) from Theorem 3.3.4 can be

written out in terms of the operators M and C.

Proposition 3.3.7. If the condition (i) from Theorem 3.3.4 holds, the condition

(ii) from Theorem 3.3.4 is equivalent to the following:

(ii)” Let (xn) be a sequence such that ‖M1/2xn‖ = 1, ‖xn‖2− 1
‖Mxn‖2 → 0

and ‖xn‖‖Cxn‖ → 0. Then ‖xn‖ is a bounded sequence.

Proof. First observe that the condition (ii) from Theorem 3.3.4 is not satisfied

if and only if there exists a sequence (βn) such that βn ∈ iR, |βn| → ∞ and

there exists x ∈ Y such that ‖M1/2M−1
βn

x‖ → ∞. Here we used the uniform

boundedness theorem, and the fact ‖M1/2M−1
λ ‖ is bounded for λ from any

bounded subset of iR. By a simple substitution, this condition (as in Corollary
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3.3.5) can be rewritten as:

there exists a sequence (βn) such that βn ∈ iR, |βn| → ∞ and a sequence (xn)

such that ‖M1/2xn‖ = 1 and Mβnxn → 0.

Let us assume that (ii)” is not satisfied. Then there exists a sequence (xn)

such that

‖M1/2xn‖ = 1, (3.3.23)

‖xn‖2 − 1

‖Mxn‖2
→ 0, (3.3.24)

‖xn‖‖Cxn‖ → 0 (3.3.25)

and

‖xn‖ → ∞. (3.3.26)

Let us define βn = 1
‖Mxn‖ . From (3.3.24) and (3.3.26) it follows βn →∞. Now

‖Miβnxn‖ ≤ ‖ − β2
nMxn + xn‖+ βn‖Cxn‖.

Relations (3.3.23) and (3.3.24) imply

‖ − β2
nMxn + xn‖2 = (−β2

nMxn + xn,−β2
nMxn + xn)

= β4
n‖Mxn‖2 − 2β2

n‖M1/2xn‖2 + ‖xn‖2

= ‖xn‖2 − 1

‖Mxn‖2
→ 0.

Also from (3.3.24) follows

‖Mxn‖‖xn‖ → 1,

which implies

βn

‖xn‖ → 1. (3.3.27)

Now (3.3.25) and (3.3.27) imply

βn‖Cxn‖ =
βn

‖xn‖‖xn‖‖Cxn‖ → 0,
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hence Miβnxn → 0.

On the other hand, let us assume that there exist sequences (βn) and (xn)

such that |βn| → ∞, ‖M1/2xn‖ = 1 and

Miβnxn → 0. (3.3.28)

Multiplying relation (3.3.28) by xn

‖xn‖ we get

−β2
n

1

‖xn‖‖M
1/2xn‖2 + i

βn

‖xn‖(Cxn, xn) + ‖xn‖ → 0,

which implies

− β2
n

‖xn‖ + ‖xn‖ → 0. (3.3.29)

Hence, for an arbitrary ε > 0 there exists n0 ∈ N such that for all n ≥ n0 we

have

−ε < − β2
n

‖xn‖ + ‖xn‖ < ε.

Multiplying the last equation by 1
‖xn‖ we obtain

1− ε

‖xn‖ <

(
βn

‖xn‖
)2

< 1 +
ε

‖xn‖ .

Since ‖xn‖ → ∞ (from (3.3.29)), it follows

|βn|
‖xn‖ → 1.

Multiplying (3.3.28) by βn

‖xn‖ we get

−β3
nM

xn

‖xn‖ + iβ2
nC

xn

‖xn‖ + βn
xn

‖xn‖ → 0. (3.3.30)

Set x̂n = xn

‖xn‖ , and multiply relation (3.3.30) by x̂n. We get

−β3
n(Mx̂n, x̂n) + iβ2

n(Cx̂n, x̂n) + βn(x̂n, x̂n) → 0,
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which implies

β2
nCx̂n → 0, (3.3.31)

−β3
nMx̂n + βnx̂n → 0. (3.3.32)

Multiplying the relations (3.3.31) and (3.3.32) by ‖xn‖
βn

we obtain

βnCxn → 0, (3.3.33)

−β2
nMxn + xn → 0. (3.3.34)

Now, multiplying (3.3.33) by ‖xn‖
βn

we get

‖xn‖Cxn → 0.

From (3.3.34) follows

‖xn‖2 − 2β2
n + β4

n‖Mxn‖2 → 0,

which, due to the fact that 1 = ‖M1/2xn‖2 = (Mxn, xn) ≤ ‖Mxn‖‖xn‖, can be

written as
(

β2
n −

1

‖Mxn‖2
+ i

√
‖Mxn‖2‖xn‖2 − 1

‖Mxn‖2

)
·

·
(

β2
n −

1

‖Mxn‖2
− i

√
‖Mxn‖2‖xn‖2 − 1

‖Mxn‖2

)
→ 0,

hence

β2
n −

1

‖Mxn‖2
→ 0, (3.3.35)

‖xn‖2

‖Mxn‖2
− 1

‖Mxn‖4
→ 0. (3.3.36)

From (3.3.35) follows Mxn → 0. And finally, we multiply (3.3.36) by ‖Mxn‖
to obtain

‖xn‖2 − 1

‖Mxn‖2
→ 0.
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Corollary 3.3.8. Assume that 0 ∈ ρ(C). Then both conditions from Theorem

3.3.4 are satisfied.

Proof. It is clear that the condition (i) is satisfied. The fact that the con-

dition (ii) is satisfied immediately follows from the inequality ‖xn‖‖Cxn‖ ≥
‖C−1‖‖xn‖2.

Remark 3.3.5. From the proof of Proposition 3.3.7 one can obtain that the

condition (ii) from Theorem 3.3.4 is equivalent to the following condition:

(ii)a Let sequences (βn), βn ∈ R and (xn), xn ∈ Y , be such that |βn| → ∞,

‖M1/2xn‖ = 1, |βn|
‖xn‖ → 1, −β2

nMxn + xn → 0 and ‖xn‖Cxn → 0. Then xn is a

bounded sequence.

3.3.4 Characterization of the uniform exponential sta-

bility via eigenvectors of M

Corollary 3.3.5 implies that the condition (ii) from Theorem 3.3.4 is trivial when

0 ∈ ρ(M), where M acts in Z or Y .

Hence we assume that 0 ∈ σc(M), for M acting in the space Y . This implies

that zero is an accumulation point of the spectrum of M .

The following theorem can be seen as a quadratic problem analogue of The-

orem 5.4.1. from [CZ93a].

Theorem 3.3.9. Let us assume that there exists an open interval around zero

such that there are no essential spectrum of M in this interval, i.e. there exists

δ > 0 such that (0, δ)∩σ(M) consists only of eigenvalues with finite multiplicities

with no accumulation points on (0, δ).
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Denote the eigenvalues of M on (0, δ) by λ1 ≥ λ2 ≥ . . ., where we have

taken multiple eigenvalues into account. Denote the corresponding normalized

eigenvectors by φn, i.e. Mφn = λnφn, ‖φn‖ = 1.

Set

Σ = {ψ =
∑
n∈Im

anφn :
∑
n∈Im

|an|2 = 1,m ∈ N, an ∈ C}, (3.3.37)

where

Im = {n ∈ N : λm = λn}, m ∈ N. (3.3.38)

Then the operator A generates an uniformly exponentially stable semigroup if

and only if

inf
ψ∈Σ

‖Cψ‖
‖Mψ‖ > 0. (3.3.39)

Remark 3.3.6. Theorem 3.3.9 implies that if the operator C is such that the cor-

responding operator A generates an uniformly exponentially stable semigroup,

then the operator αC has the same property, for all α > 0.

Remark 3.3.7. Using Theorem 3.3.9 and a spectral shift technique which was

introduced in [Ves02b] one can prove ω(A) ≤ −∆, where ∆ = inf{β ∈ R :

2βM + C ≥ 0}. This result is proved in [Ves02b] in the case of an abstract

second order system

Mẍ + Cẋ + Kx = 0,

where M,C and K are selfadjoint positive operators, and M and C are bounded.

Note that this result is void in the case that operator C has a non–trivial

null-space.

Theorem 3.3.9 is a considerable improvement of the similar results from

[CZ93a], since Theorem 3.3.9 can be applied to the systems with boundary
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damping, and the results from [CZ93a] cannot. For example, the results from

[CZ93a] cannot be used to characterize uniform exponential stability of the

system from Example 3.1.1.

Also, in our case the corresponding undamped system can posses continuous

spectrum.

Although the results from [CZ93a] formally can be applied also to the sys-

tems with non–selfadjoint damping operator, it appears that the assumption

(H5) [CZ93a, pp. 277]:

lim
n→∞

Re(Cyn, yn) = 0 =⇒ lim
n→∞

Cyn = 0

is very restrictive. In fact, we do not know any concrete application with non–

selfadjoint damping operator which satisfies (H5).

An improvement of the results from [CZ93a] is obtained recently in [LLR01],

where it was shown that the assumption (H5) can be dropped, if the damping

operator has a sufficiently small norm.

When M is compact, Theorem 3.3.9 obviously reduces to the following.

Corollary 3.3.10. Let M be compact. Denote by λn the eigenvalues of M and

by φn the corresponding normalized eigenvectors. Then the operator A generates

an uniformly exponentially stable semigroup if and only if

inf
1

λn

‖Cφn‖ > 0. (3.3.40)

Proof of Theorem 3.3.9. First note that (3.3.39) obviously implies the condition

(i) from Theorem 3.3.4.

Let us assume that the condition (ii)a from Remark 3.3.5 is not satisfied.

Then there exist sequences (βn), βn ∈ R and (xn), xn ∈ Y , with |βn| → ∞,

‖xn‖ → ∞, ‖M1/2xn‖ = 1, |βn|
‖xn‖ → 1, −β2

nMxn + xn → 0 and ‖xn‖Cxn → 0.
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Set x̃n = βnxn. Then

−βnMx̃n +
1

β
x̃n → 0, (3.3.41)

Cx̃n → 0. (3.3.42)

The relation (3.3.41) can be written as

∞∑
p=1

(
1

βn

− βnλp

)2

|(x̃n, φp)|2 +

‖M‖∫

δ

(
1

βn

− βnt

)2

d‖E(t)x̃n‖2 → 0, (3.3.43)

where E(t) is the spectral function of M , and δ is from the statement of the

theorem.

For n big enough we have

(
1

βn

− βnt

)2

=
1

β2
n

− 2t + β2
nt2 ≥ β2

nδ
2 − 2‖M‖ ≥ 1,

hence
‖M‖∫

δ

d‖E(t)x̃n‖2 → 0. (3.3.44)

Choose p(n) ∈ N such that

∣∣∣∣
1

βn

− βnλp(n)

∣∣∣∣ = min

{∣∣∣∣
1

βn

− βnλp

∣∣∣∣ : p ∈ N
}

.

Then there exists γ > 0 such that

∣∣∣∣
1

βn

− βnλp

∣∣∣∣ ≥ γ, for all p /∈ Ip(n). (3.3.45)

Indeed, let us assume that (3.3.45) is not satisfied. Then there exists a subse-

quence (pk) such that

1

βn

− βnλpk
→ 0 as k →∞.
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This implies λpk
→ 1

β2
n
, which is in the contradiction with the assumption that

the eigenvalues of M do not have accumulation points in (0, δ).

Now (3.3.45) and (3.3.43) imply

∑

p/∈Ip(n)

|(x̃n, φp)|2 → 0. (3.3.46)

Set zn =
∑

q∈Ip(n)
(x̃n, φq)φq. Then

x̃n − zn =
∑

p/∈Ip(n)

(x̃n, φp)φp +

‖M‖∫

δ

dE(t)x̃n +
∑

p∈Ip(n)

(x̃n − zn, φp)φp

=
∑

p/∈Ip(n)

(x̃n, φp)φp +

‖M‖∫

δ

dE(t)x̃n.

Using (3.3.46) and (3.3.44) we obtain

‖x̃n − zn‖2 =
∑

p/∈Ip(n)

|(x̃n, φp)|2 +

‖M‖∫

δ

d‖E(t)x̃n‖2 → 0. (3.3.47)

Now (3.3.42) and (3.3.47) imply

Czn → 0,

which is equivalent to

βn

∑
q∈Ip(n)

(xn, φq)Cφq → 0. (3.3.48)

Let us assume that

β2
nλ2

p(n)

∑
q∈Ip(n)

|(xn, φq)|2 → 0. (3.3.49)

Then (3.3.49) implies
∑

q∈Ip(n)

β2
n|(Mxn, φq)|2 → 0. (3.3.50)
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On the other hand, we have

‖βnMxn‖2 =
∑

p/∈Ip(n)

β2
n|(Mxn, φp)|2 +

‖M‖∫

δ

β2
nt2d‖E(t)xn‖2 +

∑
q∈Ip(n)

β2
n|(Mxn, φq)|2 ≤

≤ λ1

∑

p/∈Ip(n)

|(x̃n, φp)|2 + ‖M‖2

‖M‖∫

δ

d‖E(t)x̃n‖2 +
∑

q∈Ip(n)

β2
n|(Mxn, φq)|2.

From the previous relation and relations (3.3.50), (3.3.46) and (3.3.44) follows

βnMxn → 0. (3.3.51)

Since |βn|
‖xn‖ → 1, (3.3.51) implies

‖xn‖Mxn → 0.

This implies

1 = ‖M1/2xn‖2 = (Mxn, xn) ≤ ‖Mxn‖‖xn‖ → 0,

a contradiction.

Hence, the sequence

1

βnλp(n)

√∑
q∈Ip(n)

|(xn, φq)|2

is bounded, which together with (3.3.48) implies

1

λp(n)

∑
q∈Ip(n)

(xn, φq)√∑
q∈Ip(n)

|(xn, φq)|2
Cφq → 0.

Then obviously (3.3.39) is not satisfied.

On the other hand, let us assume that (3.3.39) is not satisfied. Then there

exists a sequence (ψn), ψn ∈ Σ such that

‖Cψn‖
‖Mψn‖ → 0.
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We can assume that ‖ψ‖ = 1. By βn we denote a number for which Mψn =

1
β2

n
ψn. Then βn → ∞ (otherwise there would be an accumulation point of the

spectrum of M in (0, δ)). Set xn = βnψn.

We will show that the sequences (βn) and (xn) violate the condition (ii)a

from Remark 3.3.5.

We have ‖M1/2xn‖ = βn‖M1/2ψn‖ = 1, ‖xn‖ = βn, hence ‖xn‖ → ∞ and

βn

‖xn‖ = 1. Also, −β2
nMxn + xn = 0, and

‖xn‖‖Cxn‖ = β2
n‖Cψn‖ =

‖Cψn‖
‖Mψn‖ → 0,

which all together implies that the condition (ii)a from Remark 3.3.5 is violated.

Remark 3.3.8. From Corollary 3.3.10 we immediately have the following.

The operator A generates a uniformly exponentially stable semigroup if there

exists a sequence δn > 0 such that

δn ≤ ‖Cφn‖ and inf
δn

λn

> 0,

where λn and φn are eigenvalues and normalized eigenvectors of M , respectively.

As a special case, note that

inf
γ(φn, φn)

λn

> 0

is a sufficient condition for the uniform exponential stability.

Example 3.3.2 (Continuation of Example 3.3.1). First we want to find eigenval-

ues and eigenfunctions of M . This can be achieved by solving the eigenproblem

for the operator M−1. One can easily obtain that the operator M−1 is given by

M−1u(x) = −u′′(x), D(M−1) = {u ∈ Y : u′′ ∈ L2([0, π]), u′(π) = 0}.
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Now, from a straightforward calculation follows that the eigenvalues of M−1 are

(n + 1
2
)2, n ∈ N, with the corresponding eigenfunctions ψn(x) = sin(n + 1

2
)x.

Hence, the eigenvalues of M are λn = 1
(n+ 1

2
)2

, n ∈ N, with the corresponding

eigenfunctions ψn.

Now we calculate ‖ψn‖ =
√

2
2

√
π(n + 1

2
), and (Cψn)(x) = (−1)nεx. Hence

1

λn

‖Cψn‖
‖ψn‖ = (n +

1

2
)2 ε

√
π

√
2

2

√
π(n + 1

2
)

=
√

2ε(n +
1

2
),

so the assumption of Corollary 3.3.10 is satisfied and A generates an uniformly

exponentially stable semigroup for all ε > 0.

3.4 The solution of the abstract vibrational sys-

tem

In this section we will solve the equation (3.1.1) using the semigroup generated

by the operator A.

Note that (3.1.6) (and hence (3.1.1)) can be written as

Mẍ + Cẋ + x = 0,

x(0) = x0, ẋ(0) = ẋ0,
(3.4.1)

and the energy function (3.1.2) can be written as

E(t; x0, ẋ0) =
1

2
(Mẋ(t), ẋ(t)) +

1

2
(x(t), x(t)). (3.4.2)

Since the Cauchy problem (3.1.6) is equivalent with the problem (3.4.1), we will

solve (3.4.1). First we define what do we exactly mean by a solution of (3.4.1).

We introduce two kinds of solutions.
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Definition 3.4.1. A classical solution of the Cauchy problem (3.4.1) is a func-

tion x : [0,∞) → Z such that x(t) is twice continuously differentiable on [0,∞),

with respect to Z, and satisfies (3.4.1).

A mild solution of the Cauchy problem (3.4.1) is a function x : [0,∞) → Z
such that x(t) is continuous, Mx(t) is continuously differentiable, and satisfies

d

dt
(Mx(t)) + Cx(t) +

t∫

0

x(s)ds− Cx0 −Mẋ0 = 0, for all t ≥ 0. (3.4.3)

Obviously, a classical solution is also a mild solution.

The main result of this section is the following theorem.

Theorem 3.4.1. The Cauchy problem ( 3.4.1) has a mild solution if and only

if x0 ∈ Y, and a classical solution if and only if x0 ∈ R(M1/2) + R(C). If

solution (mild or classical) exists, it is unique.

Proof. First we treat the case of the classical solutions. Since the operator A

generates a strongly continuous semigroup, the Cauchy problem

u̇(t) = Au(t),

u(0) = u0,

(3.4.4)

has a unique classical solution if and only if u0 ∈ D(A), and a unique mild

solution for all u0 ∈ Y (Theorem A.8). We will connect Cauchy problems

(3.4.1) and (3.4.4).

For the rest of the proof, let ẋ0 ∈ Z be arbitrary.

Let x0 ∈ R(M1/2) + R(C) be arbitrary. Set u0 =
( x0

M1/2ẋ0

)
. Obviously

u0 ∈ D(A), hence there exists a unique classical solution u(t) =
(

u1(t)
u2(t)

)
of

(3.4.4) for the initial condition u(0) = u0. Hence A−1u̇(t) = u(t) holds. This
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implies

−Cu̇1(t)−M1/2u̇2 = u1(t),

M1/2u̇1(t) = u2(t).

Hence u1(t) is twice continuously differentiable, and Mü1(t)+Cu̇1(t)+u1(t) = 0.

Since M1/2u̇1(0) = u2(0) = M1/2ẋ0 and u1(0) = x0, the function u1(t) is a

classical solution of (3.4.1).

Conversely, let x(t) be a classical solution of (3.4.1), and x0 ∈ R(M1/2) +

R(C). Set u(t) =
(

x(t)

M1/2ẋ

)
and u0 =

( x0

M1/2ẋ0

)
. The function u(t) is obvi-

ously continuously differentiable, and from x(t) = −Mẍ − Cẋ it follows that

u(t) ∈ D(A). One can easily prove that u(t) and u0 satisfy (3.4.4). Hence we

established a bijective correspondence between the classical solutions of (3.4.1)

and (3.4.4).

In case x0 ∈ Y , for u0 =
( x0

M1/2ẋ0

)
the Cauchy problem (3.4.4) in general

has only a mild solution. Let us denote this solution by u(t) =
(

u1(t)
u2(t)

)
. From

u(t) = A
t∫

0

u(s)ds + u0 follows

A−1




u1(t)

u2(t)


 =

t∫

0




u1(t)

u2(t)


 + A−1




x0

M1/2ẋ0


 .

This implies

−Cu1(t)−M1/2u2(t) =

t∫

0

u1(s)ds− Cx0 −Mẋ0, (3.4.5)

M1/2u1(t) =

t∫

0

u2(s)ds + M1/2x0. (3.4.6)
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The relation (3.4.6) implies that M1/2u1(t) (and hence Mu1(t)) is continuously

differentiable and that u2(t) = d
dt

(M1/2u1(t)). Then (3.4.5) reads

d

dt
(M1/2u1(t)) + Cu1(t) +

t∫

0

u1(s)−Mẋ0 − Cx0 = 0,

hence u1(t) is a mild solution of (3.4.1).

On the other hand, let x(t) be a mild solution of (3.4.1) for x0 ∈ Y . Set

u(t) =
(

x(t)

M1/2x(t)

)
and u0 = ( x0

ẋ0
). Obviously u(t) ∈ Y and u(t) is continuous.

One can easily prove that A−1u(t) =
t∫

0

u(s)ds + A−1u0 holds, hence u(t) is a

mild solution of (3.4.4).

Finally, let us assume that there exists a mild solution of (3.4.1) for x0 ∈ Z.

We decompose x0 as x0 = y0 + w0, where y0 ∈ Y and w0 ∈ N (M). For the

initial conditions y(0) = y0, ẏ(0) = ẋ0 there exists a unique mild solution y(t)

of (3.4.1). Hence we have

d

dt
(M1/2x(t)) + Cx(t) +

t∫

0

x(s)−Mẋ0 − Cx0 = 0,

d

dt
(M1/2y(t)) + Cy(t) +

t∫

0

y(s)−Mẋ0 − Cy0 = 0.

By subtracting these two equations, we get

d

dt
(M1/2z(t)) + Cz(t) +

t∫

0

z(s) = 0,

where z(t) = x(t)− y(t). This implies that z(t) is a mild solution of (3.4.1) for

initial conditions z(0) = 0, ż(0) = 0. From the uniqueness of the solutions, it

follows z(t) ≡ 0, hence w0 = 0, i.e. x0 ∈ Y .

Remark 3.4.1. Let us denote by P : Y → Y the orthogonal projector on the

first component of Y. Then from Theorem 3.4.1 it follows that if the Cauchy
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problem (3.4.1) has a solution x(t) for initial conditions x(0) = x0, ẋ(0) = ẋ0,

it is given by x(t) = PT (t)
( x0

M1/2ẋ0

)
, where T (t) denotes semigroup generated

by operator A.

Remark 3.4.2. Theorem 3.4.1 also implies

E(t; x0, ẋ0) =
1

2

∥∥∥∥∥∥∥
T (t)




x0

M1/2ẋ0




∥∥∥∥∥∥∥

2

≤ ‖T (t)‖2E(0; x0, ẋ0), (3.4.7)

i,e, the rate of the exponential decay of the energy (3.4.2) of the system (3.4.1)

is given by the growth bound of the semigroup T (t).

Hence, the energy of the system (3.4.1) decay uniformly exponentially if and

only if the semigroup T (t) is uniformly exponentially stable, and the sufficient

and necessary conditions for this are given in Subsections 3.3.3 and 3.3.4.

Note that the equation (3.4.7) also implies that energy of the system (3.4.1)

always decays in time.

Exponential decay of the energy of the system (3.4.1) can also be expressed

as follows. Multiply (3.4.1) by ẋ(t). Since d
dt

(Mẋ(t), ẋ(t)) = 2(Mẍ(t), ẋ(t)) and

d
dt

(x(t), x(t)) = 2(ẋ(t), x(t)), it follows

d

dt
((Mẋ(t), ẋ(t)) + (x(t), x(t))) = −(Cẋ(t), ẋ(t)) ≤ 0,

hence for all classical solutions x(t) we have

E(t; x0, ẋ0) = −(Cẋ(t), ẋ(t)).

Also, the energy decays exponentially in time if and only if there exists ε > 0

such that

lim
t→∞

eεt

t∫

0

‖C1/2ẋ(s)‖2ds = 0.
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Example 3.4.1 (Continuation of Example 3.3.2). The results of this section

imply that the energy (3.1.8) of the system described by (3.1.3) has uniform

exponential decay for all ε > 0.

Moreover, it was shown in [Ves88] that in the case ε = 1 the system comes

to rest for t = 2π independently of the initial conditions. Also, for ε = 1

the corresponding operator A has empty spectrum. This is not accidental,

since Proposition A.6 implies that the emptiness of the spectrum is a necessary

condition for this behavior.
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Chapter 4

Optimal damping

In this chapter we will give a precise mathematical formulation of our optimal

damping criterion. This criterion is designed in such a way that our knowledge

of the most dangerous input frequencies for the system could be naturally im-

plemented. This procedure uses the theory developed in the matrix case in a

natural way.

In the commutative case, i.e. when M and C commute, the optimal damping

will be found, and this result generalizes the well-known result in the matrix

case.

An alternative approach to the problem of cutting–off low–risk frequencies

is also given.

4.1 Minimization of the average total energy

As in the finite–dimensional case, our aim is to minimize the total energy of the

system described by (3.4.1) as the function of the damping form γ (hence of

the operator C), where γ goes over some prescribed set of admissible damping

forms (this set is always contained in the set of all damping forms for which

73
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the corresponding operator A generates an uniformly exponentially stable semi-

group). In case of the initial conditions x(0) = x0, ẋ(0) = ẋ0, relation (3.4.7)

implies that the total energy (given by
∞∫
0

E(t; x0, ẋ0)dt) of the system (3.4.1) is

given by
∞∫

0

(T (t)∗T (t)u0, u0)dt, (4.1.1)

where u0 =
( x0

M1/2ẋ0

)
.

From the famous Datko theorem ([Paz83]) it follows that the semigroup

T (t) is uniformly exponentially stable if and only if total energy of the system

is finite for all u0 ∈ Y.

As in the finite–dimensional case, the expression (4.1.1) can be algebraically

represented. The following result can be derived from [Phó91].

Theorem 4.1.1. The following operator equation

A∗Xx + XAx = −x, for all x ∈ D(A), (4.1.2)

has a bounded solution, and the solution X can be expressed by

Xx =

∞∫

0

T (t)∗T (t)xdt. (4.1.3)

Theorem 4.1.1 immediately implies that the total energy of the system is

given by (Xu0, u0). To make our minimization process independent of the initial

conditions, we would like to minimize the average total energy over the set of

admissible damping coefficients γ, i.e.

∫

‖u0‖=1

(Xu0, u0)µ(du0) → min, (4.1.4)

where X is regarded as a function of γ, and µ is some measure on the unit

sphere in Y.
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The general theory of integration in Hilbert spaces can be found in [Sko74].

In the rest of this section we will give the strict mathematical meaning to the

formula (4.1.4).

Remark 4.1.1. Instead of the average, one can take a maximum over all initial

conditions u0, ‖u0‖ = 1 as a measure of the efficiency of the damping, i.e.

instead of (4.1.4) one can take

max
‖x‖=1

(Xx, x) → min . (4.1.5)

Since X is selfadjoint positive definite, (4.1.5) is equivalent with ‖X‖ → min.

This approach is taken in, for example, [Cox98b], [Cox98a].

Since there exists no generalization of Lebesgue measure for Hilbert spaces

(see, for example [Kuo75]), the natural choice for the measure is the Gaussian

measure, since it is perhaps the simplest class of measures on Hilbert spaces.

Let us recall definition and basic properties of Gaussian measures.

Gaussian measure µ onR is a Borel measure with density f(x) = 1
σ
√

2π
e−

(x−m)2

2σ2 ,

which is absolutely continuous with respect to Lebesgue measure. In other

words, µ(B) =
∫
B

f(x)dx, for all Borel sets B in R. It is uniquely determined

by the real number m (mean) and positive number σ2 (variance). The charac-

teristic functional of a Gaussian measure µ in R is easily verified to have the

form

ϕ(z) :=

∞∫

−∞

eizxµ(dx) = e−
1
2
σ2z2+imz.

The measure is uniquely determined by its characteristic functional.

A non–negative measure µ in Rn is called Gaussian if all its one–dimensional

projections µy, y ∈ Rn, where

µy(B) = µ{x ∈ Rn : (x, y) ∈ B}
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are Gaussian. One can easily compute that the characteristic functional of µ is

ϕ(z) = e−
1
2
(Kz,z)+i(m,z), (4.1.6)

where m ∈ Rn is the mean and K is a positive semi–definite operator on Rn,

called the covariance operator. It can be easily verified that for det K 6= 0, the

function (4.1.6) is the Fourier transform of the positive function

f(x) =
1√

(2π)n det K
e−

1
2
(K−1(x−m),(x−m)),

which is the density of the measure µ, with respect to Lebesgue measure. If

det K = 0, then there is a orthogonal projector P in Rn such that K = PK =

KP . Now µ is concentrated on the subspace PRn, shifted along the vector m,

and is non–degenerate there.

By Gaussian measure in a real Hilbert space Y we understand a measure µ

whose characteristic functional has the form

ϕ(z) :=

∫

Y

ei(z,x)µ(dx) = e−
1
2
(Kz,z)+i(m,z), (4.1.7)

where m ∈ Y and K is trace class operator. It follows from (4.1.7) that all finite–

dimensional projections µL of µ are also Gaussian measures in the corresponding

subspace. It turns out that one can define a set of subspaces L, the projections

upon which completely determine the measure µ and on which the structure of

µ is simplest.

The mean m is the unique vector from Y such that
∫

Y

(x, z)µ(dx) = (m, z), for all z ∈ Y ,

and the covariance operator K is defined by
∫

Y

(x, z1)(x, z2)µ(dx) = (Kz1, z2), for all z1, z2 ∈ Y .
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The trace of K can be calculated by

trK =

∫

Y

‖x‖2µ(dx).

If m = 0 (i.e. if measure µ is centered)

∫

Y

(Xx, x)µ(dx) = tr(XK), (4.1.8)

for all bounded operators X on Y . The generalization of the formula (4.1.8) to

the case of surface measures will play important role in the sequel.

For the general theory of Gaussian measures in Hilbert spaces see [Kuo75].

To define the Gaussian measure in Y, which is a complex Hilbert space, we

first define Gaussian measure in the underlying real space YR which is defined

as follows (this procedure is essentially given in [VK96], where one can also find

the proofs of our assertions).

Take any orthonormal basis {e1, e2, . . .} in Y and denote by YR the collection

of all elements of Y that have real Fourier coefficients in this basis. Each element

x ∈ Y can be written as x = x′ + ix′′, where x′, x′′ ∈ YR. For a fixed basis

this decomposition is unique, and YR can be regarded as a real Hilbert space.

Let Ŷ denote the product YR⊕YR with the usual scalar product. The relation

Y 3 x = x′ + ix′′ 7→ (
x′
x′′

)
=: x̂ ∈ Ŷ gives the one–to–one mapping between

Y and Ŷ . Any bounded operator G in Y generates the corresponding bounded

operator Ĝ in Ŷ . The correspondence means that ŷ = Ĝx̂ if y = Gx. Each

bounded operator G can be uniquely represented as G = G′ + iG′′, where both

operators G′ and G′′ leave the set YR ⊂ Y invariant, and we have

Ĝ =

[
G′ −G′′

G′′ G′

]
.
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The operator matrix Ĝ commutes with the operator matrix J =
(

0 −I
I 0

)
. This

property characterizes the class of the operators in Ŷ which correspond to some

operator in Y . In the case that G is selfadjoint, it follows that G′ is selfadjoint,

and G′′ skew–adjoint.

Let KR be a trace class operator in YR. The operator KR induces a Gaussian

measure µR in YR with zero mean and covariance operator KR. Set

K̂ =

[
KR 0

0 KR

]
.

Then K̂ induces a Gaussian measure µ̂ in Ŷ , and, due to [VK96, Theorems 1,6

and 7], the operator K in Y , defined by

Kx = KRx + iKRx′′, where x = x′ + ix′′, (4.1.9)

induces a Gaussian measure µ in Y . In [VK96] it was shown that the measure

µ does not depend on the choice of the basis in Y .

Finally, let ν denote the Gaussian measure in Y induced by the operator

( K 0
0 K ), and let ν̂ denote the corresponding measure in Ŷ = Ŷ ⊕ Ŷ .

Observe that for G = G′ + iG′′ selfadjoint,

(Gx, x) = (Ĝx̂, x̂) = (G′x′, x′) + (G′x′′, x′′), where x = x′ + ix′′, x̂ =
(

x′
x′′

)
.

We treat the left hand side in (4.1.4) as an integral in Ŷ, i.e.

∫

‖û‖=1

(X̂û, û)νS(dû),

where νS is some measure on the unit sphere in Ŷ. For the measure νS we take

the measure induced by the measure ν̂ via Minkowski formula (see [Fed69]):

∫

S

fdνS = lim
ε→0

1

2ε

∫

d(x̂,S)≤ε

f(x̂)ν̂(dx̂), (4.1.10)
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where S denotes the unit sphere in Ŷ. A justification of the formula (4.1.10) is

given in [Her82] (see also [Her80]).

More precisely, it was proven in [Her82] that there exists a surface measure

νS on S, induced by ν̂, and that the formula (4.1.10) holds for all continuous

bounded functions f defined in Ŷ.

The σ–ring of νS is just the σ–ring of Borel sets in S (i.e. smallest σ–ring

of subsets of S which contains every compact set of S), where the topology on

S is induced by the topology on Ŷ.

Hence, the precise meaning of (4.1.4) will be

∫

S

(X̂û, û)νS(dû) → min, (4.1.11)

where X̂ corresponds to the operator X, and νS is the surface measure on S

induced by the Gaussian measure ν̂ in Ŷ.

The question arises what is the most natural way to define the operator KR

(and hence the measure νS). In the case of compact M (which is a generic

situation in most applications) as a basis in Y we can take the eigenvectors

ei of M (which correspond to the eigenvectors of the undamped system which

correspond to resonant frequencies of the system), and define KR by

KR

( ∞∑
i=1

xiei

)
=

∞∑
i=1

λixiei, (4.1.12)

where
∑∞

i=1 λi < ∞, λi ≥ 0. The weights λi should be chosen in such a

manner as to implement our knowledge of the most dangerous eigenfrequencies

(ei’s) for the system. In this way the choice of the measure depends on the

physical properties of the system. In the case of non–compact M the basis of

Y could be chosen in a similar way, and should contain all eigenfrequencies of
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the corresponding undamped system. If M possesses continuous spectrum, the

basis of Y could contain also some approximate eigenvectors corresponding to

the continuous part of the spectrum.

If we take that some λi’s are zero, i.e. if we take a degenerate KR, that

means that the frequencies which correspond to the vanishing λi’s need not be

damped. Mathematically, this case reduces to the non–degenerate case on the

orthogonal complement of the null-space of KR, the measure in the null-space

of KR being Dirac measure concentrated at zero.

Let us assume for the moment that M is compact, and that KR has the form

(4.1.12). Then the functional from (4.1.11) can be written as tr(XZ), where

the trace class operator Z is given by the following:

Zx =
∞∑
i=1

αi




∫

S

(u, ei)
2νS(du)


 ei, for x =

∞∑
i=1

αiei.

From [Her82] we know that

∫

S

(u, ei)
2νS(du) ≤ Mλi,

where M does not depend on i ∈ N. Hence the operator Z is well–defined and

trace class. Let us compute tr(XZ): we obtain

tr(XZ) =
∞∑
i=1

(XZei, ei) =
∞∑
i=1

(Zei, Xei) =
∞∑
i=1




∫

S

(u, ei)
2νS(du) ei, Xei




=
∞∑
i=1

∫

S

(u, ei)
2(ei, Xei)ν

S(du) =

∫

S

∞∑
i=1

(u, ei)
2(ei, Xei)ν

S(du)

=

∫

S

(
X(

∞∑
i=1

(u, ei)ei),
∞∑
i=1

(u, ei)ei

)
νS(du) =

∫

S

(Xu, u)νS(du),

what was claimed. Here we used Levi theorem to interchange the sum and the

integral.
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One can also easily see that ZN → Z strongly as N →∞.

4.2 Optimization procedure

In this section we will show how (4.1.11) can be calculated by an approximation

procedure, as well as solve the optimal damping problem in case of presence of

internal damping.

First we show how we can approximate the surface measure νS by a sequence

of surface measures of the unit spheres in the finite–dimensional spaces.

Let L be a finite–dimensional subspace of Ŷ, and let PL denote the corre-

sponding orthogonal projection. Set SL = {x ∈ L : ‖x‖ = 1}, and let us define

fL : S → SL by fL(x) = PLx
‖PLx‖ . Let BL denote the collection of the Borel sets

in SL. The family (SL,BL, fL), where L goes over a set of finite–dimensional

subspace of Ŷ, is directed in the sense of [DF91, Section I.2.1], i.e. for each

pair of subspaces L1, L2 there exists a subspace L and the pair of surjective

connecting maps φLjL : SL → SLj
, j = 1, 2 for which the following diagram

commutes

Ŷ SL

SL2

SL1

................................................................................................................. ............
fL

..................................................................................................................................................................... .........
...

fL2

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...............
............

fL1

........

........

........

........

........

........

........

........

........

........

........

........

.................

............

φL1L

..............................................................................................................
...
.........
...

φL2L

If we take L = L1 + L2 and define the connecting maps by φLjL(x) =
PLj

x

‖PLj
x‖ ,

j = 1, 2 one can easily check that this property holds. Every map fL determines

a σ–ring UL in S. We denote the union of all σ–rings UL by U . Then [Sko74] the
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σ–closure of U coincides with the σ–ring B of the Borel sets in S. If we take a

chain of increasing subspaces Ln ⊂ Ln+1 for which is
⋃

n Ln is dense in Ŷ, then

the σ–closure of
⋃

n ULn is again B, and the family {(SLn ,BLn , fLn) : n ∈ N} is

also directed.

On SL we define induced measure νS
L by

νS
L(B) = ν̂(C(L,B)),

where C(L,B) = f−1
L (B) = {x ∈ S : fL(x) ∈ B} and B ∈ BL. These measures

are called a system of finite–dimensional distributions of the measure ν̂. One

can easily check that this system satisfies the compatibility condition

νS
L′(B) = νS

L(φ−1
L′L(B)), B ∈ BL′ , L′ ⊂ L.

Let us assume that PN → I strongly. Then from [DF91, Example 3.3] and

[Sko74, pp. 8] follows that for every bounded continuous function ϕ we have

lim
n

∫

SLn

ϕ(x)νS
Ln

(dx) = lim
n

∫

S

ϕ(fLn(x))νS(dx) =

∫

S

ϕ(x)νS(dx). (4.2.1)

Proposition 4.2.1. The surface measure νS
L is the measure induced by the

Gaussian measure in L with zero mean and covariance operator

KL = PL




K̂ 0

0 K̂


 PL.

Proof. Let us denote the Gaussian measure in L with zero mean and covariance

operator KL by ν̃L, and let ν̃S
L be corresponding induced surface measure on SL

defined via Minkowski formula, i.e.

ν̃S
L(A) = lim

ε→0

1

2ε

∫

d(x,A)≤ε

dν̃L,
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for a Borel set A in SL.

First note that ν̃S
L and νS

L are defined on the same σ–ring of the Borel sets

in SL. Let A be an arbitrary Borel set in SL. Then

νS
L(A) = νS(C(L, A)) = νS(Ã),

where Ã = {x ∈ S : fL(x) ∈ A}. Hence

νS
L(A) =

∫

eA
dνS = lim

ε→0

1

2ε

∫

eAε

dν̂ = lim
ε→0

1

2ε

∫

Ŷ

χ eAε
dν̂,

where Ãε = {x ∈ Ŷ : d(x, Ã) ≤ ε}, and χ eAε
is the characteristic function of the

set Ãε. From [Sko74, 1§5] follows

∫

Ŷ

χ eAε
dν̂ =

∫

L

χ eAε
dν̂L

∫

ŶªL

χ eAε
dν̂ŶªL, (4.2.2)

where ν̂L and ν̂ŶªL are induced measures in subspaces L and ŶªL, defined by

ν̂L(A) = ν̂({x ∈ Ŷ : PLx ∈ A}) and ν̂ŶªL(A) = ν̂({x ∈ Ŷ : (I − PL)x ∈ A}),
respectively. Both measures are Gaussian with zero mean and with covariance

operators KL and (I − PL)
[

K̂ 0
0 K̂

]
(I − PL), respectively.

Let us calculate the right hand side of (4.2.2). First note that

Ãε ∩ L = Aε := {x ∈ L : d(x,A) ≤ ε}.

Indeed, let x ∈ Ãε ∩ L be arbitrary. We assume ε < 1. Then for each n ∈ N
there exists xn ∈ Ã such that ‖x−xn‖ ≤ ε+ 1

n
. Let xn = an +bn, where an ∈ L,

bn ∈ Ŷ ª L. We can take n ∈ N such that ε + 1
n

< 1. We have

(ε +
1

n
)2 ≥ ‖x− xn‖2 = ‖x− an‖2 + ‖bn‖2 = ‖x‖2 − 2(x, an) + ‖an‖2 + ‖bn‖2

= ‖x‖2 − 2(x, an) + 1.
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Our choice of n and ε implies (x, an) > 0. Hence

∥∥∥∥x− an

‖an‖

∥∥∥∥
2

= ‖x‖2 − 2
1

‖an‖(x, an) + 1 ≤ ‖x‖2 − 2(x, an) + 1 ≤ (ε +
1

n
)2,

and since an

‖an‖ ∈ A, we have obtained our assertion. The other inclusion is

obvious.

Hence, ∫

L

χ eAε
dν̂L =

∫

Aε

dν̂L.

This implies that

lim
ε→0

1

2ε

∫

Aε

dν̂L

exists and is equal to ν̃S
L(A).

Now, fix ε > 0 and let x ∈ Ŷ ª L be arbitrary. Take some a ∈ A. Set

ã := 1
2
εa + x. Then fL(a) = a ∈ A, so we have ã ∈ Ã. From ‖x − ã‖ = 1

2
ε

follows that x ∈ Ãε, so we have proved (Ŷ ª L) ∩ Ãε = Ŷ ª L, for all ε > 0.

This implies that the second integral on the right hand side of (4.2.2) reads

∫

ŶªL

dν̂ŶªL = ν̂ŶªL(ν̂ŶªL) = 1.

Thus we have proved ν̃S
L(A) = νS

L(A) for all Borel sets in SL, which was needed.

From now on we assume that the measures νS and νS
L are normalized (νS(S)

is calculated in [Her82, Theorem 1], and νS
L(SL) will be calculated explicitly).

Our next aim is to approximate the operator X. Let YN , Yn ⊂ YN+1

be a chain of finite–dimensional subspaces of Y . Set YN = YN ⊕ YN , which

we treat as a subspace of Y. Let PN be the orthogonal projector from Y to
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YN . The space YN is equipped with the norm induced from Y. Consider the

sequence of operators AN defined in YN . Assume that AN satisfy the following

assumptions:

(1) there exists λ ∈ ρ(A) ∩n ρ(AN) such that the resolvents converge

(λ− AN)−1PNx → (λ− A)−1x, for all x ∈ Y, (4.2.3)

(2) there exist numbers M ≥ 1 and ω < 0 such that

‖etAN‖ ≤ Meωt for t ≥ 0 and all n ∈ N (4.2.4)

Remark 4.2.1. Generally, we can use any discretization method for the semi-

groups for which some Kato–Trotter–type theorem exists, and (4.2.4) is satisfied

for some ω < 0. In article [GKP01] is given a survey of these methods. Also a

method from [LZ94] can be used. An error estimate for Kato–Trotter theorem

is given in [IK98].

Under these assumptions, one can easily see that the assumptions of Theorem

2.5 from [IM98] are satisfied, which implies that the Lyapunov equation

A∗
NX + XAN = −I (4.2.5)

is solvable for all N ∈ N and for the solutions XN we have

XNPNx → Xx for all x ∈ Y.

From the uniform boundedness principle follows supN ‖XN‖ < ∞, hence the

functions ϕN(x) = (XNPNx, x) are bounded and continuous, so they are ν–

measurable functions in Y and ϕN(x) → (Xx, x) holds.
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This also implies that the functions ϕ̂N(x̂) = (X̂N P̂N x̂, x̂) are ν̂–measurable

and that ϕ̂N(x) → (X̂x̂, x̂) holds, where X̂N , P̂N and x̂ are the corresponding

operators and elements in Ŷ .

We assume that we chose YN in such a way that A′′
N = 0, i.e. such that the

”imaginary part” of the operator AN in the sense of the construction given on

the page 77 is zero, so that the operator ÂN has the following matrix represen-

tation in YN :

ÂN =

[
AN 0

0 AN

]
. (4.2.6)

Then

X̂N =

[
XN 0

0 XN

]
.

Since

Ĝ 7→
∫

SŶN

(Ĝx̂, x̂)νS
ŶN

(dx̂)

is a linear functional in the space of symmetric matrices Ĝ in ŶN , there exists

a matrix ẐN such that

∫

SŶN

(Ĝx̂, x̂)νS
ŶN

(dx̂) = tr(ĜẐN), for all symmetric matrices Ĝ. (4.2.7)

As is shown in the Section 2.1 ẐN is a symmetric positive semi–definite ma-

trix. Due to the symmetry of the measure νS
ŶN

we have ẐN =
[

ZN 0
0 ZN

]
, hence

tr(X̂N ẐN) = 2tr(XNZN).

In the next section it will be shown how ZN can be calculated.

Now,

tr(XNZN) =
1

2

∫

SŶN

(X̂N x̂, x̂)νS
ŶN

(dx̂) =
1

2

∫

S

ϕ̂N(x̂)νS(dx̂) → 1

2

∫

S

(X̂x̂, x̂)νS(dx̂).

(4.2.8)
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The results of this section can be summarized as follows. Under the usual

assumptions on convergence of the semigroups, we have proved that, instead of

(4.1.11), we can use the following minimization process:

lim
N→∞

tr(XNZN) → min, (4.2.9)

where XN is the solution of the approximate Lyapunov equation (4.2.5), and

ZN depends only on YN and KR, and can be explicitly computed.

The formula (4.2.9) clearly gives rise to a numerical procedure for the opti-

mization of the damping.

Let us assume that M is compact, and let KR be given by (4.1.12). Let K

be the corresponding operator on Y . By µK we denote the corresponding (in

the sense of Section 4.1) Gaussian measure on Y. We decompose Y = Y1⊕Y2,

where Y1 = N (K)⊥, Y2 = N (K). Then the following generalization of Theorem

2.2.1 holds.

Theorem 4.2.2. Consider the set of operators C such that there exists δ > 0

such that C ≥ δM , i.e. such that

(Cx, x) ≥ δ(Mx, x), for all x ∈ Y . (4.2.10)

Then the optimal damping operators corresponding to the measure µK (in the

sense of ( 4.1.11)) over this set are those operators which have the following

form:

C0 =




2M1/2|Y1 0

0 C1




with C1 being bounded positive definite operator on Y2.

Physical interpretation of the condition (4.2.10) is that the system possesses

internal damping.
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Proof. First observe that (4.2.10) implies that the corresponding operator A(C)

is uniformly exponentially stable.

Let us denote by µS
K the corresponding surface measure. Let us denote by

X(C0) the corresponding solution of the Lyapunov equation (4.1.2). Note that
∫
S

(X(C0)u, u)µS
K(du) does not depend on the choice of C1. Let us assume that

there exists an operator C satisfying the assumption given above, and such that

∫

S

(X(C)u, u)µS
K(du) <

∫

S

(X(C0)u, u)µS
K(du).

Set YN = span{e1, . . . , eN}, where ei are normalized eigenvectors of M . We

define YN = YN ⊕ YN ⊂ Y. Let us denote by PN and P̂N the orthogonal

projectors onto YN and ŶN , respectively. Set AN = P̂NA. Then we have

AN := AN(C) =




0 ΩN

−ΩN −ΩNCNΩN


 ,

where ΩN = M−1/2|YN
and CN = PNC.

First we show that the operators AN are stable. Let us assume that AN is

not stable, for some N ∈ N. Then from Proposition 2.1.1 follows that there

exists x ∈ YN such that ΩNx = ωx, for some ω ∈ R, and ΩNCNΩNx = 0. This

implies PNCx = 0, and from 0 = (PNCx, x) = (Cx, PNx) = (Cx, x) we obtain

Cx = 0. Since ω ∈ σ(M), this is in contradiction with Theorem 3.3.9.

One can easily prove

(λ− AN)−1P̂Nx → (λ− A)−1x, for all x ∈ Y, Reλ ≥ 0. (4.2.11)

The relation (4.2.11) implies (4.2.3). Theorem 2.1 from [LZ94] implies that
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(4.2.4) holds if and only if the following three conditions hold:

sup
N∈N

{Reλ : λ ∈ σ(AN)} < 0, (4.2.12)

sup
Reλ≥0,N∈N

‖(λ− AN)−1‖ < ∞, (4.2.13)

there exists Ψ > 0 such that

‖etAN‖ ≤ Ψ, for all t > 0, N ∈ N. (4.2.14)

The relation (4.2.14) is obviously satisfied, since etAN are contractions, and

relation (4.2.13) follows from (4.2.11) and the principle of uniform boundedness.

Assume now that (4.2.12) is not satisfied. Then there exists xN ∈ YN , ‖xN‖ =

1, and λN = αN + iβN , αN < 0, βN ≥ 0 such that

ANxN = λNxN (4.2.15)

and αN → 0.

Let xN = ( uN
vN ), uN , vN ∈ YN . Then (4.2.15) can be written as

ΩNvN = λNuN , (4.2.16)

ΩNuN + ΩNCNΩNvN + λNvN = 0. (4.2.17)

The relations (4.2.16) and (4.2.17) imply

λ2
NΩ−2

N uN + λNCNuN + uN = 0. (4.2.18)

From (4.2.18) we obtain

αN = −(CNuN , uN)

2‖Ω−1
N uN‖2

=
(CuN , uN)

2(MuN , uN)
→ 0, (4.2.19)

which is in contradiction with (4.2.10).
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Hence for the subspace sequence YN and approximation operators AN , N ∈
N, the formula (4.2.8) holds, which implies that for N large enough there exists

a subspace YN such that the corresponding projections AN(C), AN(C0) and ZN

satisfy

tr(XN(C)ZN) < tr(XN(C0)ZN).

But this is in contradiction with Theorem 2.2.1, since PNC0 ∈ Cmin, Cmin being

the set on which the global minimum is attained.

4.3 Calculation of the matrix ZN

Let us fix some Yn a n–dimensional subspace of Y . Set N = 2n. By YN

we denote the corresponding N–dimensional real subspace of Y constructed

analogously as the space YR in Section 4.1. Let νYN
and νS

YN
be Gaussian

measures in YN and SYN
, respectively, their construction given in the previous

section. Let KN denote the corresponding covariance operator for the measure

νYN
. We decompose YN into YN = Y1

N ⊕Y2
N , where Y2

N is the null–space of

the operator KN , and Y1
N is the orthogonal complement of Y2

N . Then νYN
=

νY1
N
× νY2

N
, where νY1

N
is Gaussian measure with zero mean and covariance

operator PY1
N
KNPY1

N
, PY1

N
being the orthogonal projector in Y1

N , and νY2
N

is

Dirac measure in Y2
N concentrated at zero.

Let us fix a basis in YN such that KN has a matrix representation of the

form

KN =

[
K1

N 0

0 0

]
,

K1
N ∈ R2t×2t being positive definite. Then it easily follows that ZN has the
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matrix representation

ZN =

[
Z1

N 0

0 0

]
.

Therefore, our aim is to compute the matrix Z1
N , where Z1

N is such that (4.2.7)

holds for the measure νY1
N

in Y1
N .

The following formula obviously holds

∫

S
Y1

N

dνS
Y1

N
=

d

dr

∣∣∣∣∣
r=1




∫

x∗x≤r2

νY1
N
(dx)


 . (4.3.1)

The density function of νY1
N

with respect to the Lebesgue measure is

p(x) =
1

(2π)t
√

det K1
N

e−1/2x∗K1
N
−1

x,

hence

∫

x∗x≤r2

νY1
N
(dx) =

1

(2π)t
√

det K1
N

∫

x∗x≤r2

e−1/2x∗K1
N
−1

xdx. (4.3.2)

Let K1
N = LL∗ be Cholesky factorization of K1

N , and let L∗L = U∗ΛU be spec-

tral decomposition of L∗L, where Λ = diag(µ1, . . . , µ2t). Note that µ1, . . . , µ2t

are eigenvalues of K1
N . By the use of the substitution x = LU∗y, from (4.3.2)

we obtain

∫

x∗x≤r2

νY1
N
(dx) =

1

(2π)t

∫

y∗Λy≤r2

e−1/2y∗ydy = Pr{
2t∑

j=1

µjX
2
j ≤ r2}, (4.3.3)

where Xi ∼ N(0, 1) are random vectors with Gaussian distribution N(0, 1)

and Pr denotes the probability function. From the probability theory (see, for

example [Fel66, pp. 48]), follows

Pr{
2t∑

j=1

µjX
2
j ≤ r2} = Pr{

2t∑
j=1

µjχj(1) ≤ r2} = Pr{
m∑

j=1

λjχj(kj) ≤ r2}, (4.3.4)
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where χ(k) denotes the chi–squared distribution with k degrees of freedom, and

λ1, . . . , λm are mutually different eigenvalues of K1
N , with their multiplicities (as

eigenvalues) kj. For our construction it is essential to note that kj are always

even.

Let us denote by f and ϕ the probability density function and the charac-

teristic function of
∑m

j=1 λjχj(kj), respectively. Then [Fel66, Chapter 15.]

Pr{
m∑

j=1

λjχj(kj) ≤ r2} =

r2∫

0

f(x)dx, (4.3.5)

hence (4.3.1), (4.3.3), (4.3.4) and (4.3.5) imply

∫

S
Y1

N

dνS
Y1

N
= 2f(1). (4.3.6)

From [Fel66, Chapter 15.] also follows

ϕ(t) =
m∏

j=1

ϕχj(kj)(λjt) =
m∏

j=1

(1− 2itλj)
−kj/2.

Set gj =
kj

2
. We want to expand ϕ(t) in partial fractions, i.e. to obtain

m∏
j=1

(1− 2itλj)
−gj =

m∑
j=1

gj∑
s=1

αjs(1− 2itλj)
−s. (4.3.7)

To calculate the coefficients αjs we proceed as follows. Fix j ∈ {1, . . . , m}. We

can rewrite (4.3.7) as

(1− 2itλi)
−gi

∏

j 6=i

(1− 2itλj)
−gj =

gi∑
j=1

αis(1− 2itλi)
gi +

∑

j 6=i

gj∑
w=1

αjw(1− 2itλj)
−w.

Multiplying the previous relation by (1 − 2itλi)
gi , and by substitution y =

1− 2itλi we get

∏

j 6=i

(
λi − λj

λi

+ y
λj

λi

)−gj

=

gi∑
s=1

αisy
gi−s + ygi

∑

j 6=i

gj∑
w=1

αjw

(
λi − λj

λi

+ y
λj

λi

)−w

.

(4.3.8)
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When we take y = 0 in (4.3.8), we obtain

αigi
=

∏

j 6=i

(
λi − λj

λi

)−gj

,

and when we differentiate both sides of (4.3.8) k times (k = 1, . . . , gi − 1) and

take y = 0, we obtain

αi,gi−k =
f

(k)
i (0)

k!
, where fi(y) =

∏

j 6=i

(
λi − λj

λi

+ y
λj

λi

)−gj

.

Set

ψi(y) = ln fi(y) = −
∑

j 6=i

gj ln

∣∣∣∣
λi − λj

λi

+ y
λj

λi

∣∣∣∣ .

We calculate the derivatives in zero of the functions ψi and obtain

ψ
(k)
i (0) = (−1)k(k − 1)!

∑

j 6=i

gj∣∣∣ λi

λj
− 1

∣∣∣
k

for k ≥ 1.

Now we can calculate the derivatives in zero of the functions fi by use of the

following recursive procedure:

f
(1)
i (0) = fi(0)ψ

(1)
i (0),

f
(k+1)
i (0) =

k∑

l=0

(
k

l

)
f

(k−l)
i (0)ψ

(l+1)
i (0), k = 2, . . . , gi − 1.

After a straightforward calculation we get the following recursive formula for

the coefficients αij, i = 1, . . . , m:

αigi
=

∏

j 6=i

(
1− λj

λi

)−gj

,

αi,gi−1 = −αigi

∑

j 6=i

gj∣∣∣ λi

λj
− 1

∣∣∣
, (4.3.9)

αi,gi−k−1 =
1

k + 1

k∑

l=0

(−1)l+1αi,gi−k+l

∑

j 6=i

gj∣∣∣ λi

λj
− 1

∣∣∣
l+1

, k = 1, 2, . . . , gi − 2.



94

Since f(x) = 1
2π

∞∫
−∞

e−itxϕ(t)dt, we have

f(x) =
m∑

j=1

gj∑

l=1

αjlfλjχ(2l)(x).

Now the last equation, together with (4.3.6), implies

∫

SYN

dνS
YN

= 2
m∑

j=1

gj∑

l=1

αjlfλjχ(2l)(1) = 2
m∑

j=1

gj∑

l=1

αjl
1

λj

fχ(2l)

(
1

λj

)

= 2
m∑

j=1

gj∑

l=1

αjl
1

λl
j

1

2l(l − 1)!
e
− 1

2λj = 2
m∑

j=1

e
− 1

2λj

gj∑

l=1

αjl
1

λl
j

1

2l(l − 1)!
,

(4.3.10)

since the characteristic function for the chi–squared distribution with k degrees

of freedom is given by

fχ(k)(x) =
1

2k/2Γ(k/2)
e−

x
2 xk/2−1.

Hence we have found a recursive formula for the calculation of the surface

measure of the sphere. It turns out that we can also calculate the entries of the

matrix Z1
N by the use of the coefficients αij.

Assume for the moment that the surface measure νS
Y1

N
is not normalized.

Let X = (Xij) be an arbitrary symmetric matrix in RN . We have

tr(XZ1
N) =

∑
i,j

Xijtr(Z
1
NEij) =

∑
i,j

Xij

∫

S
Y1

N

x∗Eijx νS
Y1

N
(dx)

=
∑
i,j

Xij

∫

S
Y1

N

xixj νS
Y1

N
(dx),

hence

(Z1
N)ij =

∫

S
Y1

N

xixj νS
Y1

N
(dx), (4.3.11)
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where Eij denotes the matrix which has all entries zero except for the entry

(i, j) which has value 1. Let K1
N
−1

= V ΛV ∗ be a spectral decomposition of the

operator K1
N
−1

, with V orthogonal matrix. By the use of (4.1.10) and by the

substitution x = V y, we obtain
∫

S
Y1

N

xixj νS
Y1

N
(dx) =

1

(2π)t
√

det K1
N

lim
ε→0

1

2ε

∫

d(x,S
Y1

N
)≤ε

xixje
−1/2x∗K1

N
−1

xdx

=
1

(2π)t
√

det K1
N

lim
ε→0

1

2ε

∫

d(x,S
Y1

N
)≤ε

(V y)i(V y)je
−1/2y∗Λydy.

(4.3.12)

Since (V y)i(V y)j = y∗Ẽijy, where

Ẽij = V ∗EijV, (4.3.13)

to compute (Z1
N)ij it is enough to calculate

lim
ε→0

1

2ε

∫

d(x,S
Y1

N
)≤ε

yiyje
−1/2y∗Λydy. (4.3.14)

From (4.3.2) we obtain

∫

S
Y1

N

dνS
Y1

N
=

1

(2π)t
√

det K1
N

∫

S
Y1

N

e−1/2y∗Λydy. (4.3.15)

By the use of the polar coordinates one can easily check that (4.3.14) equals

∫

S
Y1

N

yiyje
−1/2y∗Λydy.

Note that this integral equals zero in the case i 6= j.

Let ξ : {1, . . . , 2t} → {1, . . . , m} be the function such that ξ(i) = j implies

µi = λj. Let us fix i ∈ {1, . . . , 2t}. Due to the symmetry of the measure νS
Y1

N
,
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we have ∫

S
Y1

N

x2
i ν

S
Y1

N
(dx) =

∫

S
Y1

N

x2
jν

S
Y1

N
(dx) (4.3.16)

for all j ∈ ξ−1(ξ(i)).

Because of (4.3.15) we can interpret
∫

S
Y1

N

dνS
Y1

N
as a function in the variables

λ1, . . . , λm, i.e. we denote

F (λ1, . . . , λm) =
1

(2π)t
√

det K1
N

∫

S
Y1

N

e−1/2
Pm

i=1 λi
P

j∈ξ−1(ξ(i)) y2
j dy.

All partial derivatives of this function exist and

∂

∂λi

F (λ1, . . . , λm) = −1

2

1

(2π)t
√

det K1
N

∫

S
Y1

N

∑

j∈ξ−1(ξ(i))

y2
j e
−1/2y∗Λydy.

The last relation, together with (4.3.16) implies

∫

S
Y1

N

y2
i e
−1/2y∗Λydy = −2

(2π)t
√

det K1
N

kξ(i)

∂

∂λξ(i)

F (λ1, . . . , λm). (4.3.17)

Hence, the relations (4.3.11), (4.3.12), (4.3.15), (4.3.16), and (4.3.17) imply

(Z1
N)ij = −2

∑

l

(Ẽij)ll

kξ(l)

∂

∂λξ(l)

F (λ1, . . . , λm), (4.3.18)

where Ẽij is given by (4.3.13).

From (4.3.10) follows

F (λ1, . . . , λm) = 2
m∑

j=1

e
− 1

2λj

gj∑

l=1

αjl
1

λl
j2

l(l − 1)!
,

where αjl is interpreted as a function in variables λ1, . . . , λm. We calculate

∂

∂λi

F (λ1, . . . , λm) = 2
m∑

j=1

e
− 1

2λj

gj∑

l=1

∂
∂λi

αjl

λl
j

1

2l(l − 1)!
+

1

λ2
i

e
− 1

2λi

gi∑

l=1

αil

λl
i

1

2l(l − 1)!
−

− 2e
− 1

2λi

gi∑

l=1

lαil

λl+1
i

1

2l(l − 1)!
.
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Since αjl =
f
(gj−l)

j (0)

(gj−l)!
, we have

∂

∂λi

αjl =
1

(gj − l)!

∂

∂ygj−l

∂

∂λi

fj(y, λ1, . . . , λm)

∣∣∣∣
y=0

,

where fj is taken as a function in variables y, λ1, . . . , λm. Now

∂

∂λi

fj(y, λ1, . . . , λm) = fj(y, λ1, . . . , λm)
∂

∂λi

ln fj(y, λ1, . . . , λm)

= −fj(y, λ1, . . . , λm)
∑

l 6=j

gl
∂

∂λi

ln

∣∣∣∣
λj − λl

λj

+ y
λl

λj

∣∣∣∣ .

In the case i 6= j we obtain

∂

∂λi

fj(y, λ1, . . . , λm) = −fj(y, λ1, . . . , λm)
gi(y − 1)

λj − λi + yλi

,

and in the case i = j we obtain

∂

∂λi

fi(y, λ1, . . . , λm) = fi(y, λ1, . . . , λm)
y − 1

λi

∑

l 6=i

glλl

λi − λl + yλl

.

Let us define functions φji(y) = gi(y−1)
λj−λi+yλi

. From the straightforward calculation

we obtain:

φ
(k)
ji (0) =

(−1)k−1k!giλjλ
k−1
i

(λj − λi)k+1
, for k > 0 and φji(0) = − gi

λj − λi

.

Hence in the case i 6= j we have

∂

∂λi

αjl = − 1

(gj − l)!

gj−l∑

k=0

(
gj − l

k

)
f

(gj−l−k)
j (0)φ

(k)
ji (0)

= gi


 αjl

λj − λi

+ λj

gj−l∑

k=1

(−1)k λk−1
i αj,l+k

(λj − λi)k+1




= gi


 αjl

λj − λi

+
λj

λi(λj − λi)

gj−l∑

k=1

(−1)k

(
λi

λj − λi

)k

αj,l+k


 .
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For the case i = j, let us define φi(y) = y−1
λi

∑
p6=i

gpλp

λi−λp+yλp
. Then

φ
(k)
i (0) = (−1)k−1k!

∑

p 6=i

gpλ
k
p

(λi − λp)k+1
, for k > 0 and φi(0) = − 1

λi

∑

p6=i

gpλp

λi − λp

.

Hence

∂

∂λi

αil =
1

(gi − l)!

gi−l∑

k=0

(
gi − l

k

)
f

(gi−l−k)
i (0)φ

(k)
i (0)

= −αil

λi

∑

p6=i

gpλp

λi − λp

−
gi−l∑

k=1

(−1)kαi,l+k

∑

p6=i

gpλ
k
p

(λi − λp)k+1
.

After a tedious but straightforward calculation we obtain

∂

∂λi

F (λ1, . . . , λm) =
m∑

j=1

gj∑

l=1

βijlαjl, (4.3.19)

where in the case i 6= j we have

βij1 = e
− 1

2λj
gi

λj(λj − λi)
, (4.3.20)

and in the case i 6= j, l 6= 1

βijl = 2gi
e
− 1

2λj

λj − λi

(
1

2l(l − 1)!

1

λl
j

+
λj

λi

l−1∑

k=1

(−1)l−k

(
λi

λj − λi

)l−k
1

λk
j

1

2k(k − 1)!

)
.

(4.3.21)

In the case i = j we have

βii1 =
e
− 1

2λi

λ2
i

(
1

2λi

− 1−
∑

p6=i

gpλp

λi − λp

)
, (4.3.22)

and for l 6= 1 we have

βiil = e
− 1

2λi
1

λl+1
i

1

2l(l − 1)!

(
1

λi

− 2l − 2
∑

p6=i

gpλp

λi − λp

)
−

2e
− 1

2λi

l−1∑

k=1

1

λk
i

1

2k(k − 1)!
(−1)l−k

∑

p6=i

gpλ
l−k
p

(λi − λp)l−k+1
. (4.3.23)

Hence the procedure of the computation of the entries of the matrix Z1
N consists

of four steps:
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(i) compute the coefficients αij using formulae (4.3.9),

(ii) compute the coefficients βijl using (4.3.20), (4.3.21), (4.3.22) and (4.3.23),

(iii) compute ∂
∂λi

F (λ1, . . . , λm) using (4.3.19), and

(iv) compute (Z1
N)ij using (4.3.18).

This algorithm is numerically unstable in the case in which gi’s are large and

λi is close to λj for some i 6= j. In such cases one can use a Monte Carlo

method of numerical integration to compute the left hand side of (4.3.17). In

our case this method is especially simple and it consists of producing a sequence

of 2t–dimensional random vectors x(i) with normal distribution N(0, Λ) and

calculating
∑

i(x
(i)
j )2/‖x(i)‖2, j = 1, . . . , 2t, where x(i) = (x

(i)
1 , . . . , x

(i)
2t ).

The serious drawback of Monte Carlo method is its slow convergence which

is of the order O(n−1/2).

There also exist so–called quasi–Monte Carlo methods of integration. They

need significantly less iterations, but the computation of quasi–random vectors

is much more involved.

Note that ZN can be seen as the function of the matrix KN . Also, the

matrices ZN and KN have the same number of zero eigenvalues.

Example 4.3.1. If we take λi = i, i = 1, . . . , 5 and K = diag(λ1, . . . , λ5), then

we obtain Z = diag(0.8105, 0.4258, 0.2887, 0.2183, 0.1756)

Example 4.3.2. Let us take K1 = diag(10, 9, . . . , 2, 1, 1, . . . , 1), where the size

of K is 100. The Monte–Carlo integration with 106 iterations produces Z =

diag(β1, . . . , β100), where β1 = 0.068770, β2 = 0.062182, β3 = 0.055647, β4 =

0.048532, β5 = 0.041262, β6 = 0.034278, β7 = 0.027652, β8 = 0.020550, β9 =

0.013740, β10 = · · · β100 = 0.006900.
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Example 4.3.3 (Continuation of Example 3.3.2). We will approximate the sys-

tem from Example 3.1.1. The eigenvalues and eigenfunctions of M are cal-

culated in Example 3.3.2. We take N = 50, YN = span{u1, . . . , un}, where

ui(x) = sin(n + 1
2
)x are the eigenfunctions of M . We also choose covariance

operator K such that its (infinite–dimensional) matrix in the basis consisting

of the eigenfunctions of M has the form diag(K1, 0, 0, . . .), where K1 is from

Example 4.3.2. It is easy to see that ÂN(ε) has the form (4.2.6) and is stable.

We calculate

AN(ε) =




0 ΩN

−ΩN −εCN


 ,

where

ΩN = diag

(
1

2
, . . . , N +

1

2

)

and

(CN)ij =
(−1)i+j

1
2
π(i + 1

2
)(j + 1

2
)
.

The matrix AN(ε) is clearly of the form (4.2.6). The function ε 7→ tr(XN(ε)ZN),

where XN(ε) is the solution of the Lyapunov equation

AN(ε)∗X + XAN(ε) = −I,

is plotted on the Figure 4.1.

The optimal damping is attained for ε = 0.38, and for this viscosity we have

tr(XN(ε)ZN) = 1.0275.

If we choose another covariance operator K such that its (infinite–dimensional)

matrix in the basis consisting of the eigenfunctions of M has the form diag(λ1, λ2, . . .),

where λi = λ40+i = 11 − i, i = 1, . . . , 10, λi = 1, 11 ≤ i ≤ 40, and λi = 0,

i > 50, we obtain Figure 4.2.
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Figure 4.1: The function ε 7→ tr(XN(ε)ZN)

The optimal damping is attained for ε = 0.53, and for this viscosity we have

tr(XN(ε)ZN) = 1.6618.

4.4 The commutative case

In this section we will treat the case when operators M and C commute. In the

engineering literature this is so–called modal damping case. A very systematic

treatment of the abstract differential equation

ÿ(t) + Aẏ(t) + By(t) = 0,

in terms of well-posedness of the corresponding Cauchy and boundary value

problem, where A and B are normal commutative operators, is given in [Shk97].

We assume that the operators M and C are such that the corresponding

operator A generates a uniformly exponentially stable semigroup T (t). In this

case the operator X, the solution of the Lyapunov equation (4.1.2) can be
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Figure 4.2: The function ε 7→ tr(XN(ε)ZN)

explicitly calculated. We start with the well-known formula [EN00, Corollary

3.5.15]

T (s)x = lim
n→∞

1

2πi

ε+in∫

ε−in

eλsR(λ,A)xdλ, x ∈ D(A),

where ε > 0 is arbitrary chosen, n ∈ N and s ≥ 0. Since it is always T (0) = I,

in the sequel we consider only s > 0. Recall that

R(λ,A) =

[
1
λ
(M−1

λ − I) −M−1
λ M1/2

M1/2M−1
λ −λM1/2M−1

λ M1/2

]
,

where Mλ = λ2M + λC + I.

Since M and C commute, there exists a bounded selfadjoint operator G

such that the operators M and C are functions of G [AG93, Theorem 76.2],

hence there exists a spectral function E(t) and α, β : R+ → R+ measurable

functions for all Stieltjes measures ([AG93, Section 75] and [KF75, Section
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36.1]) generated by (E(t)x, x), x ∈ Y , such that

M =

Ξ∫

0

α(t)dE(t), C =

Ξ∫

0

β(t)dE(t),

where Ξ = ‖G‖. Since M and C are bounded, so are also the functions α and β.

We have also α(t) > 0 a.e. It follows that the resolvent R(λ,A) can be written

as

R(λ,A) =

Ξ∫

0




−λα(t)−β(t)
λ2α(t)+λβ(t)+1

−
√

α(t)

λ2α(t)+λβ(t)+1√
α(t)

λ2α(t)+λβ(t)+1
−λα(t)

λ2α(t)+λβ(t)+1


 dE(t),

hence

T (s) ( x
y ) = lim

n→∞
1

2πi

ε+in∫

ε−in

eλs




Ξ∫
0

−λα(t)−β(t)
λ2α(t)+λβ(t)+1

dE(t)x +
Ξ∫
0

−
√

α(t)

λ2α(t)+λβ(t)+1
dE(t)y

Ξ∫
0

√
α(t)

λ2α(t)+λβ(t)+1
dE(t)x +

Ξ∫
0

−λα(t)
λ2α(t)+λβ(t)+1

dE(t)y


 dλ.

(4.4.1)

We first treat the case when x, y ∈ R(M1/2).

We want to change the order of integration in (4.4.1) by the use of Fubini

theorem. By the change of variables, we obtain

(T (s) ( x1
y1 ) , ( x2

y2 )) = −eεs lim
n→∞

1

2π

n∫

−n

eiλs

[ Ξ∫

0

p1(λ, t)d(E(t)x1, x2)−

Ξ∫

0

p2(λ, t)d(E(t)y1, x2)+

Ξ∫

0

p2(λ, t)d(E(t)x1, y2)+

Ξ∫

0

p3(λ, t)d (E(t)y1, y2))

]
dλ,

where

p1(λ, t) =
−(iλ + ε)α(t)− β(t)

(iλ + ε)2α(t) + (iλ + ε)β(t) + 1
,

p2(λ, t) =

√
α(t)

(iλ + ε)2α(t) + (iλ + ε)β(t) + 1
,

p3(λ, t) =
−(iλ + ε)α(t)

(iλ + ε)2α(t) + (iλ + ε)β(t) + 1
.
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The integrals
n∫

−n

Ξ∫

0

eiλspj(λ, t)d(E(t)x, x)dλ, j = 1, 2, 3, (4.4.2)

can be viewed as a double Lebesgue integrals in R × R+, with the product

measure generated by the standard Lebesgue measure in R and by (real–valued)

Stieltjes measure (E(t)x, x) in R+. Let us now fix n ∈ N. In order to use Fubini

theorem on (4.4.2) we have to prove [KF75, pp. 361,362]:

(i) the functions pj, j = 1, 2, 3 are measurable in the product measure, and

(ii) the integrals

Ξ∫

0




n∫

−n

∣∣eiλspj(λ, t)
∣∣ dλ


 d(E(t)x, x), j = 1, 2, 3

exist.

To prove (i) it suffices to show that the function g(λ, t) = (iλ + ε)2α(t) + (iλ +

ε)β(t) + 1 is measurable and vanishes only on the set of the measure zero. One

can easily see that the function g does not vanish. Set An = α−1([n, n + 1]),

which is a measurable set in R+. Then R+ = ∪nAn. To prove that g is

measurable, observe that for an arbitrary δ > 0 the following holds

{(λ, t) : |g(λ, t)| < δ} =
⋃
n

(
An ×

⋃
t∈An

{λ : |g(λ, t)| < δ}
)

.

For fixed t ∈ An, one can easily see that {λ : |g(λ, t)| < δ} is either an empty

set or an open interval or an union of two open intervals, hence always an open

set. It follows that
⋃

t∈An
{λ : |g(λ, t)| < δ} is an open set as a union of open

sets. From this immediately follows that {(λ, t) : |g(λ, t)| < δ} is measurable

for all δ > 0, hence g is a measurable function.
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Now we prove (ii). We have

n∫

−n

|pj(λ, t)|dλ =

∫

Υn

|pj(λ, t)|dλ +

∫

Γn

|pj(λ, t)|dλ, (4.4.3)

where Γn is lower semi–circle connecting −n and n, and Υn is the contour

consisting of the segment [−n, n] and the curve Γn. The first integral can be

calculated by the use of residue theorem. The poles of the functions λ 7→ pj(λ, t)

are the zeros of the polynomial g. We calculate the zeros of g. We have

λ1,2 = ±
√

4α(t)− β(t)2

2α(t)
+ i

2εα(t) + β(t)

2α(t)
, (4.4.4)

in the case 4α(t) ≥ β(t)2, and

λ1,2 = i
2εα(t) + β(t)±

√
β(t)2 − 4α(t)

2α(t)
, (4.4.5)

in the case 4α(t) < β(t)2. Hence the first integral on the right hand side in

(4.4.3) is
∫

Υn

|pj(λ, t)|dλ = 0, j = 1, 2, 3. (4.4.6)

To estimate the second integral on the right hand side in (4.4.3) we proceed as

follows.

∫

Γ−n

|pj(λ, t)|dλ = n

2π∫

π

|pj(neiϕ, t)|dϕ ≤ cn2

2π∫

π

dϕ

|g(neiϕ, t)| ,

where c = ε + sup α(t) + sup β(t) + 1, j = 1, 2, 3. We have

g(neiϕ, t) = −n2e2iϕα(t) + ineiϕβ̃(t) + γ̃(t) = −n2e2iϕα(t) cos 2ϕ−

− neiϕβ̃(t) sin ϕ + γ̃(t) + i(−n2α(t) sin 2ϕ + nβ̃(t) cos ϕ),
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where β̃(t) = 2ε + β(t), γ̃(t) = ε2α(t) + εβ(t) + 1. Hence

|g(neiϕ, t)|2 =

n4α(t)2+n2β̃(t)2+γ̃(t)2−2n3α(t)β̃(t) sin ϕ−2n2α(t)γ̃(t) cos 2ϕ−2nβ̃(t)γ̃(t) sin ϕ.

Since sin ϕ ≤ 0 for π ≤ ϕ ≤ 2π and β̃(t) ≥ 0, γ̃(t) ≥ 1 , we obtain an estimate

|g(neiϕ, t)|2 ≥ n2α(t). (4.4.7)

So, we have obtained
n∫

−n

|pj(λ, t)|dλ ≤ cα(t)−1/2,

where c does not depend on t. Hence the integrals in (ii) exist for all x ∈
R(M1/2). We are now in position to use Fubini theorem on (4.4.2), which leads

to

n∫

−n

Ξ∫

0

eiλspj(λ, t)d(E(t)x, x)dλ =

Ξ∫

0




n∫

−n

eiλspj(λ, t)dλ


 d(E(t)x, x).

Set f j
n(t) =

n∫
−n

eiλspj(λ, t)dλ, j = 1, 2, 3. Then

f j
n(t) =

∫

Υn

eiλspj(λ, t)dλ +

∫

Γn

eiλspj(λ, t)dλ, (4.4.8)

where Υn and Γn are as in (4.4.3). From (4.4.4) and (4.4.5) we obtain

∫

Υn

eiλspj(λ, t)dλ = 0, j = 1, 2, 3, n ∈ N.

To estimate the second integral in (4.4.8) we use the well–known Jordan lemma

[Gon92, Lemma 9.2] which implies
∣∣∣∣∣∣

∫

Γn

eiλspj(λ, t)dλ

∣∣∣∣∣∣
≤ c max{|pj(λ, t)| : λ ∈ Γn}.
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Now (4.4.7) implies

max{|pj(λ, t)| : λ ∈ Γn} ≤ (1 + ε)α(t)1/2 +
β(t)

α(t)1/2
, n ∈ N,

hence |f j
n(t)| ≤ f(t), where

f(t) = (1 + ε)α(t)1/2 +
β(t)

α(t)1/2
.

Since f is integrable for all Stieltjes measures generated by x ∈ R(M1/2), we

can use Lebesgue dominate convergence theorem to obtain

lim
n→∞

Ξ∫

0




n∫

−n

eiλspj(λ, t)dλ


 d(E(t)x, x) =

Ξ∫

0




∞∫

−∞

eiλspj(λ, t)dλ


 d(E(t)x, x),

for all x ∈ R(M1/2), in the sense of the principal value integral.

Since (E(t)x, y) can be expressed by the polarization formula

(E(t)x, y) =
1

4
(E(t)(x+y, x+y)− (E(t)(x−y), x−y)+ i(E(t)(x+ iy), x+ iy)

− i(E(t)(x− iy), x− iy)),

we obtain

(T (s) ( x1
y1 ) , ( x2

y2 )) = −eεs 1

2π

[ Ξ∫

0




∞∫

−∞

eiλsp1(λ, t)dλ


 d(E(t)x1, x2)−

Ξ∫

0




∞∫

−∞

eiλsp2(λ, t)dλ


 d(E(t)y1, x2) +

Ξ∫

0




∞∫

−∞

eiλsp2(λ, t)dλ


 d(E(t)x1, y2)+

Ξ∫

0




∞∫

−∞

eiλsp3(λ, t)dλ


 d (E(t)y1, y2))

]
,

for all x1, y1, x2, y2 ∈ R(M1/2).
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Hence we can write

T (s) ( x
y ) = − 1

2π
eεs




Ξ∫
0

∞∫
−∞

eiλsp1(λ, t)dλdE(t)x−
Ξ∫
0

∞∫
−∞

eiλsp2(λ, t)dλdE(t)y

Ξ∫
0

∞∫
−∞

eiλsp2(λ, t)dλdE(t)x +
Ξ∫
0

∞∫
−∞

eiλsp3(λ, t)dλdE(t)y




(4.4.9)

in the sense of Pettis integral (for the definition and the basic properties see,

for example, [HP57, Chapter 3]). Moreover, the formula (4.4.9) holds for all

x, y ∈ Y , which easily follows from the fact that T (s) is a bounded operator.

Our next aim is to compute the integrals
∞∫
−∞

eiλspj(λ, t)dλ, j = 1, 2, 3 and

hence to obtain an integral representation of T (s) in terms of the spectral func-

tion E(t). Since pj(·, t) are rational functions such that the degree of the de-

nominator is greater of the degree of the nominator, the standard result from

the calculus (see, for example [Gon92]) implies that

∞∫

−∞

eiλspj(λ, t)dλ = 2πi


 ∑

λ∈S+

Res(eis·pj(·, t); λ) +
1

2

∑

λ∈S0

Res(eis·pj(·, t); λ)


 ,

where S+ is the set of all poles of the function eis·pj(·, t) in the upper half

plane, and S0 is the set of all real poles of the function eis·pj(·, t). The poles

of the functions eis·pj(·, t) are exactly the zeros of the function g(·, t) which are

calculated in (4.4.4) and (4.4.5).

From the straightforward calculation we obtain:
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(i) in the case 4α(t) > β(t)2

∞∫

−∞

eiλsp1(λ, t)dλ =− 2πe−sεe−s
β(t)
2α(t)

(
cos(%(t)s) +

β(t)√
4α(t)− β(t)2

sin(%(t)s)

)
,

∞∫

−∞

eiλsp2(λ, t)dλ =4πe−sεe−s
β(t)
2α(t)

√
α(t)√

4α(t)− β(t)2
sin(%(t)s),

∞∫

−∞

eiλsp3(λ, t)dλ =− 2πe−sεe−s
β(t)
2α(t)

(
cos(%(t)s)− β(t)√

4α(t)− β(t)2
sin(%(t)s)

)
,

where %(t) =

√
4α(t)−β(t)2

2α(t)
,

(ii) in the case 4α(t) < β(t)2

∞∫

−∞

eiλsp1(λ, t)dλ =− 2πe−sεe−s
β(t)
2α(t)

(
cosh(%̃(t)s) +

β(t)√
β(t)2 − 4α(t)

sinh(%̃(t)s)

)
,

∞∫

−∞

eiλsp2(λ, t)dλ =4πe−sεe−s
β(t)
2α(t)

√
α(t)√

β(t)2 − 4α(t)
sinh(%̃(t)s),

∞∫

−∞

eiλsp3(λ, t)dλ =− 2πe−sεe−s
β(t)
2α(t)

(
cosh(%̃(t)s)− β(t)√

β(t)2 − 4α(t)
sinh(%̃(t)s)

)
,

where %̃(t) =

√
β(t)2−4α(t)

2α(t)
,

(iii) and in the (limit) case 4α(t) = β(t)2

∞∫

−∞

eiλsp1(λ, t)dλ =− 2πe−sεe−s
β(t)
2α(t)

(
1 + s

β(t)

2α(t)

)
,

∞∫

−∞

eiλsp2(λ, t)dλ =2πe−sεe−s
β(t)
2α(t) sα(t)−1/2,

∞∫

−∞

eiλsp3(λ, t)dλ =− 2πe−sεe−s
β(t)
2α(t)

(
1− s

β(t)

2α(t)

)
.
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Let us define functions

s̃in(t, s) =





sin(%(t)s)√
4α(t)−β(t)2

, %(t) ∈ R \ {0},
s

2α(t)
, %(t) = 0,

sinh(e%(t)s)√
β(t)2−4α(t)

, %̃(t) ∈ R \ {0},

and

c̃os(t, s) =





cos(%(t)s), %(t) ∈ R,

cosh(%̃(t)s), %̃(t) ∈ R,
.

Then we can write

∞∫

−∞

eiλsp1(λ, t)dλ =− 2πe−sεe−s
β(t)
2α(t)

(
c̃os(t, s) + β(t)s̃in(t, s)

)
,

∞∫

−∞

eiλsp2(λ, t)dλ =4πe−sεe−s
β(t)
2α(t)

√
α(t) s̃in(t, s),

∞∫

−∞

eiλsp3(λ, t)dλ =− 2πe−sεe−s
β(t)
2α(t)

(
c̃os(t, s)− β(t)s̃in(t, s)

)
,

in all three cases.

Hence we have obtained

T (s) =

Ξ∫

0

e−s
β(t)
2α(t)

[
c̃os(t, s) + β(t)s̃in(t, s) 2

√
α(t) s̃in(t, s)

−2
√

α(t) s̃in(t, s) c̃os(t, s)− β(t)s̃in(t, s)

]
dE(t).

Now we are in position to use the formula (4.1.3) in order to calculate the

operator X. Set

q1(t, s) = e−s
β(t)
2α(t)

(
c̃os(t, s) + β(t)s̃in(t, s)

)
,

q2(t, s) = 2e−s
β(t)
2α(t)

√
α(t) s̃in(t, s),

q3(t, s) = e−s
β(t)
2α(t)

(
c̃os(t, s)− β(t)s̃in(t, s)

)
.
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Then

(X ( x1
y1 ) , ( x2

y2 )) =

∞∫

0

( Ξ∫

0

(q1(t, s)
2 + q2(t, s)

2)d(E(t)x1, x2)+

+

Ξ∫

0

(q1(t, s)− q3(t, s))q2(t, s)d(E(t)x1, y2)

+

Ξ∫

0

(q1(t, s)− q3(t, s))q2(t, s)d(E(t)y1, x2)+

+

Ξ∫

0

(q3(t, s)
2 + q2(t, s)

2)d(E(t)y1, y2)

)
ds. (4.4.10)

As before, we would like to change the order of integration in the previous

formula. To do that, it is sufficient to prove that conditions (i) and (ii) from

page 104 are satisfied. The condition (i) is obviously satisfied.

Note that (q1(t, s) − q3(t, s))q2(t, s) ≥ 0 for all t, s > 0, hence all functions

in (4.4.10) are positive. By the use of the standard integration formulae one

obtains

∞∫

0

(q1(t, s)
2 + q2(t, s)

2)ds =
1

2
β(t) +

α(t)

β(t)
,

∞∫

0

(q1(t, s)− q3(t, s))q2(t, s)ds =
1

2

√
α(t),

∞∫

0

(q3(t, s)
2 + q2(t, s)

2ds =
α(t)

β(t)
.

Hence to be able to change the order of integration we must assume that β(t)−1

is integrable, which implies that the operator C is boundedly invertible. This

implies that a modally damped system decays exponentially if and only if C is
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boundedly invertible. Therefore, we make this assumption. Then we can write

X =

Ξ∫

0




1
2
β(t) + α(t)

β(t)
1
2

√
α(t)

1
2

√
α(t) α(t)

β(t)


 dE(t).

Note that this formula is a direct generalization of the formula in the matrix

case given in [Cox98b] (see also [Cox98a], [VBD01]).

Now take any Gaussian measure in Y (in the sense of Section 4.1). Then the

optimal energy decay on the set of boundedly invertible damping operators C

which commute with M is attained for the operator Copt which has a spectral

function βopt such that 1
2
β(t) + 2α(t)

β(t)
→ min for all t > 0. One can easily see

that βopt(t) = 2
√

α(t), i.e.

Copt = 2M1/2. (4.4.11)

Note that in the finite–dimensional case (4.4.11) reads Copt = 2Ω in the notation

of Chapter 2, where we had shown that in Copt = 2Ω a function C 7→ tr(X(C)Z)

attains its global minimum.

Example 4.4.1. We consider Euler–Bernoulli beam in the presence of viscous

damping term α ∂3

∂x2∂t
:

∂2u

∂t2
(x, t)− α

∂3u

∂x2∂t
(x, t) +

∂4u

∂t4
(x, t) = 0, 0 < x < 1, t > 0,

u(0, t) =
∂u

∂x
(0, t) = u(1, t) =

∂u

∂x
(1, t) = 0,

u(x, 0) = u0(x),
∂u

∂t
u(x, 0) = u1(x),

where α > 0. Multiplying the above differential equation by the smooth test

function v such that v(0) = v(1) = v′(0) = v′(1) = 0, and by partial integration

we obtain

1∫

0

∂2u

∂t2
(x, t)v(x)dx−

l∫

0

∂2u

∂x∂t
(x, t)v′(x)dx +

l∫

0

∂2u

∂x2
(x, t)v′′(x)dx = 0.
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Hence, the system given above can be written as

µ(ü, v) + γ(u̇, v) + κ(u, v) = 0, for all v ∈ Y ,

where

µ(u, v) =

l∫

0

u(x)v(x)dx,

γ(u, v) = α

1∫

0

u′(x)v′(x)dx,

κ(u, v) =

1∫

0

u′′(x)v′′(x)dx,

and

Y = H2
0([0, 1]) = {u ∈ L2([0, l]) : u′, u′′ ∈ L2([0, l]), u(0) = u′(0) = u(1) = u′(1) = 0}.

One can easily see that µ and γ are dominated by κ and that κ > 0, hence we

are in position to use results from Chapter 3. It is clear that M is compact.

The eigenvalues λn of M are the solutions of the equation

cosh λ cos λ = 1,

and the corresponding eigenvectors are

un(x) = cos λnx− cos λnx− βn(sinh λnx− sin λnx),

where

βn =
cosh λn − cos λn

sinh λn − sin λn

.

One can check that

inf
γ(un, un)

λnκ(un, un)
> 0,
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hence, in the light of Remark 3.3.8, the energy of the system has uniform ex-

ponential decay. Since C = αM1/2, the results of this section imply that the

optimal damping is obtained for α = 2.

4.5 Cutting–off in the frequency domain

When we minimize the average total energy, we take into account physical

properties of damping by choosing appropriate Gaussian measure. If we choose

to minimize the maximal total energy, the natural choice is to substitute the

identity operator on the right hand side of the Lyapunov equation (4.1.2) with

some other positive semi–definite operator Q, i.e. instead of X given by (4.1.2)

we can take X which is the solution of the Lyapunov equation

A∗X + XA = −Q, (4.5.1)

where Q is chosen in such a way to take into account the physical properties of

the system. Also, in the case when we minimize the average total energy, we

can instead of (4.1.2) use (4.5.1).

In this section we will give one possible construction of Q in such a way that

it corresponds to smoothing or cutting off in the frequency domain.

We start with the following result which has its own interest. This is a

generalization of the well–known ”frequency domain formula” (2.1.11) to the

infinite–dimensional case.

Proposition 4.5.1. Let A be a generator of an uniformly exponentially stable

semigroup. Then the solution X of the Lyapunov equation ( 4.1.2) satisfies

Xy =
1

2π

∞∫

−∞

R(iη, A)∗R(iη, A)ydη, y ∈ D(A), (4.5.2)
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where the Lebesgue integral above converges strongly in the sense of the principal

value, i.e.

Xy =
1

2π
lim

Ξ→∞

Ξ∫

−Ξ

R(iη, A)∗R(iη, A)ydη.

Remark 4.5.1. The term ”frequency domain” is used since (4.5.2) could be

understood as integration over amplitudes f of the steady–state solution

xeiwt, x = (iw − A)−1f,

which are the answer to the harmonic load feiwt. The formula (4.1.3) is some-

times refereed as a ”time domain formula”.

Moreover, one can see that the maximal dissipative operator A generates an

uniformly exponentially stable semigroup if and only if the integral on the right

hand side in (4.5.2) converges for all y ∈ D(A).

Proof of Proposition 4.5.1. We start with the Lyapunov equation (4.1.2). We

have

−A∗Xx− iηXx + iηXx−XAx = x, for all x ∈ D(A).

Let us multiply this equation by R(iη, A)∗ on the left and set y = (iη − A)x.

We obtain

XR(iη, A)y + R(iη, A)∗Xy = R(iη, A)∗R(iη, A)y, for all y ∈ Y . (4.5.3)

We have ∞∫

−∞

R(iη, A)xdη = πx, for all x ∈ D(A),

in the sense of the principal value. From the previous relation, (4.5.3) and the

fact that X is bounded, (4.5.2) follows.
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Now we modify (4.5.2) by putting into the integral in (4.5.2) a smoothing

function g with the following properties:

(i) it is meromorphic in the neighborhood of C− = {z ∈ C : Imz ≤ 0} , and

has there finitely many poles,

(ii) it does not have poles in R and g(z) ≥ 0 for all z ∈ R, and

(iii) g|R ∈ L1(R) and zg(z) → 0 as R →∞ for z = Reiϕ, Imz ≤ 0, uniformly

in ϕ.

We start with the relation (4.5.3) which we multiply by 1
2π

g(η), and we integrate

this relation from −∞ to ∞. We obtain

X
1

2π

∞∫

−∞

g(η)R(iη, A)xdη +
1

2π

∞∫

−∞

g(η)R(iη, A)∗xdη X =

1

2π

∞∫

−∞

R(iη, A)∗g(η)R(iη, A)xdη.

Since sup{‖R(λ,A)‖ : λ ∈ iR} < ∞ and g|R ∈ L1(R), the previous formula is

correct. Set

X̂g =
1

2π

∞∫

−∞

R(iη, A)∗g(η)R(iη, A)dη, (4.5.4)

ĝ(A) =
1

2π

∞∫

−∞

g(η)R(iη, A)dη. (4.5.5)

The operator X̂g can be seen as a total energy operator smoothed by the function

g. Obviously, one has

X̂g = Xĝ(A) + ĝ(A)∗X.
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But operator X̂g can also be obtained as a solution of a Lyapunov equation.

Indeed, from (4.1.3) follows

A∗X̂g + X̂gA = −(ĝ(A) + ĝ(A)∗). (4.5.6)

This equation has an unique bounded solution since ĝ(A) is a bounded operator.

Since ĝ(A) + ĝ(A)∗ is a selfadjoint operator, so it is X̂g. To give any practical

meaning to the formula (4.5.6), the right hand side in (4.5.6) has to be explicitly

solved. Thanks to the property (iii) of the function g, this can be done.

We have
n∫

−n

g(η)R(iη, A)dη =

∫

Υn

g(η)R(iη, A)dη +

∫

Γn

g(η)R(iη, A)dη,

where Γn is lower semi–circle connecting −n and n, and Υn is the contour

consisting of the segment [−n, n] and the curve Γn. The first integral on the

right hand side can be calculated by the use of residue theorem.

Let g have poles in points z1, . . . , zk ∈ C− with multiplicities n1, . . . , nk.

Then we can develop function g in the neighborhood of zi, i ∈ {1, . . . , k} into

Laurent series

g(η) = βi,−ni
(η − zi)

−ni + · · · βi,−1(η − zi)
−1 + βi,0 + βi,1(η − zi) + · · ·

On the other hand, we have

R(iη, A) =
∞∑

j=0

(−i)j(η − zi)
jR(izi, A)j+1,

for all |η − zi| ≤ ‖R(izi, A)‖−1. Hence the coefficient of the term (η − zi)
−1 in

the development of the function g(η)R(iη, A) in the neighborhood of zi is given

by
ni∑

j=1

(−i)j−1βi,−jR(izi, A)j.
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Hence for n big enough, we have
∫

Υn

g(η)R(iη, A)dη = 2πi

k∑
i=1

ni∑
j=1

(−i)j−1βi,−jR(izi, A)j.

From the Jordan lemma [Gon92, Lemma 9.3] and property (iii) of the function

g it follows

lim
n→∞

∫

Γn

g(η)R(iη, A)dη = 0,

hence we have obtained

ĝ(A) = 2πi

k∑
i=1

ni∑
j=1

(−1)j−1βi,−jR(izi, A)j. (4.5.7)

From (4.5.7) it readily follows that ĝ(A) is a rational function of the operator

A. Note also that X̂g is always positive definite.

Example 4.5.1. Let g1(η) = 1
1+0.01η2 . The graph of this function is given in

Figure 4.3. Then ĝ1(A) = 10πR(10, A).
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Figure 4.3: The graph of the function g1

We apply weight function g1 in the calculation of the optimal damping from

Example 4.3.3. The function ε 7→ X̂g1(ε) is given on the Figure 4.4. Here the

optimal viscosity is ε = 0.3.
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Figure 4.4: The function ε 7→ X̂g1(ε)

Example 4.5.2. Let g2(η) = 0.1η2

(η2+4)(η2+9)
. The graph of this function is given in

Figure 4.5. Then ĝ2(A) = π
45

R(2, A) + 3π
40

R(3, A).

We apply weight function g2 in the calculation of the optimal damping from

Example 4.3.3. The function ε 7→ X̂g2(ε) is given on the Figure 4.6. Here the

optimal viscosity is ε = 0.31.
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Figure 4.5: The graph of the function g2
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Figure 4.6: The function ε 7→ X̂g2(ε)



Chapter 5

Applications

In this chapter we show how the theory developed in Chapters 3 and 4 can be

applied to the various kinds of damping problems. The applications are grouped

into those which are described by the one–dimensional models, and those which

are described by the multidimensional problems.

In the case of the one–dimensional models, a more complete analysis of the

problems can be given.

In the case of the multidimensional models, the analysis heavily depends on

the geometry of the problems, and we only give more abstract results on how

these problems fit into our theory.

5.1 General remarks

An application of our theory to concrete problems described by the partial

differential equation consists of the following steps.

1. Multiplying by the test function, integrate and then use the boundary con-

ditions to obtain a sesquilinear form representation of the original system of

differential equations, i.e. calculate µ, γ and κ.

121
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2. Check that κ > 0 (the condition κ(x, x) > 0 can sometimes be bypassed by

taking the orthogonal complement of N (κ), as is done in Section 5.3.2). Show

that quadratic forms µ, γ and κ do generate bounded operators M and C in

some Hilbert space Y . To do this it is enough to check that κ dominates µ and γ,

i.e. that there exists ∆ > 0 such that µ(u, u) ≤ ∆κ(u, u) and γ(u, u) ≤ ∆κ(u, u)

for all u ∈ Y \{0}. To obtain these inequalities, it usually suffices to apply some

Poincaré–type inequality. A brief survey of these inequalities in the connection

with the vibrational systems can be found in [CZ93a].

3. Find necessary (and sufficient, if possible) conditions under which the cor-

responding operator A generates an uniformly exponentially stable semigroup.

If one uses Theorem 3.3.9 one can find the spectrum and the eigenfunctions

of M by solving the system of (partial) differential equations obtained in the

following way:

from the original system of differential equations throw the damping terms

out, and if there are damping terms in the boundary conditions, replace these

boundary conditions with ones for the free end.

In the light of Remark 3.3.8, one can substitute the term ‖Cφn‖ by γ(φn, φn)

in (3.3.40). Sometimes, although C cannot be explicitly calculated, one can

calculate ‖Cx‖, for specific x.

4. Choose some appropriate trace class operator K in YR (in the sense of

Section 4.1). Choose some appropriate subspace sequence Yn ⊂ Y such that

the corresponding operators An satisfy (4.2.3) and (4.2.3), and such that Ân is of

the form (4.2.6). Calculate Zn either by Monte–Carlo method or by the formula

given in Section 4.3. By the use of some numerical procedure calculate optimal

damping matrices Cn in Y . This gives us a sequence Cn which approximates
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an optimal damping operator C in Y (and hence an optimal damping form γ).

When it comes to the numerical procedures for approximating the contin-

uous systems, we propose the spectral methods (for the basic introduction to

these methods, see [Tre00]). Experiments had shown ([DT96], [Tre97]) that the

finite difference and finite element methods frequently behave poorly on prob-

lems for vibrational systems, in contrast with the spectral methods. Only in

the cases of the complex geometry of the problem, the finite element methods

should be used.

5.2 One–dimensional problems

5.2.1 Cable with a tip mass

We consider a vertical cable which is pinched at the upper end and with a tip

mass attached at the lower end, where a control force linear feedback depending

on the velocity is applied.

The dynamics is described by the following system [MRC94] (see also [BX00])

∂2u

∂t2
(x, t)− ∂2u

∂x2
(x, t) = 0, 0 < x < 1, t > 0,

u(0, t) = 0,

∂u

∂x
(1, t) + m

∂2u

∂t2
(1, t) + α

∂u

∂t
(1, t) = 0,

u(x, 0) = u0(x),
∂u

∂t
u(x, 0) = u1(x),

where we assume m,α > 0.

Multiplying the above differential equation by the smooth test function v
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such that v(0) = 0 and by partial integration we obtain

1∫

0

∂2u

∂t2
(x, t)v(x)dx + m

∂2u

∂t2
(1, t)v(1) + α

∂u

∂t
(1, t)v(1) +

1∫

0

∂u

∂x
(x, t)v′(x)dx = 0.

Hence, the system given above can be written as

µ(ü, v) + γ(u̇, v) + κ(u, v) = 0, for all v ∈ Y , (5.2.1)

where

µ(u, v) =

1∫

0

u(x)v(x)dx + mu(1)v(1),

γ(u, v) = αu(1)v(1),

κ(u, v) =

1∫

0

u′(x)v′(x)dx,

and

Y = {u ∈ L2([0, 1]) : u′ ∈ L2([0, 1]), u(0) = 0}.

Now from Examples 3.1.1 and 3.1.2 immediately follows that the forms µ, γ

and κ give rise to the bounded operators M and C given by

(Mu)(x) =

1∫

0

G(x, ξ)u(ξ)dξ + mu(1)x,

(Cu)(x) = αu(1)x,

where

G(x, ξ) =





x, x ≤ ξ,

ξ, x ≥ ξ
. (5.2.2)

The operator M is compact and one can calculate its eigenvalues and eigen-

functions. We obtain that the eigenvalues λn are the solutions of the equation

mλ−1/2 tan λ−1/2 = 1, (5.2.3)
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and the corresponding eigenfunctions are

un(x) = sin λ−1/2
n x. (5.2.4)

By a straightforward, but tedious computation we obtain

inf
‖Cun‖
‖Mun‖ = 0,

hence the energy of the system does not have an uniform exponential decay,

which is a well-known fact [LM88].

5.2.2 Vibrating string with viscous and boundary damp-

ing

We consider the vibrating string with viscous and boundary damping given by:

∂2u

∂t2
(x, t) + α

∂u

∂t
(x, t)− β

∂3u

∂x2∂t
(x, t)− ∂2u

∂x2
(x, t) = 0, 0 < x < π, t > 0,

u(0, t) = 0,

∂u

∂x
(1, t) + ε

∂u

∂t
(1, t) = 0, (5.2.5)

u(x, 0) = u0(x),
∂u

∂t
u(x, 0) = u1(x),

where we assume α, β, ε ≥ 0.

Multiplying the above differential equation by the smooth test function v

such that v(0) = 0, by partial integration, and by differentiating (5.2.5) we

obtain

π∫

0

∂2u

∂t2
(x, t)v(x)dx + α

π∫

0

∂u

∂t
(x, t)v(x)dx + β

π∫

0

∂2u

∂x∂t
(x, t)v′(x)dx+

π∫

0

∂u

∂x
(x, t)v′(x)dx + ε

∂u

∂t
(π, t)v(π) + ε

∂2u

∂t2
(π, t)v(π) = 0.
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Hence, the system given above can be written as (5.2.1), where

µ(u, v) =

π∫

0

u(x)v(x)dx + εu(π)v(π),

γ(u, v) = α

π∫

0

u(x)v(x)dx + β

π∫

0

u′(x)v′(x)dx + εu(π)v(π),

κ(u, v) =

π∫

0

u′(x)v′(x)dx,

and

Y = {u ∈ L2([0, 1]) : u′ ∈ L2([0, 1]), u(0) = 0}.

Now from Examples 3.1.1 and 3.1.2 immediately follows that the forms µ, γ

and κ give rise to the bounded operators M and C given by

(Mu)(x) =

1∫

0

G(x, ξ)u(ξ)dξ + εu(1)x,

(Cu)(x) = α

1∫

0

G(x, ξ)u(ξ)dξ + εu(1)x + βu(x),

where the function G is given by (5.2.2).

If α > 0 or β > 0 then the system obviously has uniform decay of energy.

In the case α = 0, β = 0 and ε > 0 we are in position of Example 3.1.1, hence

we also have an uniform exponential decay of energy.

From the previous subsection we know that the eigenvalues λn of M are

the solutions of the equation (5.2.3) where instead of m stands ε, and the

corresponding eigenfunctions are given by (5.2.4).

Now we will find an approximation of the optimal parameters. We take

ε = 1
2
, and optimize over α and β. We take N = 30, YN = span{u1, . . . , uN},

where ui are the eigenfunctions of M . We also choose covariance operator
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K such that its (infinite–dimensional) matrix in the basis consisting of the

eigenfunctions of M has the form diag(K1, 0, 0, . . .), where K1 is from Example

4.3.2. It is easy to see that the assumptions from Section 4.2 are satisfied. We

calculate

AN(ε) =

[
0 ΩN

−ΩN −CN(α, β)

]
,

where

ΩN = diag (τ1, . . . , τN) ,

with τ1 < . . . < τN positive solutions of the equation

τ tan τ − 2 = 0,

and

CN(α, β) = αΩ−2
N + βI +

1

2
(1− α)C0,

where

(C0)ij =
sin τiπ sin τjπ

τiτj

√
(1

2
π + 1

4τi
sin 2τiπ)(1

2
π + 1

4τj
sin 2τjπ)

.

The matrix AN(α, β) is clearly of the form (4.2.6). The function (α, β) 7→
tr(XN(α, β)ZN), where XN(α, β) is the solution of the Lyapunov equation

AN(α, β)∗X + XAN(α, β) = −I,

is plotted on the Figure 5.1.

The optimal damping is attained for α = 0.5, β = 0.7.
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Figure 5.1: The function (α, β) 7→ tr(XN(α, β)ZN)

5.2.3 Clamped Rayleigh beam with viscous damping

We consider a clamped Rayleigh beam in the presence of viscous damping term

2 ∂
∂x

(
a ∂2u

∂t∂x

)
. The corresponding system is given by [Rao97] (see also [Rus86])

∂2u

∂t2
(x, t)− α2 ∂4u

∂x2∂t2
(x, t) +

∂4u

∂t4
(x, t)− 2

∂

∂x

(
a

∂2u

∂t∂x

)
(x, t) = 0, 0 < x < 1, t > 0,

u(0, t) =
∂u

∂x
(0, t) = u(1, t) =

∂u

∂x
(1, t) = 0,

u(x, 0) = u0(x),
∂u

∂t
u(x, 0) = u1(x),

where α2 > 0 is the coefficient of the moment of inertia, and where potential

a ∈ L∞([0, 1]) is a positive function.

Multiplying the above differential equation by the smooth test function v



129

such that v(0) = v(1) = v′(0) = v′(1) = 0 and by partial integration we obtain

l∫

0

∂2u

∂t2
(x, t)v(x)dx + α2

1∫

0

∂3u

∂t2∂x
(x, t)v′(x)dx+

1∫

0

∂2u

∂x2
(x, t)v′′(x)dx + 2

1∫

0

a(x)
∂2u

∂t∂x
(x, t)v′(x)dx = 0.

Hence, the system given above can be written as (5.2.1), where

µ(u, v) =

1∫

0

u(x)v(x)dx + α2

1∫

0

u′(x)v′(x)dx,

γ(u, v) = 2

1∫

0

a(x)u′(x)v′(x)dx,

κ(u, v) =

1∫

0

u′′(x)v′′(x)dx,

and

Y = {u ∈ L2([0, 1]) : u′, u′′ ∈ L2([0, 1]), u(0) = u′(0) = u(1) = u′(1) = 0}.

Then one can easily see that the forms µ and γ are dominated by κ. κ > 0 is

obvious. The operator M is compact [Rao01, Proposition 2.1].

In the case a(x) ≥ δ > 0 the operator C is uniformly positive, and the

system has uniform exponential decay of energy.

The eigenvalues λn of M are the solutions of the equation

cosh p+
λ cos p−λ

α2

2
√

λ
sinh p+

λ sin p−λ = 1,

where

p+
λ =

√
α2 +

√
α4 + 4λ

2
, p−λ =

√√
α4 + 4λ− α2

2
.
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The corresponding eigenfunctions are

un(x) = cosh p+
λn

x−cos p−λn
x− cosh p+

λn
− cos p−λn

sinh p+
λn
− p+

λn

p−λn

sin p−λn

(
sinh p+

λn
x− α2

√
λn

sin p−λn

)
.

So, in the general case, the system has uniform exponential decay of energy if

a is such that

inf

1∫
0

a(x)u′n(x)2dx

λn

1∫
0

u′′n(x)2dx

> 0,

where λn and un are given above.

5.2.4 Euler–Bernoulli beam with boundary damping

We consider a Euler–Bernoulli beam which is pinched at x = 0 and has a

damper and the spring attached at x = 1. The corresponding equations are

∂2u

∂t2
(x, t) +

∂2

∂x2

(
EI

∂2u

∂x2

)
(x, t) = 0, t > 0, x ∈ (0, 1),

u(0, t) =
∂u

∂x
(0, t) = 0,

∂

∂x

(
EI(x)

∂2u

∂x2

)
(1, t) = ku(1, t) + c

∂u

∂t
(1, t),

∂2u

∂x2
(1, t) = 0,

u(x, 0) = u0(x),
∂u

∂t
u(x, 0) = u1(x),

where c > 0 and k > 0 are damping and spring coefficient, respectively.

Multiplying the above differential equation by the smooth test function v

such that v(0) = v′(0) = 0 and by partial integration we obtain

1∫

0

∂2u

∂t2
(x, t)v(x)dx+

1∫

0

EI(x)
∂2u

∂x2
(x, t)v′′(x)dx+ku(1, t)v(1)+c

∂u

∂t
(1, t)v(1) = 0.



131

Hence, the system given above can be written as (5.2.1), where

µ(u, v) =

1∫

0

u(x)v(x)dx,

γ(u, v) = cu(1)v(1),

κ(u, v) =

1∫

0

EI(x)u′′(x)v′′(x)dx + ku(1)v(1),

and

Y = {u ∈ L2([0, 1]) : u′, u′′ ∈ L2([0, 1]), u(0) = u′(0) = 0}.

We assume EI(x) ≥ δ > 0. Then one can easily see that the forms µ and γ are

dominated by κ. κ > 0 is obvious. Since M is compact, the eigenvalues λn tend

to zero for n →∞. Let us denote the corresponding eigenvalues by un. Then

γ(un, un)

λnκ(un, un)
=

cun(1)2

λn

(
1∫
0

EI(x)u′′n(x)2dx + kun(1)2

) ≥ c

kλn

.

This implies that the system has a uniform exponential decay of energy if c > 0.

5.2.5 Euler–Bernoulli beam with Kelvin–Voigt damping

We assume that the Euler–Bernoulli beam is clamped at x = 0, and free at

x = l. The dynamics of transverse vibration is described by the following
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system [IN97]:

∂2u

∂t2
(x, t) +

∂2

∂x2

(
EI

∂2u

∂x2
+ DI

∂3u

∂x2∂t

)
(x, t) = 0, t > 0, x ∈ (0, l),

u(0, t) =
∂u

∂x
(0, t) = 0,

EI(x)
∂2u

∂x2
(x, t) + DI(x)

∂3u

∂x2∂t
(x, t)

∣∣∣∣
x=l

= 0,

∂

∂x

(
EI

∂2u

∂x2
+ DI

∂3u

∂x2∂t

)
(x, t)

∣∣∣∣
x=l

= 0,

u(x, 0) = u0(x),
∂u

∂t
u(x, 0) = u1(x).

In the above system EI is the stiffness coefficient and DI is the damping coef-

ficient of the beam material.

Multiplying the above differential equation by the smooth test function v

such that v(0) = v′(0) = 0 and by partial integration we obtain

l∫

0

∂2u

∂t2
(x, t)v(x)dx+

l∫

0

DI(x)
∂3u

∂x2∂t
(x, t)v′′(x)dx+

l∫

0

EI(x)
∂2u

∂x2
(x, t)v′′(x)dx = 0.

Hence, the system given above can be written as (5.2.1), where

µ(u, v) =

l∫

0

u(x)v(x)dx,

γ(u, v) =

l∫

0

DI(x)u′′(x)v′′(x)dx,

κ(u, v) =

l∫

0

EI(x)u′′(x)v′′(x)dx,

and

Y = {u ∈ L2([0, l]) : u′, u′′ ∈ L2([0, l]), u(0) = u′(0) = 0}.

Let us assume that the stiffness and damping coefficients satisfy

EI(x) ≥ δ > 0 and EI ∈ L∞([0, l]) and DI ∈ L∞([0, l]).
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Then one can easily see that the forms µ and γ are dominated by κ. κ > 0 is

obvious. Hence we are in position to apply results from the Section 3.3. One

can easily see that

‖Cu‖2 =

l∫

0

DI(x)2

EI(x)
|u′′(x)|2dx.

Also, M is obviously a compact operator. Let us denote by λn the eigenvalues

of M . In the general case, the system need not have a uniform exponential

decay of the energy.

In the simplest case EI(x) = 1, the eigenvalues λn are the solutions of the

following equation:

(cosh λl + cos λl)2 = 1 + cosh λl cos λl,

and the eigenfunctions un are given by

un(x) = cosh λnx− cos λnx + βn(sinh λnx− sin λnx),

where

βn =
sinh λnl − sin λnl

cosh λnl + cos λnl
.

Then a sufficient condition for the uniform exponential decay of the energy is

DI ≥ p > 0, which easily follows from the Remark 3.3.8.

5.3 Multidimensional problems

5.3.1 Higher dimensional hyperbolic systems

The hyperbolic system which has received the most attention from the control-

lability viewpoint is the generalized wave equation

ρ(x)
∂2u

∂t2
(x, t)−∇(A(x)∇u)(x, t)+q(x)u(x, t) = 0 for x ∈ Ω, t ≥ 0, (5.3.1)
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where real valued coefficients in (5.3.1) satisfy the following: p, q ∈ L∞(Ω) and

ρ(x) ≥ ρ0 > 0, q(x) ≥ 0 in Ω; A(x) = (aij(x))N
1 satisfies uniform elipticity

condition, its entries have Lipschitz continuous second derivatives, and Ω is a

bounded open connected subset in Rn with the Lipschitz boundary ∂Ω.

We divide the boundary ∂Ω in two parts, Γ0 and Γ1, with Γ1 6= ∅, Γ2 6= ∅
and Γ0 relatively open in ∂Ω.

We impose the following boundary conditions:

u(x, t) = 0, x ∈ Γ0,

β(x)
∂u

∂t
(x, t) + A(x)∇u(x, t) · ν(x) = 0, x ∈ Γ1,

where β(x) ≥ β0 > 0 and ν is the unit normal of ∂Ω pointing towards the

exterior of Ω. The problem of decay of the solutions and the problem of finding

the optimal β has caught the attention of many researches (see, for example,

[Rus78], [Lag83], [Tri89]). By the use of partial integration and divergence

theorem, this system can be written in the form (5.2.1) where

µ(u, v) =

∫

Ω

u(x)v(x)dx,

γ(u, v) =

∫

Γ1

β(x)u(x)v(x)dx,

κ(u, v) =

∫

Ω

(∇v(x))∗A(x)∇u(x)dx +

∫

Ω

q(x)u(x)v(x)dx,

and

Y = {u ∈ H1(Ω) : u(0) = 0 on Γ0}.

It can be shown ([Lag83, Proof of the Theorem 1], [CZ93a, Example 3.5.1]

and [Rus78, pp. 682]) that under above assumptions forms µ and γ are domi-

nated by κ. κ > 0 is obvious. Hence, the results from Chapter 3 are applicable.



135

Even in the simplest case A(x) = 1, ρ(x) = 1 and q(x) = 0, the exact

calculation of the eigenvalues of M is not possible except in the cases when

Ω has particulary simple geometry, but even in this cases the computation is

usually lengthy and tedious (see, for example, [CFNS91, Section 3.] and [CZ93b,

Section 2.6]).

5.3.2 A problem in dissipative acoustics

In this section we are studying linear oscillations of an acoustic (i.e. inviscid,

compressible, barotropic) fluid contained in a rigid cavity, with some or all of

its walls covered by a thin layer of viscoelastic material able to absorb part of

the acoustic energy of the fluid.

In recent years large attention has been paid to this kind of problem, mainly

related to the goal of decreasing the level of noise in aircraft or cars (for exam-

ple, a typical problem in aeronautical engineering is the problem of reducing

the noise produced by propellers inside an aircraft by means of thin layers of

viscoelastic material). A typical acoustic insulating material is glasswool.

We denote by Ω ⊂ Rn, n = 2 or n = 3 the domain occupied by the fluid,

which we suppose polyhedral, with boundary ∂Ω = ΓA ∪ ΓR, ΓA =
⋃J

j=1 Γj,

with Γj being all the different faces of Ω covered by the damping material, is

called the ”absorbing boundary”. ΓR is the union of the remaining faces and

we call it the ”rigid boundary”. We assume that ΓA is not empty. The unit

outer normal vector along ∂Ω is denoted by ν. The equations for our problem
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are [BDRS00]

ρ
∂2U

∂t2
+∇P = 0 in Ω, (5.3.2)

P = −ρc2divU in Ω, (5.3.3)

P = αU · ν + β
∂U

∂t
· ν on ΓA, (5.3.4)

U · ν = 0 on ΓR, (5.3.5)

where U is the displacement vector, P is the fluid pressure, ρ the fluid density,

and c the acoustic speed.

The equation (5.3.4) models the effect of viscoelastic material: the fluid

pressure on the boundary is in equilibrium with the response of the absorbing

walls. This response consists of two terms: the first one is proportional to the

normal component of the displacements and acoustics for the elastic behavior

of the material, whereas the second one is proportional to the normal velocity

and models the viscous damping.

The damped vibration modes of the fluid are complex solutions of (5.3.2)–

(5.3.5) of the form U(x, t) = eλtu(x) and P (x, t) = eλtp(x). They can be found

by solving the following quadratic problem:

∫

Ω

ρc2divu divφ+

∫

ΓA

αu·ν φ·ν+λ

∫

ΓA

β u·ν φ·ν+λ2

∫

Ω

ρuφ = 0, for all φ ∈ V ,

(5.3.6)

where

V =
{
φ ∈ H(div, Ω) : φ · ν ∈ L2(∂Ω) and φ · ν = 0 on ΓR

}
,

endowed with its natural norm

‖φ‖V =
(‖φ‖2

div,Ω + ‖φ‖2
ΓA

)1/2
.
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Here

H(div, Ω) = {φ ∈ L2(Ω) : divφ ∈ L2(Ω)}

is a Hilbert space (see, for example [GR86]) with the norm

‖φ‖div,Ω =
(‖φ‖2

Ω + ‖div φ‖2
Ω

)1/2
.

Let us define three (symmetric) sesquilinear forms in V

µ(u,v) =

∫

Ω

ρuv,

γ(u,v) =

∫

ΓA

β u · ν v · ν,

κ(u,v) =

∫

Ω

ρc2divu divv +

∫

ΓA

αu · ν v · ν.

Then (5.3.6) becomes

λ2µ(u,v) + λγ(u,v) + κ(u,v) = 0, for all v ∈ V . (5.3.7)

Obviously, λ = 0 is an eigenvalue, with corresponding eigenspace

K = {u ∈ V : div u = 0 on Ω and u · ν = 0 on ∂Ω},

so as the space in which we will operate we take [GR86]

Y := V ª K = {u ∈ V : u = ∇ϕ for ϕ ∈ H1(Ω)}.

From [BDRS00, Lemma 2.2] follows that the quadratic form κ generates a norm

in Y which is equivalent to ‖·‖V . Then clearly the forms µ and γ are dominated

by κ, hence the corresponding operators M and C constructed in Section 3.1

are bounded. Moreover, from [BDRS00, Lemma 3.1] follows that M is compact.

Hence we can apply results from Section 3.3 to this problem. In the special

cases when the geometry of Ω is simple, the eigenvalues and eigenvectors of
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M can be found by the separation of variables technique (for the case when

n = 2 and Ω is rectangular see [BR99], and for the case when n = 3 and Ω is

rectangular box see [BHNR01]).

But even in these simple cases, the computation of the operator C is heavily

involved, since the operator C cannot be written in a closed form. To gain a

little more insight in the structure of C, observe that β
α

is an eigenvalue of C

with the corresponding eigenspace F = {u ∈ Y : div u = 0}. Also, one can

check that F⊥ = {u ∈ Y : u · ν is constant on ΓA}, and since Cu depends only

on u · ν in F⊥, C|F⊥ has one–dimensional range.



Appendix A

Semigroup theory

In the appendix we introduce the basic concepts and results of the semigroup

theory which we use in this thesis.

The classic reference on semigroup theory is [HP57]. Standard references

are also [Paz83], [EN00], [Gol85] and [BM79].

Let X be a Hilbert space. The family of bounded linear operators T (t),

t ≥ 0 in X is said to be a semigroup of operators in X if

(i) T (0) = I,

(ii) T (t + s) = T (t)T (s) for all t, s ≥ 0.

The semigroup T (t), t ≥ 0 is said to be strongly continuous if it is continuous

in the strong operator topology. Due to the property (ii) this is equivalent to

(iii) limt↘0 ‖T (t)x− x‖ = 0 for each x ∈ X .

A strongly continuous semigroup is sometimes called as C0 semigroup1.

The infinitesimal generator of T (t), or briefly the generator, is the linear

1The symbol C0 abbreviates ”Cesàro summable of order 0”.
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operator A with domain D(A) defined by

D(A) = {x ∈ X : lim
t↘0

1

t
(T (t)x− x) exists},

Ax = lim
t↘0

1

t
(T (t)x− x), x ∈ D(A).

The generator is always a closed and densely defined operator. The generator

uniquely determines the semigroup.

Proposition A.1 ([EN00]). For every strongly continuous semigroup T (t),

there exist constants ω ∈ R and M ≥ 1 such that

‖T (t)‖ ≤ Meωt for all t ≥ 0. (A.1)

The infimum of all exponents ω for which an estimate of the form (A.1)

holds for a given strongly continuous semigroup plays an important role in the

semigroup theory. For a strongly continuous semigroup T (t) generated by A we

call

ω(A) = inf{ω : ∃M ≥ 1 such that ‖T (t)‖ ≤ Meωt for all t ≥ 0}

its growth bound (or type).

Moreover, a semigroup is called contractive if ω = 0 and M = 1 is possible,

and uniformly exponentially stable if its growth bound is negative.

Remark A.1. Let A be generator of strongly continuous semigroup T (t). The

number

s(A) = sup{Reλ : λ ∈ σ(A)}

is called the spectral bound of the semigroup T (t). In the finite–dimensional

case s(A) = ω(A) holds, but in general we have only s(A) ≤ ω(A).
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In the sequel we will give characterizations of the generators of contractive

and uniformly exponentially stable semigroups.

Let A be a linear operator with the dense domain. The operator A is called

dissipative operator if Re(Ax, x) ≤ 0 for all x ∈ D(A). A dissipative operator

which extends a dissipative operator A is called a dissipative extension of A.

An operator A is said to be maximal dissipative if its only dissipative extension

is A itself.

Proposition A.2. If A is a dissipative operator and R(A − λ) = X for some

λ, Reλ > 0, then A is maximal dissipative.

Theorem A.3 (Lumer–Phillips). Let A be a linear operator with dense do-

main. Then A generates a contractive semigroup if and only if A is maximal

dissipative.

Theorem A.4 ([EN00], pp. 302). A strongly continuous semigroup T (t) in

a Hilbert space is uniformly exponentially stable if and only if the half plane

{λ ∈ C : Reλ > 0} is contained in the resolvent set ρ(A) of the generator A

with the resolvent satisfying

sup
Reλ>0

‖R(λ)‖ < ∞.

From the previous theorem one can obtain

Corollary A.5 ([CHA+87], Theorem 9.6). If T (t) is a strongly continuous

semigroup in a Hilbert space with generator A, then its growth bound is given

by

ω(A) = inf{β ∈ R : sup
s∈R

‖R(β + is)‖ < ∞}.



142

The following two results are also needed.

Proposition A.6 ([Gol85]). Let A generate strongly continuous semigroup

T (t). Then T (t) = 0 for all t ≥ t0, where t0 > 0, if and only if σ(A) = ∅ and

there exists a constant M such that

‖R(α + iβ, A)‖ ≤ M max{1, e−αt0}

for all α + iβ ∈ C.

The following Lemma is a well-known result, but we give the proof because

we were not able to find an appropriate reference.

Lemma A.7. Let T (t) ba a uniformly exponentially stable semigroup with gen-

erator A. Assume that

‖R(iβ)‖ ≤ M, for all β ∈ R,

for some M > 0. Then ω(A) ≤ − 1
M

.

Proof. From [Wei76, Satz 5.14] follows λ ∈ ρ(A) if |Reλ| < 1
M

and

(λ− A)−1 =
∞∑

n=0

(−1)n(Reλ)n(iImλ− A)−n−1, for |Reλ| < 1

M
.

Hence

‖(λ− A)−1‖ ≤
∞∑

n=0

|Reλ|nMn+1 =
M

1− |Reλ|M , for |Reλ| < 1

M
.

Now Corollary A.5 implies ω(A) ≤ − 1
M

.

Let A be a linear operator, and let u0 ∈ X . Consider the differential equation

given by

u̇(t) = Au(t) for t ≥ 0,

u(0) = u0.
(A.2)



143

A function u : [0,∞) → X is called a classical solution of (A.2) if u is contin-

uously differentiable with respect to X , u(t) ∈ D(A) for all t ≥ 0 and (A.2)

holds.

A continuous function u : [0,∞) → X is called a mild solution of (A.2) if
t∫

0

u(s)ds ∈ D(A) for all t ≥ 0 and

u(t) = A

t∫

0

u(s)ds + u0.

The following theorem deals with the question of existence and uniqueness of the

solution of the problem (A.2), called the abstract Cauchy problem associated

to A with the initial value u0.

Theorem A.8 ([EN00], Propositions 6.2 and 6.4). Let A be the generator

of the strongly continuous semigroup T (t). Then, for every u0 ∈ X , the function

u : t 7→ u(t) := T (t)u0 (A.3)

is the unique mild solution of (A.2).

Moreover, for every u0 ∈ D(A), the function (A.3) is the unique classical

solution of (A.2).
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[LG97] Julián López-Gómez, On the linear damped wave equation, J. Differ-

ential Equations 134 (1997), no. 1, 26–45.

[LLR01] Kangsheng Liu, Zhuangyi Liu, and Bopeng Rao, Exponential sta-

bility of an abstract nondissipative linear system, SIAM J. Control

Optim. 40 (2001), no. 1, 149–165.



151

[LM88] W. Littman and L. Markus, Stabilization of a hybrid system of elas-

ticity by feedback boundary damping, Ann. Mat. Pura Appl. (4) 152

(1988), 281–330.

[LT85] Peter Lancaster and Miron Tismenetsky, The theory of matrices,

Academic Press Inc., Orlando, FL, 1985.

[LZ94] Zhuangyi Liu and Song Mu Zheng, Uniform exponential stability and

approximation in control of a thermoelastic system, SIAM J. Control

Optim. 32 (1994), no. 5, 1226–1246.
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temen, Z. Angew. Math. Mech. 68 (1988), 89–90.

[NOR89] B. Nour-Omid and M. E. Regelgbrugge, Lanczos method for dynamic

analysis of damped structural systems, Earthquake Engrg. and Struc-

tural Dynamics 18 (1989), 1091–1104.

[Paz83] A. Pazy, Semigroups of linear operators and applications to partial

differential equations, Springer-Verlag, New York, 1983.



152

[PF00a] Uwe Prells and Michael I. Friswell, A measure of non–proportional

damping, Mech. Systems Signal Processing 14 (2000), no. 2, 125–

137.

[PF00b] , A relationship between defective systems and unit–rank mod-

ification of classical damping, ASME J. Vibration and Acoustics 122

(2000), 180–183.
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(Amsterdam, 1989), Birkhäuser Boston, Boston, MA, 1990, pp. 503–

511.

[Shk97] Alexander Ya. Shklyar, Complete second order linear differential

equations in Hilbert spaces, Birkhäuser Verlag, Basel, 1997.
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