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Abstract

We prove that the diagonally pivoted symmetric LR algorithm on a positive definite
matrix is globally convergent.

The “symmetric” or “Cholesky” LR iteration is a fairly old method of eigenreduction of
a positive definite Hermitian matrix H. It reads

H = H0 = R∗0R0

H1 = R0R
∗
0 = R∗1R1

...
(1)

This process is linearly convergent [6], [5]. Recently, its singular value ’implicit’ equivalent

R∗k = QkRk+1, Qk unitary, Rk upper triangular, (2)

was studied in [3].
An obvious modification of the algorithm (2) includes pivoting. Thus modified, (2)

reads
R∗k = QkRk+1Pk, (3)

where Pk is a permutation of standard column pivoting or, equivalently, of the diagonal
pivoting within the ’explicit’ algorithm (1). This means that R = Rk has the property

rii ≥
√
|ril|2 + · · ·+ |rll|2, i = 1, . . . , n, l ≥ i. (4)

Although the practical use of pivoting is limited to first few steps, it is of interest to know
whether the pivoted algorithm itself is globally convergent. The answer is affirmative and
this will be shown in our main theorem below.

The importance of pivoting was stressed in [2], Cor. 5.4, 5.5, where it was shown that
the pivoted implicit Cholesky iteration computes the singular values with high relative
accuracy. We produce a simple example which shows that the non-pivoted algorithm
really is worse in this respect. Set

R =

(
1e− 12 2e− 12
1 1

)
Here the pivoted algorithm gives the correct small singular value 7.07106781186548e− 13
as expected, while the non-pivoted algorithm gives only 7.07099414738691e − 13. (Both
algorithms were implemented in MATLAB by using its routine qr.1 )
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1The genuine MATLAB routine svd was also unsatisfactory, its outputs were min(svd(R)) =

7.07012634145304e− 13 and min(svd(R′)) = 7.07106781207136e− 13.
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Theorem 1 Let R = R0 be a non-singular matrix and let the sequence Rk be given by (3)
and (4). Then Rk converges to a diagonal matrix, whose diagonals are the singular values
of R0. The convergence is linear.

Proof. We will analyse a typical step of the algorithm. We set Rk = R′ and Rk+1 = R.

Lemma 2 Let
R′∗ = QRP, (5)

with Q unitary and P a permutation such that R satisfies (4).2 Then

n∏
i=1

(R′R′∗)ii ≥
n∏

i=1

(RR∗)ii +
n−1∑
l=1

n∑
j=l+1

|rli|2
i∑

j=l+1

|rji|2σ2n−2l−2
l (6)

where σi is the smallest singular value of the matrix rii · · · rin
. . .

...
rnn

 (7)

Proof of the Lemma. By (5) we have

n∏
i=1

(R′R′∗)ii =
n∏

i=1

(P ∗R∗RP )ii =
n∏

i=1

(R∗R)ii

so the whole analysis takes place on R. Our next step is, in fact, a revisiting and a
sharpening of an argument from [1].

By (4) we have

r211(|r12|2 + r222) = (r211 + |r12|2)r222 + |r12|2(|r12|2 + r211 − r222 − |r12|2) ≥ |r12|4,

(r211 + |r12|2)(|r13|2 + |r23|2 + r233) =

(r211 + |r12|2 + |r13|2)(|r23|2 + r233) + |r13|2(|r13|2 + r211 − r233)

≥ (r211 + |r12|2 + |r13|2)(|r23|2 + r233) + |r13|2(|r12|2 + |r13|2)

and finally
(r211 + · · ·+ |r1n−1|2)(|r1n|2 + · · ·+ r2nn) ≥

(r211 + · · ·+ |r1n|2)(|r2n|2 + · · ·+ r2nn) + |r1n|2(|r1n|2 + · · ·+ |r1n|2)

Using the fact that the Euclidian norm of any row or column in R is bounded from below
by the smallest singular value σ1 we obtain

n∏
i=1

(R∗R)ii ≥ (r211 + · · ·+ |r1n−1|2)r222(|r23|2 + r233) · · · (|r2n|2 + · · ·+ r2nn)

+
n∑

i=2

|r1i|2
i∑

j=2

|r1j |2σ2n−4
1

This can be continued to give (6). This proves the lemma.
2R′ itself need not be triangular.
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We continue with the proof of the theorem. Introducing again the sequence index k
(6) can be written as

n∏
i=1

(R′kR
′∗
k )ii ≥

n∏
i=1

(Rk+1R
∗
k+1)ii +

n−1∑
l=1

n∑
j=l+1

|r(k+1)
li |2

i∑
j=l+1

|r(k+1)
ji |2σ2n−2l−2

lk (8)

All monomials within the triple sum are non-negative, thus the diagonal products are
convergent and the triple sum itself tends to zero. If σlk were independent of k our
theorem would already be proved. So, we have to use induction once more: the values
σ1k, are the singular values of Rk and they do not depend on k. Hence by (8)

r
(k
12, . . . , r

(k)
1n → 0

Now the continuity property of the singular values implies that σ2k tends to a singular
value of R0 and thus stays bounded away from zero. Again by (8),

r
(k)
23 , . . . , r

(k)
2n → 0

By induction, all off-diagonals of Rk tend to zero. Now by (4) the ordering

r
(k)
11 ≥ · · · ≥ r

(k)
nn → 0

is preserved during the process, so the diagonal elements are themselves convergent to the
singular values of R0.

Concerning the speed of the convergence, we can immediately see that possible groups
of multiple singular values will be approached by adjacent diagonal elements due to the or-
dering. So, for k large enough the pivoting will be performed at most within corresponding
diagonal blocks. Now the existing convergence theory ([6]) insures that the off-diagonal
blocks (punctured positions on the picture below)

∗ ∗ · · · ·
∗ · · · ·
∗ · · ·
∗ ∗ ∗
∗ ∗
∗

(9)

tend linearly to zero. The rest of the off-diagonal (starred positions) is even quadratically
small, according to [4]. Q.E.D.
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[1] J. Demmel and K. Veselić, Jacobi’s method is more accurate than QR. SIAM
J. Matr. Anal. Appl. 13 1204-1246 (1992)
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