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Foreword

The theory of linear damped oscillations has been studied for more than
hundred years and is still of vital interest to researchers in Control Theory,
Optimization, and computational aspects. This theory plays a central role
in studying the stability of mechanical structures, but it has applications
to other fields such as electrical network systems or quantum mechanical
systems. We have purposely restricted ourselves to the basic model leaving
aside gyroscopic effects and free rigid body motion. In contrast, the case of
a singular mass matrix is analysed in some detail. We spend quite a good
deal of time discussing underlying spectral theory, not forgetting to stress its
limitations as a tool for our ultimate objective — the time behaviour of a
damped system. We have restricted ourselves to finite dimension although we
have attempted, whenever possible, to use methods which allow immediate
generalisation to the infinite-dimensional case.

Our text is intended to be an introduction to this topic and so we have
tried to make the exposition as self-contained as possible. This is also the
reason why we have restricted ourselves to finite dimensional models. This
lowering of the technical barrier should enable the students to concentrate
on central features of the phenomenon of damped oscillation.

The introductory chapter includes some paragraphs on the mechanical
model in order to accommodate readers with weak or no background in
physics.

The text presents certain aspects of matrix theory which are contained in
monographs and advanced textbooks but may not be familiar to the typical
graduate student. One of them is spectral theory in indefinite product spaces.
This topic receives substantial attention because it is a theoretical fundament
for our model. We do not address numerical methods especially designed for
this model. Instead we limit ourselves to mention what can be done with most
common matrix algorithms and to systematically consider the sensitivity,
that is, condition number estimates and perturbation properties of our topics.
In our opinion numerical methods, in particular invariant-subspace reduction
for J-symmetric matrices are still lacking and we have tried to make a case
for a more intensive research in this direction.

Our intention is to take readers on a fairly sweeping journey from the
basics to several research frontiers. This has dictated a rather limited choice
of material, once we ‘take off’ from the basics. The choice was, of course,
closely connected with our own research interests. In some cases we present
original research (cf. e.g. the chapter on modal approximations), whereas we
sometimes merely describe an open problem worth investigating — and leave
it unsolved.

This text contains several contributions of our own which may be new. As
a rule, we did not give any particular credit for earlier findings due to other
authors or ourselves except for more recent ones or when referring to further
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reading. Our bibliography is far from exhaustive, but it contains several works
offering more detailed bibliographical coverage.

The text we present to the reader stems from a synonymous course I have
taught for graduate and post-doc students of the Department of Mathemat-
ics, University of Osijek, Croatia in the summer term 2007/2008. It took
place at the Department of Mathematics at the University of Osijek and was
sponsored by the program “Brain gain visitor” from the National Foundation
for Science, Higher Education and Technological development of the Republic
of Croatia. Due to its origin, it is primarily designed for students of Math-
ematics but it will be of use also to engineers with enough mathematical
background. Even though the text does not cover all aspects of the linear
theory of damped oscillations, I hope that it will also be of some help to the
researchers in this field.

In spite of a good deal of editing the text still contains some remnants of
its oral source. This pertains to the sometimes casual style more suited to a
lecture than to a monograph — as was the original aim of this work.

Bibliographical Notes and Remarks are intended to broaden the scope by
mentioning some other important directions of research present and past.
According to our bibliographical policy, when presenting a topic we usually
cite at most one or two related works and refer to their bibliographies.

It is a pleasure to thank the participants in the course, in particular
professor N. Truhar and his collaborators for their discussions and support
during the lectures in Osijek. The author was very fortunate to have ob-
tained large lists of comments and corrections from a number of individuals
who have read this text. These are (in alphabetic order): K. Burazin (Os-
ijek), L. Grubǐsić (Zagreb), D. Kressner (Zürich), P. Lancaster, (Calgary),
H. Langer (Vienna), I. Matić (Osijek), V. Mehrmann (Berlin), M. Miloloža
Pandur (Osijek), B. Parlett (Berkeley), I. Nakić (Zagreb), A. Suhadolc (Ljubl-
jana), I. Veselić (Chemnitz), A. Wiegner (Hagen) and, by no means the least,
the anonymous referees. Many of them went into great detail and/or depth.
This resulted in substantial revisions of the whole text as well as in signifi-
cant enlargements. To all of them I am deeply obliged. Without their generous
support and encouragement this text would hardly deserve to be presented
to the public. The financial help of both National Foundation for Science,
Higher Education and Technological development of the Republic of Croatia
and the Department of Mathematics, University of Osijek, not forgetting the
warm hospitality of the latter, is also gratefully acknowledged.

Osijek/Hagen, July 2008 to December 2010, K. Veselić.





Contents

1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Newton’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Work and energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 The formalism of Lagrange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Oscillating electrical circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Simultaneous diagonalisation (Modal damping) . . . . . . . . . . . 15
2.1 Undamped systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Frequencies as singular values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Modally damped systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Phase space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1 General solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Energy phase space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 The singular mass case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 ”Indefinite metric” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1 Sylvester inertia theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Matrices and indefinite scalar products . . . . . . . . . . . . . . . . . . . 49

7 Oblique projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8 J-orthogonal projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

9 Spectral properties and reduction of J-Hermitian matrices 67

10 Definite spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

11 General Hermitian matrix pairs . . . . . . . . . . . . . . . . . . . . . . . . . . 89

xi



xii Contents

12 Spectral decomposition of a general
J-Hermitian matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
12.1 Condition numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

13 The matrix exponential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

14 The quadratic eigenvalue problem . . . . . . . . . . . . . . . . . . . . . . . . 119

15 Simple eigenvalue inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

16 Spectral shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

17 Resonances and resolvents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

18 Well-posedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

19 Modal approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

20 Modal approximation and overdampedness . . . . . . . . . . . . . . . 157

21 Passive control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
21.1 More on Lyapunov equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
21.2 Global minimum of the trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
21.3 Lyapunov trace vs. spectral abscissa . . . . . . . . . . . . . . . . . . . . . . 175

22 Perturbing matrix exponential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

23 Notes and remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Introduction

Here is some advice to make this book easier to read.
In order to check/deepen the understanding of the material and to facili-

tate independent work the reader is supplied with some thoroughly worked-
out examples as well as a number of exercises. Not all exercises have the
same status. Some of them are ’obligatory’ because they are quoted later.
Such exercises are either easy and straightforward or accompanied by hints
or sketches of solution. Some just continue the line of worked examples. On
the other end of the scale there are some which introduce the reader to re-
search along the lines of the development. These are marked by the word ’try’
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in their statement. It is our firm conviction that a student can fully digest
these Notes only if he/she has solved a good quantity of exercises.

Besides examples and exercises there are a few theorems and corollaries the
proof of which is left to the reader. The difference between a corollary without
proof and an exercise without solution lies mainly in their significance in the
later text.

We have tried to minimise the interdependencies of various parts of the
text.

What can be skipped on first reading? Most of the exercises. Almost none
of the examples. Typically the material towards the end of a chapter. In
particular

• Chapter 10: Theorem 10.12 –
• Chapter 12: Theorem 12.17 –
• Any of Chapters 19 – 22

Prerequisites and terminology. We require standard facts of matrix theory
over the real or complex field Ξ including the following (cf. [31] or [52]).

• Linear (in)dependence, dimension, orthogonality. Direct and orthogonal
sums of subspaces.

• Linear systems, rank, matrices as linear maps. We will use the terms in-
jective/surjective for a matrix with linearly independent columns/rows.

• Standard matrix norms, continuity and elementary analysis of matrix-
valued functions.

• Standard matrix decompositions such as

– Gaussian elimination and the LU-decomposition A = LU , L lower tri-
angular with unit diagonal and U upper triangular.

– idem with pivoting A = LUΠ, L, U as above and Π a permutation
matrix, corresponding to the standard row pivoting.

– Cholesky decomposition of a positive definite Hermitian matrix A =
LL∗, L lower triangular.

– QR-decomposition of an arbitrary matrix A = QR, Q unitary and R
upper triangular.

– Singular value decomposition of an arbitrary matrix A = UΣV ∗, U, V
unitary and Σ ≥ 0 diagonal.

– Eigenvalue decomposition of a Hermitian matrix A = UΛU∗, U unitary,
Λ diagonal.

– Simultaneous diagonalisation of a Hermitian matrix pair A, B (the lat-
ter positive definite)

Φ∗AΦ = Λ, Φ∗BΦ = I, Λ diagonal.

– Schur (or triangular) decomposition of an arbitrary square A = UTU∗,
U unitary, T upper triangular.
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– Polar decomposition of an arbitrary m× n-matrix with m ≥ n

A = U
√
A∗A with U∗U = In.

• Characteristic polynomial, eigenvalues and eigenvectors of a general ma-
trix; their geometric and algebraic multiplicity.

• (desirable but not necessary) Jordan canonical form of a general matrix.

Further general prerequisites are standard analysis in Ξn as well as elements
of the theory of analytic functions.

Notations. Some notations were implicitly introduced in the lines above.
The following notational rules are not absolute, that is, exceptions will be
made, if the context requires them.

• Scalar: lower case Greek α, λ, . . ..
• Column vector: lower case Latin x, y, . . ., their components: xj , yj , . . . (or

(x)j , (y)j , . . .)
• Canonical basis vectors: ej as (ej)k = δjk.
• Matrix order: m × n, that is, the matrix has m rows and n columns, if a

matrix is square then we also say it to be of order n.
• The set of all m× n-matrices over the field Ξ: Ξm,n

• Matrix: capital Latin A,B,X, . . ., sometimes capital Greek Φ, Ψ, . . .; diago-
nal matrices: Greek α, Λ, . . . (bold face, if lower case). By default the order
of a general square matrix will be n, for phase-space matrices governing
damped systems this order will mostly be 2n.

• Identity matrix, zero matrix: In, 0m,n, 0n; the subscripts will be omitted
whenever clear from context.

• Matrix element: corresponding lower case of the matrix symbol A = (aij).
• Block matrix: A = (Aij).
• Matrix element in complicated expressions: ABC = ((ABC)ij).
• Diagonal matrix: diag(a1, . . . , an); block diagonal matrix: diag(A1, . . . , Ap).
• Matrix transpose: AT = (aji).
• Matrix adjoint: A∗ = (aji).
• Matrix inverse and transpose/adjoint: (AT )−1 = A−T , (A∗)−1 = A−∗.
• The null space and the range of a matrix as a linear map: N (A), R(A).
• Spectrum: σ(A).
• Spectral radius: spr(A) = max |σ(A)|.
• Spectral norm: ‖A‖ =

√
spr(A∗A) and condition number κ(A) = ‖A‖‖A−1‖.

• Euclidian norm: ‖A‖E =
√

Tr(A∗A) and condition number κE(A) =
‖A‖E‖A−1‖E . In the literature this norm is sometimes called the Frobe-
nius norm or the Hilbert-Schmidt norm.

• Although a bit confusing the term eigenvalues (in plural) will mean any
sequence of the complex zeros of the characteristic polynomial, counted
with their multiplicity. Eigenvalues as elements of the spectrum will be
called spectral points or distinct eigenvalues.



Chapter 1

The model

Small damped oscillations in the absence of gyroscopic forces are described
by the vector differential equation

Mẍ+ Cẋ+Kx = f(t). (1.1)

Here x = x(t) is an Rn-valued function of time t ∈ R; M,C,K are real
symmetric matrices of order n. TypicallyM,K are positive definite whereas C
is positive semidefinite. f(t) is a given vector function. The physical meaning
of these objects is

xj(t) position or displacement
M mass
C damping
K stiffness

f(t) external force

while the dots mean time derivatives. So, any triple M,C,K will be called a
damped system, whereas the solution x = x(t) is called the motion or also the
response of the linear system to the external force f(t).

In this chapter we will describe common physical processes, governed by
these equations and give an outline of basic mechanical principles which lead
to them. It is hoped that this introduction is self-contained enough to acco-
modate readers with no background in Physics.

Example 1.1 As a model example consider the spring-mass system like the
one in Fig. 1.1. Here x =

[
x1 · · ·xn

]T where xi = xi(t) is the horizontal
displacement of the i-th mass point from its equilibrium position and

1
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c d

k k k k1 2 3 4

4 42 3 41

Fig. 1.1 Oscillator ladder

M = diag(m1, . . . ,mn), m1, . . . ,mn > 0 (1.2)

K =



k1 + k2 −k2

−k2 k2 + k3
. . .

. . . . . . . . .
. . . . . . −kn
−kn kn + kn+1


, k1, . . . kn+1 > 0 (1.3)

(all void positions are zeros) and

C = Cin + Cout, (1.4)

Cin =



c1 + c2 −c2

−c2 c2 + c3
. . .

. . . . . . . . .
. . . . . . −cn
−cn cn + cn+1


, c1, . . . cn+1 ≥ 0 (1.5)

Cout = diag(d1, . . . , dn), d1, . . . , dn ≥ 0 (1.6)

In the case of Fig. 1.1 we have n = 4 and

k5 = 0, c2 = c3 = 0,

d1 = d2 = d3 = 0, d4 > 0.

Various dynamical quantities such as ’force’, ’work’, ’energy’ will play an
important role in the course of these Notes. We shall next give a short compact
overview of the physical background of the equation (1.1).
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1.1 Newton’s law

We will derive the equations (1.1) from Newton’s law for our model example.
The coordinate xi of the i-th mass point is measured from its static equilib-
rium position, that is, from the point where this mass is at rest and f = 0.
Newton’s second law of motion for the i-th particle reads

miẍi = f toti

where f toti is the sum of all forces acting upon that mass point. These forces
are

• The external force fi(t).
• The elastic force from the neighbouring springs, negative proportional to

the relative displacement.

ki(xi−1 − xi) + ki+1(xi+1 − xi), i = 1, . . . , n (1.7)

where kj is the j-th spring stiffness.
• The inner damping force from the neighbouring dampers, negative pro-

portional to the relative velocity

ci(ẋi−1 − ẋi) + ci+1(ẋi+1 − ẋi), i = 1, . . . , n. (1.8)

• The external damping force, negative proportional to the velocity −diẋi,
where dj , cj are the respective inner and external damper viscosities.

Here to simplify the notation we have set x0 = xn+1 = 0, ẋ0 = ẋn+1 = 0,
these are the fixed end points. Altogether we obtain (1.1) with M,C,K, from
(1.2), (1.3) and (1.4). All these matrices are obviously real and symmetric.
By

xTMx =
n∑
j=1

mjx
2
j (1.9)

and

xTKx = k1x
2
1 +

n∑
j=2

kj(xj − xj−1)2 + kn+1x
2
n (1.10)

both M and K are positive definite. By the same argument Cin and Cout are
positive semidefinite.

Exercise 1.2 How many coefficients ki in (1.3) may vanish while keeping
K positive definite? Interpret the response physically!

Example 1.3 A typical external force stems from a given movement of the
frame in which the vibrating structure is anchored (this is the so-called in-
ertial force). On the model example in Fig. 1.1 the system is anchored on
two points. The force caused by the horizontal movement of these two points
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is taken into account by replacing the zero values of x0, xn+1 in (1.7) and
(1.8) by given functions x0(t), xn+1(t), respectively. This does not change the
matrices M,C,K whereas f(t) reads

f(t) =


k1x0(t) + c1ẋ0(t)

0
...
0

kn+1xn+1(t) + cn+1ẋn+1(t)

 .

Exercise 1.4 Find the equilibrium configuration (i.e. the displacement x at
rest) of our model example if the external force f (i) vanishes or (ii) is a
constant vector. Hint: the matrix K can be explicitly inverted.

The model in Example 1.1 is important for other reasons too. It describes
a possible discretisation of a continuous damped system (vibrating string).
There the parameters ci come from the inner friction within the material
whereas di describe the external damping caused by the medium in which the
system is moving (air, water) or just artificial devices (dashpots) purposely
built in to calm down dangerous vibrations. In the latter case there usually
will be few such dashpots resulting in the low rank matrix Cout.

It should be mentioned that determining the inner damping matrix for
complex vibrating systems in real life may be quite a difficult task, it in-
volves special mathematical methods as well as experimental work.

From the derivations above we see that determining the equilibrium pre-
cedes any work on oscillations. The equilibrium is the first approximation to
the true behaviour of the system, it is found by solving a linear or nonlinear
system of equations. The next approximation, giving more detailed informa-
tion are the linear oscillations around the equilibrium, that is, their movement
is governed by a system of linear differential equations. Their linearity will be
seen to be due to the assumption that the oscillations have small amplitudes.

1.2 Work and energy

We will now introduce some further relevant physical notions based on Ex-
ample 1.1. The work performed by any force φj(t) on the j-th point mass in
the time interval t1 ≤ t ≤ t2 is given by∫ t2

t1

φj(t)ẋjdt,

this corresponds to the rule ‘work equals force times distance’. So is the work
of the external force:
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t1

fj(t)ẋjdt, (1.11)

of the damping force:∫ t2

t1

[cj(ẋj−1 − ẋj) + cj+1(ẋj+1 − ẋj)]ẋjdt−
∫ t2

t1

dj ẋ
2
jdt,

of the elastic force:∫ t2

t1

[kj(xj−1 − xj) + kj+1(xj+1 − xj)]ẋjdt.

To this we add the work of the so-called ’inertial force’ which is given by∫ t2

t1

mj ẍj ẋjdt (1.12)

The total work is the sum over all mass points, so from (1.11) – (1.12) we
obtain ∫ t2

t1

ẋT f(t)dt, (1.13)

−
∫ t2

t1

ẋTCẋdt,

−
∫ t2

t1

ẋTKxdt = 2(Ep(x(t1))− Ep(x(t2))),

∫ t2

t1

ẋTMẍdt = 2(Ek(x(t2))− Ek(x(t1))), (1.14)

as the total work of the external forces, damping forces, elastic forces and
inertial forces, respectively; here

Ep(x) =
1
2
xTKx, (1.15)

Ek(ẋ) =
1
2
ẋTMẋ (1.16)

are the potential and the kinetic energy and

E(x, ẋ) = Ep(x) + Ek(ẋ) (1.17)

the total energy. Note the difference: in the first two cases the work depends
on the whole motion x(t), t1 ≤ t ≤ t2 whereas in the second two cases it
depends just on the values of Ep, Ek, respectively, taken at the end points
of the motion. In the formulae (1.9), (1.10) and (1.13) – (1.14) we observe
a property of both potential and kinetic energy: they are ’additive’ magni-
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tudes, that is, the kinetic energy is a sum of the kinetic energies of single
point masses whereas the potential energy is a sum of the potential energies
of single springs.

The relations (1.13) – (1.17) make sense and will be used for general
damped systems. By premultiplying (1.1) by ẋT we obtain the differential
energy balance

d

dt
E(x, ẋ) + ẋTCẋ = ẋT f(t). (1.18)

This is obviously equivalent to the integral energy balance

E(x, ẋ)
∣∣t2
t1

= −
∫ t2

t1

ẋTCẋdt+
∫ t2

t1

ẋT f(t)dt. (1.19)

for any t1 ≤ t ≤ t2. We see that the work of the damping forces is always
non-positive. This effect is called the energy dissipation. Thus, (1.19) displays
the amount of energy which is transformed into thermal energy. If f ≡ 0 then
this energy loss is measured by the decrease of the total energy.

If both f ≡ 0 and C = 0 then the total energy is preserved in time; such
systems are called conservative.

1.3 The formalism of Lagrange

The next (and last) step in our short presentation of the dynamics principles
is to derive the Lagrangian formalism which is a powerful and simple tool
in modelling mechanical systems. The position (also called configuration) of
a mechanical system is described by the generalised coordinates q1, . . . , qs
as components of the vector q from some region of Rs which is called the
configuration space. The term ’generalised’ just means that qi need not be a
Euclidian coordinate as in (1.1) but possibly some other measure of position
(angle and the like). To this we add one more copy of Rs whose elements are
the generalised velocities q̇. The dynamical properties are described by the
following four functions, defined on R2s,

• the kinetic energy T = T (q, q̇), having a minimum equal to zero at (q, 0)
for any q and with T ′′q̇ (q, q̇) positive semidefinite for any q,

• the potential energy V = V (q) with V ′(q0) = 0 and V ′′(q) everywhere
positive definite (that is, V is assumed to be uniformly convex),

• the dissipation function Q = Q(q, q̇), having a minimum equal to zero at
(q0, 0), with Q′′q̇ (q, q̇) positive semidefinite for any q as well as

• the time dependent generalised external force f = f(t) ∈ Rs

Here the first three functions are assumed to be smooth enough (at least
twice continuously differentiable) and the symbols ′ and ′′ denote the vector
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of first derivatives (gradient) and the matrix of second derivatives (Hessian),
respectively. The subscript (if needed) denotes the set of variables with re-
spect to which the derivative is taken. From these functions we construct the
Lagrangian

L = T − V + fT q.

The time development of this system is described by the Lagrange equations

d

dt
L′q̇ − L′q +Q′q̇ = 0. (1.20)

This is a system of differential equations of at most second order in time. Its
solution, under our, rather general, conditions is not easily described. If we
suppose that the solution q = q(t) does not depend on time, i.e. the system
is at rest then q̇ ≡ 0 in (1.20) yields

−V ′(q) = f

with the unique solution q = q̂0 (note that here f must also be constant in t
and the uniqueness is a consequence of the uniform convexity of V ). The point
q̂0 is called the point of equilibrium of the system. Typical such situations are
those in which f vanishes; then q̂0 = q0 which is the minimum point of
the potential energy. The energy balance in this general case is completely
analogous to the one in (1.18) and (1.19) and its derivation is left to the
reader.

Remark 1.5 If f is constant in time then we can modify the potential energy
function into

V̂ (q) = V (q)− qT f

thus obtaining a system with the vanishing generalised external force. If, in
addition, Q = 0 then the system is conservative. This shows that there is
some arbitrariness in the choice of the potential energy function.

Exercise 1.6 Using the expressions (1.16), (1.15) for the kinetic and the po-
tential energy, respectively, choose the dissipation function and the generalised
external force such that, starting from (1.20) the system (1.1) is obtained.

Solution. As the dissipation function take

Q =
1
2
ẋTCẋ;

then
L =

1
2
ẋTMẋ− 1

2
xTKx+ fTx,

L′ẋ = M, L′x = −Kx+ f, Q′ẋ = C

and (1.20) immediately yields (1.1).
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Now consider small oscillations around q0, that is, the vectors q − q0 and
q̇ will be considered small for all times. This will be expected, if the distance
from the equilibrium together with the velocity, taken at some initial time as
well as the external force f(t) at all times are small enough. This assumed, we
will approximate the functions T, V,Q by their Taylor polynomials of second
order around the point (q0, 0):

V (q) ≈ V (q0) + (q − q0)TV ′(q0) +
1
2

(q − q0)TV ′′(q0)(q − q0),

T (q, q̇) ≈ T (q0, 0) + q̇TT ′q̇(q0, 0) +
1
2
q̇TT ′′q̇ (q0, 0)q̇

and similarly forQ. Note that, due to the conditions on T the matrix T ′′(q0, 0)
looks like [

0 0
0 T ′′q̇ (q0, 0)

]
(the same for Q′′(q0, 0)). Using the properties listed above we have

T (q0, 0) = 0, T ′q̇(q0, 0) = 0,

Q(q0, 0) = 0, Q′q̇(q0, 0) = 0,

V ′(q0) = 0.

With this approximation the Lagrange equations (1.20) yield (1.1) with x = q
and

M = T ′′q̇ (q0, 0), C = Q′′q̇ (q0, 0), K = V ′′(q0). (1.21)

This approximation is called linearisation1, because non-linear equations are
approximated by linear ones via Taylor expansion.

Under our conditions all three matrices in (1.21) are real and symmetric.
In addition, K is positive definite while the other two matrices are positive
semidefinite. If we additionally assume that T is also uniformly convex then
M will be positive definite as well. We have purposely allowed M to be only
positive semidefinite as we will analyse some cases of this kind later.

Example 1.7 Consider a hydraulic model which describes the oscillation of
an incompressible homogeneous heavy fluid (e.g. water) in an open vessel.
The vessel consists of coupled thin tubes which, for simplicity, are assumed
as cylindrical (see Figure 1.7).

The parameters describing the vessel and the fluid are

• h1, h, h2: the fluid heights in the vertical tubes,
• s1, s, s2: the cross sections of the vertical tubes,

– D1, D2: the lengths,
– S1, S2: the cross sections,

1 The term ’linearisation’ will be used later in a very different sense.



1.3 The formalism of Lagrange 9

�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������

�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������

h 2

h 1

h

s

1S

s 1
s 2

DD1

S2

2

Fig. 1.2 Open vessel

– v1, v2: the velocities (in the sense of the arrows),

in the horizontal tubes.
• ρ: the mass density of the fluid

While the values h1, h, h2, v1, v2 are functions of time t all others are con-
stant. Since the fluid is incompressible the volume conservation laws give

s1ḣ1 = S1v1 (1.22)

S1v1 + sḣ+ S2v2 = 0 (1.23)

s2ḣ2 = S2v2 (1.24)

These equalities imply

s1ḣ1 + sḣ+ s2ḣ2 = 0 (1.25)

which, integrated, gives

s1h1 + sh+ s2h2 = Γ (1.26)

where Γ is a constant (in fact, Γ +D1S1 +D2S2 is the fixed total volume of
the fluid). Thus, the movement of the system is described by h1 = h1(t), h2 =
h2(t).

To obtain the Lagrange function we must find the expressions for the
kinetic and the potential energy as well as for a dissipation function — as
functions of h1, h2, ḣ1, ḣ2.

In each vertical tube the potential energy equals the mass times half the
height (this is the center of gravity) times g, the gravity acceleration. The
total potential energy V is given by
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V

ρg
=
V (h1, h2)

ρg
= s1

h2
1

2
+ s

h2

2
+ s2

h2
2

2
(1.27)

= s1
h2

1

2
+

(Γ − s1h1 − s2h2)2

2s
+ s2

h2
2

2
(1.28)

(the contributions from the horizontal tubes are ignored since they do not
depend on h1, h2, ḣ1, ḣ2 and hence do not enter the Lagrange equations). It
is readily seen that V takes its minimum at

h1 = h = h2 = ĥ :=
Γ

s1 + s+ s2
. (1.29)

The kinetic energy in each tube equals half the mass times the square of the
velocity. The total kinetic energy T is given by

T/ρ = T (h1, h2, ḣ1, ḣ2)/ρ

= h1s1
ḣ2

1

2
+D1S1

v2
1

2
+ hs

ḣ2

2
+D2S2

v2
2

2
+ h2s2

ḣ2
2

2
= (1.30)

(
h1s1 +

D1s
2
1

S1

)
ḣ2

1

2
+ (Γ − s1h1 − s2h2)

(s1ḣ1 + s2ḣ2)2

2s2
+
(
h2s2 +

D2s
2
2

S2

)
ḣ2

2

2
(1.31)

where ḣ was eliminated by means of (1.25). While T and V result almost
canonically from first principles and the geometry of the system the dissipa-
tion function allows more freedom. We will assume that the frictional force
in each tube is proportional to the velocity of the fluid and to the fluid-filled
length of the tube. This leads to the dissipation function

Q = Q(h1, h2, ḣ1, ḣ2)

= h1θ1
ḣ2

1

2
+D1Θ1

v2
1

2
+ hθ

ḣ2

2
+D2Θ2

v2
2

2
+ h2θ2

ḣ2
2

2
(1.32)

=
(
h1θ1 +

D1Θ1s
2
1

S2
1

)
ḣ2

1

2
+ (Γ − s1h1 − s2h2)

(s1ḣ1 + s2ḣ2)2

2s3
Θ+ (1.33)(

h2θ2 +
D2Θ2s

2
2

S2
2

)
ḣ2

2

2
(1.34)

where θ1, Θ1, θ, Θ2, θ2 are positive constants characterising the friction per
unit length in the respective tubes. By inserting the obtained T, V,Q into
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(1.20) and by taking q as
[
h1 h2

]T we obtain two non-linear differential
equations of second order for the unknown functions h1, h2.

Now comes the linearisation at the equilibrium position which is given by
(1.29). The Taylor expansion of second order for T, V,Q around the point
h1 = h2 = ĥ, ḣ1 = ḣ2 = 0 takes into account that all three gradients at that
point vanish thus giving

V ≈ V (ĥ, ĥ) + ρg

(
s1
χ2

1

2
+

(s1χ1 + s2χ2)2

2s
+ s2

χ2
2

2

)

= V (ĥ, ĥ) +
1
2
χTKχ (1.35)

with χ =
[
h1 − ĥ h2 − ĥ

]T
and

T ≈ ρ
((

ĥs1 +
D1s

2
1

S1

)
χ̇2

1

2
+ ĥ

(s1χ̇1 + s2χ̇2)2

2s
+
(
ĥs2 +

D2s
2
2

S2

)
χ̇2

2

2

)
(1.36)

=
1
2
χ̇TMχ̇

(1.37)

Q ≈
(
ĥθ1 +

D1Θ1s
2
1

S2
1

)
χ̇2

1

2
+ ĥ

(s1χ̇1 + sa2χ̇2)2

2s2
Θ +

(
ĥθ2 +

D2Θ2s
2
2

S2
2

)
χ̇2

2

2
(1.38)

=
1
2
χ̇TCχ̇.

(1.39)

The symmetric matrices M,C,K are immediately recoverable from (1.35)
– (1.38) and are positive definite by their very definition. By inserting these
T, V,Q into (1.20) the equations (1.1) result with f = 0.

Any linearised model can be assessed in two ways:

• by estimating the error between the true model and the linearised one and
• by investigating the well-posedness of the linear model itself: do small

forces f(t) and small initial data produce small solutions?

While the first task is completely out of the scope of the present text, the
second one will be given our attention in the course of these Notes.
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1.4 Oscillating electrical circuits

The equation (1.1) governs some other physical systems, most relevant among
them is the electrical circuit system which we will present in the following
example.

Example 1.8 n simple wire loops (circuits) are placed in a chain. The j-th
circuit is characterised by the current Ij , the impressed electromagnetic force
Ej(t), the capacity Cj > 0, the resistance Rj ≥ 0, and the left and the right
inductance Lj > 0, Mj > 0, respectively. In addition, the neighbouring j-th
and j+ 1-th inductances are accompanied by the mutual inductance Nj ≥ 0.
The circuits are shown in Fig. 1.3 with n = 3. The inductances satisfy the
inequality

Nj <
√
MjLj+1.

The equation governing the time behaviour of this system is derived from the
fundamental electromagnetic laws and it reads in vector form

LÏ +Rİ +KI = Ė(t).

Here

L =



L1 +M1 N1

N1 L2 +M2 N2
. . .

. . . . . . . . .
. . . . . . Nn−1

Nn−1 Ln +Mn


is the inductance matrix,

R = diag(R1, . . . , Rn)

is the resistance matrix and

K = diag(1/C1, . . . , 1/Cn)

is the inverse capacitance matrix. The latter two matrices are obviously pos-
itive definite whereas the positive definiteness of the first one is readily de-
duced from its structure and the inequality (1.40).

Exercise 1.9 Show the positive definiteness of the inductance matrix L.
Hint: use the fact that each of the matrices[

Mj Nj
Nj Lj+1

]
is positive definite.
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E (t)

C R

ML1

1

1 1

1

C R

ML3
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ML2

E (t)2

2 2

2
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Fig. 1.3 Circuits





Chapter 2

Simultaneous diagonalisation (Modal
damping)

In this chapter we describe undamped and modally damped systems. They
are wholly explained by the knowledge of the mass and the stiffness matrix.
This is the broadly known case and we shall outline it here, not only because
it is an important special case, but because it is often used as a starting
position in the analysis of general damped systems.

2.1 Undamped systems

The system (1.1) is called undamped,, if the damping vanishes: C = 0.
The solution of an undamped system is best described by the generalised

eigenvalue decomposition of the matrix pair K,M :

ΦTKΦ = diag(µ1, . . . , µn), ΦTMΦ = I. (2.1)

We say that the matrix Φ reduces the pair K,M of symmetric matrices to
diagonal form by congruence. This reduction is always possible, if the matrix
M is positive definite. Instead of speaking of the matrix pair one often speaks
of the matrix pencil, (that is, matrix function) K − λM . If M = I then (2.1)
reduces to the (standard) eigenvalue decomposition valid for any symmetric
matrix K, in this case the matrix Φ is orthogonal.

An equivalent way of writing (2.1) is

KΦ = MΦdiag(µ1, . . . , µn), ΦTMΦ = I. (2.2)

or also
Kφj = µjMφj , φTj Mφk = δkj .

Thus, the columns φj of Φ form an M -orthonormal basis of eigenvectors of
the generalised eigenvalue problem

15



16 2 Simultaneous diagonalisation (Modal damping)

Kφ = µMφ (2.3)

whereas µk are the zeros of the characteristic polynomial

det(K − µM)

of the pair K,M . Hence

µ =
φTKφ

φTMφ
, in particular, µk =

φTkKφk
φTkMφk

shows that all µk are positive, if both K and M are positive definite as in our
case. So we may rewrite (2.1) as

ΦTKΦ = Ω2, ΦTMΦ = I (2.4)

with
Ω = diag(ω1, . . . , ωn), ωk =

√
µk (2.5)

The quantities ωk will be called the eigenfrequencies of the system (1.1) with
C = 0. The generalised eigenvalue decomposition can be obtained by any
common matrix computation package (e.g. by calling eig(K,M) in MATLAB).

The solution of the homogeneous equation

Mẍ+Kx = 0 (2.6)

is given by the formula

x(t) = Φ

 a1 cosω1t+ b1 sinω1t
...

an cosωnt+ bn sinωnt

 , a = Φ−1x0, ωkbk = (Φ−1ẋ0)k (2.7)

which is readily verified. The values ωk are of interest even if the damping C
does not vanish and in this context they are called the undamped frequencies
of the system (1.1).

In physical language the formula (2.7) is oft described by the phrase ’any
oscillation is a superposition of harmonic oscillations or eigenmodes’ which
are

φk(ak cosωkt+ bk sinωkt), k = 1, . . . , n.

Exercise 2.1 Show that the eigenmodes are those solutions x(t) of the equa-
tion (2.6) in which ’all particles oscillate in the same phase’ that is,

x(t) = x0T (t),

where x0 is a fixed non-zero vector and T (t) is a scalar-valued function of t
(the above formula is also well known under the name ’Fourier ansatz’).
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The eigenvalues µk, taken in the non-decreasing ordering, are given by the
known minimax formula

µk = max
Sn−k+1

min
x∈Sn−k+1

x6=0

xTKx

xTMx
= min

Sk
max
x∈Sk
x 6=0

xTKx

xTMx
(2.8)

where Sj denotes any subspace of dimension j. We will here skip proving
these — fairly known — formulae, valid for any pair K,M of symmetric ma-
trices with M positive definite. We will, however, provide a proof later within
a more general situation (see Chapter 10 below).

The eigenfrequencies have an important monotonicity property. We intro-
duce the relation called relative stiffness in the set of all pairs of positive
definite symmetric matrices K,M as follows. We say that the pair K̂, M̂ is
relatively stiffer than K,M , if the matrices K̂ −K and M − M̂ are positive
semidefinite (that is, if stiffness is growing and the mass is falling).

Theorem 2.2 Increasing relative stiffness increases the eigenfrequencies.
More precisely, if K̂ − K and M − M̂ are positive semidefinite then the
corresponding non-decreasingly ordered eigenfrequencies satisfy

ωk ≤ ω̂k.

Proof. Just note that
xTKx

xTMx
≤ xT K̂x

xT M̂x

for all non-vanishing x. Then take first minimum and then maximum and the
statement follows from (2.8). Q.E.D.

If in Example 1.1 the matrix K̂ is generated by the spring stiffnesses k̂j
then by (1.10) for δK = K̂ −K we have

xT δKx = δk1x
2
1 +

n∑
j=2

δkj(xj − xj−1)2 + δkn+1x
2
n (2.9)

where
δkj = k̂j − kj .

So, k̂j ≥ kj implies the positive semidefiniteness of δK, that is the relative
stiffness is growing. The same happens with the masses: take δM = M̂ −M ,
then

xT δMx =
n∑
j=1

δmjx
2
j , δmj = m̂j −mj

and m̂j ≤ mj implies the negative semidefiniteness of δM — the relative
stiffness is again growing. Thus, our definition of the relative stiffness has
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deep physical roots.

The next question is: how do small changes in the system parameters
kj ,mj affect the eigenvalues? We make the term ’small changes’ precise as
follows

|δkj | ≤ εkj , |δmj | ≤ ηmj (2.10)

with 0 ≤ ε, η < 1. This kind of relative error is typical both in physical mea-
surements and in numerical computations, in fact, in floating point arithmetic
ε, η ≈ 10−d where d is the number of significant digits in a decimal number.

The corresponding errors in the eigenvalues will be an immediate conse-
quence of (2.10) and Theorem 2.2. Indeed, from (2.9), (2.10) it follows

|xT δKx| ≤ εxTKx, |xT δMx| ≤ ηxTMx. (2.11)

Then
(1− ε)xTKx ≤ xT K̂x ≤ (1 + ε)xTKx

and
(1− η)xTMx ≤ xT M̂x ≤ (1 + η)xTMx

such that the pairs

(1− ε)K, (1 + η)M ; K̂, M̂ ; (1 + ε)K, (1− η)M

are ordered in growing relative stiffness. Therefore by Theorem 2.2 the cor-
responding eigenvalues

1− ε
1 + η

µk, µ̂k,
1 + ε

1− η
µk

satisfy
1− ε
1 + η

µk ≤ µ̂k ≤
1 + ε

1− η
µk (2.12)

(and similarly for the respective ωk, ω̂k). In particular, for δµk = µ̂k−µk the
relative error estimates

|δµk| ≤
ε+ η

1− η
µk (2.13)

are valid. Note that both (2.12) and (2.13) are quite general. They depend
only on the bounds (2.11), the only requirement is that both matrices K,M
be symmetric and positive definite.

In the case M̂ = M = I the more commonly known error estimate holds

µk + minσ(K̂ −K) ≤ µ̂k ≤ µk + maxσ(K̂ −K) (2.14)

and in particular
|δµk| ≤ ‖K̂ −K‖. (2.15)
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The proof again goes by immediate application of Theorem 2.2 and is left to
the reader.

2.2 Frequencies as singular values

There is another way to compute the eigenfrequencies ωj . We first make the
decomposition

K = L1L
T
1 , M = L2L

T
2 , (2.16)

y1 = LT1 x, y2 = LT2 ẋ,

(here L1, L2 may, but need not be Cholesky factors). Then we make the
singular value decomposition

L−1
2 L1 = UΣV T (2.17)

where U, V are real orthogonal matrices and Σ is diagonal with positive
diagonal elements. Hence

L−1
2 L1L

T
1 L
−T
2 = UΣ2UT

or
KΦ = MΦΣ2, Φ = L−T2 U

Now we can identify this Φ with the one from (2.4) and Σ with Ω. Thus the
eigenfrequencies of the undamped system are the singular values of the matrix
L−1

2 L1.1 The computation of Ω by (2.17) may have advantages over the one
by (2.2), in particular, if ωj greatly differ from each other. Indeed, by setting
in Example 1.1 n = 3, k4 = 0, mi = 1 the matrix L1 is directly obtained as

L1 =

κ1 −κ2 0
0 κ2 −κ3

0 0 κ3

 , κi =
√
ki. (2.18)

If we take k1 = k2 = 1, k3 � 1 (that is, the third spring is almost rigid)
then the way through (2.2) may spoil the lower frequency. For instance, with
the value k3 = 9.999999 · 1015 the double-precision computation with Matlab
gives the frequencies

sqrt(eig(K,M)) svd(L_2\L_1)

7.962252170181258e-01 4.682131924621356e-01
1.538189001320851e+00 1.510223959022110e+00
1.414213491662415e+08 1.414213491662415e+08

1 Equivalently we may speak of ωj as the generalised singular values of the pair L1, L2.
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The singular value decomposition gives largely correct low eigenfrequen-
cies. This phenomenon is independent of the eigenvalue or singular value
algorithm used and it has to do with the fact that standard eigensolution
algorithms compute the lowest eigenvalue of (2.2) with the relative error
≈ εκ(KM−1), that is, the machine precision ε is amplified by the con-
dition number κ(KM−1) ≈ 1016 whereas the same error with (2.17) is
≈ εκ(L−1

2 L1) = ε
√
κ(KM−1) (cf. e.g [19]). In the second case the ampli-

fication is the square root of the first one!

2.3 Modally damped systems

Here we study those damped systems which can be completely explained by
their undamped part. In order to do this it is convenient to make a coordinate
transformation; we set

x = Φx′, (2.19)

where Φ is any real non-singular matrix. Thus (1.1) goes over into

M ′ẍ′ + C ′ẋ′ +K ′x′ = g(t), (2.20)

with

M ′ = ΦTMΦ, C ′ = ΦTCΦ, K ′ = ΦTKΦ, g = ΦT f. (2.21)

Choose now the matrix Φ as in the previous section, that is,

ΦTMΦ = I, ΦTKΦ = Ω = diag(ω2
1 , . . . , ω

2
n).

(The right hand side f(t) in (2.20) can always be taken into account by
the Duhamel’s term as in (3.1) so we will mostly restrict ourselves to consider
f = 0 which corresponds to a ’freely oscillating’ system.)

Now, if
D = (djk) = ΦTCΦ (2.22)

is diagonal as well then (1.1) is equivalent to

ξ̈k + dkk ξ̇k + ω2
kξk = 0, x = Φ ξ

with the known solution

ξk = aku
+(t, ωk, dkk) + bku

−(t, ωk, dkk), (2.23)

u+(t, ω, d) = eλ
+(ω,d) t,

u−(t, ω, d) =

{
eλ
−(ω,d) t, δ(ω, d) 6= 0

t eλ
+(ω,d) t, δ(ω, d) = 0
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where

δ(ω, d) = d2 − 4ω2,

λ±(ω, d) =
−d±

√
δ(ω, d)

2
.

The constants ak, bk in (2.23) are obtained from the initial data x0, ẋ0 simi-
larly as in (2.7).

However, the simultaneous diagonalisability of the three matrices M,C,K
is rather an exception, as shown by the following theorem.

Theorem 2.3 Let M,C,K be as in (1.1). A non-singular Φ such that the
matrices ΦTMΦ, ΦTCΦ, ΦTKΦ are diagonal exists, if and only if

CK−1M = MK−1C. (2.24)

Proof. The ”only if part” is trivial. Conversely, using (2.4) the identity (2.24)
yields

CΦΩ−2Φ−1 = Φ−TΩ−2ΦTC,

hence
ΦTCΦΩ−2 = Ω−2ΦTCΦ

and then
Ω2ΦTCΦ = ΦTCΦΩ2

i.e. the two real symmetric matrices Ω2 and D = ΦTCΦ commute and Ω2 is
diagonal, so there exists a real orthogonal matrix U such that UTΩ2U = Ω2,
and UTDU = diag(d11, . . . , dnn). Indeed, since the diagonal elements of Ω
are non-decreasingly ordered we may write

Ω = diag(Ω1, . . . , Ωp),

where Ω1, . . . , Ωp are scalar matrices corresponding to distinct spectral points
of Ω. Now, DΩ2 = Ω2D implies DΩ = ΩD and therefore

D = diag(D1, . . . , Dp),

with the same block partition. The matrices D1, . . . , Dp are real symmetric,
so there are orthogonal matrices U1, . . . , Up such that all UTj DjUj are diago-
nal. By setting Φ1 = Φdiag(D1, . . . , Dp) all three matrices ΦT1 MΦ1, ΦT1 CΦ1,
ΦT1 KΦ1 are diagonal. Q.E.D.

Exercise 2.4 Show that Theorem 2.3 remains valid, if M is allowed to be
only positive semidefinite.

Exercise 2.5 Prove that (2.24) holds, if
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αM + βC + γK = 0

where not all of α, β, γ vanish (proportional damping). When is this the case
with C from (1.4), (1.5), (1.6)?

Exercise 2.6 Prove that (2.24) is equivalent to CM−1K = KM−1C and
also to KC−1M = MC−1K, provided that these inverses exist.

Exercise 2.7 Try to find a necessary and sufficient condition that C from
(1.4) – (1.6) satisfies (2.24).

If C satisfies (2.24) then we say that the system (1.1) is modally damped.



Chapter 3

Phase space

In general, simultaneous diagonalisation of all three matrices M,C,K is not
possible and the usual transformation to a system of first order is performed.
This transformation opens the possibility of using powerful means of the
spectral theory in order to understand the time behaviour of damped systems.

3.1 General solution

If the matrix M is non-singular the existence and uniqueness of the solution
of the initial value problem Mẍ+ Cẋ+Kx = f(t) with the standard initial
conditions

x(0) = x0, ẋ(0) = ẋ0

is insured by the standard theory for linear systems of differential equations
which we now review.

We rewrite (1.1) as

ẍ = −M−1Kx−M−1Cẋ+M−1f(t)

and by setting x1 = x, x2 = ẋ as

d

dt

[
x1

x2

]
= B

[
x1

x2

]
+ g(t),

B =
[

0 1
−M−1K −M−1C

]
, g(t) =

[
0

M−1f(t)

]
.

This equation is solved by the so-called Duhamel formula[
x1

x2

]
= eBt

[
x0

ẋ0

]
+
∫ t

0

eB(t−τ)g(τ) dτ (3.1)

23
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with

eBt =
∞∑
j=0

Bntn

n!
,

d

dt
eBt =

∞∑
j=1

Bntn−1

(n− 1)!
= BeBt.

For the uniqueness: if x, y solve (1.1) then u = y − x, u1 = u, u2 = u̇ satisfy

d

dt

[
u1

u2

]
= B

[
u1

u2

]
, u1(0) = u2(0) = 0.

By setting [
v1
v2

]
= e−Bt

[
u1

u2

]
we obtain

d

dt

[
v1
v2

]
= 0, v1(0) = v2(0) = 0

so, v1(t) ≡ v2(t) ≡ 0 and by
(
e−Bt

)−1 = eBt also u1(t) ≡ u2(t) ≡ 0.

3.2 Energy phase space

The shortcoming of the transformation in Chapter 3.1 is that in the system
matrix the symmetry properties of the matrices M,C,K are lost. A more
careful approach will try to keep as much structure as possible and this is
what we will do in this chapter. An important feature of this approach is that
the Euclidian norm on the underlying space (called phase space) is closely
related to the total energy of the system.

We start with any decomposition (2.16). By substituting y1 = LT1 y, y2 =
LT2 ẏ (1.1) becomes

ẏ = Ay + g(t), g(t) =
[

0
L−1

2 f(t)

]
, (3.2)

A =
[

0 LT1 L
−T
2

−L−1
2 L1 −L−1

2 CL−T2

]
(3.3)

which is solved by

y = eAt
[
y10
y20

]
+
∫ t

0

eA(t−τ)g(τ) dτ, (3.4)

y10 = LT1 x0, y20 = LT2 ẋ0.

The differential equation (3.2) will be referred to as the evolution equation.
The formula (3.4) is, of course, equivalent to (3.1). The advantage of (3.4) is
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due to the richer structure of the phase-space matrix A in (3.3). It has two
important properties:

yTAy = −(L−1
2 y2)TCL−1

2 y2 ≤ 0 for all y, (3.5)

AT = JAJ (3.6)

where

J =
[
I 0
0 −I

]
. (3.7)

The property (3.6) is called J-symmetry, a general real J-symmetric matrix
A has the form

A =
[
A11 A12

−AT12 A22

]
, AT11 = A11, AT22 = A22,

so, A is ”symmetric up to signs”.

Moreover, for y = y(t) satisfying (1.1)

‖y‖2 = ‖y1‖2 + ‖y2‖2 = xTKx+ ẋTMẋ. (3.8)

Since xTKx/2 is the potential energy of the system and ẋTMẋ/2 its kinetic
energy we see that ‖y‖2 is twice the total energy of the system (1.1). That
is why we call the representation (3.2), (3.3) of the system (1.1) the energy
phase space representation. For g(t) ≡ 0 (freely oscillating damped system)
we have by (3.5)

d

dt
‖y‖2 =

d

dt
yT y = ẏT y + yT ẏ = yT (A+AT )y = 2yTAy ≤ 0 (3.9)

that is, the energy of such a system is a non-increasing function of time. If
C = 0 then the energy is constant in time.

The property (3.5) of the matrix A is called dissipativity.

Exercise 3.1 Show that the dissipativity of A is equivalent to the contrac-
tivity of the exponential:

‖eAt‖ ≤ 1, t ≥ 0.

Remark 3.2 There are infinitely many decompositions (2.16). Most com-
mon are

• The Cholesky decomposition. This is numerically the least expensive
choice.

• L1 = Φ−TΩ, L2 = Φ−T , where Φ,Ω are given by (2.4). Then L−1
2 L1 = Ω

and

A =
[

0 Ω
−Ω −D

]
, D = ΦTCΦ. (3.10)
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This is the modal representation of the phase-space matrix.
• The positive definite square roots: L1 =

√
K, L2 =

√
M .

but some others will also prove useful. Whenever no confusion is expected
the matrix D in (3.10) will also be called the damping matrix (in modal
coordinates).

In practice one is often given a damped system just in terms of the matrices
D and Ω in the modal representation. A common damping matrix is of the
form

D = ρΩ +WWT

where ρ is a small parameter (a few percent) describing the inner damping of
the material whereas the matrix W is injective of order n×m with m� n.
The term WWT describes a few damping devices (dashpots) built in order
to prevent large displacements (see [17]).

Any transition from (1.1) to a first order system with the substitution
y1 = W1x, y2 = W2ẋ where W1,W2 are non-singular matrices is called a
linearisation of the system (1.1). As we have already said we use the term
’linearisation’ in two quite different senses, but since both of them are al-
ready traditional and very different in their meaning we hope not to cause
confusion by using them thus.

Exercise 3.3 Prove that any two linearisations lead to phase-space matrices
which are similar to each other. Investigate under what linearisations the
corresponding phase-space matrix will be (i) dissipative, (ii) J-symmetric.

The transformation of coordinates (2.19) – (2.21) can be made on any damped
system (1.1) and with any non-singular transformation matrix Φ thus leading
to (2.20). The energy expressions stay invariant:

ẋTMẋ = ẋ′TM ′ẋ′, xTKx = x′TK ′x′.

We now derive the relation between the two phase-space matrices A and A′,
built by (3.3) from M,C,K and M ′, C ′,K ′, respectively. So we take L1, L2

from (2.16) and L′1, L
′
2 from

K ′ = ΦTL1L
T
1 Φ = L′1L

′T
1 , M ′ = ΦTL2L

T
2 Φ = L′2L

′T
2 .

Hence the matrices U1 = LT1 ΦL
′−T
1 and U2 = LT2 ΦL

′−T
2 are unitary. Thus,

L′−1
2 L′1 = U−1

2 L−1
2 L1U1

and
L′−1

2 C ′L′−T2 = U−1
2 L−1

2 CL−T2 U2.

Altogether

A′ =
[

0 U−1
1 LT1 L

−T
2 U2

−U−1
2 L−1

2 L1U1 −U−1
2 L−1

2 CL−T2 U2

]
=
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U−1

1 0
0 U−1

2

] [
0 LT1 L

−T
2

−L−1
2 L1 −L−1

2 CL−T2

] [
U1 0
0 U2

]
=

U−1AU

with

U =
[
U1 0
0 U2

]
(3.11)

which is unitary.
Although no truly damped system has a normal phase-space matrix some-

thing else is true: among a large variety of possible linearisation matrices the
one in (3.3) is closest to normality. We introduce the departure from normality
of a general matrix A of order n as

η(A) = ‖A‖2E −
n∑
i=1

|λi|2

where

‖A‖E =
√∑

ij

|aij |2

is the Euclidean norm of A and λi its eigenvalues. By a unitary transformation
of A to triangular form it is seen that η(A) is always non-negative. Moreover,
η(A) vanishes if and only if A is normal. The departure from normality is a
measure of sensitivity in computing the eigenvalues and the eigenvectors of
a matrix.

Theorem 3.4 Among all linearisations

y1 = W1x, y2 = W2ẋ, W1,W2 real, non-singular (3.12)

of the system (1.1) the one from (3.3) has minimal departure from normality
and there are no other linearisations (3.12) sharing this property.

Proof. The linearisation (3.12) leads to the first order system

ẏ = Fy,

F =
[

0 W1W
−1
2

−W2M
−1KW−1

1 −W2M
−1CW−1

2

]
= LAL−1

with

L =
[
W1L

−T
1 0

0 W2LT2

]
and A from (3.3). The matrices A and F have the same eigenvalues, hence

η(F )−η(A) = ‖F‖2E−‖A‖2E = η(F0)+η(W2L
−T
2 L−1

2 CL−T2 LT2 W
−1
2 ) (3.13)
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where A0, F0 is the off-block diagonal part of A, F , respectively. The validity
of (3.13) follows from the fact that A0, F0 are similar and A0 is normal; the
same holds for L−1

2 CL−T2 and W2L
−T
2 L−1

2 CL−T2 LT2 W
−1
2 . Thus, η(F ) ≥ η(A).

If the two are equal then we must have both

η(F0) = 0 and η(W2L
−T
2 L−1

2 CL−T2 LT2 W
−1
2 ) = 0.

Thus, both F0 and W2L
−T
2 L−1

2 CL−T2 L−1
2 W−1

2 are normal. Since F0 has
purely imaginary spectrum, it must be skew-symmetric, whereas
W2L

−T
2 L−1

2 CL−T2 L−1
2 W−1

2 (being similar to L−1
2 CL−T2 ) has real non-negative

spectrum and must therefore be symmetric positive semidefinite. This is just
the type of matrix A in (3.3). Q.E.D.

Taking C = 0 in (3.3) the matrix A becomes skew-symmetric and its
eigenvalues are purely imaginary. They are best computed by taking the
singular value decomposition (2.17). From the unitary similarity[

V T 0
0 UT

] [
0 LT1 L

−T
2

−L−1
2 L1 0

] [
V 0
0 U

]
=
[

0 Ω
−Ω 0

]
the eigenvalues of A are seen to be ±iω1, . . . ,±iωn.

Exercise 3.5 Compute the matrix A in the damping-free case and show that
eAt is unitary.

Exercise 3.6 Find the phase-space matrix A for a modally damped system.

Exercise 3.7 Show that different choices for L1,2 given in Remark 3.2 lead
to unitarily equivalent A’s.

Exercise 3.8 Show that the phase-space matrix A from (3.3) is normal, if
and only if C = 0.
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The singular mass case

If the mass matrix M is singular no standard transformation to a first order
system is possible. In fact, in this case we cannot prescribe some initial veloc-
ities and the phase-space will have dimension less than 2n. This will be even
more so, if the damping matrix, too, is singular; then we could not prescribe
even some initial positions. In order to treat such systems we must first sep-
arate away these ’inactive’ degrees of freedom and then arrive at phase-space
matrices which have smaller dimension but their structure will be essentially
the same as in the regular case studied before. Now, out of M,C,K only K
is supposed to be positive definite while M,C are positive semidefinite.

To perform the mentioned separation it is convenient to simultaneously
diagonalise the matrices M and C which now are allowed to be only positive
semidefinite.

Lemma 4.1 If M,C are any real, symmetric, positive semidefinite matrices
then there exists a real non-singular matrix Φ such that

ΦTMΦ and ΦTCΦ

are diagonal.

Proof. Suppose first that N (M) ∩ N (C) = {0}. Then M + C is positive
definite and there is a Φ such that

ΦT (M + C)Φ = I, ΦTMΦ = µ,

µ diagonal. Then
ΦTCΦ = I − µ

is diagonal as well. Otherwise, let u1, . . . , uk be an orthonormal basis of
N (M) ∩N (C). Then there is an orthogonal matrix

U =
[
Û u1 · · · uk

]
29



30 4 The singular mass case

such that

UTMU =
[
M̂ 0
0 0

]
, UTCU =

[
Ĉ 0
0 0

]
,

where N (M̂) ∩ N (Ĉ) = {0} and there is a non-singular Φ̂ such that Φ̂T M̂Φ̂
and Φ̂T ĈΦ̂ diagonal. Now set

Φ = U

[
Φ̂ 0
0 0

]
.

Q.E.D.

We now start separating the ’inactive’ variables. Using the previous lemma
there is a non-singular Φ such that

M ′ = ΦTMΦ =

M ′1 0 0
0 0 0
0 0 0


C ′ = ΦTCΦ =

C ′1 0 0
0 C ′2 0
0 0 0

 .

where M ′1, C
′
2 are positive semidefinite (C ′2 may be lacking). Then set

K ′ = ΦTKΦ =

K ′11 K ′12 K ′13K ′T12 K
′
22 K

′
23

K ′T13 K
′T
23 K

′
33


where K ′33 is positive definite (as a principal submatrix of the positive definite
K). By setting

x = Φx′, x′ =

x′1x′2
x′3

 , K ′ = ΦTKΦ

we obtain an equivalent system

M ′1ẍ
′
1 + C ′1ẋ1 + K ′11x

′
1 + K ′12x

′
2 + K ′13x

′
3 = ϕ1

C ′2ẋ
′
2 + K

′T
12 x
′
1 + K ′22x

′
2 + K ′23x

′
3 = ϕ2

K
′T
13 x
′
1 + K

′T
23 x
′
2 + K ′33x

′
3 = ϕ3

(4.1)

with ϕ = ΦT f . Eliminating x′3 from the third line of (4.1) gives

M̃ ¨̃x+ C̃ ˙̃x+ K̃x̃ = ϕ̃(t) (4.2)

with
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x̃ =
[
x′1
x′2

]
, M̃ =

[
M ′1 0
0 0

]
, (4.3)

ϕ̃ =
[
ϕ1 −K ′13K

′−1
33 ϕ3

ϕ2 −K ′23K−1
33 ϕ3

]
, (4.4)

C̃ =
[
C ′1 0
0 C ′2

]
,

K̃ =
[
K̃11 K̃12

K̃T
12 K̃22

]
=

[
K ′11 −K ′13K ′−1

33 K
′T
13 K ′12 −K ′13K

′−1
33 K

′T
23

K
′T
12 −K ′23K

′−1
33 K

′T
13 K

′
22 −K ′23K

′−1
33 K

′T
23

]
.

The relation
1
2
ẋTMẋ =

1
2
ẋ
′TM ′ẋ′ =

1
2

˙̃xT M̃ ˙̃x, (4.5)

is immediately verified. Further,

1
2
xTKx =

1
2
x′TK ′x′ =

1
2

2∑
j,k=1

x′Tj K
′
jkx
′
k + x′T1 K

′
13x
′
3 + x′T2 K

′
23x
′
3 +

1
2
x′T3 K

′
33x
′
3

=
1
2

2∑
j,k=1

x′Tj K
′
jkx
′
k + x′T1 K

′
13K

′−1
33 (ϕ3 −K ′T13x′1 −K ′T23x′2)+

+ x′T2 K
′
23K

′−1
33 (ϕ3 −K ′T13x′1 −K ′T23x′2)+

+
1
2

(ϕT3 − x′T1 K ′13 − x′T2 K ′23)K ′−1
33 (ϕ3 −K ′T13x′1 −K ′T23x′3)

=
1
2
x̃T K̃x̃+ x′T1 K

′
13K

′−1
33 ϕ3 + x′T2 K

′
23K

′−1
33 ϕ3

+ (−x′T1 K13 − x′T2 K ′23)K ′−1
33 ϕ3 +

1
2
ϕT3 K

′−1
33 ϕ3

=
1
2
x̃T K̃x̃+

1
2
ϕT3 K

′−1
33 ϕ3 (4.6)

Exercise 4.2 Show that K̃ is positive definite.

In particular, if f = 0 (free oscillations) then

1
2
xTKx =

1
2
x̃T K̃x̃.

Note that quite often in applications the matrices M and C are already
diagonal and the common null space can be immediately separated off. Any-
how, we will now suppose that the system (1.1) has already the property
N (M) ∩N (C) = {0}.

For future considerations it will be convenient to simultaneously diago-
nalise not M and C but M and K. To this end we will use a coordinate
transformation Φ as close as possible to the form (2.4).
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Proposition 4.3 In (1.1) let the matrix M have rank m < n and let N (M)∩
N (C) = {0}. Then for any positive definite matrix Ω2 of order n−m there
is a real non-singular Φ such that

ΦTMΦ =
[
Im 0
0 0

]
, ΦTKΦ = Ω2 =

[
Ω2

1 0
0 Ω2

2

]
, (4.7)

Ω1 positive definite. Furthermore, in the matrix

D = ΦTCΦ =
[
D11 D12

DT
12 D22

]
. (4.8)

the block D22 is positive definite. Moreover, if any other Φ′ performs (4.7),
possibly with different Ω′1, Ω

′
2 then

Φ′ = Φ

[
U11 0
0 Ω−1

2 U22Ω
′
2

]
(4.9)

where

U =
[
U11 0
0 U22

]
(4.10)

is unitary and
Ω′1 = UT11Ω1U11. (4.11)

Proof. There is certainly a Φ with

ΦTMΦ =
[
M1 0
0 0

]
, ΦTKΦ = I (4.12)

where M1 is positive definite diagonal matrix of rank m; this can be done by
the simultaneous diagonalisation (2.1) of the pairM,K of symmetric matrices
the second of which is positive definite and Φ is said to be K-normalised (the
M -normalisation as in (2.1) is not possible M being singular). For given Ω2

and Ω1 = M
−1/2
1 the matrix

Φ = Φ
[
M
−1/2
1 0
0 Ω2

]
is obviously non-singular and satisfies (4.7). Moreover, the matrix D from
(4.8) satisfies

N
([

Im 0
0 0

])
∩N (D) = {0},

hence D22 is positive definite.
Now we prove the relations (4.9) – (4.11). Suppose that we have two trans-

formations Φ and Φ′ both performing (4.7) with the corresponding matrices
Ω1, Ω2, Ω′1, Ω′2, respectively. Then the transformations
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Φ = Φ

[
Ω−1

1 0
0 Ω−1

2

]
, Φ′ = Φ′

[
Ω′−1

1 0
0 Ω′−1

2

]
are K-normalised fulfilling (4.12) with M1, M ′1, respectively. Hence, as one
immediately sees,

Φ′ = ΦU

where

U =
[
U11 0
0 U22

]
is unitary and

M ′1 = UT11M1U11 or, equivalently Ω′−1
1 = UT11Ω

−1
1 U11. (4.13)

Hence

Φ′
[
Ω′−1

1 0
0 Ω′−1

2

]
= Φ

[
Ω−1

1 U11 0
0 Ω−1

2 U22

]
.

Since the matrix U11 is orthogonal (4.13) is rewritten as Ω−1
1 U11Ω

′
1 = U11

and we have

Φ′ = Φ

[
Ω−1

1 U11Ω
′
1 0

0 Ω−1
2 U22Ω

′
2

]
,

= Φ

[
U11 0
0 Ω−1

2 U22Ω
′
2

]
.

Q.E.D.

We now proceed to construct the phase-space formulation of (1.1) which,
after the substitution x = Φy, Φ from (4.7), reads

ÿ1 +D11ẏ1 +D12ẏ2 +Ω2
1y1 = φ1, (4.14)

DT
12ẏ1 +D22ẏ2 +Ω2

2y2 = φ2, (4.15)

with [
φ1

φ2

]
= ΦT f.

By introducing the new variables

z1 = Ω1y1, z2 = Ω2y2, z3 = ẏ1

the system (4.14), (4.15) becomes

ż1 = Ω1z3 (4.16)

ż2 = Ω2D
−1
22

(
φ2 −DT

12z3 −Ω2z2
)

(4.17)

ż3 = φ1 −D11z3 −D12D
−1
22

(
φ2 −DT

12z3 −Ω2z2
)
−Ω1z1 (4.18)
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or, equivalently

ż = Az +G, G =

 0
Ω2D

−1
22 φ2

φ1 −D12D
−1
22 φ2


where

A =

 0 0 Ω1

0 −Ω2D
−1
22 Ω2 −Ω2D

−1
22 D

T
12

−Ω1 D12D
−1
22 Ω2 −D̂

 (4.19)

is of order n+m and
D̂ = D11 −D12D

−1
22 D

T
12

is positive semidefinite because D itself is such. Conversely, let (4.16) – (4.18)
hold and set

z1 = Ω1y1, z2 = Ω2y2.

Then by (4.16) we have ẏ1 = z3 and (4.17) implies (4.15) whereas (4.18) and
(4.15) imply (4.14).

The total energy identity

‖z‖2 = ‖z1‖2 + ‖z2‖2 + ‖z3‖2 = xTKx+ ẋTMẋ

is analogous to (3.8). As in (3.5), (3.6) we have

zTAz ≤ 0 for all z, (4.20)

and
AT = JAJ (4.21)

with

J =
[
In 0
0 −Im

]
. (4.22)

There is a large variety of Φ’s performing (4.7). However, the resulting A’s in
(4.19) are mutually unitarily equivalent. To prove this it is convenient to go
to the inverses. For A from (4.19) and Ω = diag(Ω1, Ω2) the identity

A−1 =
[
−Ω−1DΩ−1 −F

FT 0m

]
with F =

[
Ω−1

1

0

]
(4.23)

is immediately verified. Suppose now that Φ′ also performs (4.7) with the
corresponding matrices Ω′1, Ω′2, D′ A′−1, respectively. Then, according to
(4.9), (4.10) in Proposition 4.3,

D′ = Φ′TCΦ′ =
[
UT11 0
0 Ω′2U

T
22Ω

−1
2

]
D

[
U11 0
0 Ω−1

2 U22Ω
′
2

]
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and, using (4.13),

Ω′−1D′Ω′−1 =
[
Ω′−1

1 UT11 0
0 UT22Ω

−1
2

]
D

[
U11Ω

′−1
1 0

0 Ω−1
2 U22

]

=
[
Ω′−1

1 UT11 0
0 UT22Ω

−1
2

]
D

[
Ω−1

1 U11 0
0 Ω−1

2 U22

]
= UTΩ−1DΩ−1U.

Similarly,

F ′ =
[
Ω′−1

1

0

]
=
[
UT11Ω

−1
1 U11

0

]
= U−1FU11.

Altogether,
A′−1 = Û−1A−1Û

and then
A′ = Û−1AÛ

where the matrix

Û =
[
U 0
0 U11

]
(4.24)

is unitary.

In numerical calculations special choices of Ω2 might be made, for instance,
the ones which possibly decrease the condition number of the transformation
Φ. This issue could require further consideration.

Exercise 4.4 Prove the property (4.20).

Example 4.5 Our model example from Fig. 1.1 allows for singular masses.
We will consider the case with n = 2 and

m1 = m > 0, m2 = 0, k1, k2 > 0, k3 = 0,

ci = 0, d1 = 0, d2 = d > 0.

This gives

M =
[
m 0
0 0

]
, C =

[
0 0
0 d

]
, K =

[
k1 + k2 −k2

−k2 k2

]
.

Obviously here N (M) ∩ N (C) = {0}, so the construction (4.19) is possible.
The columns of Φ are the eigenvectors of the generalised eigenvalue problem

Mφ = νKφ

whose eigenvalues are the zeros of the characteristic polynomial

det(M − νK) = k1k2ν
2 −mk2ν
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and they are
ν1 =

m

k1
, ν2 = 0.

The corresponding eigenvectors are

φ1 = α1

[
1
1

]
, φ2 = α2

[
0
1

]
.

We choose α1 = α2 = 1/
√
m. This gives

ω1 =
√
k1/m, ω2 =

√
k2/m

(we replace the symbols Ω1, Ω2, Dij etc. from (4.19) by their lower case re-
lateds since they are now scalars).

Then

Φ =
[
φ1 φ2

]
=
[

1 0
1 1

]
/
√
m,

ΦTMΦ =
[

1 0
0 0

]
, ΦTKΦ =

[
ω2

1 0
0 ω2

2

]
.

Hence

ΦTCΦ = D =
d

m

[
1 1
1 1

]
.

Finally, by d̂ = d11 − d2
12/d22 = 0 the phase-space matrix (4.19) reads

A =

 0 0
√
k1/m

0 −k2/d −
√
k2/m

−
√
k1/m

√
k2/m 0

 .
Exercise 4.6 If the null space of M is known as

M =
[
M1 0
0 0

]
, M1 positive definite

try to form a phase space matrix A in (4.19) without using the spectral de-
composition (2.1) and using Cholesky decompositions instead.

Exercise 4.7 Find out special properties of the matrix A from (4.19) in the
modal damping case.

Exercise 4.8 Establish the relation between the matrices A from (3.3) and
from (4.19). Hint: Replace in (3.3) the matrix M by Mε = M + εI, ε > 0.
build the corresponding matrix Aε and find

lim
ε→0

A−1
ε .
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Exercise 4.9 Consider the extreme case of M = 0 and solve the differential
equation (1.1) by simultaneously diagonalising the matrices C,K.

If not specified otherwise we shall by default understand the mass matrix M
as non-singular.





Chapter 5

”Indefinite metric”

The symmetry property of our phase-space matrices gives rise to a geometri-
cal structure popularly called ’an indefinite metric’ which we now will study
in some detail.

In doing so it will be convenient to include complex matrices as well. More
precisely, from now on we will consider matrices over the field Ξ of real or
complex numbers. Note that all considerations and formulae in Chapters 2 - 4
are valid in the complex case as well. Instead of being real symmetric the ma-
trices M,C,K can be allowed to be Hermitian. Similarly, the vectors x, y, ...
may be from Ξn and real orthogonal matrices appearing there become uni-
tary. The only change is to replace the transpose T in AT , xT , yT , LT1 , L

T
2 , ...

by the adjoint ∗. For a general A ∈ Ξn,n the dissipativity means

Re y∗Ay ≤ 0, y ∈ Cn. (5.1)

While taking complex Hermitian M,C,K does not have direct physical mean-
ing, the phase-space matrices are best studied as complex. Special cases in
which only complex or only real matrices are meant will be given explicit
mention. (The latter might be the case where in numerical applications one
would care to keep real arithmetic for the sake of the computational effi-
ciency.)

We start from the property (3.6) or (4.21). It can be written as

[Ax, y] = [x,Ay] (5.2)

where
[x, y] = y∗Jx = (Jx, y) (5.3)

and
J = diag(±1). (5.4)

More generally we will allow J to be any matrix J with the property

39
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J = J−1 = J∗. (5.5)

Such matrices are usually called symmetries and we will keep that termi-
nology in our text hoping to cause not too much confusion with the term
symmetry as a matrix property. In fact, without essentially altering the the-
ory we could allow J to be just Hermitian and non-singular. This has both
advantages and shortcomings, see Chapter 11 below.

The function [x, y] has the properties

• [αx+ βy, z] = α[x, z] + β[y, z]
• [x, z] = [z, x]
• [x, y] = 0 for all y ∈ Ξn, if and only if x = 0.

The last property — we say [ · , · ] is non-degenerate — is a weakening of the
common property [x, x] > 0, whenever x 6= 0 satisfied by scalar products. This
is why we call it an ’indefinite scalar product’ and the geometric environment,
created by it an ’indefinite metric’.

The most common form of a symmetry of order n is

J =
[
Im 0
0 −In−m

]
(5.6)

but variously permuted diagonal matrices are also usual. Common non-
diagonal forms are

J =
[

0 I
I 0

]
,

[
0 iI
−iI 0

]
or

J =

 I 0 0
0 0 I
0 I 0

 .
Remark 5.1 Different forms of the symmetry J are a matter of convenience,
dictated by computational or theoretical requirements. Anyhow, one may
always assume J as diagonal with the values ±1 on its diagonal in any desired
order. Indeed, there is a unitary matrix U such that

J̃ = U∗JU = diag(±1)

with any prescribed order of signs. If a matrix A was, say, J-Hermitian then
its ’unitary map’ Ã = U∗AU will be J̃-Hermitian. The spectral properties of
A can be read-off from those for Ã.

We call vectors x and y J-orthogonal and write x[⊥]y, if

[x, y] = y∗Jx = 0. (5.7)

Similarly two sets of vectors S1, S2 are called J-orthogonal — we then write
S1[⊥]S2 — if (5.7) holds for any x ∈ S1 and y ∈ S2. A vector is called
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• J-normalised, if |[x, x]| = 1,
• J-positive, if [x, x] > 0,
• J-non-negative, if [x, x] ≥ 0 (and similarly for J-negative and J-non-

positive vectors),
• J-definite, if it is either J-positive or J-negative,
• J-neutral, if [x, x] = 0.

Analogous names are given to a subspace, if all of its non-zero vectors sat-
isfy one of the conditions above. In addition, a subspace X is called J-non-
degenerate, if the only vector from X , J-orthogonal to X is zero. The syn-
onyms of positive/negative/neutral type for J-positive/negative/neutral will
also be used.

Proposition 5.2 A subspace X is J-definite, if and only if it is either J-
positive or J-negative.

Proof. Let x± ∈ X , [x+, x+] > 0, [x−, x−] < 0. Then for any real t the
equation

0 = [x+ + tx−, x+ + tx−] = [x+, x+] + 2tRe[x+, x−] + t2[x−, x−]

has always a solution t producing a J-neutral x+ + tx− 6= 0. Q.E.D.

A set of vectors u1, . . . , up is called J-orthogonal, if none of them is J-
neutral and

[uj , uk] = 0 for j 6= k

and J-orthonormal, if
|[uj , uk]| = δjk.

Exercise 5.3 J-orthogonal vectors are linearly independent.

Exercise 5.4 For any real matrix (3.5) implies (5.1).

5.1 Sylvester inertia theorem

Non-degenerate subspaces play an important role in the spectral theory of
J-Hermitian matrices. To prepare ourselves for their study we will present
some facts on Hermitian matrices which arise in the context of the so-called
Sylvester inertia theorem. The simplest variant of this theorem says: If A is
Hermitian and T non-singular then T ∗AT and A have the same numbers of
positive, negative and zero eigenvalues. We will here drop the non-singularity
of T , it will even not have to be square. At the same time, in tending to
make the proof as constructive as possible, we will drop from it the notion of
eigenvalue. Inertia is a notion more elementary than eigenvalues and it can
be handled by rational operations only.
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First we prove the indefinite decomposition formula valid for any Hermitian
matrix A ∈ Ξn,n. It reads

A = GαG∗ (5.8)

where G ∈ Ξn,n is non-singular and α is diagonal.
A possible construction of G,α is obtained via the eigenvalue decomposi-

tion A = UΛU∗. Eigenvalue-free construction is given by Gaussian elimina-
tion without pivoting which yields

A = LDL∗

where L is lower triangular with the unit diagonal. This elimination breaks
down, if in its course zero elements are encountered on the diagonal. Common
row pivoting is forbidden here, because it destroys the Hermitian property.
Only simultaneous permutations of both rows and columns are allowed. The
process is modified to include block elimination steps. We shall describe one
elimination step. The matrix A is given as

A =
[
A(k−1) 0

0 A(n−k+1)

]
, k = 1, . . . , n− 1

where A(k−1) is of order k − 1 and is void for k = 1. We further partition

A(n−k+1) =
[
E C∗

C B

]
where E is square of order s ∈ {1, 2} and is supposed to be non-singular. For
s = 1 the step is single and for s = 2 double. Set

X =

 Ik−1 0
0 Is 0
0 CE−1 In−k+1−s

 .
Then

XAX∗ =

A(k−1) 0 0
0 E 0
0 0 A(n−k+1−s)

 .
In order to avoid clumsy indices we will describe the construction by the
following algorithm (the symbol := denotes the common assigning operation).

Algorithm 5.5

Ψ := In; D0 := In; k := 1;
while k ≤ n− 1

Find j such that |akj | = maxi≥k |aki|;
If akj = 0
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k := k + 1;
End if
If |akk| ≥ |akj |/2 > 0

Perform the single elimination step;
A := XAX∗; Ψ := X∗Ψ ;
k := k + 1;

Else
If |ajj | ≥ |akj |/2 > 0

Swap the k-th and the j-th columns and rows in A;
Swap the k-th and the j-th columns in Ψ ;
Perform the single elimination step;
A := XAX∗; Ψ := X∗Ψ ;
k := k + 1;

Else
Swap the k + 1-th and the j-th columns and rows in A;
Swap the k + 1-th and the j-th columns in Ψ ;
Perform the double elimination step;
A := XAX∗; Ψ := X∗Ψ ;
k := k + 2;

End if
End if

End while

The choices of steps and swappings in this algorithm secure that the necessary
inversions are always possible. On exit a non-singular matrix Ψ is obtained
with the property

ΨAΨ∗ = diag(A1, . . . , Ap)

where As is of order ns ∈ {1, 2}. In the latter case we have

As =
[
a b

b c

]
, with |b| ≥ 2 max{|a|, |c|}. (5.9)

This 2× 2-matrix is further decomposed as follows:

Ys =
[

1 0
− a−c

2|b|+a−c 1

] [
1 b
|b|

1 − b
|b|

]
, (5.10)

then

YsAsY
∗
s =

[
2|b|+ a+ c 0

0 − 4|b|2
2|b|+a−c

]
.
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Here again all divisions are possible by virtue of the condition in (5.9).1

Finally replace Ψ by diag(Y ∗1 , . . . , Y
∗
p )Ψ where any order-one Ys equals to

one. Then
ΨAΨ∗ = α, (5.11)

α as in (5.8). Now (5.8) follows with G = Ψ−1.

Remark 5.6 The indefinite decomposition as we have presented it is, in fact,
close to the common numerical algorithm described in [4]. The factor 1/2 in
appearing in line 7 of Algorithm 5.5 and further on is chosen for simplicity; in
practice it is replaced by other values which increase the numerical stability
and may depend on the sparsity of the matrix A.

If A is non-singular then all αi are different from zero and by replacing Ψ
by diag(|α1|−1/2, . . . , |αn|−1/2)Ψ in (5.11) we obtain

ΨAΨ∗ = diag(±1). (5.12)

Theorem 5.7 (Sylvester theorem of inertia) If A is Hermitian then the
numbers of the positive, negative and zero diagonal elements of the matrix
α in (5.8) depends only on A and not on G. Denoting these numbers by
ι+(A), ι−(A), ι0(A), respectively, we have

ι±(T ∗AT ) ≤ ι±(A)

for any T for which the above matrix product is defined. Both inequalities
become equalities, if T ∗ is injective. If T is square and non-singular then also
ι0(T ∗AT ) = ι0(A).

Proof. Let
B = T ∗AT (5.13)

be of order m. By (5.8) we have A = GαG∗, B = FβF ∗ with G,F non-
singular and

α = diag(α+,−α−, 0n0), β = diag(β+,−β−, 0m0)

where α±,β± are positive definite diagonal matrices of order n±,m±, re-
spectively.2 The equality (5.13) can be written as

Z∗αZ = β (5.14)

with Z = G∗TF−∗. We partition Z as

1 One may object that the matrix Ys needs irrational operation in computing |b| for a
complex b, this may be avoided by replacing |b| in (5.10) by, say, |Re b|+ | Im b|.
2 Note that in (5.8) any desired ordering of the diagonals of α may be obtained, if the
columns of G are accordingly permuted.
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Z =

Z++ Z+− Z+0

Z−+ Z−− Z−0

Z0+ Z0− Z00

 .
Here Z++ is of order n+ × m+ etc. according to the respective partitions
in α,β. By writing (5.14) blockwise and by equating the 1, 1- and the 2, 2-
blocks, respectively, we obtain

Z∗++α+Z++ − Z∗−+α−Z−+ = β+, Z∗+−α+Z+− − Z∗−−α−Z−− = −β−.

Thus, the matrices Z∗++α+Z++ = β+ + Z∗−+α−Z−+ and Z∗−−α−Z−− =
β− + Z∗+−α+Z+− are positive definite. This is possible only if

m+ ≤ n+, m− ≤ n−.

If T is square and non-singular then Z is also square and non-singular. Hence
applying the same reasoning to Z−∗βZ−1 = α yields

m+ = n+, m− = n−

(and then, of necessity, m0 = n0). The proof that the numbers ι+, ι−, ι0 do
not depend on G in (5.8) is straightforward: in (5.13) we set T = I thus
obtaining ι±(A) = n±. The only remaining case is the one with an injective
T ∗ in (5.13). Then TT ∗ is Hermitian and positive definite and (5.13) implies

TBT ∗ = TT ∗ATT ∗,

hence
ι±(B) ≤ ι±(A) = ι±(TT ∗ATT ∗) = ι±(B).

The last assertion is obvious. Q.E.D.

The triple
ι(A) = (ι+(A), ι−(A), ι0(A))

is called the inertia of A. Obviously, ι+(A) + ι−(A) = rank(A).

Corollary 5.8 Let Â be any principal submatrix of a Hermitian matrix A
then

ι±(Â) ≤ ι±(A).

Corollary 5.9 If A is block diagonal then its inertia is the sum of the iner-
tiae of its diagonal blocks.

Corollary 5.10 The inertia equals the number of the positive, negative and
zero eigenvalues, respectively.

Proof. Use the eigenvalue decomposition to obtain (5.8). Q.E.D.
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We turn back to the study of non-degenerate subspaces.

Theorem 5.11 Let X be a subspace of Ξn and x1, . . . , xp its basis and set

X =
[
x1 · · · xp

]
.

Then the following are equivalent.

(i) X = R(X) possesses a J-orthonormal basis.
(ii) X is J-non-degenerate.
(iii) The J-Gram matrix of the vectors x1, . . . , xp

H = (x∗i Jxj) = X∗JX

is non-singular.
(iv) The J-orthogonal companion of X defined as

X[⊥] = {y ∈ Ξn : x∗Jy = 0 for all x ∈ X}

is a direct complement of X i.e. we have

X +̇X[⊥] = Ξn

and we write
X [+]X[⊥] = Ξn.

In this case X[⊥] is called the J-orthogonal complement of X .

Proof. Let u1, . . . , up be a J-orthonormal basis in X then x = α1u1 + · · ·+
αpup is J-orthogonal to X , if and only if α1 = · · · = αp = 0 i.e. x = 0. Thus,
(i) ⇒ (ii). To prove (ii) ⇔ (iii) note that

Hα = X∗JXα = 0 for some α ∈ Ξp, α 6= 0

if and only if
X∗Jx = 0 for some x ∈ X , x 6= 0

and this means that X is J-degenerate.
Now for (ii) ⇔ (iv). The J-orthogonal companion of X is the (standard)

orthogonal complement of JX ; since J is non-singular we have dimJX =
dimX = p and so, dimX[⊥] = n− p and we have to prove

X ∩ X[⊥] = {0}

but this is just the non-degeneracy of X . Since the latter is obviously equiv-
alent to the non-degeneracy of X[⊥] this proves (ii) ⇒ (iv). To prove (iv) ⇔
(iii) complete the vectors x1, . . . , xp to a basis x1, . . . , xn of Ξn such that
xp+1, . . . , xn form a basis in X[⊥] and set

X̃ =
[
x1 · · · xn

]
.
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Then the matrix

H̃ = X̃∗JX̃ =
[
H 0
0 H̃22

]
is non-singular. The same is then true of H and this is (iii).

It remains to prove e.g. (iii) ⇒ (i). By (5.12)

H = X∗JX = F1J1F
∗
1

because H is non-singular. Then the vectors uj = XF−∗1 ej from X are J
orthonormal:

|u∗jJuk| = |e∗jJ1ek| = δjk.

Q.E.D.

Corollary 5.12 Any J-orthonormal set can be completed to a J-orthonormal
basis in Ξn.

Proof. The desired basis consists of the columns of the matrix U in the proof
of Theorem 5.11. Q.E.D.

Theorem 5.13 Any two J-orthonormal bases in a J-non-degenerate space
have the same number of J-positive (and J-negative) vectors.

Proof. Let two J-orthonormal bases be given as the columns of

U = [u1, . . . , up] and V = [v1, . . . , vp],

respectively. Then
U∗JU = J1, V ∗JV = J2

J1 = diag(±1), J2 = diag(±1).

On the other hand, by R(U) = R(V ) we have

U = VM, M non-singular,

so
J1 = M∗V ∗JVM = M∗J2M.

By the theorem of Sylvester the non-singularity of M implies that the num-
ber of positive and negative eigenvalues of J1 and J2 — and this is just the
number of plus and minus signs on their diagonal — coincide. Q.E.D.

Corollary 5.14 For any subspace X ⊆ Ξn we define

ι(X ) = (ι+(X ), ι0(X ), ι−(X )) = ι(H)

where H = X∗JX and X = [x1, . . . , xp ] is any basis of X . Then ι(X ) does
not depend on the choice of the basis x1, . . . , xp ∈ X . If X is non-degenerate
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then obviously ι0(X ) = ι0(X[⊥]) = 0 and

ι±(X ) + ι±(X[⊥]) = ι±(J). (5.15)

Exercise 5.15 If X1 and X2 are any two non-degenerate, mutually J-
orthogonal subspaces then their direct sum X is also non-degenerate and

ι(X ) = ι(X1) + ι(X2)

(the addition is understood elementwise).



Chapter 6

Matrices and indefinite scalar products

Having introduced main notions of the geometry based on an indefinite scalar
product we will now study special classes of matrices intimately connected
with this scalar product. These will be the analogs of the usual Hermitian and
unitary matrices. At first sight the formal analogy seems complete but the
indefiniteness of the underlying scalar product often leads to big, sometimes
surprising, differences.

A matrix H ∈ Ξn,n is called J-Hermitian (also J-symmetric, if real), if

H∗ = JHJ ⇔ (JH)∗ = JH

or, equivalently,

[Hx, y] = y∗JHx = y∗H∗Jx = [x,Hy].

It is convenient to introduce the J-adjoint A[∗] or the J-transpose A[T ] of a
general matrix A, defined as

A[∗] = JA∗J, A[T ] = JATJ,

respectively. In the latter case the symmetry J is supposed to be real. Now
the J-Hermitian property is characterised by

A[∗] = A

or, equivalently by

[Ax, y] = [x,Ay] for all x, y ∈ Ξn.

A matrix U ∈ Ξn,n is J-unitary (also J-orthogonal, if real), if

U−1 = U [∗] = JU∗J ⇔ U∗JU = J.

49



50 6 Matrices and indefinite scalar products

Obviously all J-unitaries form a multiplicative group and satisfy

|detU | = 1.

The J-unitarity can be expressed by the identity

[Ux,Uy] = y∗U∗JUx = [x, y].

Exercise 6.1 Prove
I [∗] = I

(αA+ βB)[∗] = αA[∗] + βB[∗]

(AB)[∗] = B[∗]A[∗]

(A[∗])−1 = (A−1)[∗]

A[∗] = A−1 ⇐⇒ A is J-unitary

In the particular case J =
[
I 0
0 −I

]
a J-Hermitian A looks like

A =
[
A11 A12

−A∗12 A22

]
, A∗11 = A11, A∗22 = A22

whereas for J =
[

0 I
I 0

]
the J-Hermitian is

A =
[
A11 A12

A21 A
∗
11

]
, A∗12 = A12, A∗21 = A21. (6.1)

By the unitary invariance of the spectral norm the condition number of a
J-unitary matrix U is

κ(U) = ‖U‖‖U−1‖ = ‖U‖‖JU∗J‖ = ‖U‖‖U∗‖ = ‖U‖2 ≥ 1

We call a matrix jointly unitary, if it is simultaneously J-unitary and unitary.
Examples of jointly unitary matrices U are given in (3.11) and (4.24).

Exercise 6.2 Prove that the following are equivalent

(i) U is jointly unitary of order n.
(ii) U is J-unitary and ‖U‖ = 1.
(iii) U is J-unitary and U commutes with J .
(iv) U is unitary and U commutes with J .
(v) U is J-unitary and ‖U‖2E = TrU∗U = n.

Example 6.3 Any matrix of the form

Y = H (W )
(
V1 0
0 V2

)
, H (W ) =

(√
I +WW ∗ W
W ∗

√
I +W ∗W

)
(6.2)
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is obviously J-unitary with J from (5.6); here W is an m × (n −m)-matrix
and V1, V2 are unitary. As a matter of fact, any J-unitary U is of this form.
This we will now show. Any J-unitary U , partitioned according to (5.6) is
written as

U =
[
U11 U12

U21 U22

]
.

By taking the polar decompositions U11 = W11V1, U22 = W22V2 with W11 =√
U11U∗11, W22 =

√
U22U∗22 we have

U =
[
W11 W12

W21 W22

] [
V1 0
0 V2

]
.

Now in the product above the second factor is J-unitary (V1,2 being unitary).
Thus, the first factor — we call it H — is also J-unitary, that is, H∗JH = J
or, equivalently, HJH∗ = J . This is expressed as

W 2
11 −W ∗21W21 = Im W 2

11 −W12W
∗
12 = Im

W11W12 −W ∗21W22 = 0 W11W
∗
21 −W12W22 = 0

W ∗12W12 −W 2
22 = −In−m W21W

∗
21 −W 2

22 = −In−m

This gives (note that W11,W22 are Hermitian positive semidefinite)√
Im +W ∗21W21W12 = W ∗21

√
In−m +W21W ∗21

or, equivalently,

W12(In−m +W ∗12W12)−1/2 = (Im +W ∗21W21)−1/2W ∗21

= W ∗21(In−m +W21W
∗
21)−1/2 = W ∗21(In−m +W ∗12W12)−1/2

hence W ∗21 = W12. Here the second equality follows from the general identity
Af(BA) = f(AB)A which we now assume as known and will address in
discussing analytic matrix functions later. Now set W = W12 and obtain
(6.2).

Jointly unitary matrices are very precious whenever they can be used in
computations, because their condition is equal to one.

If A is J-Hermitian and U is J-unitary then one immediately verifies that

A′ = U−1AU = U [∗]AU

is again J-Hermitian.
If J is diagonal then the columns (and also the rows) of any J-unitary

matrix form a J-orthonormal basis. It might seem odd that the converse is
not true. This is so because in our definition of J-orthonormality the order
of the vectors plays no role. For instance the vectors
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0
0

 ,
0

0
1

 ,
0

1
0


are J-orthonormal with respect to

J =

1
−1

1


but the matrix U built from these three vectors in that order is not J-
orthogonal. We rather have

U∗JU = J ′ =

1
1
−1

 .
To overcome such difficulties we call a square matrix J, J ′-unitary (J, J ′-
orthogonal, if real), if

U∗JU = J ′ (6.3)

where J and J ′ are symmetries. If in (6.3) the orders of J ′ and J do not
coincide we call U a J, J ′-isometry. If both J and J ′ are unit matrices this
is just a standard isometry.

Exercise 6.4 Any J, J ′- isometry is injective.

Proposition 6.5 If J, J ′ are symmetries and U is J, J ′-unitary then J and
J ′ are unitarily similar:

J ′ = V −1JV, V unitary (6.4)

and
U = WV (6.5)

where W is J-unitary.

Proof. The eigenvalues of both J and J ′ consists of ± ones. By (6.3) U must
be non-singular but then (6.3) and the theorem of Sylvester imply that J and
J ′ have the same eigenvalues including multiplicities, so they are unitarily
similar. Now (6.5) follows from (6.4). Q.E.D.

If A is J-Hermitian and U is J, J ′-unitary then

A′ = U−1AU

is J ′-Hermitian. Indeed,

A′∗ = U∗A∗U−∗ = U∗AJUJ ′.
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Here AJ , and therefore U∗AJU is Hermitian so A′∗ is J ′-Hermitian.

Using only J-unitary similarities the J-Hermitian matrix

A =

 1 0 −5
0 2 0
−5 0 1

 , J =

1
1
−1

 (6.6)

cannot be further simplified, but using the J, J ′-unitary matrix

Π =

1 0 0
0 0 1
0 1 0

 , J ′ =

1
−1

1


we obtain the more convenient block-diagonal form

Π−1AΠ =

 1 −5 0
−5 1 0

0 0 2


which may have computational advantages. Since any J, J ′-unitary matrix U
is a product of a unitary matrix and a J-unitary matrix we have

κ(U) = ‖U‖2 ≥ 1

where the equality is attained, if and only if U is unitary.
Mapping by a J, J ′-unitary matrix U preserves the corresponding ”indefi-

nite geometries” e.g.

• if x′ = Ux, y′ = Uy then x∗Jy = x′∗J ′y′, x∗Jx = x′∗J ′x′

• if X is a subspace and X ′ = UX then X ′ is J ′-non-degenerate, if and only
if X is J-non-degenerate (the same with ’positive’, ’non-negative’, ’neutral’
etc.)

• The inertia does not change:

ι±(X ) = ι′±(X ′)

where ι′± is related to J ′.

The set of J, J ′-unitary matrices is not essentially larger than the one of
standard J-unitaries but it is often more convenient in numerical computa-
tions.

Exercise 6.6 Find all real J-orthogonals and all complex J-unitaries of or-
der 2 with

J =
[

1 0
0 −1

]
or J =

[
0 1
1 0

]
.

Exercise 6.7 A matrix is called jointly Hermitian, if it is both Hermitian
and J-Hermitian. Prove that the following are equivalent
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(i) H is jointly Hermitian.
(ii) H is J-Hermitian and it commutes with J .
(iii) H is Hermitian and it commutes with J .



Chapter 7

Oblique projections

In the course of these lectures we will often have to deal with non-orthogonal
(oblique) projections, so we will collect here some useful facts about them.

Any square matrix of order n is called a projection (or projector), if

P 2 = P.

We list some obvious properties of projections.

Proposition 7.1 If P is a projection then the following hold.

(i) R(P ) = {x ∈ Ξn : Px = x}.
(ii) Q = I − P is also a projection and

Q+ P = I, PQ = QP = 0,

(iii) R(P )+̇R(Q) = Ξn, R(P ) = N (Q), R(Q) = N (P ).
(iv) If x1, . . . , xp is a basis in R(P ) and xp+1, . . . , xn a basis in R(Q) then
X =

[
x1 · · · xn

]
is non-singular and

X−1PX =
[
Ip 0
0 0

]
.

(v) rank(P ) = Tr(P ).
(vi) A set of projections P1, . . . , Pq is called a decomposition of the identity

if
P1 + · · ·+ Pq = I, PiPj = PjPi = Pjδij .

To any such decomposition there corresponds the direct sum

X1+̇ · · · +̇Xq = Ξn

with Xi = R(Pi) and vice versa.
(vii) P ∗ is also a projection and R(P ∗) = N (Q)⊥.

55
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The proofs are straightforward and are omitted.

Exercise 7.2 If P1, P2 are projections then

1. R(P1) ⊆ R(P2) is equivalent to

P1 = P2P1; (7.1)

2. R(P1) = R(P2) is equivalent to

P1 = P2P1 & P2 = P1P2; (7.2)

3. if, in addition, both P1, P2 are Hermitian or J-Hermitian then (7.2) im-
plies P2 = P1.

Exercise 7.3 Any two decompositions of the identity P1, . . . , Pq, P
′
1, . . . , P

′
q

for which TrPj = TrP ′j , j = 1, . . . , q, are similar, that is, there exists a
non-singular S with

S−1PiS = P ′i , i = 1, . . . , q

if all Pi, P ′i are orthogonal projections then S can be chosen as unitary.

Define θ ∈ (0, π/2] as the minimal angle between the subspaces X and X ′
as

θ = min{arccos |x∗y|, x ∈ X , y ∈ X ′, ‖x‖ = ‖y‖ = 1} (7.3)
= arccos(max{|x∗y|, x ∈ X , y ∈ X ′, ‖x‖ = ‖y‖ = 1}). (7.4)

A simpler formula for the angle θ is

cos θ = ‖PP′‖ (7.5)

where P,P′ are the orthogonal projections onto X ,X ′, respectively. Indeed,

‖PP′‖ = max
x,y 6=0

|(Px)∗P′y|
‖x‖‖y‖

and this maximum is taken on a pair x ∈ X , y ∈ X ′. In fact, for a general x
we have ‖Px‖ ≤ ‖x‖ and

|(Px)∗P′y|
‖x‖‖y‖

≤ |(Px)∗P′y|
‖Px‖‖y‖

=
|(P(Px))∗P′y|
‖Px‖‖y‖

and similarly with y. Thus,
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‖PP′‖ = max
{
|(Px)∗P′y|
‖Px‖‖P′y‖

, Px,P′y 6= 0
}

(7.6)

= max
{
|u∗v|
‖u‖‖v‖

, u ∈ X , v ∈ X ′, u, v 6= 0
}

(7.7)

= max{|u∗v|, u ∈ X , v ∈ X ′, ‖u‖ = ‖v‖ = 1}. (7.8)

which proves (7.5).

Theorem 7.4 Let P be a projection and let P be the orthogonal projection
onto R(P ). Then for Q = I − P and Q = I − P we have

‖P‖ = ‖Q‖ =
1

sin θ
, (7.9)

‖P ∗ − P‖ = ‖Q∗ −Q‖ = ‖P− P‖ = ‖Q−Q‖ = cot θ, (7.10)

where θ is the minimal angle between R(P ) and R(Q).

Proof. Take any orthonormal basis of R(P ) and complete it to an orthonor-
mal basis of Ξn. These vectors are the columns of a unitary matrix U for
which

P′ = U∗PU =
[
I 0
0 0

]
,

P ′ = U∗PU =
[
P11 P12

P21 P22

]
,

where P ′ is again a projection with R(P ′) = R(P′).
Now apply (7.2). P′P ′ = P ′ gives[

P11 P12

0 0

]
=
[
P11 P12

P21 P22

]
⇒ P21 = P22 = 0,

whereas P ′P′ = P′ gives[
P11 0
0 0

]
=
[
I 0
0 0

]
⇒ P11 = I.

Thus, we can assume that P and P already are given as

P =
[
I X
0 0

]
=
[
I
0

] [
I X

]
(7.11)

P =
[
I 0
0 0

]
. (7.12)

Furthermore,
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Q = I − P =
[

0 −X
0 I

]
=
[
−X
I

] [
0 I
]

whereas the orthogonal projection onto N (P ) = R(Q) is

P̂ =
[
−X
I

]
(I +X∗X)−1

[
−X∗ I

]
. (7.13)

According to (7.5) we have

cos2 θ = ‖PP̂P‖ = spr
([
−X

0

]
(I +X∗X)−1

[
−X∗ 0

])
= spr((I +X∗X)−1X∗X).

To evaluate the last expression we use the singular value decomposition

X = UξV ∗ (7.14)

with U, V unitary and ξ diagonal (but not necessarily square). Then X∗X =
V ξ∗ξV ∗, ξ∗ξ = diag(|ξ1|2, |ξ2|2, . . .) and

cos2 θ = max
i

|ξi|2

1 + |ξi|2
=

maxi |ξi|2

1 + maxi |ξi|2

=
‖X‖2

1 + ‖X‖2
= 1− 1

1 + ‖X‖2

Hence
‖X‖ = cot θ. (7.15)

Now

‖P‖2 = spr
([

I
X∗

] [
I 0
] [ I

0

] [
I X

])
= spr

([
I +XX∗ 0

0 0

])
= 1 + ‖X‖2

=
1

sin2 θ

Then obviously ‖P‖ = ‖Q‖ and (7.9) holds.
Also

‖P ∗ − P‖ =
∥∥∥∥[ 0 X
X∗ 0

]∥∥∥∥ = ‖X‖ = cot θ,

‖P− P‖ =
∥∥∥∥[ 0 X

0 0

]∥∥∥∥ = cot θ
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and similarly for ‖Q∗ −Q‖ and ‖Q−Q‖. Q.E.D.

Corollary 7.5
‖P‖ = 1 ⇔ P ∗ = P

i.e. a projection is orthogonal, if and only if its norm equals one.

Theorem 7.6 If P is a projection and P the orthogonal projection onto R(P )
then there exists a non-singular S such that

S−1PS = P

and

‖S‖‖S−1‖ =
1
2

(2 + cot2 θ +
√

4 cot2 θ + cot4 θ)

=
1
2

(2 + ‖P‖2 − 1 +
√
‖P‖2 − 1

√
3 + ‖P‖2). (7.16)

Proof. As in the proof of Theorem 7.4 we may assume that P,P already have
the form (7.11), (7.12), respectively. Set

S =
[
I −X
0 I

]
.

Then

S−1PS =
[
I X
0 I

] [
I X
0 0

] [
I −X
0 I

]
=
[
I X
0 I

] [
I 0
0 0

]
=
[
I 0
0 0

]
= P.

We compute the condition number of S:

S∗S =
[

I −X
−X∗ I +X∗X

]
.

Then using (7.14)

S∗S =
[
U 0
0 V

] [
I −ξ
−ξ I + ξ∗ξ

] [
U 0
0 V ∗

]
,

so those eigenvalues of S∗S which are different from 1 are given by

λ+
i =

2 + ξ2i +
√

4ξ2i + ξ4i
2

> 1,

λ−i =
1
λ+
i

< 1,
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where ξi are the diagonal elements of ξ. Hence

λmax(S∗S) =
2 + ‖X‖2 +

√
4‖X‖2 + ‖X‖4
2

,

λmin(S∗S) =
1

λmax(S∗S)

and

κ(S) =

√
λmax(S∗S)
λmin(S∗S)

=

=
2 + cot2 θ +

√
4 cot2 θ + cot4 θ
2

and this proves (ii). Q.E.D.

This theorem automatically applies to any decomposition of the identity
consisting of two projections P and I−P . It can be recursively applied to any
decomposition of the identity P1, . . . , Pq but the obtained estimates get more
and more clumsy with the growing number of projections, and the condition
number of the transforming matrix S will also depend on the space dimension
n.

Exercise 7.7 Let P be a projection and H = I − 2P . Prove

(i) H2 = I,
(ii) κ(H) = 1 + 2(‖P‖2 − 1) + 2‖P‖

√
‖P‖2 − 1.

Hint: use the representation for P from Theorem 7.4.



Chapter 8

J-orthogonal projections

J-orthogonal projections are intimately related to the J-symmetry of the
phase space matrices which govern damped systems. In this chapter we study
these projections in some detail.

A projection P is called J-orthogonal if the matrix P is J-Hermitian i.e.
if

P [∗] = JP ∗J = P.

A subspace X is said to possess a J-orthogonal projection P , if X = R(P ).

Theorem 8.1 (i) A subspace X ⊆ Ξn is J-non-degenerate, if and only if
it possesses a J-orthogonal projection P . (ii) Any J-orthogonal projection P
can be represented as

P = UJ ′U∗J (8.1)

where U is a J, J ′-isometry of type n × m and R(P ) = R(U). (iii) The
J-orthogonal projection P is uniquely determined by X . (iv) We have

ι±(JP ) = ι±(J ′) = ι±(X ). (8.2)

(v) Q = I − P is the J-orthogonal projection onto X[⊥].

Proof. (i) Let P be a J-orthogonal projection and X = R(P ). Then for
x ∈ X and z ∈ Ξn

[x, Pz] = [Px, z] = [x, z]

holds. Thus, x[⊥]X is equivalent to x[⊥]Ξn. Since Ξn is non-degenerate the
same is true of X . Conversely, let X be non-degenerate of dimension p < n.
Then by Theorem 5.11 and Corollary 5.12 there is a J-orthonormal basis
u1, . . . , un of Ξn such that u1, . . . , up spans X . Then P , defined as

Puj =
{
uj , j ≤ p
0, j > p

61
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is the wanted projection. This proves (i).
(ii) If P is given by (8.1), (6.3) then

P 2 = UJ ′U∗JUJ ′U∗J = UJ ′J ′J ′U∗J = P,

P [∗] = JP ∗J = J2UJ ′U∗J = UJ ′U∗J = P

hence P is a J-orthogonal projection. The injectivity of U follows from (6.3),
hence also rank(U) = p := rank(P ). Conversely, let P be a J-orthogonal
projection. Then, according to Theorem 5.11 X = R(P ) is J-non-degenerate
and there is a J-orthonormal basis u1, . . . , un of Ξn such that the first p
vectors span X . With U = [u1, . . . , up ] we have

U∗JU = J ′ = diag(±1). (8.3)

The wanted projection is
P = UJ ′U∗J (8.4)

Obviously X ⊆ R(U). This inclusion is, in fact equality because rank(U) = p.
This proves (ii).

(iii) If there are two J-orthogonal projections with the same range

UJ ′U∗J, V J2V
∗J, R(V ) = R(U)

then V = UM for some non-singular M and from

J2 = V ∗JV = M∗U∗JUM = M∗J ′M

it follows
V J2V

∗J = UMJ2M
∗U∗J = UJ ′U∗J.

This proves (iii).
(iv) Let P = UJ ′U∗J . The second equality in (8.2) follows, if in Corollary

5.14 we take X as U . Further, since J is a symmetry,

ι±(JP ) = ι±(UJ ′U∗)

and since U is injective, by the Sylvester inertia theorem,

ι±(UJ ′U∗) = ι±(J ′).

This proves (iv). The assertion (v) is obvious. Q.E.D.

Let P1, . . . , Pr be J-orthogonal projections with the property

PiPj = δijI

then their sum P is again a J-orthogonal projection and we say that the
system P1, . . . , Pr is a J-orthogonal decomposition of P . If P = I then we
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speak of a J-orthogonal decomposition of the identity. To any J-orthogonal
decomposition there corresponds a J-orthogonal sum of their ranges

R(P ) = R(P1)[+] · · · [+]R(Pr)

and vice versa. The proof is straightforward and is left to the reader.

Theorem 8.2 Let P1, . . . , Pq be a J-orthogonal decomposition of the identity
and nj = Tr(Pj) the dimensions of the respective subspaces. Then there exists
J, J0-unitary U such that

J0 =

J
0
1

. . .
J0
p

 , ι±(J0
j ) = ι±(JPj) (8.5)

and

U−1PjU = P 0
j =



0
. . .

0
Inj

0
. . .

0


. (8.6)

Proof. By Theorem 8.1 we may write

Pj = UjJ
0
j U
∗
j J, U∗j JUj = J0

j .

Then U =
[
U1 · · · Up

]
obviously satisfies

U∗JU =

U
∗
1
...
U∗p

 J [U1 · · · Up
]

=

J
0
1

. . .
J0
p

 =: J0

and
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U−1PjU = J ′U∗JUjJ
0
j U
∗
j JU =

=

J
0
1U
∗
1

...
J0
pU
∗
p

 JUjJ0
j U
∗
j

[
JU1 · · · JUp

]

=



0
...
0
J0
j

0
...
0


[

0 · · · 0 J0
j 0 · · · 0

]
= P 0

j .

Q.E.D.

Corollary 8.3 Any two J-orthogonal decompositions of the identity

P1, . . . , Pq and P ′1, . . . , P
′
q

satisfying ι±(JPj) = ι±(JP ′j) are J-unitarily similar:

P ′j = U−1PjU, U J-unitary.

Theorem 8.4 Let P, P ′ be J-orthogonal projections and ‖P ′−P‖ < 1. Then
there is a J-unitary U such that

P ′ = U−1PU. (8.7)

Proof. The matrix square root

Z =
[
I − (P ′ − P )2

]−1/2

is defined by the known binomial series

Z =
∞∑
k=0

(−1)k
(
α

k

)
(P ′ − P )2k,

(
α

k

)
=
α(α− 1) · · · (α− k + 1)

k!
,

which converges because of ‖P ′ − P‖ < 1. Moreover, Z is J-Hermitian and
(P ′ − P )2 (and therefore Z) commutes with both P and P ′. Set

U = Z [PP ′ + (I − P )(I − P ′)] ,

then
PU = ZPP ′ = Z [PP ′ + (I − P )(I − P ′)]P ′ = UP ′,

so (8.7) holds. To prove J-unitarity we compute
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U∗JU =

JZ [P ′P + (I − P ′)(I − P )] [PP ′ + (I − P )(I − P ′)] JZ

= JZ
[
I − (P ′ − P )2

]
Z = J.

Q.E.D.

Corollary 8.5 Under the conditions of the theorem above we have

ι±(JP ′) = ι±(JP ).

In particular, if JP is positive or negative semidefinite then JP ′ will be the
same. Also, a continuous J-orthogonal-projection valued function P (t) for t
from a closed real interval, cannot change the inertia of JP (t).

Proof. Apply the Sylvester inertia theorem to

JP ′ = JU−1PU = U∗JPU.

Then cover the interval by a finite number of open intervals such that within
each of them ‖P (t)− P (t′)‖ < 1 holds and apply Theorem 8.4. Q.E.D.

Exercise 8.6 Let P1, P2 be projections such that P1 is J-orthogonal and P2

J ′ − orthogonal. Then they are J, J ′-unitarily similar, if and only if

ι±(J ′P2) = ι±(JP1).

Exercise 8.7 A non-degenerate subspace is definite, if and only if it pos-
sesses a J-orthogonal projection P with one of the properties

x∗JPx ≥ 0 or x∗JPx ≤ 0 for all x ∈ Ξn

that is, the matrix JP or −JP is positive semidefinite.

A J-orthogonal projection with one of the properties in Exercise 8.7 will be
called J-positive and J-negative, respectively.

Exercise 8.8 Try to prove the following. If P,Q are J-orthogonal projections
such that P is J-positive (J-negative) and PQ = Q, then

1. QP = Q,
2. Q is J-positive (J-negative),
3. ‖Q‖ ≤ ‖P‖.

Hint: use Exercise 7.2, the representation (8.1) and Theorem 8.1.





Chapter 9

Spectral properties and reduction of
J-Hermitian matrices

Here we start to study the properties of the eigenvalues and eigenvectors of
J-Hermitian matrices. Particular attention will be given to the similarities
and differences from (standard) Hermitian matrices.

We begin with a list of properties which are more or less analogous to the
ones of common Hermitian matrices.

Theorem 9.1 Let A be J-Hermitian. Then

1. If both A and J are diagonal, then A is real.
2. The spectrum of A is symmetric with respect to the real axis.
3. Any eigenvalue whose eigenvector is not J-neutral, is real.
4. If λ and µ are eigenvalues and λ 6= µ, then the corresponding eigenvectors

are J-orthogonal.
5. If a subspace X is invariant under A, then so is its J-orthogonal com-

panion.
6. The following are equivalent

(i) There is a J-non-degenerate subspace, invariant under A.
(ii) A commutes with a non-trivial J-orthogonal projection.
(iii) There is a J, J ′- unitary U with

U−1AU =
[
A1 0
0 A2

]
, J ′ = diag(±1). (9.1)

If the subspace from (i) is J-definite then U can be chosen such that the
matrix A1 in (9.1) is real diagonal and

J ′ =
[
±I 0
0 J ′2

]
, J ′2 = diag(±1). (9.2)

Proof. The proofs of 1,2,3,4,5 are immediate and are omitted. To prove 6 let
X be J-non-degenerate. Then there is a J-orthogonal basis in X , represented

67
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as the columns of U1, so

U∗1 JU1 = J1 = diag(±1)

and
AU1 = U1M

with
M = J1U

∗
1 JAU1

and with P = U1J1U
∗
1 J we have P 2 = P , P [∗] = P and

AP = AU1J1U
∗
1 J = U1J1U

∗
1 JAU1J1U

∗J = PAP.

By taking [∗]-adjoints, we obtain AP = PA.
Conversely, if

AU1J1U
∗
1 J = U1J1U

∗
1 JA,

then by postmultiplying by U1,

AU1 = U1J1U
∗
1 JAU1,

i.e. X = R(U1) is invariant under A. Thus, (i) and (ii) are equivalent. Now,
U from (iii) is obtained by completing the columns of U1 to a J-orthonormal
basis, see Corollary 5.12. Finally, if the subspace is J-definite then by con-
struction (9.2) will hold. Since U−1AU is J ′-Hermitian the block A1 will be
Hermitian. Hence there is a unitary V such that V −1A1V is real diagonal.
Now replace U by

U = U

[
V 0
0 I

]
.

Q.E.D.

Example 9.2 Let A be J-Hermitian and Au = λu with [u, u] = u∗Ju 6= 0.
Then the J- orthogonal projection along u, that is, onto the subspace spanned
by u is

P =
uu∗J

u∗Ju

and it commutes with A. Indeed, since λ is real we have

AP =
Auu∗J

u∗Ju
= λ

uu∗J

u∗Ju
=
u(Au)∗J
u∗Ju

=

uu∗A∗J

u∗Ju
=
uu∗JA

u∗Ju
= PA.

Also

‖P‖2 = ‖P ∗P‖ =
‖Juu∗uu∗J‖

(u∗Ju)2
=
‖u∗u‖2

(u∗Ju)2
,

hence
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‖P‖ =
u∗u

|u∗Ju|
. (9.3)

We call a J-Hermitian matrix A J, J ′-unitarily diagonalisable, if there is a
J, J ′-unitary matrix U such that the J ′-Hermitian matrix

A′ = U−1AU

is diagonal. Note that J ′ itself need not be diagonal but, if it is then the
diagonal elements of A′, i.e. the eigenvalues, must be real. The J, J ′-unitary
block-diagonalisability is defined analogously.

Example 9.3 We consider the one dimensional damped system

mẍ+ cẋ+ kx = 0, m, c, k > 0. (9.4)

The phase-space matrix

A =
[

0 ω
−ω −d

]
, ω =

√
k/m, d = c/m (9.5)

is J-symmetric with

J =
[

1 0
0 −1

]
.

Any 2× 2 real J-orthogonal matrix (up to some signs) is of the form

U = U(x) =
[

coshx sinhx
sinhx coshx

]
, (9.6)

with U(x)−1 = U(−x). We have

U−1AU =
[

ω sinh 2x+ d sinh2 x ω cosh 2x+ d
2 sinh 2x

−ω cosh 2x− d
2 sinh 2x −ω sinh 2x− d cosh2 x

]
.

Requiring the transformed matrix to be diagonal gives

tanh 2x = −2ω
d

= −
√

4km
c2

(9.7)

which is solvable if and only if c2 > 4km. To better understand this, we will
find the eigenvalues of A directly:

A

[
x
y

]
= λ

[
x
y

]
leads to
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ωy = λx

−ωx− dy = λy

and finally to
mλ2 + cλ+ k = 0

which is the characteristic equation of the differential equation (9.4). The
roots are

λ± =
−c±

√
c2 − 4km

2m
. (9.8)

According to the sign of the discriminant we distinguish three cases.

1. c2 > 4km, the system is ’overdamped’.
There are two distinct real eigenvalues and the matrix U in (9.6) exists
with

U−1AU =
[
λ+ 0
0 λ−

]
(9.9)

2. c2 < 4km, the system is ’weakly damped’.
Here diagonalisation is impossible, but we may look for U such that in
U−1AU the diagonal elements are equal, which leads to

tanh 2x = − d

2ω
= −

√
c2

4km
< 1

and

U−1AU =
[

Reλ+ Imλ+

− Imλ+ Reλ+

]
(9.10)

(here, of course, λ− = λ+). The transformed matrix is not diagonal but
its eigenvalues are immediately read-off. Note that in this case we have

|λ±|2 =
k

m
,

that is, as long as the eigenvalues are non-real, they stay on the circle
with radius ω =

√
k/m around the origin.

3. c2 = 4km, the system is ’critically damped’.
Here we have only one real eigenvalue λ = −c/(2m) = −

√
k/m and

A =

√
k

m
(−I +N), N =

[
1 1
−1 −1

]
.

This matrix is not diagonalisable.

We come back to the first case. To the eigenvalues λ+, λ− there corre-
sponds the J-orthogonal decomposition of the identity
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P+ =
[

coshx
sinhx

] [
coshx − sinhx

]
P− =

[
sinhx
coshx

] [
− sinhx coshx

]
with

‖P±‖ = cosh2 x+ sinh2 x = cosh 2x =
1√

1− 4km
c2

and also
‖U‖2 = κ(U) = e2|x| = ‖P±‖+

√
‖P±‖2 − 1

=

√
1 + θ2

θ2 − 1
, θ =

c

2
√
km

=
d

2ω
.

The matrix U from (9.10) is computed analogously with

κ(U) =

√
1 + θ2

1− θ2
.





Chapter 10

Definite spectra

In this chapter we begin to study J-Hermitian matrices which most resemble
the standard Hermitian ones, and hence have some or all real eigenvalues.
The most important property of these eigenvalues is that they remain real
under small J-Hermitian perturbations. Sometimes, as in the standard Her-
mitian case these eigenvalues are expressed by minimax formulae.

A real eigenvalue λ of a J-Hermitian matrix is called J-definite, if each
corresponding non-vanishing eigenvector is J-definite. Since the set of all
eigenvectors belonging to λ is a subspace this immediately implies that the
whole subspace is either J-positive or J-negative (Proposition 5.2). We then
say that λ is J-positive or J-negative, respectively. The synonyms of posi-
tive/negative/definite type will correspondingly be used here as well. Other-
wise we call λ to be of mixed type.

Proposition 10.1 Let λ be a J-definite eigenvalue of a J-Hermitian matrix
A. Then there is a J, J ′-unitary U such that

U−1AU =
[
λI 0
0 A′2

]
, U∗JU = J ′ =

[
±Ip 0

0 J ′2

]
(10.1)

where A′2 is J ′2-Hermitian, p is the multiplicity of λ and λ 6∈ σ(A′2).

Proof. Let λ be, say, J-positive. Then the corresponding eigenspace Xλ is
J-positive and therefore J-non-degenerate. Thus, there is a J-orthonormal
basis

u1, . . . , up, up+1, . . . , un

of Ξn such that u1, . . . , up span Xλ and u∗1Ju1 = · · · = u∗pJup = 1. Set J ′ =
diag(u∗1Ju1, . . . , u

∗
nJun). Then the matrix U = [u1 . . . un] is J, J ′-unitary as

in (10.1) and
AU = [λu1 . . . λup Aup+1 . . . Aun]

and
U−1AU = [λe1 . . . λep ∗ . . . ∗]

73
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where ei are the canonical basis vectors in Ξn. Since U−1AU is J ′-Hermitian,
it takes the form (10.1). It is clear from the construction that λ cannot be
among the eigenvalues of A′2. Q.E.D.

A J-Hermitian matrix is said to have definite spectrum, if each of its eigen-
values is J-definite. Then the reduction in Proposition 10.1 can be continued
and we obtain the following corollary.

Corollary 10.2 Any J-Hermitian matrix with a definite spectrum is J, J ′-
unitarily diagonalisable with a diagonal J ′. The number of the J-positive
and J-negative eigenvalues (counting multiplicities) is given by ι±(J), re-
spectively.

If A is J-Hermitian and p a real polynomial then obviously p(A) is again
J-Hermitian. We call p normalised if its highest-power coefficient is ±1.

Theorem 10.3 Let A be J-Hermitian. Then it has definite spectrum, if and
only if there is a real normalised polynomial p such that Jp(A) is positive
definite.

Proof. If Jp(A) is positive definite then

Ax = λx, x 6= 0

implies p(A)x = p(λ)x and

0 < x∗Jp(A)x = p(λ)x∗Jx.

Hence x∗Jx 6= 0 i.e. any eigenvalue is definite. To prove the converse we first
assume that both A and J are diagonal:

A = diag(λ1, . . . , λn) J = diag(j1, . . . , jn)

with
λ1 ≤ . . . ≤ λn |ji| = 1.

Now, the definiteness of every spectral point implies

λi = λk ⇒ ji = jk.

Thus, we can partition the sequence λ1, . . . , λn into sign groups that is, max-
imal contiguous subsequences having the same sign in J . The sign groups are
increasingly ordered. E.g. for

A = diag(−2, 0, 1, 3, 5) J = diag(1,−1,−1, 1, 1)

the sign groups are (−2), (0, 1), (3, 5) and their signs are those on the diagonal
of J . We take the polynomial p such that it has a simple zero between each
two neighbouring sign groups. When properly signed this polynomial will
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give
jip(λi) > 0, i = 1, . . . , n

i.e. Jp(A) is positive definite. In our example above we could choose p(λ) =
(λ− 2)(λ+ 1).

For a general A take a J, J ′-unitary matrix U such that both J ′ = U∗JU
and A′ = U−1AU are diagonal (Corollary 10.2). Now,

J ′p(A′) = U∗JUp(U−1AU) = U∗Jp(A)U

is again positive definite by virtue of the Sylvester theorem. Q.E.D.

To any J-Hermitian A with definite spectrum we associate the sequence

s(A) = (n1, . . . , nr,±)

characterising the r sign groups (in increasing order); the first r numbers carry
their cardinalities whereas ± ∈ {−1, 1} indicates the first of the alternating
signs. We shall call s(A) the sign partition of A or, equivalently, of the pair
JA, J . The sign partition is obviously completely determined by any such
p(λ) which we call the definitising polynomial.
If a matrix with definite spectrum varies in a continuous way then the

spectrum stays definite and the sign partition remains constant as long as
the different sign groups do not collide. To prove this we need the following
lemma.

Lemma 10.4 Let I 3 t 7→ H(t) be a Hermitian valued continuous function
on a closed interval I. Suppose that all H(t) are non-singular and that H(t0)
is positive definite for some t0 ∈ I. Then all H(t) are positive definite.

Proof. For any t1 there is an ε-neighbourhood in which the inertia of H(t)
is constant. This is due to the continuity property of the eigenvalues. By
the compactness the whole of I can be covered by a finite number of such
neighbourhoods. This, together with the positive definiteness of H(t0) implies
positive definiteness for all H(t). Q.E.D.

Theorem 10.5 Let I 3 t 7→ A(t) be J-Hermitian valued continuous function
on a closed real interval I such that

1. A(t0) has definite spectrum for some t0 ∈ I and
2. there are continuous real valued functions I 3 t 7→ fk(t), k = 1, . . . , p− 1

such that

a.
σ1 < f1(t0) < σ2 < · · · < fp−1(t0) < σp

where σ1 < σ2 < · · · < σp are the sign groups of A(t0) and
b. fk(t) ∩ σ(A(t)) = ∅ for all k and t.

Then A(t) has definite spectrum for all t and s(A(t)) is constant in t.
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Proof. Let σ1 be, say, J-negative. Set

pt(A(t)) = (A(t)− f1(t)I)(A(t)− f2(t)I)(A(t)− f3(t)I) · · ·

then H(t) = Jpt(A(t)) satisfies the conditions of Lemma 10.4 and the state-
ment follows. Q.E.D.

From the proof of Theorem 10.3 it is seen that the definitising polynomial
p can be chosen with the degree one less than the number of sign groups of
A. In the case of just two such groups p will be linear and we can without loss
of generality assume p(λ) as λ−µ. Then Jp(A) = JA−µJ and the matrix A
(and also the matrix pair JA, J) is called J-definitisable or just definitisable.
Any µ for which JA− µJ is positive definite is called a definitising shift. Of
course, completely analogous properties are enjoyed by matrices for which
JA− µJ is negative definite for some µ (just replace A by −A).

Theorem 10.6 Let A be J-Hermitian. The following are equivalent:

(i) A is definitisable.
(ii) The spectrum of A is definite and the J-positive eigenvalues are larger

then the J-negative ones.

In this case the set of all definitising shifts form an open interval whose ends
are eigenvalues; this is called the definiteness interval of A (or, equivalently,
of the definitisable Hermitian pair JA, J .

Proof. If JA− µJ is positive definite, then

Ax = λx

or, equivalently, (JA− µJ)x = (λ− µ)Jx implies

x∗(JA− µJ)x = (λ− µ)x∗Jx.

Thus, x is J-positive or J-negative according to whether λ > µ or λ < µ (µ
itself is not an eigenvalue). Thus σ−(A) < µ < σ+(A) where σ±(A) denote
the set of J-positive/J-negative eigenvalues. Conversely, suppose σ−(A) <
σ+(A). The matrix A is J, J ′-unitarily diagonalisable:

A′ = U−1AU =

λ1I1
. . .

λpI

 , J ′ = U∗JU =

 ε1I1 . . .
εpIp


where λ1, . . . , λp are distinct eigenvalues of A and εi ∈ {−1, 1}. Take any µ
between σ−(A) and σ+(A). Then
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J ′A′ − µJ ′ =

 ε1(λ1 − µ)I1
. . .

εp(λp − µ)Ip

 (10.2)

and this matrix is positive definite because the product εi(λi − µ) is always
positive. Now,

J ′A′ − µJ ′ = U∗JUU−1AU − µU∗JU = U∗(JA− µJ)U

and JA−µJ is positive definite as well. The last assertion follows from (10.2).
Q.E.D.
The following theorem is a generalisation of the known fact for standard
Hermitian matrices: the eigenvalues are ’counted’ by means of the inertia.
From now on we will denote the eigenvalues of a definitisable A as

λ−n− ≤ · · · ≤ λ
−
1 < λ+

1 ≤ · · · ≤ λ+
n+
. (10.3)

Theorem 10.7 Let A be definitisable with the eigenvalues as in (10.3) and
the definiteness interval (λ−1 , λ

+
1 ). For any λ > λ+

1 , λ 6∈ σ(A) the quantity
ι−(JA−λJ) equals the number of the J-positive eigenvalues less than λ (and
similarly for J-negative eigenvalues).

Proof. Since the definitisability is invariant under any J, J ′-unitary similarity
andA is J, J ′-unitarily diagonalisable, we may assumeA and J to be diagonal,
i.e.

A = diag(λ+
n+
, . . . , λ−n−), J = diag(In+ , In−).

Then

ι−(JA− λJ) = ι−(diag(λ+
n+
− λ, . . . , λ+

1 − λ,−(λ−1 − λ), . . . ,−(λ−n− − λ)))

and the assertion follows. Q.E.D.

The following ’local counting property’ may be useful in studying general
J-Hermitian matrices.

Theorem 10.8 Let A be J-Hermitian and let λ0 be a J-positive eigenvalue
of multiplicity p. Take ε > 0 such that the open interval I = (λ0 − ε, λ0 + ε)
contains no other eigenvalues of A. Then for

λ0 − ε < λ− < λ0 < λ+ < λ0 + ε

we have
ι+(JA− λ−J) = ι+(JA− λ+J) + p.

Proof. By virtue of Proposition 10.1 and (10.1) and the fact that

ι(JA′ − λJ ′) = ι(U∗(JA− λJ)U) = ι(JA− λJ)
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(Sylvester!) we may suppose that A, J have already the form

A =
[
λ0I 0
0 A′2

]
, J =

[
Ip 0
0 J ′2

]
, I ∩ σ(A′2) = ∅.

Now

JA− λ±J =
[

(λ0 − λ±)Ip 0
0 J ′2A

′
2 − λ±J ′2

]
and

ι+(JA− λ−J) = p+ ι+(J ′2A
′
2 − λ−J ′2) =

p+ ι+(J ′2A
′
2 − λ+J

′
2) = ι+(JA− λ+J).

Here we have used two trivial equalities

ι+(λ0 − λ−)Ip = p, ι+(λ0 − λ+)Ip = 0

and the less trivial one

ι+(J ′2A
′
2 − λ+J

′
2) = ι+(JA− λ+J);

the latter is due to the fact that for λ ∈ I the inertia of J ′2A
′
2 − λJ ′2 cannot

change since this matrix is non-singular for all these λ. Indeed, by the known
continuity of the eigenvalues of J ′2A

′
2 − λJ ′2 as functions of λ the matrix

J ′2A
′
2 − λJ ′2 must become singular on the place where it would change its

inertia, this is precluded by the assumption I ∩ σ(A′2) = ∅. Q.E.D.

Theorem 10.9 Let A be J-Hermitian and σ(A) negative. Then JA− µJ is
positive definite, if and only if −JA−1 + J/µ is such.

Proof. Let JA−µJ be positive definite. Then λ−1 < µ < λ+
1 . Obviously, the

matrix −A−1 is J-Hermitian as well and it has the eigenvalues

0 < −1/λ−n− ≤ · · · ≤ −1/λ−1 < −1/µ < −1/λ+
1 ≤ · · · ≤ −1/λ+

n+
,

where −1/λ+
1 ≤ · · · ≤ −1/λ+

n+
are J-positive and −1/λ−n− ≤ · · · ≤ −1/λ−1

J-negative. The converse is proved the same way. Q.E.D.

Exercise 10.10 Try to weaken the condition σ(A) < 0 in the preceding the-
orem. Produce counterexamples.

We now consider the boundary of the set of definitisable matrices.

Theorem 10.11 If JA − λJ is positive semidefinite and singular then we
have the following alternative.

1. The matrix A is definitisable and λ lies on the boundary of the definiteness
interval; in this case λ is a J-definite eigenvalue.

2. The matrix A is not definitisable or, equivalently, there is no λ′ 6= λ for
which JA−λ′J would be positive semidefinite. In this case all eigenvalues
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greater than λ are J-positive and those smaller than λ are J-negative
whereas the eigenvalue λ itself is not J-definite.

Proof. As in the proof of Theorem 10.6 we write Ax = λ′x, λ′ > λ as

(A− λI)x = (λ′ − λ)x,

hence
x∗(JA− λJ)x = (λ′ − λ)x∗Jx,

which implies x∗Jx ≥ 0. Now, x∗Jx = 0 is impossible because x∗(JA −
λJ)x = 0 and the assumed semidefiniteness of JA − λJ would imply
(JA − λJ)x = 0 i.e. Ax = λx. Thus, x∗Jx > 0 and similarly for λ′ < λ.
So, if λ itself is, say, J-positive, then the condition (ii) of Theorem 10.6 holds
and the non-void definiteness interval lies left from λ. Finally, suppose that
λ is not definite and that there is, say. λ′ < λ for which JA − λ′J would
be positive semidefinite. Then, as was shown above, λ would be J-positive
which is impossible. Q.E.D.

The definitisability of the pair JA, J can be expressed as

[(A− λI)x, x] > 0

for some λ and all non-vanishing x.

The eigenvalues of definitisable matrices enjoy extremal properties similar
to those for standard Hermitian matrices. Consider the functional

x 7→ r(x) =
x∗JAx

x∗Jx
=

[Ax, x]
[x, x]

,

which is obviously real valued and defined on any non-neutral vector x. It
will be called the Rayleigh quotient of A (or, which is the same, of the pair
JA, J).

Theorem 10.12 Let A ∈ Ξn,n be J-Hermitian. Then A is definitisable, if
and only if the values

r+ = min
x∈Ξn
x∗Jx>0

r(x), r− = max
x∈Ξn
x∗Jx<0

r(x) (10.4)

exist and r− < r+ holds. In this case (r−, r+) is the definiteness interval of
the pair JA, J . If J = I then, by convention, r− = −∞.

Proof. If A is definitisable then by Theorem 10.6 and Corollary 10.2 there
is a J, J ′ unitary such that

U−1AU = diag(λ+
n+
, . . . , λ−n−),
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J ′ =
[
In+ 0

0 −In−

]
,

and the eigenvalues are given by (10.3). Under the substitution x = Uy we
obtain

r(x) =
λ+
n+
|y+
n+
|2 + · · ·+ λ+

1 |y
+
1 |2 − λ

−
1 |y
−
1 |2 − · · · − λ−n− |y

−
n− |

2

|y+
n+ |2 + · · ·+ |y+

1 |2 − |y
−
1 |2 − · · · − |y

−
n− |2

.

(the components of y are denoted accordingly). By

λ+
n+
, . . . , λ+

2 ≥ λ
+
1 , −λ−2 , . . . ,−λ−n− ≥ −λ

−
1

and by taking, say, y∗Jy > 0 we have

r(x) ≥ λ+
1

while the equality is obtained on any eigenvector y for the eigenvalue λ+
1 and

nowhere else. Thus, the left equality in (10.4) is proved (and similarly for the
other one).

Conversely let r(x0) = r+. For any vector h and any real ε we have

r(x0 + εh) =

(x0 + εh)∗JA(x0 + εh)
(x0 + εh)∗J(x0 + εh)

=
x∗0JAx0 + 2εRex∗0JAh+ ε2h∗JAh

x∗0Jx0(1 + 2εRe x∗0Jh
x∗0Jx0

+ ε2 h∗Jh
x∗0Jx0

)
=

r+ +
2ε

x∗0Jx0
Re
(
x∗0JAh−

x∗0JAx0x
∗
0Jh

x∗0Jx0

)
+

ε2

x∗0Jx0

[
h∗(JA− r+J)h− 4

Rex∗0JAhRex∗0Jh
x∗0Jx0

+ 4(Re
x∗0Jh

x∗0Jx0
)2x∗0JAx0

]
+

O(ε3).

This is a geometric series in ε which has a finite convergence radius (depend-
ing on h). Since this has a minimum at ε = 0, the coefficient at ε vanishes
i.e.

Re(x∗0(JA− r+J)h) = 0

and since h is arbitrary we have JAx0 = r+Jx0. Using this we obtain

r(x0 + εh) =
ε2

x∗0Jx0
h∗(JA− r+J)h+O(ε3).

From this and the fact that x0 is the minimum point it follows h∗(JA −
r+J)h ≥ 0 and this is the positive semidefiniteness of JA − r+J . The same
for JA− r−J is obtained analogously. By Theorem 10.11 this implies that A



10 Definite spectra 81

is definitisable and that (r−, r+) is its definiteness interval. Q.E.D.

In contrast to the standard Hermitian case the ’outer’ boundary of the
spectrum of a definitisable A is no extremum for the Rayleigh quotient. As
an example take

A =
[

2 0
0 −1

]
, J =

[
1 0
0 −1

]
and

x =
[

coshφ
sinhφ

]
,

then x∗Jx = 1 and
r(x) = 1 + cosh2 φ

which is not bounded from above. However, all eigenvalues can be obtained
by minimax formulae, similar to those for the standard Hermitian case. We
will now derive these formulae. We begin with a technical result, which is
nonetheless of independent interest.

Lemma 10.13 (The interlacing property) Let the matrix A be J-Hermitian
and definitisable and partitioned as

A =
[
A11 A12

A21 A22

]
and, accordingly, J =

[
J1 0
0 J2

]
. (10.5)

Here A11 is square of order m. Then A11 is J1-Hermitian and definitisable
and its definiteness interval contains that of A. Denote by (10.3) the eigen-
values of A and by

µ−m− ≤ · · · ≤ µ
−
1 < µ+

1 ≤ · · · ≤ µ+
m+

, m+ +m− = m,

those of A11. Then
λ+
k ≤ µ

+
k ≤ λ

+
k+n+−m+

λ−k ≥ µ
−
k ≥ λ

−
k+n−−m−

(here an inequality is understood as void whenever an index exceeds its range).

Proof. If JA − µJ is Hermitian positive definite then so is the submatrix
J1A11 − µJ1. By the J-Hermitian property of A we have A21 = J2A

∗
12J1

hence

JA− µJ =
[
J1A11 − µJ1 J1A12

A∗12J1 J2A22 − µJ2

]
= Z(µ)

[
J1A11 − µJ1 0

0 W (µ)

]
Z(µ)∗

with

Z(µ) =
[

Im 0
A∗12J1(J1A11 − µJ1)−1 In−m

]
,



82 10 Definite spectra

and
W (µ) = J2A22 − µJ2 −A∗12J1(J1A11 − µJ1)−1J1A12.

By the Sylvester inertia theorem,

ι±(JA− µJ) = ι±(J1A11 − µJ1) + ι±(W (µ)),

hence

ι−(J1A11 − µJ1) ≤ ι−(JA− µJ) ≤ ι−(J1A11 − µJ1)− n−m. (10.6)

Assume now µ+
k < λ+

k for some k. Then there is a µ such that J1A11 − µJ1

is non-singular and µ+
k < µ < λ+

k . By Theorem 10.7 we would have

ι−(J1A11 − µJ1) ≥ k, ι−(JA− µJ) < k

which contradicts the first inequality in (10.6). Similarly, µ+
k > µ > λ+

k+n+−m+

would imply
ι−(J1A11 − µJ1) ≥ k, ι−(JA− µJ) < k

which contradicts the second inequality in (10.6). Q.E.D.

Theorem 10.14 For a definitisable J-Hermitian A the following minimax
formulae hold:

λ±k = min
S±k

max
x∈S±

k
x∗Jx 6=0

x∗JAx

x∗Jx
= min

S±k

max
x∈S±

k
[x,x]6=0

[Ax, x]
[x, x]

(10.7)

where S±k ⊆ Ξn is any k-dimensional J-positive/J-negative subspace.

Proof. Let S+
k be given and let u1, . . . , un be a J-orthonormal basis of Ξn

such that u1, . . . , uk span S+
k . Set

U+ =
[
u1 · · · uk

]
, U =

[
u1 · · · un

]
=
[
U+ U ′

]
.

Then U is J ,J ′-unitary with

J ′ =
[
J1 0
0 J2

]
=
[
Ik 0
0 J2

]
, J2 = diag(±1)

and

A′ = U−1AU =
[
A′11 A

′
12

A′21 A
′
22

]
is J ′-Hermitian:

A′11 = A′∗11, A′21 = J2A
′∗
12, A′22 = J2A

′∗
22J2.

Moreover, A and A′ have the same eigenvalues and the same definiteness in-
terval. By Lemma 10.13 we have the interlacing of the corresponding eigen-
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values
λ+
k ≤ µ

+
k ≤ λ

+
k+n+−m+

, k = 1, . . .m+

(the eigenvalues µ−k are lacking). The subspace S+
k consists of the vectors

U

[
y
0

]
, y ∈ Ξk

thus for arbitrary x ∈ S+
k we have

x∗JAx

x∗Jx
=
y∗A′11y

y∗y
.

Since A′11 is (standard) Hermitian,

µ+
k = max

y 6=0

y∗A′11y

y∗y
= max

x∈S+
k

x6=0

x∗JAx

x∗Jx
≥ λ+

k

and since S+
k is arbitrary it follows

inf
S+
k

max
x∈S+

k
x 6=0

x∗JAx

x∗Jx
≥ λ+

k .

Now choose S+
k as the linear span of J-orthonormal eigenvectors v1, . . . , vk,

belonging to the eigenvalues λ+
1 , . . . , λ

+
k of A. Then any x ∈ S+

k is given as

x = α1v1 + · · ·+ αkvk

and, with α =
[
α1 · · · αk

]T
,

max
x∈S+

k
x 6=0

x∗JAx

x∗Jx
= max
α∗α=1

k∑
j=1

|αj |2λ+
j = λ+

k .

This proves the assertion for J-positive eigenvalues (the other case is analo-
gous). Q.E.D.

Remark 10.15 In the special case J = I Theorem 10.14 gives the known
minimax formulae for a Hermitian matrix A of order n:

λk = min
Sk

max
x∈Sk
x 6=0

x∗Ax

x∗x
,

where Sk is any k-dimensional subspace and λk are non-decreasingly ordered
eigenvalues of A. Now we can prove the general formula (2.8): by setting
M = L2L

∗
2 and A = L−1

2 KL−∗2 we obtain
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max
x∈Sk
x 6=0

x∗Ax

x∗x
= max

y∈L−∗2 Sk
y 6=0

y∗Ky

y∗My

and L−∗2 Sk again varies over the set of all k-dimensional subspaces. This
proves the ’min max’ part of (2.8), the other part is obtained by considering
the pair −K,M . Note, however, that for a general J-Hermitian matrix no
’max min’ variant in the formulae (10.7) exists.

The following extremal property could be useful for computational purposes.

Theorem 10.16 Let A be J-Hermitian. Consider the function

X 7→ Tr(X∗JAX) (10.8)

defined on the set of all J, J1-isometries X ∈ Ξn,m for a fixed symmetry

J1 = diag(Im+ ,−Im−), m± ≤ n±.

If A is definitisable with the eigenvalues (10.3) then the function (10.8) takes
its minimum on any X of the form

X =
[
X+ X−

]
where R(X±) is the subspace spanned by m± J-orthonormal eigenvectors for
the eigenvalues λ±1 , . . . , λ

±
m± of A, respectively — and nowhere else.

Proof. Without loss of generality we may suppose J to be of the form

J =
[
In+ 0
0 −In−

]
.

Indeed, the transition from a general J to the one above is made by unitary
similarity as described in Remark 5.1. The trace function (10.8) is invariant
under these transformations. Also, by virtue of the Sylvester inertia theorem,
applied to X∗JX = J1, we have

m+ ≤ n+, m− ≤ n−.

First we prove the theorem for the case m± = n± i.e. the matrices X are
square and therefore J-unitary.

Since A is definitisable we may perform a J-unitary diagonalisation

U−1AU = Λ, Λ = diag(Λ+, Λ−), Λ± = diag(λ±1 , . . . λ
±
n±), U∗JU = J.

Now

Tr(X∗JAX) = Tr(X∗JUΛU−1X) = Tr(X∗U−∗JΛU−1X) = Tr(Y ∗JΛY )
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where Y = U−1X again varies over the set of all J-unitaries. By using the
representation (6.2) we obtain

TrX∗JAX = TrY ∗JΛY = TrH (W ) JΛH (W ) =
Tr(
√
I +WW ∗Λ+

√
I +WW ∗ −WΛ−W

∗)
+Tr(W ∗Λ+W −

√
I +W ∗WΛ−

√
I +W ∗W )

= t0 + 2(TrWW ∗Λ+ − TrW ∗WΛ−)
= t0 + 2[TrWW ∗(Λ+ − µI) + TrW ∗W (µI − Λ−)],

where µ is a definitising shift and

t0 = TrΛ+ − TrΛ−.

Since Λ+ − µI and µI − Λ− are positive definite it follows

Tr(X∗JAX) = TrY ∗JΛY

= t0 + 2Tr (W ∗ (Λ+ − µI)W ) + 2Tr (W (µI − Λ−)W ∗) ≥ t0, (10.9)

moreover, if this inequality turns to equality then W = 0, hence H(W ) = I
and the corresponding X reads

X = U diag(V1, V2),

V1, V2 from (6.2). This is exactly the form of the minimising X in the state-
ment of the theorem.

We now turn to TrX∗JAX with a non-square X. Take C = (X X̄) as
a completion of any J, J1-isometry X such that the columns of C form a
J-orthonormal basis, that is,

C∗JC = diag(J1, J2) = J ′

is diagonal (note that the columns of X are J-orthonormal). Then the matrix
A1 = C−1AC is J ′-Hermitian and we have

A1 = C∗JAC =
[
J1X

∗JAX J1X
∗JAX̄

J2X̄
∗JAX J2X̄

∗JAX̄

]
,

J ′A1 = C∗JAC =
[
X∗JAX X∗JAX̄
X̄∗JAX X̄∗JAX̄

]
and the eigenvalues of A1 are given by (10.3). Then by Lemma 10.13 the
eigenvalues µ±k of the J1-Hermitian matrix J1X

∗JAX satisfy

λ+
k ≤ µ

+
k , λ−k ≥ µ

−
k .

Using this and applying the first part of the proof for the matrix J1X
∗JAX

we obtain
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TrX∗JAX ≥
m+∑
i=1

µ+
i −

m−∑
j=1

µ−j ≥
m+∑
i=1

λ+
i −

m−∑
j=1

λ−j .

This lower bound is attained, if X is chosen as in the statement of the theo-
rem, that is, if

AX± = X±Λ±, Λ± = diag(λ±1 , . . . , λ
±
m±).

It remains to determine the set of all minimisers. If X is any minimiser then
we may apply the formalism of Lagrange with the Lagrange function

L = Tr(X∗JAX)− Tr(Γ (X∗JX − J1))

where the Lagrange multipliers are contained in the Hermitian matrix Γ of
order m. Their number equals the number of independent equations in the
isometry constraint X∗JX = J1. By setting the differential of L to zero we
obtain

AX = XΓ

and by premultiplying by X∗J ,

X∗JAX = J1Γ.

Hence Γ commutes with J1:

Γ = diag(Γ+, Γ−).

This is the form of the minimiser, stated in the theorem. Q.E.D.

When performing diagonalisation the question of the condition number of
the similarity matrix naturally arises. We have

Proposition 10.17 Let A be J-Hermitian and have a definite spectrum.
Then all J, J ′- unitaries that diagonalise it with any diagonal J ′ have the
same condition number.

Proof. Suppose

U−1
1 AU1 = Λ1, U∗1 JU1 = J1

U−1
2 AU2 = Λ2, U∗2 JU2 = J2

where Λ1, Λ2 are diagonal and J1, J2 are diagonal matrices of signs. The
J-definiteness means that there exist permutation matrices Π1, Π2 such that
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ΠT
1 J1Π1 = ΠT

2 J2Π2 =


ε1In1

ε2In2

. . .
εpInp

 =: J0,

ΠT
1 Λ1Π1 = ΠT

2 Λ2Π2 =


λ1In1

λ2In2

. . .
λpInp

 =: Λ,

here εi ∈ {−1, 1} are the signs of the corresponding subspaces and λ1, . . . , λp
are the distinct eigenvalues of A with the multiplicities n1, . . . , np. Then both
Ũ1 = U1Π1 and Ũ2 = U2Π2 are J, J0-unitary and

Ũ−1
1 AŨ1 = Λ = Ũ−1

2 AŨ2 (10.10)

or, equivalently,
ΛV = V Λ

where the matrix V = Ũ−1
1 Ũ2 is J0-unitary. Since the eigenvalues λ1, . . . , λp

are distinct, (10.10) implies
J0V = V J0

that is, V is unitary and

U2 = Ũ2Π
T
2 = Ũ1V Π

T
2 = U1Π1V Π

T
2

where the matrix Π1V Π
T
2 is unitary, so U2 and U1 have the same condition

numbers. Q.E.D.

Note that the previous theorem applies not only to the standard, spectral
norm but to any unitarily invariant matrix norm like e.g. the Euclidian norm.

Exercise 10.18 Show that the ’if ’ part of the Theorem 10.12 remains valid,
if the symbols min/max in (10.4) are substituted by inf/sup.

Exercise 10.19 Try to estimate the condition of the matrix X in (10.9), if
the difference Tr(JA)− t0 is known.





Chapter 11

General Hermitian matrix pairs

Here we briefly overview the general eigenvalue problem Sx = λTx with two
Hermitian matrices S, T and show how to reduce it to the case of a single
J-Hermitian matrix A.

The important property, characterised by Theorem 10.14, was expressed
more naturally in terms of the Hermitian matrix pair JA, J , than in terms
of the single J-Hermitian matrix A. In fact, the eigenvalue problem Ax = λx
can be equivalently written as JAx = λJx. More generally, we can consider
the eigenvalue problem

Sx = λTx (11.1)

where S and T are Hermitian matrices and the determinant of S − λT does
not identically vanish. Such pairs are, in fact, essentially covered by our the-
ory. Here we outline the main ideas.

If T is non-singular, then we may apply the decomposition (5.8) to the
matrix T , replace there G by G|α|1/2 and set J = sign(α), then

T = GJG∗ (11.2)

where G is non-singular and J = diag(±1). By setting y = G∗x, (11.1) is
equivalent to

Ay = λy, A = JG−1SG−∗, (11.3)

where A is J-Hermitian. Also,

det(A− λI) =
det(S − λT )

detT
.

To any invariant subspace relation

AY = Y Λ

89
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with Y injective, there corresponds

SX = TXΛ, Y = G∗X

and vice versa. The accompanying indefinite scalar product is expressed as

y∗Jy′ = x∗Tx′

with y = G∗x, y′ = G∗x′. Thus, all properties of J-Hermitian matrices
studied in the two previous chapters can be appropriately translated into
the language of matrix pairs S, T with non-singular T and vice versa. The
non-singularity of T will be tacitly assumed in the following. (If T is singular
but there is a real µ such that T − µS is non-singular then everything said
above can be done for the pair S, T − µS. Now, the equations

Sx = λ(T − µS)x, Sx =
λ

1− λµ
Tx

are equivalent. Thus the pair S, T − µS has the same eigenvectors as S, T
while the eigenvalues λ of the former pair are transformed into λ/(1 − λµ)
for the latter one.)

The terms ’definite eigenvalues’ and ’definitisability’ carry over in a natural
way to the general pair S, T by substituting the matrix JA for S and the
symmetry J for T . Theorems 10.6 - 10.16 can be readily formulated and
proved in terms of the matrix pair S, T . This we leave to the reader and, as
an example, prove the following

Theorem 11.1 Let S, T be definitisable and ι(T ) = (n+, 0, n−). Then there
is a Ψ such that

Ψ∗TΨ = J = diag(In+ ,−In−),

Ψ∗SΨ = diag(λ+
n+
, . . . , λ+

1 ,−λ
−
1 , . . . ,−λ−n−)

with λ+
n+
≥ · · · ≥ λ+

1 ≥ λ−1 ≥ · · · ≥ λ−n− . Moreover, for m± ≤ n± and
J1 = diag(Im+ ,−Im−) the function

Φ 7→ Tr(Φ∗SΦ),

defined on the set of all Φ with

Φ∗TΦ = J1 (11.4)

takes its minimum
∑n+
k=1 λ

+
k −

∑n−
k=1 λ

−
k on any

Φ =
[
Φ+Φ−

]
where R(Φ±) is spanned by J-orthonormal eigenvectors belonging to the
eigenvalues λ±1 , . . . , λ

±
n± — and nowhere else.
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Proof. In (11.2) we may take J with diagonals ordered as above. Then with
A = JG−1SG−∗ for any µ we have

JA− µJ = Ψ∗(S − µT )Ψ

so by the non-singularity of Ψ the definitisability of the pair S, T is equivalent
to that of JA, J that is, of the J-Hermitian matrix A. By Corollary 10.2 there
is a J-unitary U such that

U−1AU = diag(λ+
n+
, . . . , λ+

1 , λ
−
1 , . . . , λ

−
n−).

By setting Ψ = G−∗U we have the diagonalisation

Ψ∗SΨ = U∗JAU = JU−1AU = diag(λ+
n+
, . . . , λ+

1 ,−λ
−
1 , . . . ,−λn−).

Now set X = G∗Φ, then the ’T, J-isometry condition’ (11.4) is equivalent to
X∗JX = J1 and we are in the conditions of Theorem 10.16. Thus, all asser-
tions of our theorem follow immediately from those of Theorem 10.16. Q.E.D.

Remark 11.2 A definitisable pair S, T with T non-singular, can be diago-
nalised by applying the decomposition (2.1) to K = T and M = S − µT , µ
a definitising shift:

Φ∗(S − µT )Φ = I, Φ∗TΦ = diag(α1, . . . , αn).

Then Ψ = Φdiag(|α1|−1/2, . . . , |αn|−1/2) satisfies Ψ∗TΨ = J ′ = diag(sign(αj))
and

Ψ∗SΨ = Ψ∗(S − µT + µT )Ψ = J ′ diag(
1
α1

+ µ, . . . ,
1
αn

+ µ).

The desired order of the signs in J ′ can be obtained by appropriately per-
muting the columns of Ψ .

The system (1.1) can also be represented as follows. We set x1 = x, x2 = ẋ,
then (1.1) goes over into

d

dt
T

[
x1

x2

]
= S

[
x1

x2

]
+
[

0
−f(t)

]
(11.5)

with

T =
[
K 0
0 −M

]
, S =

[
0 K
K C

]
(11.6)

where the matrix T is non-singular, if both K and M are such.
The representations (3.2), (3.3) and (11.5), (11.6) are connected by the

formulae (11.2), (11.3), where
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G =
[
L1 0
0 L2

]
.

The choice of the representation is a matter of convenience. A reason for
choosing the ’normalised representation’ (3.2), (3.3) is the physically natural
phase space with its energy norm. Another reason is that here we have to do
with a single matrix A while J is usually stored as a sequence of signs which
may have computational advantages when dealing with dense matrices. Also
the facts about condition numbers are most comfortably expressed in the
normalised representation.

On the other hand, if we have to deal with large sparse matrices S, T ,
then the sparsity may be lost after the transition to JA, J and then the
’non-normalised’ representation (11.5), (11.6) is more natural in numerical
computations.



Chapter 12

Spectral decomposition of a general
J-Hermitian matrix

A general J-Hermitian matrix A may not have a basis of eigenvectors. In this
chapter we describe the reduction to a block-diagonal form by a similarity
transformation S−1AS. We pay particular attention to the problem of the
condition number of the transformation matrix S which is a key quantity in
any numerical manipulation.

The formal way to solve the initial value problem

ẏ = Ay, y(0) = y0

is to diagonalise A:1

S−1AS = diag(λ1, . . . , λn). (12.1)

Then
S−1eAtS = diag(eλ1t, . . . , eλnt).

Set
S =

[
s1 · · · sn

]
.

Then the solution is obtained in two steps:

• compute y′0 from the linear system

Sy′0 = y0 (12.2)

• set
y = eλ1ty′0,1s1 + · · ·+ eλnty′0,nsn. (12.3)

This method is not viable, if A cannot be diagonalised or if the condition
number of the matrix S is too high. The latter case will typically occur when
the matrix A is close to a non-diagonalisable one. High condition of S will

1 In this chapter we will consider all matrices as complex.

93
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spoil the accuracy of the solution of the linear system (12.2) which is a vital
step in computing the solution (12.3).

Things do not look better, if we assume A to be J-Hermitian — with the
exception of definite spectra as shown in Chapter 10. An example of a non-
diagonalisable J-Hermitian A was produced in (9.5) with d = 2ω (critical
damping).

Instead of the ’full diagonalisation’ (12.1) we may seek any reduction to a
block-diagonal form

S−1AS = diag(A′1, . . . , A
′
p).

so the exponential solution is split into

S−1eAtS = diag(eA
′
1t, . . . , eA

′
pt).

A practical value of block-diagonalisation lies in the mere fact that reducing
the dimension makes computation easier.

So the ideal would be to obtain as small sized diagonal blocks as possible
while keeping the condition number of S reasonably low.

What we will do here is to present the spectral reduction, that is, the
reduction in which the diagonal blocks have disjoint spectra. We will pay
particular attention to matrices A that are J-Hermitian.

The approach we will take will be the one of complex contour of analytic
functions of the complex variable λ. We will freely use the general properties
of matrix-valued analytic functions which are completely analogous to those
in the scalar case. One of several equivalent definitions of analyticity is the
analyticity of the matrix elements.2 Our present considerations will be based
on one such function, the resolvent :

R(λ) = (λI −A)−1,

which is an analytic, more precisely, rational function in λ as revealed by the
Cramer-rule formula

R(λ) =
Aadj(λ)

det(λI −A)

where the elements of Aadj(λ) are some polynomials in λ.

The fundamental formula of the ”analytic functional calculus” is

f(A) =
1

2πi

∫
Γ

f(λ)(λI −A)−1dλ (12.4)

2 The non-commutativity of matrix multiplication carries only minor, mostly obvi-

ous, changes in the standard formulae of the calculus: (A(λ)B(λ))′ = A′(λ)B(λ) +
A(λ)B′(λ), (A(λ)−1)′ = −A(λ)−1A′(λ)A(λ)−1 and the like.
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where f(λ) is any analytic function in a neighbourhood O of σ(A) (O need
not be connected) and Γ ⊆ O is any contour surrounding σ(A). The map
f 7→ f(A) is continuous and has the properties

(αf1 + βf2)(A) = αf1(A) + βf2(A) (12.5)

(f1 · f2)(A) = f1(A)f2(A) (· is the pointwise multiplication of functions)
(12.6)

(f1 ◦ f2)(A) = f1(f2(A)) (◦ is the composition of functions)

1(A) = I, where 1(λ) = 1 (12.7)

λ(A) = A, where λ(λ) = λ (12.8)

σ(f(A)) = f(σ(A)).

All these properties are readily derived by using the resolvent equation

R(λ)−R(µ) = (λ− µ)R(λ)R(µ) (12.9)

as well as the resulting power series

R(λ) =
∞∑
k=0

Ak

λk+1
, (12.10)

valid for |λ| > ‖A‖.
We just sketch some of the proofs: (12.5) follows immediately from (12.4),
for (12.6) use (12.9) where in computing

f1(A)f2(A) =
1

2πi

∫
Γ1

f1(λ)(λI −A)−1dλ

∫
Γ2

f1(µ)(µI −A)−1dµ.

the contour Γ2 is chosen so that it is contained in the Γ1-bounded neighbour-
hood of σ(A).

(12.7) follows from (12.10) whereas (12.8) follows from (12.7) and the
identity

λ(λI −A)−1 = (λI −A)−1 − I.

The properties (12.5), (12.6), (12.7), (12.8) imply that the definition (12.4)
coincides with other common definitions of matrix functions like matrix poly-
nomials, rational functions and convergent power series, provided that the
convergence disk contains the whole spectrum. For example,
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α0I + · · ·+ αpA
p =

1
2πi

∫
Γ

(α0 + · · ·+ αpλ
p)(λI −A)−1dλ, (12.11)

(µI −A)−1 =
1

2πi

∫
Γ

1
µ− λ

(λI −A)−1dλ, (12.12)

eA =
∞∑
k=0

Ak

k!
=

1
2πi

∫
Γ

eλ(λI −A)−1dλ, (12.13)

Aα =
1

2πi

∫
Γ

λα(λI −A)−1dλ =
∑
k

(
α

k

)
(A− I)k. (12.14)

Here Aα depends on the choice of the contour Γ and the last equality holds
for ‖I−A‖ < 1 (it describes the branch obtained as the analytic continuation
starting from A = I, Aα = I). We will always have to work with fractional
powers of matrices without non-positive real eigenvalues. So, by default the
contour Γ is chosen so that it does not intersect the non-positive real axis.

Exercise 12.1 Find conditions for the validity of the formula

AαAβ = Aα+β .

Another common expression for f(A) is obtained by starting from the
obvious property

f(S−1AS) =
1

2πi

∫
Γ

f(λ)S−1(λI −A)−1Sdλ = S−1f(A)S. (12.15)

Now, if S diagonalises A i.e. S−1AS = diag(λ1, . . . , λn) then (12.15) yields

f(A) = S diag(f(λ1), . . . , f(λn))S−1.

Similarly, if S block-diagonalises A i.e. S−1AS = diag(A′1, . . . , A
′
p) then

(12.15) yields
f(A) = S diag(f(A′1), . . . , f(A′p))S

−1.

Exercise 12.2 Show that the map A 7→ f(A) is continuous. Hint: for Â =
A+ δA show that the norm of the series

f(Â)− f(A) =
∞∑
k=1

1
2πi

∫
Γ

f(λ)(λI −A)−1
(
δA(λI −A)−1

)k
dλ (12.16)

can be made arbitrarily small, if ‖δA‖ is small enough.

Other fundamental functions f are those which have their values in {0, 1},
the corresponding P = f(A) are obviously projections. Obviously, any such
projection (called spectral projection) is given by

P = Pσ =
1

2πi

∫
Γ

(λI −A)−1dλ (12.17)
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where Γ separates the subset σ ⊆ σ(A) from the rest of σ(A). Also obvious
are the relations

PσPσ′ = Pσ′Pσ = 0, Pσ + Pσ′ = Pσ′∪σ

whenever σ ∩ σ′ = ∅.
Thus, any partition σ1, . . . , σp of σ(A) gives rise to a decomposition of the

identity
Pσ1 , . . . , Pσp ,

commuting with A. Taking a matrix S whose columns contain the bases of
R(Pσ1), . . . ,R(Pσp) we obtain block-diagonal matrices

A′ = S−1AS =

A
′
1

. . .
A′p

 , σ(A′j) = σj , (12.18)

S−1PσjS =



0
. . .

0
Inj

0
. . .

0


= P 0

j . (12.19)

Here nj is the dimension of the spaceR(Pσj ). If σk is a single point: σk = {λk}
then the space R(Pσk) is called the root space belonging to λ ∈ σ(A) and is
denoted by Eλ. If all R(Pσj ) are root spaces then we call (12.18) the spectral
decomposition of A.

Here we see the advantage of the contour integrals in decomposing an
arbitrary matrix. The decomposition (12.18) and in particular the spectral
decomposition are stable under small perturbations of the matrix A. Indeed,
the formula (12.16) can be applied to the projections in (12.17): they change
continuously, if A changes continuously. The same is then the case with the
subspaces onto which they project.

Exercise 12.3 Show that

TrP = Tr
1

2πi

∫
Γ

(λI −A)−1dλ (12.20)

equals the number of the eigenvalues of A within Γ together with their mul-
tiplicities whereas

λ̂ = Tr
1

2πi

∫
Γ

λ(λI −A)−1dλ

equals their sum. Hint: reduce A to the triangular form.
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Exercise 12.4 Show that R(Pσ) and R(Pσ) have the same dimensions.
Hint: use (12.20).

Exercise 12.5 Show that for a real analytic function f and a real matrix A
the matrix f(A) is also real.

Exercise 12.6 Let A,B be any matrices such that the products AB and BA
exist. Then

σ(AB) \ {0} = σ(BA) \ {0} (12.21)

and
Af(BA) = f(AB)A.

Hint: Use (12.21) and the identity

A(λI −BA)−1 = (λI −AB)−1A

(here the two identity matrices need not be of the same order).

Exercise 12.7 Show that any simple real eigenvalue of a J-Hermitian A is
J-definite.

Proposition 12.8 Let Eλ1 be the root space belonging to any eigenvalue λ1

of A. Then

Eλ1 = {x ∈ Cn : (A− λ1I)kx = 0 for some k }. (12.22)

Proof. Let λ1 correspond to the matrix, say, A′1 in (12.18) and suppose
(A−λ1I)kx = 0 for some k. By setting x = Sx′ and noting that the matrices
A′j − λ1Inj from (12.18) are non-singular for j 6= 1 it follows

x′ =


x′1
0
...
0

 (12.23)

that is, x′ ∈ R(P (0)
1 ) or equivalently x ∈ R(P1).

Conversely, if x ∈ R(P1) that is, (12.23) holds then

(A− λ1I)kx = S(A′ − λ1In1)kx′ = S


(A′1 − λ1In1)kx′1

0
...
0

 .
Now the matrix A′1 has a single eigenvalue λ1 of multiplicity n1. Since we
know that λ1 is a pole of the resolvent (λIn1 −A′1)−1 the function

(λ− λ1)k(λIn1 −A′1)−1
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will be regular at λ = λ1 for some k. Thus,

(A′1 − λ1In1)k =
1

2πi

∫
Γ1

(λ− λ1)k(λIn1 −A′1)−1dλ = 0.

This implies (A− λ1I)kx = 0. Q.E.D.

The matrix
N1 = A′1 − λ1In1 ,

has the property that some power vanishes. Such matrices are called nilpotent.
We now can make the spectral decomposition (12.18) more precise

A′ = S−1AS =

λ1In1 +N1

. . .
λpInp +Np

 (12.24)

with
σ(A) = {λ1, . . . , λp}, N1, . . . , Np nilpotent.

Obviously, the root space Eλk contains the eigenspace; if the two are equal
the eigenvalue is called semisimple or non-defective, otherwise it is called de-
fective, the latter case is characterised by a non-vanishing nilpotent Nk in
(12.24). Similarly a matrix is called defective, if it has at least one defective
eigenvalue. A defective matrix is characterised by the fact that its eigenvec-
tors cannot form a basis of the whole space. The Jordan form of a nilpotent
matrix will be of little interest in our considerations.

If the matrix A is real then the spectral sets σk can be chosen as symmetric
with respect to the real axis: σk = σk. Then the curve Γ , surrounding σk can
also be chosen as Γ = Γ and we have

Pσk = − 1
2πi

∫
Γ

(λI −A)−1dλ =
1

2πi

∫
Γ

(λI −A)−1dλ = Pσk .

So, all subspaces R(Pσk) are real and the matrix S appearing in (12.18) can
be chosen as real.

Another case where this partition is convenient is if A is J-Hermitian (even
if complex) since σ(A) comes in complex conjugate pairs as well. Here we have

(λI −A)−∗ = J(λI −A)−1J

and

P ∗σk =
1
−2πi

∫
Γ

(λI −A)−1dλ =
1

2πi

∫
Γ

J(λI −A)−1Jdλ = JPσkJ,
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i.e. the projections Pσk are J-orthogonal, hence by Theorem 8.2 the matrix
S in (12.18) can be taken as J, J ′-unitary with

J ′ = S∗JS =

J
′
1

. . .
J ′p

 . (12.25)

In this case we call (12.18) a J, J ′unitary decomposition of a J-Hermitian
matrix A. Achieving (12.24) with a J, J ′-unitary S is possible if and only if
all eigenvalues are real. Indeed, in this case A′ from (12.24) is J ′-Hermitian,
hence each λkInk +Nk is J ′k-Hermitian. Since its spectrum consists of a single
point it must be real.

Proposition 12.9 If the spectral part σk consists of J-definite eigenvalues
(not necessarily of the same sign) then all these eigenvalues are non-defective
and ι±(JPσk) yields the number of the J-positive and J-negative eigenvalues
in σk, respectively (counting multiplicities) and each root space is equal to the
eigenspace. If all eigenvalues in σk are of the same type then in (12.25) we
have J ′k = ±Ink .

Proof. The non-defectivity follows from Proposition 10.1. All other state-
ments follow immediately from the identity (8.2) and Corollary 10.2 applied
to the corresponding A′k from (12.18). Q.E.D.

Exercise 12.10 Let A be J-Hermitian and λj a J-definite eigenvalue. Then
(i) λj is non-defective i.e. Nj = 0 in (12.26) and (ii) λj is a simple pole of
the resolvent (λI −A)−1.

The J, J ′-unitary decomposition (12.18) can be further refined until each A′j
has either a single real eigenvalue λj in which case it reads

A′j = λjInj +N ′j , N ′j nilpotent (12.26)

(see Proposition 12.8) or its spectrum is {λ, λ}, λ 6= λ. This is the ’most
refined’ decomposition which can be achieved with a diagonal matrix J ′,
here also the real arithmetic is kept, if A was real. If we allow for com-
plex J, J ′-unitary transformations and non-diagonal J ′ then a further block-
diagonalisation is possible.

Proposition 12.11 Let A be J-Hermitian of order n and σ(A) = {λ, λ}, λ 6=
λ. Then n is even and there exists a complex J, J ′-unitary matrix U such that

U−1AU =
[
α 0
0 α∗

]
, J ′ = U∗JU =

[
0 I
I 0

]
,

where α = λI +N and N is a nilpotent matrix of order n/2.
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Proof. We know that in this case Cn = Eλ+̇Eλ and dim(Eλ) = dim(Eλ)
(Exercise 12.4). Now we need the following fact: Any root space corresponding
to a non-real eigenvalue is J-neutral. Indeed, let

(A− λI)kx = 0, (A− µI)ly = 0

for some k, l ≥ 1. For k = l = 1 we have

0 = y∗JAx− λy∗Jx = y∗A∗Jx− λx∗Jx = (2 Imλ)y∗Jx (12.27)

hence, y∗Jx = 0, which is already known from Theorem 9.1. For k = 2, l = 1,
we set x̂ = (A−λI)x, then x̂ ∈ Eλ and (A−λI)x̂ = 0 and by applying (12.27)
to x̂ we have

0 = y∗Jx̂ = y∗(A− λI)x = (2 Imλ)y∗Jx.

The rest is induction. Q.E.D.

Now let the matrix X+, X− carry the basis of Eλ, Eλ, respectively, in its
columns. Then

X = [X+ X−]

is non-singular and

X∗JX =
[

0 B
B∗ 0

]
hence B is square and non-singular. By using the polar decomposition

B = U(B∗B)1/2

and
Y+ = X+U(B∗B)−1/2 Y− = X−(B∗B)−1/2

we see that Y = [Y+ Y− ] satisfies

Y ∗JY = J ′ =
[

0 I
I 0

]
and also

AY+ = Y+α, AY− = Y−α−

i.e.

Y −1AY =
[
α 0
0 α−

]
.

Since the last matrix is J ′-Hermitian by (6.1) we have α− = α∗. Q.E.D.

Note that the block-diagonalisation in which each diagonal block corre-
sponds to a single eigenvalue cannot be carried out in real arithmetic, if
there are non-real eigenvalues hence the matrix α cannot be real.
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Thus refined, we call (12.18) a complex spectral decomposition of a J-
Hermitian matrix A.

If a non-real eigenvalue λk is semisimple then we can always choose

A′k = |λk|
[

0 Ink/2
−Ink/2 0

]
, J ′k =

[
Ink/2 0

0 −Ink/2

]
. (12.28)

Exercise 12.12 Derive the formula (12.28).

In view of ’the arithmetic of pluses and minuses’ in Theorems 8.1, 8.2
and Proposition 12.11 the presence of 2s non-real spectral points (includ-
ing multiplicities) ’consumes’ s pluses and s minuses from the inertia of J .
Consequently, A has at least

|ι+(J)− ι−(J)| = n− 2ι+(A)

real eigenvalues.

Example 12.13 Consider the matrix

A =

 6 −3 −8
3 −2 −4
8 −4 −9


which is J-Hermitian with

J =

1 0 0
0 −1 0
0 0 −1

 .
The matrix

U =

3 −2 −2
2 −1 −2
2 −2 −1


is J-unitary and induces the block-diagonalisation

U−1AU =

−2 1 0
−1 −2 0

0 0 −1


whereas

S =

3
√

2/2−
√

2i 3
√

2/2 +
√

2i −2√
2−
√

2i/2
√

2 +
√

2i/2 −2√
2−
√

2i
√

2 +
√

2i −1


is J, J ′-unitary with

J ′ =

0 1 0
1 0 0
0 0 −1





12 Spectral decomposition of a general J-Hermitian matrix 103

and induces the block-diagonalisation (in fact, the full diagonalisation)

S−1AS =

−2 + i 0 0
0 −2− i 0
0 0 −1

 .
There is no general information on the non-vanishing powers of the nilpotents
appearing in the J, J ′-unitary decomposition of a J-Hermitian matrix. More
can be said, if the matrix pair JA, J is semidefinite.

Theorem 12.14 Let A be J-Hermitian, JA − λJ positive semidefinite and
JA−λ′J not positive or negative definite for any other real λ′. Then λ is an
eigenvalue and in the decomposition (12.18) for λp = λ we have

A′p = λpInp +Np, N2
p = 0

and Nj = 0 for λj 6= λp.

Proof. According to Theorem 10.6 λ must be an eigenvalue of A — otherwise
JA−λJ would be positive definite and we would have a non void definiteness
interval (points with JA−λJ negative definite are obviously precluded). Also,
with J ′ from (12.25) the matrix J ′A′−λJ ′ and therefore each block J ′jA

′
j−λJ ′j

is positive semidefinite and λ is the only spectral point of A′j . From the general
theory Nj = A′j − λInj must be nilpotent i.e. Nr

j = 0 for some r ≤ n. At the
same time J ′jNj is positive semidefinite. Assuming without loss of generality
that r is odd and writing r = 1 + 2q the equality Nr

j = 0 implies

0 = x∗JNr
j x = (Nq

j x)∗JNjN
q
j x

which by the positive semidefiniteness of JNj implies Nq
j = 0. By induction

this can be pushed down to N2
j = 0. Q.E.D.

In the theorem above the eigenvalue λ need not be defective, an example
is A = I.

The developed spectral theory can be used to extend Theorem 10.5 to
cases in which only some spectral parts of A are J-definite. They, too, will
remain such until they cross eigenvalues of different type. As in Theorem 10.5
we will have to ’erect barriers’ in order to prevent the crossing, but now we
have to keep out the complex eigenvalues as well.

Theorem 12.15 Let A be J-Hermitian and σ0 ⊆ σ(A) consist of J-positive
eigenvalues and let Γ be any contour separating σ0 from the rest of σ(A). Let
I 3 t 7→ A(t) be J-Hermitian-valued continuous function on a closed interval
I such that A = A(t0) for some t0 ∈ I and such that

Γ ∩ σ(A(t0)) = ∅.
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Then the part of σ(A(t)) within Γ consists of J-positive eigenvalues whose
number (with multiplicities) is constant over I (and analogously in the J-
negative case).

Proof. The key fact is the continuity of the total projection

P (t) =
1

2πi

∫
Γ

(λI −A(t))−1dλ

as a function of t, see Exercise 12.2. We can cover I by a finite family of
open intervals such that within each of them the quantity ‖P (t′) − P (t)‖ is
less than 1/2. Now use Theorem 8.4; it follows that all P (t) are J-unitarily
similar. Then the number of the eigenvalues within Γ , which equals TrP (t),
is constant over I and all P (t) are J-positive (Corollary 8.5). Q.E.D.

Note that as in Theorem 10.5 the validity of the preceding theorem will
persist, if we allow Γ to move continuously in t.

Example 12.16 We shall derive the spectral decomposition of the phase-
space matrix corresponding to a modally damped system which is charac-
terised by the property (2.24). Then according to Theorem 2.3 there is a
(real) non-singular Φ such that ΦTMΦ = I, ΦTKΦ = Ω2 = diag(ω2

1 , . . . , ω
2
n),

ωi > 0, ΦTCΦ = D = diag(d11, . . . , dnn), dii ≥ 0. The matrices

U1 = LT1 ΦΩ
−1, U2 = LT2 ΦΩ

−1

are unitary and

A =
[

0 U1ΩU
−1
2

U2ΩU
−1
1 U2DU

−1
2

]
= UA′U−1

where

U =
[
U1 0
0 U2

]
, A′ =

[
0 Ω
−Ω −D

]
and U is jointly unitary. This A′ is essentially block-diagonal — up to a
permutation. Indeed, define the permutation matrix V0, given by V0e2j−1 =
ej , V0e2j = ej+n (this is the so called perfect shuffling). For n = 3 we have

V0 =


1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

 .

The matrix V0 is unitary and J, J ′-unitary with
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J ′ = diag(j, . . . , j), j =
[

1 0
0 −1

]
and we have

A′′ = V −1
0 A′V0 = diag(A′′1 , . . . , A

′′
n), (12.29)

A′′i =
[

0 ωi
−ωi −dii

]
.

Altogether, V = UV0 is J, J ′-unitary (and unitary) and we have the real
spectral decomposition

V −1AV = A′′.

Exercise 12.17 Use perfect shuffling and a convenient choice of L1, L2 in
(2.16) so as to make the phase-space matrix for our model example in Chapter
1 as narrowly banded as possible.

Exercise 12.18 Derive the analog of (12.29) for the phase-space matrix
(4.19).

12.1 Condition numbers

We now turn back to the question of the condition number in block-
diagonalising a J-Hermitian matrix. More precisely, we ask: are the J, J ′-
unitaries better than others, if the block-diagonalised matrix was J-Hermitian?
The answer is positive. This makes J, J ′ unitaries even more attractive in nu-
merical applications. The rest of this chapter will be devoted to this question.

Most interesting is the case in which in (12.18), (12.19) the spectra of
A′i are disjoint and symmetric with respect to the real axis, i.e. σ(A) is
partitioned as

σk = σ(A′k), σ(A) = σ1 ∪ · · · ∪ σp, σj = σj , j = 1, . . . , p,

σi ∩ σj = ∅ if i 6= j.

Then the relation (8.6) is equivalent to the block-diagonalisation (12.18) and
it is sufficient to study the transformation (8.6).

Theorem 12.19 Let P1, . . . Pp be any J-orthogonal decomposition of the
identity and S non-singular with

S−1PjS = P
(0)
j , j = 1, . . . , p (12.30)

with P (0)
j from (12.19). Then there is a J, J ′-unitary U such that
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U−1PjU = P
(0)
j , J ′ =

J
′
1

. . .
J ′p

 , J ′k = diag(In+
k
,−In−k )

and
κ(U) ≤ κ(S).

The same inequality holds for the condition number measured in the Euclidian
norm.

Proof. Any S satisfying (12.30) will be called block-diagonaliser. By repre-
senting S as

S =
[
S1 · · · Sp

]
(the partition as in (12.18)) we can write (12.30) as

SkPj = δkjPk.

Then S∗JS is block-diagonal:

S∗j JSk = S∗j JPkSk = S∗jP
∗
k JSk = (PkSj)∗JSk = δkjS

∗
j JSk.

Hence each matrix S∗kJSk is Hermitian and non-singular; its eigenvalue de-
composition can be written as

S∗kJSk = WkΛkW
∗
k = Wk|Λk|1/2Jk|Λk|1/2W ∗k , k = 1, . . . , p

where Λk is diagonal and non-singular, Wk is unitary and Jk = sign(Λk). By
setting

Λ = diag(Λ1, . . . , Λp), J ′ = diag(J1, . . . , Jp), W = diag(W1, . . . ,Wp)

the matrix
U = SW |Λ|−1/2

is immediately seen to be J, J ′-unitary. Now, since Λ and J ′ commute,

κ(S) = ‖U |Λ|1/2W ∗‖‖W |Λ|−1/2U−1‖ =

‖U |Λ|1/2‖‖J ′|Λ|−1/2U∗J‖ = ‖U |Λ|1/2‖‖Λ|−1/2U∗‖

≥ ‖UU∗‖ = κ(U).

The proof for the Euclidian norm also uses the property

κE(F ) = ‖F‖E‖F−1‖E = ‖F‖E‖J1F
∗J‖E = ‖F‖E‖F ∗‖E = ‖F‖2E ,

(12.31)
valid for any J, J ′unitary F . Thus,

κE(S)2 = Tr(S∗S)Tr(S−1S−∗) = Tr(F ∗F |Λ|)Tr(|Λ|−1F ∗F )
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=

(
n∑
k

|λk|Tr(F ∗F )kk

)(
n∑
k

Tr(F ∗F )kk/|λk|

)
≥ Tr(F ∗F )2

due to the inequality ∑
k

pkφk
∑
k

φk/pk ≥
∑
k

φ2
k

valid for any positive pk and non-negative φk. Q.E.D.

According to Theorem 12.19 and Proposition 10.17 if the spectrum is
definite then the best condition number of a block-diagonalising matrix is
achieved, by any J, J ′-unitary among them. If the spectrum is not definite
or if the spectral partition contains spectral subsets consisting of eigenvalues
of various types (be these eigenvalues definite or not3) then the mere fact
that a block-diagonalising matrix is J, J ′-unitary does not guarantee that
the condition number is the best possible. It can, indeed, be arbitrarily large.
But we know that a best-conditioned block-diagonaliser should be sought
among the J, J ′-unitaries. The following theorem contains a construction of
an optimal block-diagonaliser.

Theorem 12.20 Let P1, . . . , Pp ∈ Ξn,n, J ′ be as in Theorem 12.19. Then
there is a J, J ′-unitary block-diagonaliser F ∈ Ξn,n with

κE(F ) ≤ κE(Ŝ)

for any block-diagonaliser Ŝ.

Proof. We construct F from an arbitrary given block-diagonaliser S as fol-
lows. By setting S =

[
S1 · · · Sp

]
and using the properties established in the

proof of Theorem 12.19 we may perform the generalised eigenvalue decom-
position

Ψ∗kS
∗
kSkΨk = diag(αk1 , . . . , α

k
n+
k

, βk1 , . . . , β
k
n−k

), (12.32)

Ψ∗kS
∗
kJSkΨk = J ′k = diag(In+

k
,−In−k ), (12.33)

k = 1, . . . , p. An optimal block-diagonaliser is given by

F =
[
F1 · · · Fp

]
, Fk = SkΨk. (12.34)

It is clearly J, J ′-unitary by construction. To prove the optimality first note
that the numbers nk± and αkj , β

k
j do not depend on the block-diagonaliser S.

Indeed, any block-diagonaliser Ŝ is given by

Ŝ =
[
S1Γ1 · · · SpΓp

]
, Γ1, . . . , Γp non-singular.

3 Such coarser partition may appear necessary, if a more refined partition with J-definite

spectral sets would yield highly conditioned block-diagonaliser.
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By the Sylvester theorem nk± is given by the inertia of S∗kJSk which is the
same as the one of Ŝ∗kJŜk = Γ ∗kS

∗
kJSkΓk. Furthermore, the numbers αkj ,−βkj

are the generalised eigenvalues of the matrix pair S∗kSk, S∗kJSk and they do
not change with the transition to the congruent pair Γ ∗kS

∗
kSkΓk, Γ

∗
kS
∗
kJSkΓk.

In particular, the sums

tk0 = αk1 + · · ·+ αkn+
+ βk1 + · · ·+ βkn− , t0 =

p∑
k=1

tk0

are independent of S. By Theorem 12.19 there is a J, J ′-unitary block-
diagonaliser U with

κE(U) ≤ κE(S). (12.35)

If we now do the construction (12.32) – (12.34) with S replaced by U then
(12.33) just means that Ψk is J ′k-unitary. From Theorem 10.16 and from the
above mentioned invariance property of tk0 it follows

tk0 = Tr(F ∗kFk) ≤ Tr(U∗kUk)

and, by summing over k,

t0 = Tr(F ∗F ) ≤ Tr(U∗U).

By (12.31) this is rewritten as

t0 = κE(F )2 ≤ κE(U)2.

This with (12.35) and the fact that S was arbitrary gives the statement.
Q.E.D.

The numbers αki , β
k
j appearing in the proof of the previous theorem have

a deep geometrical interpretation which is given in the following theorem.

Theorem 12.21 Let F be any optimal block-diagonaliser from Theorem
12.20. Then the numbers αki , β

k
j from (12.32) are the non-vanishing singular

values of the projection Pk. Moreover,

κE(F ) = ‖F‖2E =
p∑
k=1

 n+
k∑

i=1

αki +
n−k∑
i=1

βki

 =
p∑
k=1

Tr
√
PkP ∗k . (12.36)

Proof. We revisit the proof of Theorem 12.20. For any fixed k we set α =
diag(αk1 , . . . , β

k
n−k

). Since the numbers αk1 , . . . , β
k
n−k

do not depend on the block

diagonaliser S we may take the latter as J, J ′-unitary:

S = U =
[
U1 · · · Up

]
, U∗j JUk = δkjJ

′
k Pk = UkJU

∗
kJ
′
k
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Now (12.32), (12.33) read

Ψ∗kU
∗
kUkΨk = α, Ψ∗kJ

′
kΨk = J ′k

and we have Fk = UkΨk. It is immediately verified that the matrix V =
UkΨkα

−1/2 is an isometry. Moreover, its columns are the eigenvectors to the
non-vanishing eigenvalues of PkP ∗k . To prove this note the identity

PkP
∗
k = (UkJ ′kU

∗
k )2.

On the other hand, using ΨkJ ′kΨ
∗
k = Jk gives

UkJ
′
kU
∗
kV = UkΨkJ

′
kΨ
∗
kU
∗
kUkΨkα

−1/2 = UkΨkJ
′
kα

1/2

and, since both α and J ′k are diagonal,

UkJ
′
kU
∗
kV = V J ′kα,

so the diagonal of J ′kα consists of all non-vanishing eigenvalues of the Hermi-
tian matrix UkJ

′
kU
∗
k . Hence the diagonal of α consists of the non-vanishing

singular values of Pk. Then also

‖Fk‖2E = Trα =
n+
k∑

i=1

αki +
n−k∑
i=1

βki = Tr
√
PkP ∗k ,

so (12.36) holds as well. Q.E.D.

The value Tr
√
PkP ∗k (this is, in fact, a matrix norm) may be seen as a

condition number of the projection Pk. Indeed, we have

nk = TrPk ≤ Tr
√
PkP ∗k (12.37)

where equality is attained, if and only if the projection Pk is orthogonal in
the ordinary sense.

To prove (12.37) we write the singular value decomposition of Pk as

Pk = UαV ∗

where U, V are isometries of type n× nk. The identity P 2
k = Pk means (note

that α is diagonal positive definite)

αV ∗U = Ink .

Now
nk = TrPk = Tr(UαV ∗) = (Vα1/2, Uα1/2)E

where
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(T, S)E = Tr(S∗T )

denotes the Euclidian scalar product on matrices. Using the Cauchy-Schwartz
inequality and the fact that U, V are isometries we obtain

nk = TrPk ≤ ‖Vα1/2‖E‖Uα1/2‖E ≤ ‖α1/2‖2E = Trα = Tr
√
PkP ∗k .

If this inequality turns to an equality then the matrices Vα1/2, Uα1/2, and
therefore V, U must be proportional, which implies that Pk is Hermitian and
therefore orthogonal in the standard sense. If this is true for all k then by
(12.36) the block-diagonaliser F is jointly unitary.

There are simple damped systems in which no reduction like (12.18) is
possible. One of them was produced as the critical damping case in Example
9.3. Another is given by the following

Example 12.22 Take the system in (1.2) – (1.4) with n = 2 and

m1 = 1, m2 =
25
4
,

k1 = 0, k2 = 5, k3 =
5
4
,

C =
[

4 0
0 0

]
.

Tedious, but straightforward calculation (take L1, L2 as the Cholesky factors)
shows that in this case the matrix (3.3) looks like

A =


0 0

√
5 −2/

√
5

0 0 0 1/
√

5
−
√

5 0 −4 0
2/
√

5 −1/
√

5 0 0

 = −I +N (12.38)

where N3 6= 0, N4 = 0. So, in (12.18) we have p = 1 and no block-
diagonalisation is possible.4 Analogous damped systems can be constructed
in any dimension.

Exercise 12.23 Prove (12.38).

Exercise 12.24 Modify the parameters m2, k1, k2, k3, c in Example 12.22 in
order to obtain an A with a simple real spectrum (you may make numerical
experiments).

Exercise 12.25 Find a permutation P such that PTAP (A from (12.38))
is tridiagonal.

4 This intuitive fact is proved by constructing the Jordan form of the matrix N which we

omit here.



Chapter 13

The matrix exponential

The matrix exponential, its properties and computation play a vital role in a
study of damped systems. We here derive some general properties, and then
touch a central concern of oscillations: the exponential decay which is crucial
in establishing stability of vibrating structures.

The decomposition (12.18) can be used to simplify the computation of the
matrix exponential needed in the solution (3.4) of the system (3.2). We have

eAt = SeA
′tS−1 = S

 e
A′1t

. . .
eA
′
pt

S−1, (13.1)

with a J, J ′-unitary S and J ′ from (12.25). As was said a ’most refined’
decomposition (13.1) is obtained, if σ(A′j) = λj is real, with

A′j = λjInj +Nj , Nj nilpotent

or σ(A′j) = {λj , λj} non-real with

J ′j =
[

0 Inj/2
Inj/2 0

]
, A′j =

[
αj 0
0 α∗j

]
and

αj = λjInj +Mj , Mj nilpotent.

Thus, the computation of eA
′t reduces to exponentiating e(λI+N)t with N

nilpotent:

e(λI+N)t = eλteNt = eλt
r∑

k=0

tk

k!
Nk (13.2)

111
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where Nr is the highest non-vanishing power of N . (In fact, the formulae
(13.1), (13.2) hold for any matrix A, where S has no J-unitarity properties,
it is simply non-singular.)

Example 13.1 We compute the matrix exponential to the matrix A from
(9.5), Example 9.3. First consider D = d2 − 4ω2 > 0 and use (9.7) – (9.9) to
obtain

eAt = e−dt/2

(
cosh(

√
Dt/2)I +

sinh(
√
Dt/2)√
D

[
d 2ω

−2ω −d

])
. (13.3)

A similar formula holds for D < 0. This latter formula can be obtained from
(13.3) by taking into account that eAt is an entire function in each of the
variables ω, d, t. We use the identities

cosh(
√
Dt/2) = cos(

√
−Dt/2),

sinh(
√
Dt/2)√
D

=
sin(
√
−Dt/2)√
−D

thus obtaining

eAt = e−dt/2
(

cos(
√
−Dt/2)I +

sin(
√
−Dt/2)√
−D

[
d 2ω

−2ω −d

])
(13.4)

which is more convenient for D < 0. For D = 0 using the L’Hospital rule in
either (13.3) or (13.4) we obtain

eAt = e−dt/2
(
I + ωt

[
1 1
−1 −1

])
.

It does not seem to be easy to give an exponential bound for the norm of
(13.3) and (13.4) which would be both simple and tight. By introducing the
functions

sinc(τ) = sin(τ)/τ, sinhc(τ) = sinh(τ)/τ

we can express both exponentials by the ’special matrix function’ e2(τ, θ)
given as

e2(τ, θ) = exp
([

0 1
−1 −2θ

]
τ

)
=

e−θτ
(

cos(
√

1− θ2τ)I + τ sinc(
√

1− θ2τ)
[

θ 1
−1 −θ

])
θ < 1

e−θτ
(

cosh(
√
θ2 − 1τ)I + τ sinhc(

√
θ2 − 1τ)

[
θ 1
−1 −θ

])
θ > 1

e−τ
(
I + τ

[
1 1
−1 −1

])
θ = 1

defined for any real τ and any non-negative real θ. So, we have
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eAt = e2(ωt,
d

2ω
).

On Fig. 13.1 we have plotted the function τ 7→ ‖e2(τ, θ)‖ for different values
of θ shown on each graph. We see that different viscosities may produce
locally erratic behaviour of ‖e2(τ, θ)‖ within the existing bounds for it. An
’overall best behaviour’ is apparent at θ = 1 (critical damping, bold line).

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

0
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0.5

1

1.5

2.3

Fig. 13.1 Norm decay of e2

The 2×2 case studied in Example 13.1 is unexpectedly annoying: the formulae
(13.3) or (13.4) do not allow a straightforward and simple estimate of the
exponential decay of the matrix exponential. What can be done is to compute

max
t≥0

eνt‖e2(ωt, θ)‖ = max
τ≥0

eντ/ω‖e2(τ, θ)‖ = f2(κ, θ)

with
f2(κ, θ) = max

τ≥0
eκτ‖e2(τ, θ)‖.

The function f2 can be numerically tabulated and we have

‖e2(ωt)‖ ≤ e−νtf2(
ν

ω
, θ).
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Remark 13.2 The function f2 is defined whenever θ > 0 and 0 < κ = κ0,
where

κ0 =
{
θ −
√
θ2 − 1, θ > 1

θ, θ < 1

is the negative spectral abscissa of the ’normalised’ matrix[
0 1
−1 −2θ

]
— with one exception at θ = 1;κ = κ0, where f2 is infinite.

The two dimensional matrix exponential studied above shows another annoy-
ing phenomenon, characteristic for damped systems: the spectral condition
number, that is the condition of the similarity which diagonalises the phase-
space matrix A, may become infinite without any pathology at all by the
matrix exponential. This is the case when the system is critically damped
and the phase-space matrix defective. However, at this point the system is
optimal in the sense that its spectral abscissa is the lowest there (see also the
fat line in Fig. 13.1). This means that the method of spectral decomposition
may be insufficient to describe the solution of the differential equation (1.1)
just on configurations that exhibit an optimal behaviour.

Exercise 13.3 Prove the identity

‖e2(τ, 1)‖ = e−τ (τ +
√

1 + τ2).

Exercise 13.4 Compute eAt for any real J-symmetric matrix

A =
[

a11 a12

−a12 a22

]
.

Hint: Consider A− a11I or A− a22I and use Example 13.1.

Exercise 13.5 Using (13.2) compute eAt for A from (12.38).

We turn back to A from (13.1). We have

‖eAt‖ ≤ κ(S)‖eA
′t‖ (13.5)

where
‖eA

′t‖ ≤ eλatp(t), (13.6)

and
λa = λa(A) = max Re(σ(A))

is the spectral abscissa of A and p(t) is a polynomial of degree ≤ n whose
coefficients are built up from the powers of the nilpotents Nj ,Mj . This is not
very useful since (i) the formulae are inconvenient both for computing and for
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estimating,1 (ii) there is no simple connection to the input data contained in
the matrices M,C,K and (iii) there is no a priori control on κ(S). Anyway,
from (13.1) – (13.2) it follows that for any ε > 0 there is a Cε > 0 such that

‖eAt‖ ≤ Cεe(λa+ε)t (13.7)

where naturally one would be interested to find a best (that is, the smallest)
Cε for a given ε > 0.

If
‖eAt‖ ≤ Fe−νt (13.8)

holds with some ν > 0, F ≥ 1 and all t ≥ 0 then we say that the matrix A is
asymptotically stable and eAt exponentially decaying. The following theorem
is fundamental.

Theorem 13.6 For a general square matrix A the following are equivalent:

(i) A is asymptotically stable.
(ii) Reσ(A) < 0.
(iii) eAt → 0, t→∞.
(iv) For some (and then for each) positive definite B there is a unique

positive definite X such that

A∗X +XA = −B. (13.9)

(v) ‖eAt‖ < 1, for some t = t1 > 0.

In this case we have
‖eAt‖ ≤ κ(X)e−t/β (13.10)

with
β = max

y

y∗Xy

y∗By
= ‖B−1/2XB−1/2‖.

Proof. The equivalences (i) ⇐⇒ (ii) ⇐⇒ (iii) obviously follow from (13.1)
– (13.2). The equation (13.9) is known as the Lyapunov equation and it can
be understood as a linear system of n2 equations with as many unknowns.

Thus, let (i) hold. Then the integral

X =
∫ ∞

0

eA
∗tBeAtdt (13.11)

(which converges by (13.8)) represents a positive definite matrix which solves
(13.9). Indeed, X is obviously Hermitian and

1 This difficulty is somewhat alleviated, if the block-diagonalisation went up to diagonal

blocks of dimension one or two only; then we may use the formulae derived in Example
13.1.
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y∗Xy =
∫ ∞

0

y∗eA
∗tBeAty dt ≥ 0

where the equality sign is attained, if and only if

BeAty ≡ 0

which implies y = 0. The matrix X solves the Lyapunov equation. Indeed,
by partial integration we obtain

A∗X =
∫ ∞

0

d

dt
eA
∗tBeAt dt = eA

∗tBeAt
∣∣∞
0
−

−
∫ ∞

0

eA
∗tB

d

dt
eAt dt = −B −XA.

The unique solvability of the Lyapunov equation under the condition (ii) is
well-known; indeed the more general Sylvester equation

CX +XA = −B

is uniquely solvable, if and only if σ(C) ∩ σ(−A) = ∅ and this is guaranteed,
if C∗ = A is asymptotically stable. Thus (i) implies (iv).

Now, assume that a positive definite X solves (13.9). Then

d

dt

(
y∗eA

∗tXeAty
)

= y∗eA
∗t(A∗X +XA)eAty =

−y∗eA
∗tBeAty ≤ −y∗eA

∗tXeAty/β

or
d

dt
ln
(
y∗eA

∗tXeAty
)
≤ − 1

β
.

We integrate this from zero to s and take into account that eA
∗0 = I:

y∗eA
∗sXeAsy ≤ y∗Xye−s/β

which implies
y∗eA

∗seAsy ≤ y∗Xy‖X−1‖e−s/β .

Hence
‖eAs‖2 ≤ ‖X‖‖X−1‖e−s/β

and (13.10) follows. This proves (iv) ⇒ (iii). Finally, (iii) ⇒ (v) is obvious;
conversely, any t can be written as t = kt1 +τ for some k = 0, 1, . . . and some
0 ≤ τ ≤ t1. Thus,

‖eAt‖ = ‖(eAt1)keAτ‖ ≤ ‖eAt1‖k max
0≤τ≤t1

‖eAτ‖ → 0, t→∞.
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Thus, (v) ⇒ (iii). Q.E.D.

Exercise 13.7 Suppose that A is dissipative and α = ‖eAt1‖ < 1, for some
t1 > 0. Show that (13.8) holds with

F = 1/α, ν = − lnα
t1

.

Corollary 13.8 If A is asymptotically stable then X from (13.11) solves
(13.9) for any matrix B.

Exercise 13.9 Show that for an asymptotically stable A the matrix X from
(13.11) is the only solution of the Lyapunov equation (13.9) for an arbitrary
B. Hint: supposing A∗Y + Y A = 0 compute the integral∫ ∞

0

eA
∗t(A∗Y + Y A)eAtdt.

Exercise 13.10 Show that already the positive semidefiniteness of B almost
always (i.e. up to rare special cases) implies the positive definiteness of X in
(13.9). Which are the exceptions?

The matrix X from (13.9) will be shortly called the Lyapunov solution.

Exercise 13.11 Show that the Lyapunov solution X satisfies

2λa ≤ −
1
β
. (13.12)

where λa is the spectral abscissa. Hint: compute y∗By on any eigenvector y
of A.

If A were normal, then (13.8) would simplify to

‖eAt‖ = eλat

as is immediately seen when A is unitarily diagonalised, i.e. here the spectrum
alone gives the full information on the decay. In this case for B = I (13.12)
goes over into an equality because the Lyapunov solution reads

X = −(A+A∗)−1

and 2σ(X) = −1/Reσ(A).

Each side of the estimate (13.12) is of a different nature: the right hand
side depends on the scalar product in Ξn (because it involves the adjoint of
A) whereas the left hand side does not. Taking the matrix A1 = H1/2AH−1/2

with H positive definite (13.9) becomes

A∗1X1 +X1A1 = −B1
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with
X1 = H−1/2XH−1/2, B1 = H−1/2BH−1/2.

This gives rise to a β1 which again satisfies (13.12). It is a non-trivial fact
that by taking B = I and varying H arbitrarily the value −1/β1 comes
arbitrarily close to 2λa. The proof is rather simple, it is similar to the one
that ‖H1/2AH−1/2‖ is arbitrarily close to spr(A) if H varies over the set of
all positive definite matrices. Here it is.

Since we are working with spectra and spectral norms we can obviously as-
sumeA to be upper triangular. SetA′ = DAD−1,D = diag(1,M, . . . ,Mn−1),
M > 0. Then A′ = (a′ij) is again upper triangular, has the same diagonal as
A and

a′ij = aij/M
j−i

hence A′ → A0 = diag(a11, . . . , ann) as M → ∞. The matrix A0 is normal
and the Lyapunov solution obviously depends continuously on A. This proves
the statement.

On the other hand we always have the lower bound

‖eAt‖ ≥ eλat, (13.13)

Indeed, let λ be the eigenvalue of A for which Reλ = λa. Then Ax = λx
implies ‖eAtx‖ = eλat‖x‖ and (13.13) follows.

Exercise 13.12 Show that whenever the multiplicity p of an eigenvalue is
larger than the rank r of the damping matrix C then this eigenvalue must
be defective. Express the highest non-vanishing power of the corresponding
nilpotent by means of r and p.

Exercise 13.13 Replace the matrix C in Example 12.22 by

C =
[
c 0
0 0

]
Compute numerically the spectral abscissa for 2 < c < 6 and find its mini-
mum.



Chapter 14

The quadratic eigenvalue problem

Thus far we have studied the damped system through its phase space ma-
trix A by taking into account its J-Hermitian structure and the underlying
indefinite metric. Now we come back to the fact that this matrix stems from
a second order system which carries additional structure commonly called
’the quadratic eigenvalue problem’. We study the spectrum of A and the be-
haviour of its exponential over time. A special class of so-called overdamped
systems will be studied in some detail.

If we set f = 0 in (3.2), and make the substitution y(t) = eλty, y a constant
vector, we obtain

Ay = λy (14.1)

and similarly, if in the homogeneous equation (1.1) we insert x(t) = eλtx, x
constant we obtain

(λ2M + λC +K)x = 0 (14.2)

which is called the quadratic eigenvalue problem, attached to (1.1), λ is an
eigenvalue and x a corresponding eigenvector. We start here a detailed study
of these eigenvalues and eigenvectors constantly keeping the connection with
the corresponding phase-space matrix.

Here, too, we can speak of the ’eigenmode’ x(t) = eλtx but the physical
appeal is by no means as cogent as in the undamped case (Exercise 2.1) be-
cause the proportionality is a complex one. Also, the general solution of the
homogeneous equation (1.1) will not always be given as a superposition of
the eigenmodes.

The equations (14.1) and (14.2) are immediately seen to be equivalent via
the substitution (for generality we keep on having complex M,C,K)

y =
[
L∗1x
λL∗2x

]
, K = L1L

∗
1, M = L2L

∗
2. (14.3)

119
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(14.2) may be written as
Q(λ)x = 0

where Q(·), defined as

Q(λ) = λ2M + λC +K (14.4)

is the quadratic matrix pencil associated with (1.1). The solutions of the
equation Q(λ)x = 0 are referred to as the eigenvalues and the eigenvectors
of the pencil Q(·). For C = 0 the eigenvalue equation reduces to (2.3) with
λ2 = −µ. Thus, to two different eigenvalues ±iω of (14.2) there corresponds
only one linearly independent eigenvector. In this case the pencil can be
considered as linear.

Exercise 14.1 Show that in each of the cases

1. C = αM
2. C = βK

the eigenvalues lie on a simple curve in the complex plane. Which are the
curves?

The set Xλ = {x : Q(λ)x = 0} is the eigenspace for the eigenvalue λ of the
pencil Q(·), attached to (1.1). In fact, (14.3) establishes a one-to-one linear
map from Xλ onto the eigenspace

Yλ = {y ∈ C2n : Ay = λy},

in particular, dim(Yλ) = dim(Xλ). In other words, ”the eigenproblems (14.1)
and (14.2) have the same geometric multiplicity.”
As we shall see soon, the situation is the same with the algebraic multiplici-
ties. As is well known, the algebraic multiplicity of an eigenvalue of A is equal
to its multiplicity as the root of the polynomial det(λI −A) or, equivalently,
the dimension of the root space Eλ. With J from (3.7) we compute

JA− λJ =
[

I 0
−L−1

2 L1/λ L−1
2

] [
−λ 0
0 λ2M+λC+K

λ

] [
I −L∗1L−∗2 /λ
0 L−∗2

]
(14.5)

where L1, L2 are from (14.3). Thus, after some sign manipulations,

det(λI −A) = det(L−1
2 (λ2M + λC +K)L−∗2 ) = detQ(λ)/detM.

Hence the roots of the equation det(λI −A) = 0 coincide with those of

det(λ2M + λC +K) = 0

including their multiplicities. This is what is meant by saying that the alge-
braic multiplicity of an eigenvalue of A is equal to its algebraic multiplicity
as an eigenvalue of Q(·).
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The situation is similar with the phase-space matrix A from (4.19). The
linear relation

x = Φy, z1 = Ω1y1, z2 = Ω2y2, z3 = λy1 (14.6)

establishes a one-to-one correspondence between the eigenspace Zλ for A and
the eigenspace Xλ for (14.2) (here, too, we allow complex HermitianM,C,K).
To compute a decomposition analogous to (14.5), we consider the inverse in
(4.23):

−JA−1 +
1
λ
J =

[
Ω−1DΩ−1 + 1

λIn F
F ∗ − 1

λIm

]
(14.7)

= W

[
Z 0
0 − 1

λIm

]
W ∗

where λ is real and

W =
[
In −λF
0 Im

]
and

Z =
λΩ−1DΩ−1 + In + λ2FF ∗

λ

=
Ω−1

λ

(
λ2

[
In 0
0 0

]
+ λD +Ω2

)
Ω−1

=
Ω−1

λ
Φ∗Q(λ)ΦΩ−1.

Now, using this, (14.7) as well as the equality

detA = det(Ω)2(detD22)−1(−1)n+m (14.8)

we obtain

det(λI −A) = det
(
−Jλ

(
J

λ
− JA−1

)
A

)
= (detD22)−1(detΦ)2 detQ(λ)

where Φ is from (4.7) and D22 from (4.8). From this it again follows that the
algebraic multiplicity of an eigenvalue of A equals the algebraic multiplicity
of the same eigenvalue of the pencil Q(·).

That is why we have called the phase-space matrix a ’linearisation’: the
quadratic eigenvalue problem is replaced by one which is linear and equiva-
lent to it.

Let us now concentrate on the eigenvalue equation (14.2). It implies

λ2x∗Mx+ λx∗Cx+ x∗Kx = 0, x 6= 0 (14.9)

and hence
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λ ∈ { p+(x), p−(x) } (14.10)

with

p±(x) =
−x∗Cx±

√
∆(x)

2x∗Mx
, (14.11)

∆(x) = (x∗Cx)2 − 4x∗Kxx∗Mx. (14.12)

The functions p± are homogeneous:

p±(αx) = p±(x)

for any scalar α and any vector x, both different from zero. If the discriminant
∆(x) is non-negative, then p±(x) is real and negative. If x is an eigenvector
then by (14.10) the corresponding eigenvalue λ is also real and negative. Now
for the corresponding y from (14.3) we have

y∗Jy = x∗Kx− λ2x∗Mx

= 2x∗Kx+ λx∗Cx

=
4x∗Mxx∗Kx− (x∗Cx)2 ± x∗Cx

√
∆(x)

2x∗Mx

=
∆(x)± x∗Cx

√
∆(x)

2x∗Mx
= ∓λ

√
∆(x) (14.13)

where we have used the identity (14.9) and the expressions (14.11), (14.12).
Since −λ is positive, we see that the eigenvector y of A is J-positive or J-
negative according to the sign taken in (14.11). The same is true of A from
(4.19) and z from (14.6). Indeed, with J from (4.22), we have

z∗Jz = yT1 Ω1y1 + yT2 Ω2y2 − λ2yT1 y1 =

yTΩy − λ2yT
[
Im 0
0 0

]
y = xTKx− λ2xTMx

as in (14.13). We summarise:

Proposition 14.2 The following statements are equivalent

1. λ is an eigenvalue of (14.2) and every corresponding eigenvector satisfies
∆(x) > 0.

2. λ is a J-definite eigenvalue of the phase-space matrix A from either (3.3)
or (4.19).

In this case λ is J-positive (J-negative) if and only if λ = p+(x) (λ = p−(x))
for any corresponding eigenvector x.

The appellation positive/negative/definite type will be naturally extended to
the eigenvalues of Q(·).

The reader will notice that we do not use the term ”overdamped” for such
eigenvalues (as we did for the one-dimensional oscillator in Example 9.3).
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The overdampedness property in several dimensions is stronger than that as
will be seen in the sequel.

If all eigenvalues of (14.2) are real and simple then they are of definite
type (cf. Exercise 12.7).

We call the family Q(·) (or, equivalently, the system (1.1)) overdamped, if
there is a µ such that

Q(µ) = µ2M + µC +K

is negative definite.

Proposition 14.3 For λ negative we have

ι+(JA− λJ) = ι−(Q(λ)) + n

and consequently
ι−(JA− λJ) = ι+(Q(λ)).

for A, J from (3.3), (3.7), respectively. In particular, Q(λ) is negative defi-
nite, if and only if JA− λJ is positive definite.

Proof. The assertion immediately follows from (14.5) and the Sylvester in-
ertia theorem (Theorem 5.7). Q.E.D.

Corollary 14.4 Let Q(·) be overdamped with eigenvalues

λ−n− ≤ · · · ≤ λ
−
1 < λ+

1 ≤ · · · ≤ λ
+
n+

and the definiteness interval (λ−1 , λ
+
1 ). Then for any λ > λ+

1 , with Q(λ)
non-singular the quantity ι+(Q(λ)) is equal to the number of the J-positive
eigenvalues less than λ (and similarly for the J-negative eigenvalues).

Proof. The statement follows from Proposition 14.3 and Theorem 10.7.
Q.E.D.

Thus, the overdampedness of the system M,C,K is equivalent to the
definitisability of its phase-space matrix. By Theorem 10.6 the eigenvalues
are split into two groups: the J-positive eigenvalues on the right and the J-
negative ones on the left. They are divided by the definiteness interval which
will go under the same name for the pencil Q(·) as well.

The overdampedness condition means

x∗Mxλ2 + x∗Cxλ+ x∗Kx ≡ x∗Mx(λ− p−(x))(λ− p+(x)) < 0 (14.14)

for any fixed λ from the definiteness interval and for all non-vanishing x, that
is

p−(x) < λ, p+(x) > λ,
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in particular,
p−(x) < p+(x),

or equivalently
∆(x) > 0 (14.15)

for every x 6= 0. Prima facie the condition (14.15) is weaker than (14.14). It is
a non-trivial fact that the two are indeed equivalent as will be seen presently.

The overdampedness is not destroyed, if we increase the damping and/or
decrease the mass and the stiffness, that is, if we replace M,C,K by
M ′, C ′,K ′ with

x∗M ′x ≤ x∗Mx, x∗C ′x ≥ x∗Cx, x∗K ′x ≤ x∗Kx for all x.

In this situation we say that the system M ′, C ′,K ′ is more viscous than
M,C,K. The viscosity is, in fact, an order relation on the set of all damped
systems.

We now formulate a theorem collecting together several equivalent defini-
tions of the overdampedness.

Theorem 14.5 The following properties are equivalent:

(i) The system (1.1) is overdamped
(ii) The discriminant ∆(x) from (14.12) is positive for all non-vanishing
x ∈ Cn.

(iii) The pair JA, J or, equivalently, S, T from (11.6) is definitisable.

Proof. The relations (i) ⇐⇒ (iii), (i) =⇒ (ii) are obvious. To prove (ii) =⇒
(i) we will use the following, also obvious, facts:

• The property (ii) is preserved under increased viscosity.
• The property (i) is preserved under increased viscosity, moreover the new

definiteness interval contains the old one.
• The set of all semidefinite matrices is closed.
• The set of all overdamped systems is open, that is, small changes in the

matrices M,C,K do not destroy overdampedness.

Suppose, on the contrary, that (ii) =⇒ (i) does not hold. Then there would
exist an ε0 ≥ 1 such that the pencils

Q(λ, ε) = λ2M + λεC +K

are overdamped for all ε > ε0 but not for ε = ε0 (obviously the overdamped-
ness holds, if ε is large enough). Since the corresponding phase-space matrix
Aε) depends continuously — and the definiteness intervals monotonically —
on ε > ε0 there is a real point λ = λ0, contained in all these intervals and
this is an eigenvalue of Aε0— otherwise JAε0 − λ0J would be not only posi-
tive semidefinite (which it must be), but positive definite which is precluded.
Thus JAε0 − λ0J is singular positive semidefinite, but by (ii) the eigenvalue
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λ0 is of definite type. By Theorem 10.11 the pair JAε0 , J is definitisable
i.e. JAε0 − λJ is positive definite for some λ in the neighbourhood of λ0.
This proves (ii) =⇒ (i). Q.E.D.

Exercise 14.6 Let the system M,C,K be overdamped and let C be perturbed
into C ′ = C + δC with

|xT δCx| ≤ εxTCx for all x,

ε < 1− 1
d
, d = min

x

xTCx

2
√
xTMxxTKx

.

Show that the system M,C ′,K is overdamped.

Exercise 14.7 Let M,C,K be real symmetric positive definite matrices.
Show that ∆(x) > 0 for all real x 6= 0 is equivalent to ∆(x) > 0 for all
complex x 6= 0.

Exercise 14.8 Let the damping be proportional: C = αM + βK, α, β ≥ 0.
Try to tell for which choices of α, β the system is overdamped. Show that this
is certainly the case, if αβ > 1.

Exercise 14.9 Prove the following statement. If µ is negative and Q(µ) non-
singular then A has at least

2(n− ι−(Q(µ)))

real eigenvalues (counting multiplicities).

Exercise 14.10 Prove the following statement. Let Q(·) have p eigenvalues
λ1, . . . , λp (counting multiplicities). If all these eigenvalues are of positive type
then corresponding eigenvectors x1, . . . , xp can be chosen as linearly indepen-
dent. Hint: Use the fact that the J-Gram matrix X∗JX for the corresponding
phase space eigenvectors

yj =
[
L∗1xj
λjL

∗
2xj

]
is positive definite.

Exercise 14.11 Prove the identity (14.8). Check this identity on the system
from Example 4.5.





Chapter 15

Simple eigenvalue inclusions

Although, as we have seen, the eigenvalues alone may not give sufficient in-
formation on the behaviour of the damped system, knowledge of them may
still be useful. In this chapter we will derive general results on the location
of the eigenvalues of a damped system.

In fact, the parameters obtained in such ’bounds’ or ’inclusions’ may give
direct estimates for the matrix exponential which are often more useful than
(13.5), (13.6). An example is the numerical range or the field of values

r(A) = {x∗Ax : x ∈ Cn, ‖x‖ = 1}

which contains σ(A). This is seen, if the eigenvalue equation

Ax− λx = 0

is premultiplied with x∗ which gives

λ =
x∗Ax

x∗x
.

Now (3.9) can be strengthened to

d

dt
‖y‖2 =

d

dt
y∗y = ẏ∗y + y∗ẏ = y∗(A∗ +A)y =

2 Re y∗Ay ≤ 2 max Re(r(A))‖y‖2 = λa‖y‖2.

By integrating the inequality

d
dt‖y‖

2

‖y‖2
=

d

dt

1
‖y‖2

≤ 2 max Re(r(A))

we obtain
‖y‖2 ≤ e2 max Re(r(A))‖y(0)‖2.
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Similarly, the inequality

d

dt
‖y‖2 = 2 Re y∗Ay ≥ 2 min Re(r(A))‖y‖2

implies
‖y‖2 ≥ e2 min Re(r(A))‖y(0)‖2.

Altogether we obtain

emin Re(r(A))t ≤ ‖eAt‖ ≤ emax Re(r(A))t. (15.1)

This is valid for any matrixA. IfA is our phase-space matrix then max Re(r(A)) =
0 which leads to the known estimate ‖eAt‖ ≤ 1 whereas the left hand side
inequality in (15.1) yields

‖eAt‖ ≥ e−‖C‖t.

The decay information obtained in this way is rather poor. A deeper insight
comes from the quadratic eigenvalue equation (14.2). We thus define the
numerical range of the system M,C,K, also called the quadratic numerical
range as

w(M,C,K) = {λ ∈ C : λ2x∗Mx+ λx∗Cx+ x∗Kx = 0, x ∈ Cn \ {0}}

or, equivalently,
w(M,C,K) = R(p+) ∪R(p−)

where the symbolR denotes the range of a map and p± is given by (14.11); for
convenience we set a non-real p+ to have the positive imaginary part. By con-
struction, the quadratic numerical range contains all eigenvalues.1 Due to the
obvious continuity and homogeneity of the functions p± the set w(M,C,K)
is compact. (That is, under our standard assumption that M be positive defi-
nite. If M is singular, then w(M,C,K) is unbounded. This has to do with the
fact that the ’missing’ eigenvalues in this case can be considered as infinite.)

The non-real part of w(M,C,K) is confined to certain regions of the left
half plane:

Proposition 15.1 Let λ ∈ w(M,C,K) be non real. Then

c− ≤ −Reλ ≤ c+ (15.2)

ω1 ≤ |λ| ≤ ωn (15.3)

where

c− = min
xTCx

2xTMx
, c+ = sup

xTCx

2xTMx
, (15.4)

1 This is a special case of the so called polynomial numerical range, analogously defined
for general matrix polynomials.
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ω2
1 = min

xTKx

xTMx
, ω2

n = sup
xTKx

xTMx
. (15.5)

Here infinity as sup value is allowed, if M has a non-trivial null space and
only those x are taken for which xTMx > 0. In particular, any non-real
eigenvalue λ satisfies (15.2), (15.3).

Proof. If λ is non-real, then

λ =
−x∗Cx± i

√
4x∗Kxx∗Mx− (x∗Cx)2

2x∗Mx

and
Reλ = − x∗Cx

2x∗Mx

from which (15.2) follows. Similarly,

|λ|2 =
x∗Kx

x∗Mx

from which (15.3) follows. Q.E.D.
Note that forM non-singular the suprema in (15.4), (15.5) turn to maxima.

The eigenvalue inclusion obtained in Proposition 15.1 can be strengthened
as follows.

Theorem 15.2 Any eigenvalue λ outside of the region (15.2), (15.3) is real
and of definite type. More precisely, any λ < max{−c−,−ω1} is of negative
type whereas any λ > min{−c+,−ωn} is of positive type.

Proof. The complement of the region (15.2), (15.3) contains only real nega-
tive eigenvalues λ. Hence for any eigenpair λ, x of (14.2) we have ∆(x) ≥ 0
and λ ∈ {p+(x), p−(x)}.

Suppose
λ = p+(x) < −c−

that is,

− x∗Cx

2x∗Mx
+

√(
x∗Cx

2x∗Mx

)2

− x∗Kx

x∗Mx
< −max

y

y∗Cy

2y∗My
.

Then
x∗Cx

2x∗Mx
> max

y

y∗Cy

2y∗My
.

— a contradiction. Thus, λ 6= p+(x) and λ = p−(x), hence ∆(x) > 0 and λ
is of negative type. The situation with λ = p−(x) > −c+ is analogous.

Suppose now
λ = p+(x) < −ωn
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that is√√√√( x∗Cx

2x∗Mx
+

√
x∗Kx

x∗Mx

)(
x∗Cx

2x∗Mx
−
√
x∗Kx

x∗Mx

)
<

x∗Cx

2x∗Mx
−

√
max
y

y∗Ky

y∗My

≤ x∗Cx

2x∗Mx
−
√
x∗Kx

x∗Mx
.

So, we would have

x∗Cx

2x∗Mx
+

√
x∗Kx

x∗Mx
<

x∗Cx

2x∗Mx
−
√
x∗Kx

x∗Mx

— a contradiction. Hence λ 6= p+(x), λ = p−(x), ∆(x) > 0 and by Proposi-
tion 14.2 λ is of negative type. Suppose

−ω1 < λ = p−(x).

Then

1
p−(x)

= − x∗Cx

2x∗Kx
+

√(
x∗Cx

2x∗Kx

)2

− x∗Mx

x∗Kx
< −max

y

y∗My

y∗Ky
.

or again√√√√( x∗Cx

2x∗Kx
+

√
x∗Mx

x∗Kx

)(
x∗Cx

2x∗Kx
−
√
x∗Mx

x∗Kx

)
<

x∗Cx

2x∗Kx
−

√
max
y

y∗My

y∗Ky
.

This leads to a contradiction similarly as before. Q.E.D.

Remark 15.3 Another set of eigenvalue inclusions is obtained if we note
that the adjoint eigenvalue problem

(µ2K + µC +M)x = 0

has the same eigenvectors as (14.2) and the inverse eigenvalues µ = 1/λ.
Analogously to (15.2) non-real eigenvalues λ are contained in the set differ-
ence of two circles{

µ1 + iµ2 :
(
µ1 +

1
2γ−

)2

+ µ2
2 ≤

(
1

2γ−

2)}
\

{
µ1 + iµ2 :

(
µ1 +

1
2γ+

)2

+ µ2
2 ≤

(
1

2γ+

)2
}

with
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γ+ = max
x

x∗Cx

2x∗Kx
, γ− = min

x

x∗Cx

2x∗Kx
(the analog of (15.3) gives nothing new).

Proposition 15.4 Let M be non-singular and n eigenvalues (counting mul-
tiplicities) of A are placed on one side of the interval

[−c+,−c−] ∩ [−ωn,−ω1] (15.6)

with c± as in Proposition 15.1. Then the system is overdamped.

Proof. Let n eigenvalues λ+
1 , . . . , λ

+
n be placed, say, in

(−min{c−, ω1}, 0).

Then their eigenvectors are J-positive and all these eigenvalues are J-positive.
Therefore to them there correspond n eigenvectors of A: y+

1 , . . . , y
+
n with

y∗jJyk = δjk and they span a J-positive subspace X+, invariant for A. Then
the J-orthogonal complement X− is also invariant for A and is J-negative
(note that n = ι+(J) = ι−(J)) hence other eigenvalues are J-negative and
they cannot belong to the interval (15.6). Thus we have the situation from
Theorem 10.6. So there is a µ such that JA− µJ is positive definite and the
system is overdamped. Q.E.D.

The systems having one or more purely imaginary eigenvalues in spite of
the damping have special properties:

Proposition 15.5 An eigenvalue λ in (14.2) is purely imaginary, if and
only if for the corresponding eigenvector x we have Cx = 0.

Proof. If Cx = 0 then λ is obviously purely imaginary. Conversely, let λ = iω
with ω real i.e.

−ω2Mx+ iωCx+Kx = 0

hence
−ω2x∗Mx+ iωx∗Cx+ x∗Kx = 0.

By taking the imaginary part we have x∗Cx = 0 and, by the positive semidef-
initeness of C, Cx = 0. Q.E.D.

The presence of purely imaginary eigenvalues allows to split the system
into an orthogonal sum of an undamped system and an exponentially decay-
ing one. We have

Proposition 15.6 Whenever there are purely imaginary eigenvalues there
is a non-singular Φ such that

Φ∗Q(λ)Φ =
[
K1(λ) 0

0 K2(λ)

]
,
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K1(λ) = λ2M1 +K1, K2(λ) = λ2M2 + λC2 +K2

where the system M2, C2,K2 has no purely imaginary eigenvalues.

Proof. Take any eigenvector of Q(·) for an eigenvalue iω. Then by completing
it to an M -orthonormal basis in Ξn we obtain a matrix Φ1 such that

Φ∗1Q(λ)Φ1 =
[
λ2 − ω2 0

0 K̂(λ)

]
and, if needed, repeat the procedure on

K̂(λ) = λ2M̂ + λĈ + K̂.

and finally set Φ = Φ1Φ2 · · ·. Q.E.D.

Corollary 15.7 The phase-space matrix A from (3.3) or (4.19) is asymptot-
ically stable, if and only if the form x∗Cx is positive definite on any eigenspace
of the undamped system. Any system which is not asymptotically stable is con-
gruent to an orthogonal sum of an undamped system and an asymptotically
stable one.

Proof. According to Proposition 15.5 A is asymptotically stable, if and only
if Cx 6= 0 for any non-vanishing x from any undamped eigenspace. By the
positive semidefiniteness of C the relation Cx 6= 0 is equivalent to x∗Cx > 0.
The last statement follows from Proposition 15.6. Q.E.D.

If iω is an undamped eigenvalue of multiplicity m then C must have rank
at least m in order to move it completely into the left half-plane. (That
eigenvalue may then, of course, split into several complex eigenvalues.) In
particular, if C has rank one then the asymptotic stability can be achieved,
only if all undamped eigenvalues are simple.

In spite of their elegance and intuitiveness the considerations above give
no further information on the exponential decay of eAt.

Exercise 15.8 Show that the system from Example 1.1 is asymptotically sta-
ble, if any of ci or di is different from zero.



Chapter 16

Spectral shift

Spectral shift is a simple and yet powerful tool to obtain informations on the
decay in time of a damped system.

If in the differential equation

ẏ = Ay

we substitute
y = eµtu, ẏ = µeµtu+ eµtu̇

then we obtain the ’spectral-shifted’ system

u̇ = Ãu, Ã = A− µI.

Now, if we know that Ã has an exponential which is bounded in time and
µ < 0 this property would yield an easy decay bound

‖eAt‖ ≤ eµt sup
t≥0
‖eÃt‖.

In the case of our phase-space matrix A it does not seem to be easy to find
or to estimate the quantity sups≥0 ‖eÃt‖ just from the spectral properties of
A. However, if an analogous substitution is made on the second order system
(1.1) the result is much more favourable. So, by setting x = eµtz and using

ẋ = µeµtz + eµtż

ẍ = µ2eµtz + 2µeµtż + eµtz̈

the system (1.1) (with f ≡ 0) goes over into

Mz̈ + C(µ)ż +Q(µ)z = 0

with Q(µ) from (14.4) and

133
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C(µ) = K ′(µ) = 2µM + C.

As long as C(µ), Q(µ) stay positive definite this is equivalent to the phase-
space representation

ẇ = Âw, Â =
[

0 Q(µ)1/2M−1/2

−M−1/2Q(µ)1/2 −M−1/2C(µ)M−1/2

]
, (16.1)

w =
[
Q(µ)1/2z
M1/2ż

]
,

whose solution is given by eÂt. We now connect the representations (16.1)
and (3.2). We have

y1 = K1/2x = eµtK1/2z = µeµtK1/2Q(µ)−1/2w1,

y2 = M1/2ẋ = µeµtM1/2Q(µ)−1/2w1 + eµtw2.

Thus,
y = eµtL(µ)w,

L(µ) =
[

K1/2Q(µ)−1/2 0
µM1/2Q(µ)−1/2 I

]
.

This, together with the evolution equations for y, w gives

L(µ)Â = (A− µI)L(µ) (16.2)

or, equivalently
eAt = L−1(µ)eÂ+µtIL(µ).

Hence an elegant decay estimate

‖eAt‖ ≤ ‖L(µ)‖‖L(µ)−1‖eµt. (16.3)

This brings exponential decay only, if there are such µ < 0 for which
C(µ), Q(µ) stay positive definite, in fact, C(µ) may be only positive semidef-
inite. By continuity, such µ will exist, if and only if C is positive definite.
That is, positive definite C insures the exponential decay.

The next task is to establish the optimal decay factor µ in (16.3). We set

γ = max
x 6=0

Re p+(x) = max Rew(M,C,K),

this maximum is obtained because w(M,C,K) is compact.

Theorem 16.1 Let all of M,C,K be all positive definite. Then

γ ≥ − inf
x

x∗Cx

2x∗Mx
, (16.4)
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moreover, γ is the infimum of all µ for which both Q(µ) and C(µ) are positive
definite.

Proof. The relation (16.4) is obvious. To prove the second assertion take any
µ > γ. Then

x∗Q(µ)x = (16.5)

x∗Mx(µ− p−(x))(µ− p+(x)) ≥ x∗Mx(µ− Re p+(x))2 ≥ x∗Mx(µ− γ)2

(note that p−(x) ≤ p+(x) whenever ∆(x) ≥ 0). Thus, Q(µ) is positive def-
inite. By (16.4) C(µ) is positive definite also. By continuity, both Q(γ) and
C(γ) are positive semidefinite. Conversely, suppose that, say, C(γ) is positive
definite; we will show that Q(γ) must be singular. Indeed, take a unit vector
x0 such that

Re p+(x0) = γ.

Then by inserting in (16.5) µ = γ we obtain x∗Q(γ)x0 = 0, i.e. Q(γ) is sin-
gular. Q.E.D.

The previous theorem gives a simple possibility to compute γ by iterating
the Cholesky decomposition of Q(µ) on the interval

− inf
x

x∗Cx

2x∗Mx
≤ µ < 0

and using bisection.

Exercise 16.2 Show that the constants in the bound (16.3) do not depend
on the transformation of coordinates of type (2.19).

Exercise 16.3 Compute the constants in (16.3) for the matrices A from the
Example 9.3. Show that they are poor in the overdamped case and try to
improve them. Hint: reduce A to the diagonal form.

Exercise 16.4 Compute the constants in (16.3) for the matrices A from the
Example 12.22.

Exercise 16.5 If Q(µ) is negative definite for some µ derive a formula anal-
ogous to (16.2) in which Â is symmetric.

Exercise 16.6 Investigate the behaviour of the departure from normality of
the matrix Â from (16.1) as a function of µ.

Solution. The function η(A) is shift invariant; this and the fact that the
eigenvalues of A− µI and Â coincide imply

η(Â)− η(A) = ‖Â‖2E − ‖A− µI‖2E =

2Tr
(
M−1Q(µ)

)
+ Tr

(
M−1C(µ)

)
−
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−Tr
(
µ2I
)
− 2Tr

(
M−1K

)
− Tr

(
(µI +M−1/2CM−1/2)2

)
= 2Tr

(
µ2I + µM−1C +M−1K

)
+ Tr

(
4µ2I + 4µM−1C + (M−1C)2

)
−Tr

(
4µ2I

)
− 2Tr

(
M−1K

)
− Tr

(
µ2I + 2µM−1C + (M−1C)2

)
= 4nµ2 + 4µTr

(
M−1/2CM−1/2

)
which is minimal at

µ = µ0 = −
Tr
(
M−1/2CM−1/2

)
2n

= −γ1 + · · ·+ γn
2n

≤ γ

where γ1, . . . , γn are the eigenvalues of M−1/2CM−1/2 and the last inequality
is due to (16.4).



Chapter 17

Resonances and resolvents

We have thus far omitted considering the inhomogeneous differential equa-
tion (1.1) since its solution can be obtained from the one of the homogeneous
equation. There are, however, special types of right hand side f in (1.1) the
solution of which is particularly simply obtained and can, in turn, yield valu-
able information on the damped system itself. So they deserve a closer study.

Suppose that the external force f is harmonic, that is,

f(t) = fa cosωt+ fb sinωt (17.1)

where ω is a real constant and fa, fb are real constant vectors. So called
steady-state vibrations in which the system is continuously excited by forces
whose amount does not vary much in time are oft approximated by harmonic
forces.

With the substitution

x(t) = xa cosωt+ xb sinωt (17.2)

(1.1) gives the linear system (here we keep M,C,K real)[
−ω2M +K ωC

−ωC −ω2M +K

] [
xa
xb

]
=
[
fa
fb

]
. (17.3)

The function (17.2) is called the harmonic response to the harmonic force
(17.1). By introducing complex quantities

x0 = xa − ixb, f0 = fa − ifb

the system (17.3) is immediately seen to be equivalent to

Q(iω)x0 = f0. (17.4)

By Proposition 15.5 we have the alternative
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• The system is asymptotically stable or, equivalently, the system (17.4) is
uniquely solvable.

• The system (17.4) becomes singular for some ω ∈ σ(Ω), Ω from (2.5).

Exercise 17.1 Show that Q(iω) is non-singular whenever ω 6∈ σ(Ω).

Exercise 17.2 Show that (17.4) is equivalent to

(iωI −A)y0 = F0 (17.5)

with

y0 =
[

LT1 x0

iωLT2 x0

]
, F0 =

[
0

L−1
2 f0

]
and y(t) = y0e

iωt is a solution of ẏ = Ay + F0e
iωt.

Exercise 17.3 Which harmonic response corresponds to a general right hand
side vector F0 in (17.5)?

From (17.5) we see that the harmonic response in the phase-space is given
by the resolvent of A taken on the imaginary axis. In analogy we call the
function Q(λ)−1 the resolvent of the quadratic pencil (14.4) or simply the
quadratic resolvent. In the damping-free case Q(iω) will be singular at every
undamped frequency ω = ωj .

Proposition 17.4 If the system is not asymptotically stable then there is an
f(t) such that (1.1) has an unbounded solution.

Proof. There is a purely imaginary eigenvalue iω and a real vector x0 6= 0
such that Kx0 = ω2Mx0 and Cx0 = 0. Take f(t) = αx0e

iωt and look for a
solution x(t) = ξ(t)x0. Substituted in (1.1) this gives

ξ̈ + ω2ξ = αeiωt

which is known to have unbounded solutions. Q.E.D.

Exercise 17.5 Prove the identity

(λI −A)−1 =

[
1
λI −

LT1 Q(λ)−1L1
λ LT1 Q(λ)−1L2

−LT2 Q(λ)−1L1 L
T
2 Q(λ)−1L2

]
. (17.6)

Exercise 17.6 Show that the singularity at λ = 0 in (17.6) is removable by
conveniently transforming the 1, 1- block.

Any system in which the frequency of the harmonic force corresponds to a
purely imaginary eigenvalue as in Proposition 17.4 is said to be in the state
of resonance. The same term is used, if an eigenvalue of (14.4) is close to
the imaginary axis. In this case the amplitude is expected to have a high
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peak at the point ω equal to the imaginary part of the close eigenvalue. In
practice, high peaks are just as dangerous as true singularities; both result in
large displacements which may break the structure or, to alter the elasticity
properties of the material with equally disastrous consequences. In any case,
large displacements do not warrant the use of a linearised theory anymore.

Given a linear system of equations like that in (17.4) one is interested in
its accurate numerical solution which involves the condition number of the
matrix Q(iω). One would wish to have an efficient algorithm exploiting this
structure. Remember that the non-singularity of these matrices, as that of
Q(iω) is generally a consequence of a rather subtle interplay of M,C,K. Most
interesting values of ω lie between ω1 and ωn, so K − ω2M will typically be
a non-definite symmetric matrix.

Exercise 17.7 Show that the condition number of the coefficient matrix in
(17.3) equals that of Q(iω).

We can measure the size of the harmonic response by the square of its norm,
averaged over the period τ = 2π/ω which equals

1
τ

∫ τ

0

‖x(t)‖2dt =
‖xa‖2 + ‖xb‖2

2
=
‖x0‖2

2

=
f∗0Q(−iω)−1Q(iω)−1f0

2
.

The square root of this quantity is the average displacement amplitude. An-
other measure is the total energy

1
τ

∫ τ

0

‖y(t)‖2

2
dt =

x∗0(ω2M +K)x0

2
=

=
f∗0Q(−iω)−1(ω2M +K)Q(iω)−1f0

2
.

This is the average energy amplitude.

Exercise 17.8 Compute the harmonic response of a modally damped system
and its average energy amplitude. Hint: go over to the transformed system
with the transformation matrix Φ from (3.10).

The free oscillations (those with f = 0) are also called transient oscillations
whereas those with harmonic or similar forces which produce responses not
largely varying in time are called steady state oscillations.





Chapter 18

Well-posedness

Having studied the asymptotic stability in previous chapters we are now in
a position to rigorously state the problem of well-posedness, that is, the de-
pendence of the solution of a damped system on the right hand side as well
as on the initial conditions.

We will say that the system (1.1) or, equivalently its phase-space formu-
lation (3.2) is well posed, if there is a constant C such that

sup
t≥0
‖y(t)‖ ≤ C(sup

t≥0
‖g(t)‖+ ‖y0‖) (18.1)

for all initial data y0.

Theorem 18.1 The system (3.2) is well-posed, if and only if it is asymptot-
ically stable.

Proof. Let the system be asymptotically stable. From (3.1), (13.8) as well
as the contractivity of eAt we have

‖y(t)‖ ≤ ‖y0‖+ Fe−νt sup
t≥0
‖g(t)‖

∫ t

0

eντdτ =

‖y0‖+ F sup
t≥0
‖g(t)‖1− eνt

ν
,

so (18.1) holds with C = 1 + F/ν. Conversely, if the system is not asymp-
totically stable then Proposition 17.4 provides an unbounded solution. Q.E.D.

Of course, in applications the mere existence of the constant C = 1 + F/ν
is of little value, if one does not know its size. To this end the bounds (13.10)
and (16.3) may prove useful.
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If the system is not asymptotically stable we may modify the definition of
well-posedness so that only the homogeneous system is considered in which
case no g(t) appears in (18.1). Then any damped system is trivially well-posed
with C = 1.



Chapter 19

Modal approximation

Some, rather rough, facts on the positioning of the eigenvalues were given
in Chapter 15. Further, more detailed, information can be obtained, if the
system is close to one with known properties. Such techniques go under the
common name of ’perturbation theory’. The simplest ’thoroughly known’
system is the undamped one. Next to this lie the modally damped systems
which were studied in Chapter 2. Both cases are the subject of the present
chapter. In particular, estimates in the sense of Gershgorin will be obtained.

A straightforward eigenvalue estimate for a general matrix A close to a
matrix A0 is based on the invertibility of any matrix I + Z with ‖Z‖ < 1.
Thus,

A− λI =
(
I + (A−A0)(A0 − λI)−1

)
(A0 − λI)

which leads to

σ(A) ⊆ G1 = {λ : ‖(A−A0)(A0 − λI)−1‖ < 1} (19.1)

Obviously G1 ⊆ G2 with

G2 = {λ : ‖(A0 − λI)−1‖−1 ≤ ‖A−A0‖}.

where we have used the obvious estimate

‖(A−A0)(A0 − λI)−1‖ ≤ ‖A−A0‖‖(A0 − λI)−1‖.

If A is block-diagonal
A = diag(A11, . . . , App)

then ‖(A0 − λI)−1‖ simplifies to maxi ‖(Aii − λIni)−1‖ and

σ(A) ⊆ {λ : max
i
‖(Aii − λIi)−1‖ ≤ ‖A−A0‖}.
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This is valid for any matrices A,A0. We will first consider the phase-space
matrix A from (3.10). The matrix A0 (this is the undamped approximation)
is obtained from A by setting D = 0. Thus,

A−A0 =
[

0 0
0 −D

]
.

The matrix A0 is skew-symmetric and therefore normal, so ‖(A0−λI)−1‖−1 =
dist(λ, σ(A0)) hence

G2 = {λ : dist(λ, σ(A0)) ≤ ‖A−A0‖} (19.2)

where

‖A−A0‖ = ‖D‖ = ‖L−1
2 CL−T2 ‖ = max

xTCx

xTMx
(19.3)

is the largest eigenvalue of the matrix pair C,M . We may say that here ’the
size of the damping is measured relative to the mass’.

Thus, the perturbed eigenvalues are contained in the union of the disks of
radius ‖D‖ around σ(A0).

Exercise 19.1 Show that σ(A) is also contained in the union of the disks

{λ : |λ∓ iωj | ≤ Rj}

where ωj are the undamped frequencies and

Rj =
n∑
k=1

|dkj |. (19.4)

Hint: Replace the spectral norm in (19.1) by the norm ‖ · ‖1.

The bounds obtained above are, in fact, too crude, since we have not taken
into account the structure of the perturbation A − A0 which has so many
zero elements.

Instead of working in the phase-space we may turn back to the original
quadratic eigenvalue problem in the representation in the form (see (2.4) and
(3.10))

det(λ2I + λD +Ω2) = 0.

The inverse
(λ2I + λD +Ω2)−1 =

(λ2I +Ω2)−1(I + λD(λ2I +Ω2)−1)−1

exists, if
‖D(λ2I +Ω2)−1‖|λ| < 1

which is implied by
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‖(λ2I +Ω2)−1‖‖D‖|λ| = ‖D‖|λ|
minj(|λ− iωj ||λ+ iωj |)

< 1.

Thus,
σ(A) ⊆ ∪jC(iωj ,−iωj , ‖D‖), (19.5)

where the set

C(λ+, λ−, r) = {λ : |λ− λ+||λ− λ−| ≤ |λ|r} (19.6)

will be called stretched Cassini ovals with foci λ± and extension r. This is
in analogy with the standard Cassini ovals where on the right hand side
instead of |λ|r one has just r2. (The latter also appear in eigenvalue bounds
in somewhat different context.) We note the obvious relation

C(λ+, λ−, r) ⊂ C(λ+, λ−, r
′), whenever r < r′. (19.7)

The stretched Cassini ovals are qualitatively similar to the standard ones;
they can consist of one or two components; the latter case occurs when r is
sufficiently small with respect to |λ+ − λ−|. In this case the ovals in (19.5)
are approximated by the disks

|λ± iωj | ≤
‖D‖

2

and this is one half of the bound in (19.2), (19.3).

Exercise 19.2 Show that σ(A) is also contained in the union of the ovals

C(iωj ,−iωj , ‖Ω−1DΩ−1‖ω2
j ).

Hint: Instead of inverting λ2I + λD +Ω2 invert λ2Ω−2 + λΩ−1DΩ−1 + I.

Exercise 19.3 Show that σ(A) is contained in the union of the ovals

C(iωj ,−iωj , Rj)

and also
C(iωj ,−iωj , ρjω2

j )

with

ρj =
n∑
k=1
k 6=j

|dkj |
ωkωj

.

Exercise 19.4 Show that any of the inequalities

min
j

(2ωj −Rj) > 0, (19.8)

min
j

2ωj − ‖D‖ > 0,
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with Rj from (19.4) and

min
j

2
ωj
− ‖Ω−1DΩ−1‖ > 0

precludes real eigenvalues of (14.2).

Solution. If an eigenvalue λ is real then according to Exercise 19.3 we must
have

λ2 + ω2
j ≤ |λ|Rj

for some j and this implies R2
j − 4ω2

j ≥ 0. Thus, under (19.8) no real eigen-
values can occur (and similarly in other two cases).

The just considered undamped approximation was just a prelude to the
main topic of this chapter, namely the modal approximation. The modally
damped systems are so much simpler than the general ones that practitioners
often substitute the true damping matrix by some kind of ’modal approxi-
mation’. Most typical such approximations in use are of the form

Cprop = αM + βK (19.9)

where α, β are chosen in such a way that Cprop be in some sense as close as
possible to C, for instance,

Tr [(C − αM − βK)W (C − αM − βK)] = min,

where W is some convenient positive definite weight matrix. This is a pro-
portional approximation. In general such approximations may go quite astray
and yield thoroughly false predictions. We will now assess them in a more
systematic way.

A modal approximation to the system (1.1) is obtained by first represent-
ing it in modal coordinates by the matrices D, Ω and then by replacing D
by its diagonal part

D0 = diag(d11, . . . , dnn). (19.10)

The off-diagonal part
D′ = D −D0 (19.11)

is considered a perturbation. Again we can work in the phase-space or with
the original quadratic eigenvalue formulation. In the first case we can make
perfect shuffling to obtain

A = (Aij), Aii =
[

0 ωi
−ωi −dii

]
, Aij =

[
0 0
0 −dij

]
(19.12)

A0 = diag(A11, . . . , Ann).
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So, for n = 3

A =


0 ω1 0 0 0 0
−ω1 −d11 0 −d12 0 −d13

0 0 0 ω2 0 0
0 −d12 −ω2 −d22 0 −d23

0 0 0 0 0 ω3

0 −d13 0 −d23 −ω3 −d33

 .

Then
‖(A0 − λI)−1‖−1 = max

j
‖(Ajj − λIj)−1‖−1.

Even for 2× 2-blocks any common norm of (Ajj −λIj)−1 seems complicated
to express in terms of disks or other simple regions, unless we diagonalise
each Ajj as

S−1
j AjjSj =

[
λj+ 0

0 λj−

]
, λj± =

−djj ±
√
d2
jj − 4ω2

j

2
. (19.13)

As we know from Example 9.3 we have

κ(Sj) =

√
1 + µ2

j

|1− µ2
j |
, µj =

djj
2ωj

.

Set S = diag(S11, . . . , Snn) and

A′ = S−1AS = A′0 +A′′, A′′ = S−1(A−A0)S

then
A′0 = diag(λ1

±, . . . , λ
n
±),

A′′jk = S−1
j AjkSk.

Now the general perturbation bound (19.2), applied to A′0, A
′′, gives

σ(A) ⊆ ∪j,±{λ : |λ− λj±| ≤ κ(S)‖D′‖}. (19.14)

There is a related ’Gershgorin-type bound’

σ(A) ⊆ ∪j,±{λ : |λ− λj±| ≤ κ(Sj)rj} (19.15)

with

rj =
n∑
k=1
k 6=j

‖djk‖. (19.16)

To show this we replace the spectral norm ‖ · ‖ in (19.1) by the norm ‖| · ‖|1,
defined as
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‖|A‖|1 := max
j

∑
k

‖Akj‖

where the norms on the right hand side are spectral. Thus, (19.1) will hold,
if

max
j

∑
k

‖(A−A0)kj‖‖(Ajj − λIj)−1‖ < 1.

Taking into account the equality

‖(A−A0)kj‖ =
{
|dkj |, k 6= j

0 k = j

λ ∈ σ(A) implies

rj ≥ ‖(Ajj − λI)−1‖ ≥
min{|λ− λj+|, |λ− λ

j
−|}

κ(Sj)

and this is (19.15).

The bounds (19.14) and (19.15) are poor whenever the modal eigenvalue
approximation is close to a critically damped eigenvalue. Better bounds are
expected, if we work directly with the quadratic eigenvalue equation. The
inverse

(λ2I + λD +Ω2)−1 =

(λ2I + λD0 +Ω2)−1(I + λD′(λ2I + λD0 +Ω2)−1)−1

exists, if
‖D′(λ2I + λD0 +Ω2)−1‖|λ| < 1,

D′ from (19.11), which is insured if

‖(λ2I + λD0 +Ω2)−1‖‖D′‖|λ| = ‖D′‖|λ|
minj(|λ− λj+||λ− λ

j
−|)

< 1.

Thus,
σ(A) ⊆ ∪jC(λj+, λ

j
−, ‖D′‖). (19.17)

These ovals will always have both foci either real or complex conjugate. If r =
‖D′‖ is small with respect to |λj+ − λ

j
−| =

√
|d2
jj − 4ω2

j | then either |λ− λj+|

or |λ− λj−| is small. In the first case the inequality |λ− λj+||λ− λ
j
−| ≤ |λ|r is

approximated by

|λ− λj+| ≤
|λj+|r

|λj+ − λ
j
−|

= r


ωj√

d2jj−4ω2
j

djj < 2ωj

djj−
√
d2jj−4ω2

j√
d2jj−4ω2

j

djj > 2ωj
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and in the second

|λ− λj−| ≤
|λj−|r
|λj+ − λ

j
−|

= r


ωj√

d2jj−4ω2
j

djj < 2ωj

djj+
√
d2jj−4ω2

j√
d2jj−4ω2

j

djj > 2ωj

.

This is again a union of disks. If djj ≈ 0 then their radius is ≈ r/2. If
djj ≈ 2ωj i.e. λ− = λ+ ≈ −djj/2 the ovals look like a single circular disk.
For large djj the oval around the absolutely larger eigenvalue is ≈ r (the same
behaviour as with (19.15)) whereas the smaller eigenvalue has the diameter
≈ 2rω2

j /d
2
jj which is drastically better than (19.15).

In the same way as before the Gershgorin type estimate is obtained

σ(A) ⊆ ∪jC(λj+, λ
j
−, rj). (19.18)

We have called D0 a modal approximation to D because the matrix D
is not uniquely determined by the input matrices M,C,K. Different choices
of the transformation matrix Φ give rise to different modal approximations
D0 but the differences between them are mostly non-essential. To be more
precise, let Φ and Φ̃ both satisfy (2.4). Then

M = Φ−TΦ−1 = Φ̃−T Φ̃−1,

K = Φ−TΩ2Φ−1 = Φ̃−TΩ2Φ̃−1

implies that U = Φ−1Φ̃ is an orthogonal matrix which commutes with Ω
which we now write in the form (by labelling ωj differently)

Ω = diag(ω1In1 , . . . , ωsIns), ω1 < · · · < ωs. (19.19)

Denote by D = (Dij) the corresponding partition of the matrix D and set

U0 = diag(U11, . . . , Uss),

where each Ujj is an orthogonal matrix of order nj from (19.10). Now,

D̃ := Φ̃TCΦ̃ = UTΦ∗CΦU = UTDU,

D̃ij = UTiiDijUjj

and hence
D̃′ = UTD′U.

Now, if the undamped frequencies are all simple, then U is diagonal and
the estimates (19.3) or (19.5) – (19.6) remain unaffected by this change of
coordinates. Otherwise we replace diag(d11, . . . , dnn) by
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D0 = diag(D11, . . . , Dss) (19.20)

where D0 commutes with Ω. In fact, a general definition of any modal ap-
proximation is that it

1. is block-diagonal part of D and
2. commutes with Ω.

The modal approximation with the coarsest possible partition — this is the
one whose block dimensions equal the multiplicities in Ω — is called a max-
imal modal approximation. Accordingly, we say that C0 = Φ−1D0Φ−T is a
modal approximation to C (and also M,C0,K to M,C,K).

Proposition 19.5 Each modal approximation to C is of the form

C0 =
s∑

k=1

P ∗kCPk

where P1, . . . .Ps is an M -orthogonal decomposition of the identity (that is
P ∗k = MPkM

−1) and Pk commute with the matrix

√
M−1K = M−1/2

√
M−1/2KM−1/2M1/2.

Proof. Use the formula

D0 =
s∑

k=1

P 0
kDP

0
k

with

P 0
k = diag(0, . . . , Ink , . . . , 0), D = ΦTCΦ, D0 = ΦTC0Φ

and set Pk = ΦP 0
kΦ
−1. Q.E.D.

Exercise 19.6 Characterise the set of all maximal modal approximations,
again in terms of the original matrices M,C,K.

It is obvious that the maximal approximation is the best among all modal
approximations in the sense that

‖D −D0‖E ≤ ‖D − D̂0‖E , (19.21)

where
D̂0 = diag(D̂11, . . . , D̂zz) (19.22)

and D = (D̂ij) is any block partition of D which is finer than that in (19.20).
It is also obvious that D0 is better than any diagonal damping matrix e.g. the
one given by (19.9).

We will now prove that the inequality (19.21) is valid for the spectral norm
also. We shall need the following
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Proposition 19.7 Let H = (Hij) be any partitioned Hermitian matrix such
that the diagonal blocks Hii are square. Set

H0 = diag(H11, . . . ,Hss), H ′ = H −H0.

Then
λk(H)− λn(H) ≤ λk(H ′) ≤ λk(H)− λ1(H) (19.23)

where λk(·) denotes the non-decreasing sequence of the eigenvalues of any
Hermitian matrix.

Proof. The estimate (2.14) yields

λk(H)−max
j

maxσ(Hjj) ≤ λk(H ′) ≤ λk(H)−min
j

minσ(Hjj).

By the interlacing property,

λ1(H) ≤ σ(Hjj) ≤ λn(H).

Altogether we obtain (19.23). Q.E.D.

From (19.23) some simpler estimates immediately follow:

‖H ′‖ ≤ λn(H)− λ1(H) =: spread(H) (19.24)

and, if H is positive (or negative) semidefinite

‖H ′‖ ≤ ‖H‖. (19.25)

Hence, in addition to (19.21) we also have

‖D −D0‖ ≤ ‖D − D̂0‖.

So, a best bound in (19.17) is obtained, if D0 = D −D′ is a maximal modal
approximation.

If D0 is block-diagonal and the corresponding D′ = D − D0 is inserted
in (19.17) then the values djj from (19.13) should be replaced by the cor-
responding eigenvalues of the diagonal blocks Djj . But in this case we can
further transform Ω and D by a unitary similarity

U = diag(U1, . . . , Us)

such that each of the blocks Djj becomes diagonal (Ω stays unchanged).
With this stipulation we may retain the formula (19.17) unaltered. This shows
that taking just the diagonal part D0 of D covers, in fact, all possible modal
approximations, when Φ varies over all matrices performing (2.4).

Similar extension can be made to the bound (19.18) but then no improve-
ments in general can be guaranteed although they are more likely to occur
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than not.

By the usual continuity argument it is seen that the number of eigenvalues
in each component of ∪iC(λi+, λi−, ri) is twice the number of involved diago-
nals. In particular, if we have the maximal number of 2n components, then
each of them contains exactly one eigenvalue.

A strengthening in the sense of Brauer ([8]) is possible here also. We will
show that the spectrum is contained in the union of double ovals, defined as

D(λp+, λ
p
−, λ

q
+, λ

q
−, rprq) =

{λ : |λ− λp+||λ− λ
p
−||λ− λ

q
+||λ− λ

q
−| ≤ rprq|λ|2},

where the union is taken over all pairs p 6= q and λp± are the solutions of
λ2 + dppλ+ω2

p = 0 and similarly for λq±. The proof just mimics the standard
Brauer’s one. The quadratic eigenvalue problem is written as

(λ2 + λdpp + ω2
p)xp = −λ

n∑
j=1
j 6=p

dpjxj , (19.26)

(λ2 + λdqq + ω2
q )xq = −λ

n∑
j=1
j 6=q

dqjxj , (19.27)

where |xp| ≥ |xq| are the two absolutely largest components of x. If xq = 0
then xj = 0 for all j 6= p and trivially λ ∈ D(λp+, λ

p
−, λ

q
+, λ

q
−, rprq). If xq 6= 0

then multiplying the equalities (19.26) and (19.27) yields

|λ− λp+||λ− λ
p
−||λ− λ

q
+||λ− λ

q
−||xp||xq| ≤

|λ|2
n∑
j=1
j 6=p

n∑
k=1
k 6=q

|dpj ||dqk||xj ||xk|.

Because in the double sum there is no term with j = k = p we always have
|xj ||xk| ≤ |xp||xq|, hence the said sum is bounded by

|λ|2|xp||xq|
n∑
j=1
j 6=p

|dpj |
n∑
k=1
k 6=q

|dqk|.

Thus, our inclusion is proved. As it is immediately seen, the union of all
double ovals is contained in the union of all stretched Cassini ovals.

The simplicity of the modal approximation suggests to try to extend it
to as many systems as possible. A close candidate for such extension is any
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system with tightly clustered undamped frequencies, that is, Ω is close to an
Ω0 from (19.19). Starting again with

(λ2I + λD +Ω2)−1 =

(λ2I + λD0 + (Ω0)2)−1(I + (λD′ + Z) + (λ2I + λD0 + (Ω0)2)−1)−1

with Z = Ω2 − (Ω0)2 we immediately obtain

σ(A) ⊆ ∪j Ĉ(λj+, λ
j
−, ‖D′‖, ‖Z‖). (19.28)

where the set

Ĉ(λ+, λ−, r, q) = {λ : |λ− λ+||λ− λ−| ≤ |λ|r + q}

will be called modified Cassini ovals with foci λ± and extensions r, q.
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Fig. 19.1 Ovals for ω = 1; d = 0.1, 1; r = 0.3

Remark 19.8 The basis of any modal approximation is the diagonalisation
of the matrix pair M,K. Now, an analogous procedure with similar results
can be performed by diagonalising the pair M,C or C,K. The latter would
be recommendable in Example 1.8 because there the corresponding matrices
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Fig. 19.2 Ovals for ω = 1; d = 1.7, 2.3, 2.2; r = 0.3, 0.3, 0.1
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R and K are already diagonal. There is a third possibility: to approximate
the system M,C,K by some M0, C0,K0 which is modally damped. Here
we change all three system matrices and expect to get closer to the original
system and therefore to obtain better bounds. For an approach along these
lines see [46].

Exercise 19.9 Try to apply the techniques of this chapter to give bounds to
the harmonic response considered in Chapter 18.





Chapter 20

Modal approximation and
overdampedness

If the systems in the previous chapter are all overdamped then estimates are
greatly simplified as complex regions become just intervals. But before go-
ing into this a more elementary — and more important — question arises:
Can the modal approximation help to decide the overdampedness of a given
system? After giving an answer to the latter question we will turn to the
perturbation of the overdamped eigenvalues themselves.

We begin with some obvious facts the proofs of which are left to the reader.

Proposition 20.1 If the system M,C,K is overdamped, then the same is
true of the projected system

M ′ = X∗MX, C ′ = X∗CX, K ′ = X∗KX

where X is any injective matrix. Moreover, the definiteness interval of the
former is contained in the one of the latter.

Proposition 20.2 Let

M = diag(M11, . . . ,Mss)

C = diag(C11, . . . , Css)

K = diag(K11, . . . ,Kss).

Then the system M,C,K is overdamped, if and only if each of the systems
Mjj , Cjj ,Kjj is overdamped and their definiteness intervals have a non trivial
intersection (which is then the definiteness interval of M,C,K)

Corollary 20.3 If the system M,C,K is overdamped, then the same is true
of any of its modal approximations.

Exercise 20.4 If a maximal modal approximation is overdamped, then so
are all others.
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In the following we shall need some well known sufficient conditions for neg-
ative definiteness of a general Hermitian matrix A = (aij); these are:

ajj < 0

for all j and either

‖A− diag(a11, . . . , ann)‖ < −max
j
ajj

(norm-diagonal dominance) or

n∑
k=1
k 6=j

|akj | < −ajj for all j

(Gershgorin-diagonal dominance).

Theorem 20.5 Let Ω, D, rj be from (2.5), (2.22), (19.16), respectively and

D0 = diag(d11, . . . , dnn), D′ = D −D0.

Let
∆j = (djj − ‖D′‖)2 − 4ω2

j > 0 for all j (20.1)

and

q− := max
j

−djj + ‖D′‖ −
√
∆j

2
< min

j

−djj + ‖D′‖+
√
∆j

2
=: q+ (20.2)

or
∆̂j = (djj − rj)2 − 4ω2

j > 0 for all j (20.3)

and

q̂− := max
j

−djj + rj −
√
∆̂j

2
< min

j

−djj + rj +
√
∆̂j

2
=: q̂+. (20.4)

Then the system M,C,K is overdamped. Moreover, the interval (q−, q+),
(q̂−, q̂+), respectively, is contained in the definiteness interval of M,C,K.

Proof. Let q− < µ < q+. The negative definiteness of

µ2I + µD +Ω2 = µ2I + µD0 +Ω2 + µD′

will be insured by norm-diagonal dominance, if

−µ‖D′‖ < −µ2 − µdjj − ω2
j for all j,

that is, if µ lies between the roots of the quadratic equation



20 Modal approximation and overdampedness 159

µ2 + µ(djj − ‖D′‖) + ω2
j = 0 for all j

and this is insured by (20.1) and (20.2). The conditions (20.3) and (20.4) are
treated analogously. Q.E.D.

We are now prepared to adapt the spectral inclusion bounds from the
previous chapter to overdamped systems. Recall that in this case the defi-
niteness interval divides the 2n eigenvalues into two groups: J-negative and
J-positive.

Theorem 20.6 If (20.1) and (20.2) hold then the J-negative/J-positive
eigenvalues of Q(·) are contained in

∪j(µj−−, µ
j
−+), ∪j(µj+−, µ

j
++),

respectively, with

µj++
−−

=
−djj − ‖D′‖ ±

√
(djj + ‖D′‖)2 − 4ω2

j

2
(20.5)

µj+−
−+

=
−djj + ‖D′‖ ±

√
(djj − ‖D′‖)2 − 4ω2

j

2
. (20.6)

An analogous statement holds, if (20.3) and (20.4) hold and µj++
−−

, µj+−
−+

is

replaced by µ̂j++
−−

, µ̂j+−
−+

where in (20.5,20.6) ‖D′‖ is replaced by rj.

Proof. First note that the function 0 > z 7→ z+
√
z2 − 4ω2

j is decreasing, so

µj+− < µj++ and similarly µj−− < µj−+.
Take first r = ‖D′‖. All spectra are real and negative, so we have to find

the intersection of C(λj+, λ
j
−, r) with the real line the foci λj+, λ

j
− from (19.13)

being also real. This intersection will be a union of two intervals. For λ < λj−
and also for λ > λj+ the j-th ovals are given by

(λj− − λ)(λj+ − λ) ≤ −λr

i.e.
λ2 − (λj+ + λj− − r)λ+ λj+λ

j
− ≤ 0

where λj++λj− = −djj and λj+λ
j
− = ω2

j . Thus, the left and the right boundary
point of the real ovals are µj++

−−
.

For λj− < λ < λj+ the ovals will not contain λ, if

(λ− λj−)(λj+ − λ) ≤ −λr
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i.e.
λ2 + (djj − r)λ+ ω2

j < 0

with the solution
µj−+ < λ < µj+−.

The same argument goes with r = rj . Q.E.D.

Note the inequality

(µj−−, µ
j
−+) < (µk+−, µ

k
++)

for all j, k.
The results obtained in this chapter can be partially extended to non-

overdamped systems which have some J-definite eigenvalues. The idea is to
use Theorem 12.15.

Theorem 20.7 Suppose that there is a connected component C0 of the ovals
(19.17) containing only foci λ+

j with d2
jj ≥ 4ω2

j . Then the eigenvalues of Q(·)
contained in C0 are all J-positive and their number (with multiplicities) equals
the number of the foci in C0. For these eigenvalues the estimates of Theorem
20.6 hold (the same for J-negatives).

Proof. Let A be from (3.10) and D = D0 +D′ as in (19.10),

A =
[

0 Ω
−Ω −D

]
, A0 =

[
0 Ω
−Ω −D0

]
.

Â(t) =
[

0 Ω
−Ω −D0 − tD′

]
, 0 ≤ t ≤ 1

where D (and therefore D0 + tD′) is positive semidefinite. The set of all
such Â(t) satisfies the requirements in Theorem 12.15. In particular, by the
property (19.7) the ovals of each Â(t) are contained in the ones of A and by
taking a contour Γ which separates C0 from the rest of the ovals in (19.17)
the relation Γ ∩ σ(Â(t)) will hold and Theorem 12.15 applies. Now the ovals
from C0 become intervals and Theorem 20.6 applies as well. Q.E.D.

Monotonicity-based bounds. As it is known for symmetric matrices
monotonicity-based bounds for the eigenvalues ((2.14), (2.15) for a single ma-
trix or (2.12) for a matrix pair) have an important advantage over Gershgorin-
based bounds: While the latter are merely inclusions, that is, the eigenvalue
is contained in a union of intervals the former tell more: there each inter-
val contains ’its own eigenvalue’, even if it intersects other intervals. In this
chapter we will derive bounds of this kind for overdamped systems.

A basic fact is the following theorem
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Theorem 20.8 With overdamped systems the eigenvalues move asunder un-
der growing viscosity. More precisely, let

λ−n ≤ · · · ≤ λ−1 < λ+
1 ≤ · · · ≤ λ+

n < 0

be the eigenvalues of an overdamped system M,C,K. If M̂, Ĉ, K̂ is more
viscous than the original one then its corresponding eigenvalues λ̂±k satisfy

λ̂−k ≤ λ
−
k , λ+

k ≤ λ̂
+
k

A possible way to prove this theorem is to use Duffin’s minimax formulae
[20]. Denoting the eigenvalues as in (10.3) the following formulae hold

λ+
k = min

Sk
max
x∈Sk

p+(x), λ−k = max
Sk

min
x∈Sk

p−(x).

where Sk is any k-dimensional subspace and p± is defined in (14.11). Now
the proof of Theorem 20.8 is immediate, if we observe that

p̂+(x) ≥ p+(x), p̂−(x) ≤ p−(x)

for any x (p̂± is the functional (14.11) for the system M̂, Ĉ, K̂). Note that in
this case the representation

p+(x) =
−2x∗Kx

x∗Cx+
√
∆(x)

is more convenient.

As a natural relative bound for the system matrices we assume

|x∗δMx| ≤ εx∗Mx, |x∗δCx| ≤ εx∗Cx, |x∗δKx| ≤ εx∗Kx,

with
δM = M̂ −M, δC = Ĉ − C, δH = K̂ −K, ε < 1.

We suppose that the system M,C,K is overdamped and modally damped. As
in Exercise 14.6 one sees that the overdampedness of the perturbed system
M̂, Ĉ, K̂ is insured, if

ε <
d− 1
d+ 1

, d = min
x

x∗Cx

2
√
x∗Mxx∗Kx

.

So, the following three overdamped systems

(1 + ε)M, (1− ε)C, (1 + ε)K; M̂, Ĉ, K̂; (1− ε)M, (1 + ε)C, (1− ε)K

are ordered in growing viscosity. The first and the last system are overdamped
and also modally damped while their eigenvalues are known and given by
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λ±k

(
1− ε
1 + ε

)
, λ±k

(
1 + ε

1− ε

)
,

respectively, where

λ±k (η) =
−djjη ±

√
d2
jjη

2 − 4ω2
j

2
,

ωj , djj as in (19.12), are the eigenvalues of the system M,ηC,K. We suppose
that the unperturbed eigenvalues λ±k = λ±k (1) are ordered as

λ−n ≤ · · · ≤ λ−1 < λ+
1 ≤ · · · ≤ λ+

n .

By the monotonicity property the corresponding eigenvalues are bounded as

λ̃+
k

(
1− ε
1 + ε

)
≤ λ̂+

k ≤ λ̃
+
k

(
1 + ε

1− ε

)
,

where λ̃+
k (η) are obtained by permuting λ+

k (η) such that

λ̃+
1 (η) ≤ · · · ≤ λ̃+

n (η)

for all η > 0. It is clear that each λ̃+
k (η) is still non-decreasing in η. An anal-

ogous bound holds for λ̂−k as well.

The proof of the minimax formulae which were basic for the needed mono-
tonicity is rather tedious. There is another proof of Theorem 20.8 which uses
the analytic perturbation theory. This approach is of independent interest
and we will sketch it here. The basic fact from the analytic perturbation
theory is this.

Theorem 20.9 Let λ0 be, say, a J-positive eigenvalue of Q(·) and let m be
its multiplicity. Set

λ2(M + εM1) + λ(C + εC1),+K + εK1 (20.7)

M1, C1,K1 arbitrary Hermitian. Choose any

Ur = {λ ∈ C; |λ− λ0| < r)}

with
(σ(Q(·)) \ {λ0}) ∩ Ur = ∅.

Then there is a real neighbourhood O of ε = 0 such that for ε ∈ O the
eigenvalues of Q(·, ε) within Ur together with the corresponding eigenvectors
can be represented as real analytic functions

λ1(ε), . . . , λm(ε), (20.8)
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x1(ε), . . . , xm(ε), (20.9)

respectively. All these functions can be analytically continued along the real
axis, and their J-positivity is preserved until any of these eigenvalues meets
another eigenvalue of different type.

The proof of this theorem is not much simpler than that of the minimax
formulae (see [26]). But it is plausible and easy to memorise: the eigenpairs
are analytic as long as the eigenvalues do not get mixed. Once one stipulates
this the monotonicity is easy to derive, we sketch the key step. Take any pair
λ, x from (20.8), (20.9), respectively (for simplicity we suppress the subscript
and the variable ε). Then differentiate the identity

Q(λ, ε)x = 0

with respect to ε and premultiply by x∗ thus obtaining

λ′ = − x∗(λ2M1 + λC1 +K1)x
2λx∗(M + εM1)x+ x∗(C + εC1)x

= −x
∗(λ2M1 + λC1 +K1)x√

∆
(20.10)

where

∆ = ∆(ε) = (x∗(C + εC1)x)2 − 4x∗(M + εM1)xx∗(K + εK1)x

is positive by the assumed J-positivity. By choosing−M1, C1,−K1 as positive
semidefinite, the right hand side of (20.10) is non-negative (note that λ is
negative). So, λ grows with ε.

If the system is overdamped then the proof of the monotonicity in Theorem
20.8 is pretty straightforward. If the system M̂, Ĉ, K̂ is more viscous than
M,C,K then by setting

M1 = M̂ −M, C1 = Ĉ − C, K1 = K̂ −K,

we obtain positive semidefinite matrices −M1, C1,−K1. Now form Q(λ, ε) as
in (20.7), apply Theorem 20.9 and the formula (20.10) and set ε = 0, 1.

A further advantage of this approach is its generality: the monotonicity,
holds ’locally’ just for any eigenvalue of definite type, the pencil itself need
not be overdamped. That is, with growing viscosity an eigenvalue of positive
type moves to the right (and an eigenvalue ov the negative type moves to the
left); this state of affairs lasts until an eigenvalue of different type is met.

Exercise 20.10 Try to extend the criteria in Theorem 20.5 for the over-
dampedness to the case where some undamped frequencies are tightly clustered
— in analogy to the bounds (19.28).
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Exercise 20.11 Try to figure out what happens, if in (20.10) the matrices
−M1, C1,−K1 are positive semidefinite and the right hand side vanishes, say,
for ε = 0.

Exercise 20.12 Using (20.10) show that for small and growing damping the
eigenvalues move into the left plane.



Chapter 21

Passive control

Large oscillations may be dangerous to the vibrating system and are to be
avoided in designing such systems. In many cases the stiffness and the mass
matrix are determined by the static requirements so the damping remains as
the regulating factor.

How to tell whether a given system is well damped? Or, which quantity
has to be optimised to obtain a best damped system within a given set of
admissible systems (usually determined by one or several parameters)? These
are the questions which we pose and partly solve in this chapter.

A common criterion says: take the damping which produces the least spec-
tral abscissa (meaning that its absolute value should be maximal). This cri-
terion is based on the bounds (13.8) and (13.6).

Consider once more the one-dimensional oscillator from Example 9.3. The
minimal spectral abscissa is attained at the critical damping d = 2ω and its
optimal value is

λao = −d
2
.

This value of d gives a best asymptotic decay rate in (13.7) as well as a ’best
behaviour’ at finite times as far as it can be qualitatively seen on Fig. 13.1
in Chapter 13. However, in general, optimising the spectral abscissa gives no
control for ‖eAt‖ for all times.

Another difficulty with the spectral abscissa is that it is not a smooth
function of the elements of A and its minimisation is tedious, if using common
optimisation methods.

In this chapter we will present a viable alternative curing both shortcom-
ings mentioned above. We say: an optimal damping extracts as much energy
as possible from the system. A possible rigorous quantification of this require-
ment is to ask∫ ∞

0

y(t)TBy(t)dt =
∫ ∞

0

yT0 e
AT tBeAty0dt = yT0 Xy0 = min (21.1)
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where B is some positive semidefinite matrix serving as a weight and X is the
solution of the Lyapunov equation (13.9). This is the total energy, averaged
over the whole time history of the free oscillating system.1 In order to get rid
of the dependence on the initial data y0 we average once more over all y0 with
the unit norm. We thus obtain the penalty function, that is, the function to
be minimised

E = E(A, ρ) =
∫
‖y0‖=1

yT0 Xy0dρ

where dρ is a given non-negative measure on the unit sphere in Rn.2 This
measure, like the matrix B, has the role of a weight, provided by the user.
Such measures can be nicely characterised as the following shows.

Proposition 21.1 For any non-negative measure dρ on the unit sphere in
Rn there is a unique symmetric positive semidefinite matrix S such that∫

‖y0‖=1

yT0 Xy0dρ = Tr(XS) (21.2)

for any real symmetric matrix X.

Proof. Consider the set of all symmetric matrices as a vector space with the
scalar product

〈X,Y 〉 = Tr(XY ).

The map

X 7→
∫
‖y0‖=1

yT0 Xy0dρ (21.3)

is obviously a linear functional and hence is represented as

〈X,S〉 = Tr(XS).

where S is a uniquely determined symmetric matrix. To prove its positive
semidefiniteness recall that by (21.2) the expression Tr(XS) is non-negative
whenever X is positive semidefinite. Suppose that S has a negative eigenvalue
λ and let Pλ be the projection onto the corresponding eigenspace. Now take

X = Pλ + ε(I − Pλ), ε > 0.

Then X is positive definite and

Tr(XS) = λPλ + ε(I − Pλ)S

1 The integral in (21.1) has the dimension of ’action’ (energy × time) and so the princi-

ple (21.1) can be called a ’minimum action principle’ akin to other similar principles in
Mechanics.
2 In spite of the fact that we will make some complex field manipulations with the matrix

A we will, until the rest of this chapter, take A as real.
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would be negative for ε small enough — a contradiction. Q.E.D.

Thus, we arrive at the following optimisation problem: find the minimum

min
A∈A

{
Tr(XS) : ATX +XA = −B

}
(21.4)

where B and S are given positive semidefinite real symmetric matrices and
A is the set of allowed matrices A. Typically A will be determined by the
set of allowed dampings C in (3.3). A particularly distinguished choice is
S = I/(2n), which correponds to the Lebesgue measure (this is the measure
which ’treats equally’ any vector from the unit sphere).

Remark 21.2 The previous proposition does not quite settle the uniqueness
of S as we might want it here. The question is: do all asymptotically stable
A (or does some smaller relevant set of A-s over which we will optimise)
uniquely define the functional (21.3)? We leave this question open.

Exercise 21.3 Let a real A be asymptotically stable and let (13.9) hold. Then

Tr(XS) = Tr(Y B)

where Y solves
AY + Y AT = −S.

Exercise 21.4 For the system from Example 1.1 determine the matrix B in
(21.1) from the requirement

1. Minimise the average kinetic energy of the k-th mass point.
2. Minimise the average potential energy of the k-th spring.

Minimising the trace can become quite expensive, if one needs to solve a
series of Lyapunov equations in course of a minimisation process even on
medium size matrices. In this connection we note an important economy in
computing the gradient of the map X 7→ Tr(SX). We set A(α) = A + αA1,
A1 arbitrary and differentiate the corresponding Lyapunov equation:

A(α)TX ′(α) +X ′(α)A(α) = −A′(α)TX(α)−X(α)A′(α) =

−AT1 X(α)−X(α)A1.

Now, this is another Lyapunov equation of type (13.9), with A = A(α) and
B = AT1 X(α) +X(α)A1 hence, using (13.11),

Tr(SX(α))′ =
∫ ∞

0

Tr(eAtSeA
T tA1X(α))dt+

∫ ∞
0

Tr(eAtSeA
T tX(α)A1)dt

and the directional derivative along A1 reads
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dTr(SX)
dA1

= Tr(SX(α))′α=0 = Tr(Y AT1 X) + Tr(XA1Y ) = 2Tr(XA1Y ),

(21.5)
where Y solves the equation

AY + Y AT = −S.

Thus, after solving just two Lyapunov equations we obtain all directional
derivatives of the trace for free. A similar formula exists for the Hessian
matrix as well.

21.1 More on Lyapunov equations

The Lyapunov equation plays a central role in our optimisation approach. We
will review here some of its properties and ways to its solution. As we have
said the Lyapunov equation can be written as a system of n2 linear equations
with as many unknowns. The corresponding linear operator

L = AT · + ·A, (21.6)

is known under the name of the Lyapunov operator and it maps the vector
space of matrices of order n into itself.

Thus, Gaussian eliminations would take some (n2)3 = n6 operations which
is feasible for matrices of very low order — not much more than n = 50 on
present day personal computers. The situation is different, if the matrix A is
safely diagonalised:

A = SΛS−1, Λ = diag(λ1, λ2, . . .).

Then the Lyapunov equation (13.9) is transformed into

ΛZ + ZΛ = −F, Z = STXS, F = STBS

with the immediate solution

Zij =
−Fij
λi + λj

.

The diagonalisation may be impossible or numerically unsafe if S is ill-
conditioned. A much more secure approach goes via the triangular form.
If the matrix A is of, say, upper triangular form then the first row of (13.9)
reads

(a11 + a11)x1j + a12x2j + · · ·+ a1jxjj = b1j

from which the first row of X is immediately computed; other rows are com-
puted recursively. The solution with a lower triangular T is analogous.
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A general matrix is first reduced to the upper triangular form as

T = U∗AU, U unitary, possibly complex;

then (13.9) is transformed into

T ∗Y + Y A = −V, Y = U∗XU, V = U∗BU.

which is then solved as above. (This is also another proof of the fact that
the Lyapunov equation with an asymptotically stable A possesses a unique
solution.) Both steps to solve a general Lyapunov equation take some 25n3

operations, where the most effort is spent to the triangular reduction.

Thus far we have been optimising the transient behaviour only. It is im-
portant to know how this optimisation affects the steady state behaviour of
the system. A key result to this effect is contained in the following

Theorem 21.5 Let A be real dissipative; then the integral

Y =
1

2πi

∫ i∞

−i∞
(λI −AT )−1B(λI −A)−1dλ (21.7)

exists, if A is asymptotically stable. In this case Y equals X from (13.9).

Proof. For sufficiently large |λ| we have

‖(λI −AT )−1B(λI −A)−1‖ ≤ ‖B‖

( ∞∑
k=0

‖A‖k

|λ|k+1

)2

which is integrable at infinity. Thus, the integral in (21.7) exists, if there are
no singularities on the imaginary axis, that is, if A is asymptotically stable.
In this case we have

ATY =
1

2πi

∫ i∞

−i∞

[
λ(λI −AT )−1 − I

]
B(λI −A)−1dλ,

Y A =
1

2πi

∫ i∞

−i∞
(λI −AT )−1B

[
λ(λI −A)−1 − I

]
dλ.

By using the identities

lim
η→∞

∫ iη

−iη
(λI −A)−1dλ = iπI, lim

η→∞

∫ iη

−iη
(λI −AT )−1dλ = iπI,

we obtain

ATY + Y A = −B +
1

2πi

∫ i∞

−i∞
(λ+ λ)(λI −AT )−1B(λI −A)−1dλ = −B.
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Since the Lyapunov equation (13.9) has a unique solution it follows Y = X.
Q.E.D.

Hence
Tr(XS) =

∫
‖y0‖=1

yT0 Xy0dρ =∫
‖y0‖=1

dρ

∫ ∞
0

‖B1/2eAty0‖2dt =
1

2π

∫
‖y0‖=1

dρ

∫ ∞
−∞
‖B1/2(iωI−A)−1y0‖2dω

This is an important connection between the ’time-domain’ and the ’frequency-
domain’ optimisation: the energy average over time and all unit initial data
of the free vibration is equal to some energy average of harmonic responses
taken over all frequencies and all unit external forces.

Exercise 21.6 Use the reduction to triangular form to show that a general
Sylvester equation CX+XA = −B is uniquely solvable, if and only if σ(C)∩
σ(−A) = ∅. Hint: reduce A to the upper triangular form and C to the lower
triangular form.

Exercise 21.7 Give the solution of the Lyapunov equation if a non-singular
S is known such that S−1AS is block-diagonal. Are there any simplifications,
if S is known to be J-unitary and A J-Hermitian?

Exercise 21.8 The triangular reduction needs complex arithmetic even if the
matrix A is real. Modify this reduction, as well as the subsequent recursive
solution of the obtained Lyapunov equation with a block-triangular T .

Exercise 21.9 Let A = −I + N , Np−1 6= 0, Np = 0. Then the solution of
the Lyapunov equation (13.9) is given by the formula

X =
2p−1∑
n=0

1
2k+1

n∑
k=0

(
n

k

)
(N∗)kBNn−k.

21.2 Global minimum of the trace

The first question in assessing the trace criterion (21.4) is: if we let the damp-
ing vary just over all positive semidefinite matrices, where will the minimum
be taken? The answer is: the minimum is taken at D = 2Ω in the representa-
tion (3.10) that is, at the ’modal critical damping’ — a very appealing result
which speaks for the appropriateness of the trace as a measure of stability.
Note that without loss of generality we may restrict ourselves to the modal
representation (3.10). As we know, the matrix A from (3.10) is unitarily sim-
ilar to the one from (3.3), the same then holds for the respective solutions X
of the Lyapunov equation
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ATX +XA = −I, (21.8)

so the trace of X is the same in both cases.

First of all, by the continuity property of the matrix eigenvalues it is clear
that the set Cs of all symmetric damping matrices with any fixed M and
K and an asymptotically stable A is open. We denote by D+

s the connected
component of Cs containing the set of positive semidefinite matrices D. It is
natural to seek the minimal trace within the set D+

s as damping matrices.

Theorem 21.10 Let Ω be given and let in the modal representation (3.10)
the matrix D vary over the set D+

s . Then the function D 7→ Tr(X) where
X = X(D) satisfies (21.8) has a unique minimum point D = D0 = 2Ω.

The proof we will offer is not the simplest possible but it sheds some light
on the geometry of asymptotically stable damped systems. The difficulty is
that the trace is not generally a convex function which precludes the use of
the usual uniqueness argument. Our proof will consist of several steps and
end up with interpolating the trace function on the set of the stationary
points by a function which is strictly convex and takes its minimum on the
modal damping matrix, thus capturing the uniqueness.

Lemma 21.11 If ‖C‖2 ≥ 4‖K‖‖M‖ then

max Reσ(A) ≥ −2‖K‖
‖C‖

. (21.9)

Proof. Let x be a unit vector with Cx = ‖C‖x. Then

xT (λ2
+M + λ+C +K)x = 0

with

λ+ = − 2xTKx
‖C‖+

√
‖C‖2 − 4xTKxxTMx

≥ −2‖K‖
‖C‖

.

Since λ2M+λC+K is positive definite for λ negative and close to zero, there
must be an eigenvalue of A in the interval [λ+, 0) i.e. max Reσ(A) ≥ λ+.
Q.E.D.

The Lyapunov equation ATX + XA = −I for the phase-space matrix A
from (3.10) reads

(A0 −BDBT )TX +X(A0 −BDBT ) = −I, (21.10)

where

A0 =
[

0 Ω
−Ω 0

]
, B =

[
0
I

]
.

The so–called dual Lyapunov equation is given by
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(A0 −BDBT )Y + Y (A0 −BDBT )T = −I. (21.11)

To emphasise the dependence of X and Y on D we write X(D) and Y (D).
By the J-symmetry of the matrix A it follows

Y (D) = JX(D)J. (21.12)

Let us define the function f : D+
s → R by

f(D) = Tr(X(D)), where X(D) solves (21.10). (21.13)

Lemma 21.12 D0 ∈ D+
s is a stationary point of f , if and only if

BTX(D0)Y (D0)B = 0. (21.14)

Proof of the lemma. By setting in (21.5)

A1 = BD1B
T

where D1 is any real symmetric matrix the point D0 is stationary, if and only
if

Tr(X(D0)BD1B
TY (D0)) = Tr(D1B

TY (D0)X(D0)B) = 0.

Now, by (21.12) the matrix BTY (D0)X(D0)B is symmetric:

BTY (D0)X(D0)B = BTJX(D0)JX(D0)B,

(JX(D0)JX(D0))22 = −(X(D0)JX(D0))22

and (in sense of the trace scalar product) orthogonal to all symmetric matri-
ces D1, so it must vanish. Q.E.D.

Proof of Theorem 21.10. By (13.12), Lemma 21.11 and the continuity
of the map A 7→ λa(A) the values of TrX become infinite on the boundary
of D+

s . Hence there exists a minimiser and it is a stationary point. Let now
D be any such stationary point. By Y = JXJ (21.14) is equivalent to

X2
22 = XT

12X12, (21.15)

where X = X(D) =
[
X11 X12

XT12 X22

]
. Let us decompose (21.10) into components.

We get

−ΩXT
12 −X12Ω = −I, (21.16)

ΩX11 −DXT
12 −X22Ω = 0, (21.17)

ΩX12 +XT
12Ω −X22D −DX22 = −I. (21.18)

From (21.16) it follows
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X12 =
1
2

(I − S)Ω−1, (21.19)

where S is skew–symmetric. From the equation (21.17) and the previous
formula it follows

X11 =
1
2
Ω−1DΩ−1 +

1
2
Ω−1DΩ−1S +Ω−1X22Ω.

Since Tr(Ω−1DΩ−1S) = 0 we have

Tr(X) = Tr(X11) + Tr(X22) =
1
2

Tr(Ω−1DΩ−1) + 2Tr(X22). (21.20)

From (21.15) it follows
X12 = UX22 (21.21)

where U is an orthogonal matrix. Note that the positive definiteness of X
implies that X22 is positive definite. Now (21.18) can be written as

−X22D −DX22 = −I −ΩUX22 −X22U
TΩ.

Hence D is the solution of a Lyapunov equation, and we have

D =
∫ ∞

0

e−X22t(I +ΩUX22 +X22U
TΩ)e−X22tdt.

This implies

D =
1
2
X−1

22 +
∫ ∞

0

e−X22tΩUe−X22tdtX22 +X22

∫ ∞
0

e−X22tUTΩe−X22tdt.

From (21.19) and (21.21) follows

ΩU =
1
2
(
X−1

22 −X
−1
22 U

TSU
)
, (21.22)

hence

D = X−1
22 −

1
2
X−1

22

∫ ∞
0

e−X22tUTSUe−X22tdtX22+

1
2
X22

∫ ∞
0

e−X22tUTSUe−X22tdtX−1
22 .

So, we have obtained

D = X−1
22 −

1
2
X−1

22 WX22 +
1
2
X22WX−1

22 , (21.23)

where W is the solution of the Lyapunov equation
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−X22W −WX22 = −UTSU. (21.24)

Since UTSU is skew–symmetric, so is W .
From (21.24) it follows

X22WX−1
22 = −W + UTSUX−1

22 ,

which together with (21.23) implies

D = X−1
22 +

1
2
UTSUX−1

22 −
1
2
X−1

22 U
TSU.

Now taking into account relation (21.22) we obtain

D = ΩU + UTΩ,

hence
Ω−1DΩ−1 = UΩ−1 +Ω−1UT . (21.25)

From (21.19) and (21.21) we obtain

S = I − 2UX22Ω, (21.26)

and from this and the fact that S is skew–symmetric it follows that

ΩX22U
T + UX22Ω = I. (21.27)

This implies

Ω−1UT = Ω−1X−1
22 Ω

−1 −Ω−1X−1
22 Ω

−1UX22Ω.

From the previous relation it follows that

Tr(Ω−1UT ) = Tr(Ω−1X−1
22 Ω

−1)− Tr(UΩ−1).

Now (21.20), (21.25) and the previous relation imply

Tr(X(D)) = g(X22(D))

with
g(Z) =

1
2

Tr(Ω−1Z−1Ω−1) + 2Tr(Z).

for any D satisfying (21.14). Obviously, g is positive-valued as defined on the
set of all symmetric positive definite matrices Z. We compute g′, g′′:

g′(Z)(Ŷ ) = Tr(−1
2
Ω−1Z−1Ŷ Z−1Ω−1 + 2Ŷ ) (21.28)

g′′(Z)(Ŷ , Ŷ ) = Tr(Ω−1Z−1Ŷ Z−1Ŷ Z−1Ω−1) > 0



21.3 Lyapunov trace vs. spectral abscissa 175

for any symmetric positive definite Z and any symmetric Ŷ 6= 0. (The
above expressions are given as linear/quadratic functionals; an explicit vec-
tor/matrix representation of the gradient and the Hessian would be clumsy
whereas the functional representations are sufficient for our purposes.)

By (21.28) the equation g′(Z) = 0 means

Tr(−1
2
Ω−1Z−1Ŷ Z−1Ω−1 + 2Ŷ ) = 0

for each symmetric Ŷ . This is equivalent to

−1
2
Z−1Ω−2Z−1 + 2I = 0

i.e. Z = Z0 = 1
2Ω
−1 and this is the unique minimiser with the minimum

value 2Tr(Ω−1) (here, too, one easily sees that g(Z) tends to infinity as Z
approaches the boundary of the set of positive definite symmetric matrices).
Now, 1

2Ω
−1 = X22(2Ω) and D0 = 2Ω is readily seen to satisfy (21.14). Hence

the value
2Tr(Ω−1) = g(X22(D0)) = Tr(X(D0))

is strictly less than any other stationary value Tr(X(D)). Q.E.D.

As we see the optimal damping is always positive definite; this is in contrast
to the spectral abscissa criterion, where examples will be given in which the
minimal spectral abscissa is actually taken at an indefinite damping matrix
that is, outside of the physically allowed region.

Exercise 21.13 Prove that to the matrix D0 = 2Ω there corresponds the
damping matrix

C = C0 = 2L2

√
L−1

2 KL−T2 LT2 . (21.29)

Exercise 21.14 Prove the formula

X(D0) =

 3
2Ω
−1 1

2Ω
−1

1
2Ω
−1 1

2Ω
−1

 .

21.3 Lyapunov trace vs. spectral abscissa

We will make some comparisons of the two optimality criteria: the spectral
abscissa and the Lyapunov trace. It is expected that the first will give a better
behaviour at t =∞ whereas the second will take into account finite times as
well.

In comparisons we will deal with the standard Lyapunov equation
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ATX +XA = −I.

With this X (13.10) reads

‖eAs‖ ≤ κ(X)e−t/‖X‖

whereas (13.12) reads

2λa ≤ −
1
‖X‖

.

A simple comparison is made on the matrix

A =
[
−1 α

0 −1

]
with eAt = e−t

[
−1 αt

0 −1

]
.

Here λa(A) = −1 independently of the parameter α which clearly influences
‖eAt‖. This is seen from the standard Lyapunov solution which reads

X =
[

1/2 α/4
α/4 1/2 + α2/4

]
.

If A is a phase-space matrix of a damped system no such drastic differences
between λa(A) and the growth of ‖eAt‖ seem to be known.3

Example 21.15 For the matrix A from Example 9.3 and B = I the Lya-
punov equation reads[

0 −ω
ω −d

] [
x11 x12

x21 x22

]
+
[
x11 x12

x21 x22

] [
0 ω
−ω −d

]
=
[
−1 0

0 −1

]
.

By solving four linear equations with four unknowns we obtain

X =
[
x11 x12

x21 x22

]
=
[

1
d + d

2ω2
1
2ω

1
2ω

1
d

]
where

Tr(X) =
2
d

+
d

2ω2

has a unique minimum at the critical damping d = 2ω.

The spectral abscissa and the Lyapunov trace as functions of the damping d
are displayed in Fig. 21.1 (an additive constant sees that both curves better
fit to one coordinate frame). The minimum position is the same; the trace is
smooth whereas the spectral abscissa has a cusp at the minimum.

Example 21.16 Reconsider Example 13.13 by replacing the spectral ab-
scissa by the Lyapunov trace as a function of the parameter c.

3 This seems to be an interesting open question: how far away can be the quantities 2λa(A)

and −1/‖X‖ on general damped systems.
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Fig. 21.1 Spectral abscissa and Lyapunov trace (1D)

Concerning optimal spectral abscissae the following theorem holds

Theorem 21.17 ([23]) Set

τ(C) = λa(A)

where A is from (3.3), M,K are arbitrary but fixed whereas C varies over the
set of all real symmetric matrices of order n. Then τ(C) attains its minimum
which is equal to

τ0 =
(

det(K)
det(M)

) 1
2n

.

The minimiser is unique, if and only if the matrices K and M are propor-
tional.

The proof is based on a strikingly simple fact with an even simpler and very
illuminating proof:

Proposition 21.18 Let A be any set of matrices of order 2n with the fol-
lowing properties

1. det(A) is constant over A,
2. the spectrum of each A ∈ A is symmetric with respect to the real axis,

counting multiplicities,
3. Reσ(A) < 0 for A ∈ A.
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Denote by A0 the subset of A consisting of all matrices whose spectrum con-
sists of a single point. If A0 is not empty then

min
A∈A

λa(A)

is attained on A0 and nowhere else.

Proof. Let λ1, . . . , λ2n be the eigenvalues of A. Then

0 < det(A) =
2n∏
k=1

λk =
2n∏
k=1

|λk| ≥
2n∏
k=1

|Re(λk)| ≥ (λa(A))2n . (21.30)

Thus,
λa(A) ≥ − (det(A))

1
2n (21.31)

By inspecting the chain of inequalities in (21.30) it is immediately seen that
the equality in (21.31) implies the equalities in (21.30) and this is possible, if
and only if

λk = λa(A), k = 1, . . . , 2n.

Q.E.D.

The set A, of all asymptotically stable phase-space matrices A with fixed
M,K obviously fulfills the conditions of the preceding proposition. Indeed,
det(A) = τ2n

0 , hence the only thing which remains to be proved is: for given
M,K find a symmetric damping matrix C such that the spectrum of A
consists of a single point. This is a typical inverse spectral problem where one
is asked to construct matrices from a given class having prescribed spectrum.
This part of the proof is less elementary, it borrows from the inverse spectral
theory and will be omitted. As an illustration we bring a simple inverse
spectral problem:

Example 21.19 Consider the system in Example 4.5. We will determine the
constants m, k1, k2, c by prescribing the eigenvalues

λ1, λ2, λ3

with Re(λk) < 0 and, say, λ1 real. Since the eigenvalues of (14.2) do not
change, if the equation is multiplied by a constant, we may assume that
m = 1. The remaining constants are determined from the identity

det
[
λ2 + k1 + k2 −k2

−k2 λc+ k2

]
= cλ3 + k2λ

2 + c(k1 + k2)λ+ k1k2 =

c
(
λ3 − (λ1 + λ2 + λ3)λ2 + (λ1λ2 + λ2λ3 + λ3λ1)λ− λ1λ2λ3

)
.

The comparison of the coefficients yields
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k2 = −c(λ1 + λ2 + λ3),

k1 + k2 = λ1λ2 + λ2λ3 + λ3λ1,

k1k2 = −cλ1λ2λ3.

This system is readily solved with the unique solution

k1 =
λ1λ2λ3

λ1 + λ2 + λ3
,

k2 =
λ2

1(λ2 + λ3) + λ2
2(λ1 + λ3) + λ2

3(λ1 + λ2) + 2λ1λ2λ3

λ1 + λ2 + λ3
,

c = − k2

λ1 + λ2 + λ3
.

Here we can apply Proposition 21.18 by taking first, say, λ1 = λ2 = λ3 = −1
thus obtaining

k1 = 1/3, k2 = 8/3, c = 8/9.

Since λ2, λ3 are either real or complex conjugate the values k1, k2, c are all
positive.

Now with the fixed values k1, k2 as above we let c > 0 be variable. The
so obtained set A of phase-space matrices from Example 4.5 again satisfies
the conditions of Proposition 21.18 and c = 8/9 yields the optimal spectral
abscissa.

For numerical comparison between the two criteria we will take an example
from [23]. Take

M =
[

1 0
0 1

]
, K =

[
k1 0
0 k2

]
with the optimal-abscissa damping

C =
1

k
1/2
1 + k

1/2
2

[
4k3/4

1 k
1/4
2 ±(k1/2

1 − k1/2
2 )2

±(k1/2
1 − k1/2

2 )2 4k1/4
1 k

3/4
2

]
.

Here the different sign choices obviously lead to unitarily equivalent both
damping and phase-space matrices, so we will take the first one. According
to Theorem 21.10 our best damping in this case is

Cd =
[

2
√
k1 0

0 2
√
k2

]
.

For comparing time histories it is convenient to observe the quantity

‖eAt‖2E = Tr(eA
T teAt)
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because (i) it dominates the square of the spectral norm of eAt and (ii) it
equals the average over all unit vectors y0 of the energy ‖eAty0‖2 at each
time t. These histories can be seen in Fig. 21.2. The dashed line corresponds
to the optimal trace and the full one to the optimal abscissa. The values we
have taken are

k1 = 1, k2 = 4, 16, 33, 81

The optimal abscissa history is better at large times but this difference is al-
most invisible since both histories are then small. At k2 about 33 the matrix
C ceases to be positive semidefinite; the history for k2 = 81 is even partly
increasing in time and this becomes more and more drastic with growing k2.
In such situations the theory developed in [23] does not give information on
an optimal-abscissa within positive-semidefinite dampings.
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Fig. 21.2 Time histories



Chapter 22

Perturbing matrix exponential

Modal approximation appears to be very appealing to treat matrix exponen-
tial by means of perturbation techniques. We will now derive some abstract
perturbation bounds and apply them to phase-space matrices of damped sys-
tems.

The starting point will be the formula which is derived from (3.4)

eBt − eAt =
∫ t

0

eB(t−s)(B −A)eAsds =
∫ t

0

eBs(B −A)eA(t−s)ds. (22.1)

A simplest bound is obtained, if the exponential decay of the type (13.8) is
known for both matrices. So, let (13.8) hold for A and B with the constants
F, ν, F1, ν1, respectively. Then by (22.1) we immediately obtain

‖eBt − eAt‖ ≤ ‖B −A‖
∫ t

0

e−νse−ν1(t−s)FF1ds (22.2)

= ‖B −A‖

FF1
e−νt−e−ν1t

ν1−ν , ν1 6= ν

FF1te
−νt, ν1 = ν.

If B is only known to be dissipative (F1 = 1, ν1 = 0) then

‖eBt − eAt‖ ≤ ‖B −A‖F
ν

(1− e−νt) ≤ ‖B −A‖F
ν
. (22.3)

If A, too, is just dissipative (F = 1, ν = 0) then

‖eBt − eAt‖ ≤ ‖B −A‖t. (22.4)

The perturbation estimates obtained above are given in terms of general
asymptotically stable matrices. When applying this to phase-space matrices
A,B we are interested to see how small will B−A be, if M,C,K are subject

181
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to small changes. This is called ’structured perturbation’ because it respects
the structure of the set of phase-space matrices within which the perturbation
takes place. An example of structured perturbation was given in Chapter 19
on modal approximations. If B is obtained from A by changing C into Ĉ
then as in (19.3) we obtain the following estimate

‖(B −A)‖ = max
x
|x
T (Ĉ − C)x
xTMx

|.

Exercise 22.1 Let C be perturbed as

|xT (Ĉ − C)x| ≤ εxTCx.

Prove

‖B −A‖ ≤ εmax
x

xTCx

xTMx
.

The dependence of A on M and K is more delicate. This is because M and
K define the phase-space itself and by changing them we are changing the
underlying geometry of the system.

First of all, recall that A is defined by M,C,K only up to (jointly) unitary
equivalence. So, it may happen that in order to obtain best estimates we will
have to take phase-space realisations not enumerated in (3.10). We consider
the case in which K is perturbed into K̂ and M,C remain unchanged, that
is,

K̂ = K + δK = L̂1L̂
T
1

with
L̂1 = L1

√
I + Z, Z = L−1

1 δKL−T1

where we have assumed ‖Z‖ ≤ 1. Now,

L−1
2 (L̂1 − L1) = L−1

2 L1

∞∑
k=1

(
1/2
k

)
Zk =

∞∑
k=1

(
1/2
k

)
L−1

2 δKL−T1 Zk−1 = L−1
2 δKL−T1 f(Z)

with

f(ζ) =

{
(1+ζ)1/2−1

ζ , ζ 6= 0
0, ζ = 0

and |ζ| ≤ 1. By

f(−1) = 1, f ′(ζ) = − ((1 + ζ)1/2 + 1)2

2ζ2(1 + ζ)1/2
≤ 0

and by the fact that Z is a real symmetric matrix we have ‖f(Z)‖ ≤ 1 and
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‖B −A‖ = ‖L−1
2 (L̂1 − L1)‖ ≤ ‖L−1

2 δKL−T1 ‖.

Thus (22.3) yields

‖eBt − eAt‖ ≤ F

ν
‖L−1

2 δKL−T1 ‖. (22.5)

Note that here L̂1 will not be the Cholesky factor, if L1 was such. If we had
insisted L̂1 to be the Cholesky factor then much less sharp estimate would
be obtained.

We now derive a perturbation bound which will assume the dissipativity
of both A and B but no further information on their exponential decay —
there might be none, in fact. By T (A) we denote the set of all trajectories

S =
{
x = eAtx0, t ≥ 0

}
, for some vector x0.

Lemma 22.2 Let A, B be arbitrary square matrices. Suppose that there exist
trajectories S ∈ T (A), T ∈ T (B∗) and an ε > 0 such that for any y ∈ S,
x ∈ T

|x∗(B −A)y|2 ≤ ε2 Re(−x∗Bx) Re(−y∗Ay). (22.6)

Then for all such x, y

|x∗(eBt − eAt)y| ≤ ε

2
‖x‖‖y‖.

(Note that in (22.6) it is tacitly assumed that the factors on the right hand
side are non-negative. Thus, we assume that A,B are ’dissipative along a
trajectory’.)

Proof. Using (22.1), (22.6) and the Cauchy-Schwarz inequality we obtain

|x∗(eBt − eAt)y|2 ≤∫ t

0

|(eB
∗sx)∗(B −A)eA(t−s)y|ds 2 ≤

ε2
∫ t

0

√
Re(−x∗eBsBeB∗sx) Re(−y∗eA∗(t−s)AeA(t−s)y)ds 2 ≤

ε2
∫ t

0

Re(−x∗eBsBeB
∗sx)ds

∫ t

0

Re(−y∗eA
∗sAeAsy)ds

By partial integration we compute

I(A, y, t) =
∫ t

0

Re(−y∗eA
∗sAeAsy)ds =

−‖eAsy‖2
∣∣∣t
0
− I(A, y, t),
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I(A, y, t) =
1
2
(
‖y‖2 − ‖eAty‖2

)
(note that I(A, y, t) = I(A∗, y, t)). Obviously

0 ≤ I(A, y, t) ≤ 1
2
‖y‖2

and I(A, y, t) increases with t. Thus, there exist limits

‖eAty‖2 ↘ P (A, y), t→∞

I(A, y, t)↗ I(A, y,∞) =
1
2

∥∥y‖2 − P (A, y)
)
, t→∞

with
0 ≤ I(A, y,∞) ≤ 1

2
‖y‖2.

(and similarly for B). Altogether

|x∗(eBt − eAt)y|2 ≤ ε2

4
(
‖x‖2 − P (B∗, x)

) (
‖y‖2 − P (A, y)

)
≤ ε2

4
‖x‖2‖y‖2.

Q.E.D.

Corollary 22.3 Suppose that (22.6) holds for all y from some S ∈ T (A)
and all x. Then

‖
(
eBty − eAty

)
‖ ≤ ε

2
‖y‖.

Proposition 22.4 For any dissipative A we have

P (A, y) = y∗P (A)y,

where the limit
P (A) = lim

t→∞
eA
∗teAt (22.7)

exists, is Hermitian and satisfies 0 ≤ y∗P (A)y ≤ y∗y for all y.

Proof. The existence of the limit follows from the fact that any bounded,
non decreasing sequence of real numbers — and also of Hermitian matrices
— is convergent. All other statements are then obvious. Q.E.D.

Theorem 22.5 If both A and B are dissipative and (22.6) holds for all x, y,
then

|
(
x, (eBt − eAt)y

)
|2 ≤ ε2

4
(
‖x‖2 − x∗P (B)x

) (
‖y‖2 − y∗P (A)y

)
.
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In particular,
‖eBt − eAt‖ ≤ ε

2
. (22.8)

Exercise 22.6 With A dissipative prove that P (A) from (22.7) is an orthog-
onal projection and find its range.

Corollary 22.7 If in Theorem 22.5 we have ε < 2 then the asymptotic sta-
bility of A implies the same for the B and vice versa.

Proof. Just recall that the asymptotic stability follows, if ‖eAt‖ < 1 for some
t > 0. Q.E.D.

We now apply the key result of this chapter, contained in Theorem 22.5
to phase-space matrices A,B having common masses and stiffnesses and dif-
ferent damping matrices C,C1, respectively. As is immediately seen then the
bound (22.6) is equivalent to

|x∗(C1 − C)y|2 ≤ ε2x∗Cxy∗C1y. (22.9)

Example 22.8 Consider the damping matrix C = Cin from (1.4,1.5) and let
C1 be of the same type with parameters c(1)j and let the two sets of parameters
be close in the sense

|c(1)j − cj | ≤ ε
√
c
(1)
j cj .

Then (everything is real)

xT (C1 − C)y = (c(1)1 − c1)x1y1 +
n∑
j=2

(c(1)j − cj)(xj − xj−1)(yj − yj−1)

+(c(1)n+1 − cn+1)xnyn

and, by the Cauchy-Schwartz inequality,

|x∗(C1 − C)y| ≤

ε

√c(1)1 c1|x1y1|+
n∑
j=2

√
c
(1)
j cj |xj − xj−1||yj − yj−1|+

√
c
(1)
n+1cn+1|xnyn|


≤ ε
√
xTC1xyTCy.

This shows how natural the bound (22.6) is.

Exercise 22.9 Do the previous example for the case of perturbed Cout in the
analogous way.

Note the difference between (22.6), (22.8) and (22.2) – (22.4): the latter use
the usual norm measure for B−A but need more information on the decay of
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eAt whereas the former need no decay information at all (except, of course,
the dissipativity for both), in fact, neither A nor B need be asymptotically
stable. On the other hand, the right hand side of (22.2) goes to zero as t→ 0
while the right hand side of (22.4) diverges with t→∞.

Exercise 22.10 How does the bound (22.9) affect the phase-space matrices
of the type (4.19)?

We finally apply our general theory to the modal approximation. Here the
true damping C and its modal approximation C0 are not equally well known
that is, the difference between them will be measured by the modal damping
alone, for instance,

|x∗(C − C0)x| ≤ ηx∗C0x, η < 1. (22.10)

As is immediately seen this is equivalent to the same estimate for the damping
matrix D = ΦTCΦ and its modal approximation D0 = ΦTC0Φ; therefore we
have

‖D′′‖ ≤ η

with

d′′ij =

{
0, i = j or diidjj = 0

dij√
diidjj

, otherwise.

In other words,
|xTD′′y| ≤ η

√
xTD0xyTD0y

for any x, y. By

xTD0x = xTDx+ xT (D0 −D)x ≤ xTDx+ ηxTD0x

we obtain

xTD0x ≤ xTDx

1− η

and finally, for D′ = D −D0

|xTD′y| ≤ η√
1− η

√
xTDxyTD0y.

Thus, (22.10) implies (22.9) and then (22.6) with

ε =
η√

1− η

and the corresponding matrix exponentials are bounded by

‖eBt − eAt‖ ≤ η

2
√

1− η
.



Chapter 23

Notes and remarks

General. The best known monographs on our topic are Lancaster’s book
[51] and the work by Müller and Schiehlen [72]; the former is more mathe-
matical than the latter.

Chapter 1

1. Suitable sources on the mechanical background are Goldstein’s book [30]
as well as Landau-Livshitz treatise, in particular [60] and [61] where some
arguments for the symmetry of the damping matrix are given. A more
mathematically oriented (and deeper diving) text is Arnold [3].

2. Engineering points of view on vibration theory may be found in the mono-
graphs [42], [12], [71]. Rather exhaustive recent works on construction of
damping matrices are [76] (with a rich collection of references) and [78].

Chapters 2 – 4.

1. Accurate computation of low (undamped) eigenfrequencies is an impor-
tant issue, among others because in approximating continuum structures
the highest frequencies are present just because one increases the dimen-
sion in order to get the lower ones more accurately. This increases the
condition number — an old dilemma with any discretisation procedure.
We will illustrate this phenomenon on a simple example. Undamped os-
cillations of a string of length l are described by the eigenvalue equation

−(a(x)y′)′ = λρ(x)y, y(0) = y(l) = 0 (23.1)

where a(x), ρ(x) are given positive functions. By introducing the equidis-
tant mesh

xj = jh, j = 1, . . . , n+ 1, h =
l

n+ 1
and the abbreviations

187
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y(xj) = zj , a(xj) = aj , ρ(xj) = ρj , z0 = zn+1 = 0

we approximate the derivatives by differences

(a(x)y′)′x=xj ≈
aj+1(zj+1 − zj)− aj(zj − zj−1)

h2

= − (n+ 1)2

l2
(−ajzj−1 + (aj + aj+1)zj − aj+1zj+1).

Thus, (23.1) is approximated by the matrix eigenvalue problem

Kz = λ̃Mz (23.2)

where K is from (1.3) with kj = aj while M is from (1.2) with
mj = ρj l

2

(n+1)2 . For a homogeneous string with a(x) ≡ 1, ρ(x) ≡ 1 both
the continuous system (23.1) and its discretisation (23.2) have known
eigenvalues

λj =
j2π2

l2
, λ̃j = 4

(n+ 1)2

l2
sin2 jπ

2n+ 2
.

For small j/n we have λ̃j ≈ λj , but the approximation is quite bad for
j close to n. So, on one hand, n has to be large in order to insure good
approximation of low eigenvalues but then

κ(K) =
λ̃n

λ̃1

≈ (n+ 1)2 (23.3)

which may jeopardise the computational accuracy. With strongly inho-
mogeneous material (great differences among kj or mj) the condition
number is likely to be much worse than the one in (23.3).

2. High accuracy may be obtained by (i) using an algorithm which computes
the eigenfrequencies with about the same relative error as warranted by
the given matrix elements and by (ii) choosing the matrix representation
on which small relative errors in the matrix elements cause about the
same error in the eigenfrequencies. The first issue was treated rather ex-
haustively in [21] and the literature cited there. The second was addressed
in [2], for numerical developments along these lines see, for instance, [77],
[1], [7]. To illustrate the idea of [2] we represent the stiffness matrix K of
order n from Example 1.1 as K = L1L

T
1 with

L1 =


κ1 −κ2 0 0 0
0 κ2 −κ3 0

0 0
. . . . . . 0

0 0 0 κn κn+1

 , κi =
√
ki.
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The matrix L1 — called the natural factor — is not square but its non-
zero elements are close to the physical parameters: square root operation
takes place on the stiffnesses (where it is accurate) instead on the stiffness
matrix whose condition number is the square of that of L1. The eigen-
frequencies are the singular values of LT1 M

−1/2. From what was said in
Chapter 2.2 it is plausible that this way will yield more accurate low
frequencies. Not much seems to be known on these issues in the presence
of damping.

3. The phase-space construction is even more important for vibrating con-
tinua, described by partial differential equations of Mathematical Physics
of which our matrix models can be regarded as a finite dimensional ap-
proximation. The reader will observe that throughout the text we have
avoided the use of the norm of the phase-space matrix since in continuum
models this norm is infinite that is, the corresponding linear operator is
unbounded. In the continuum case the mere existence and uniqueness of
the solution (mostly in terms of semigroups) may be less trivial to es-
tablish. Some references for continuous damped systems, their semigroup
realisations and properties are [47], [48], [49], [39], [40], [73], [13], [90].
The last article contains an infinite dimensional phase space construction
which allows for very singular operator coefficients M,C,K. This includes
our singular mass matrix case in Sect. 5. In [13] one can find a systematic
functional-analytic treatment with an emphasis on the exponential decay
and an ample bibliography.

4. The singular matrix case is an example of a differential algebraic sys-
tem. We have resolved this system by a careful elimination of ’non-
differentiated’ variables. Such elimination is generally not easy and a
direct treatment is required, see e.g. [10].

5. Our phase-space matrix A is a special linearisation of the second order
equation (1.1). There are linearisations beyond the class considered in our
Theorem 3.4. In fact, even the phase-space matrices obtained in Chapter
16 are a sort of linearisations not accounted for in Theorem 3.4. A rather
general definition of linearisation is the following: We say that a matrix
pair S, T or, equivalently, the pencil S−λT is a linearisation of the pencil
Q(λ), if [

Q(λ) 0
0 I

]
= E(λ)(S − λT )F (λ)

where E(λ), F (λ) are some matrix functions of λ whose determinants are
constant in λ. A main feature of any linearisation is that it has the same
eigenvalues as the quadratic pencil, including the multiplicities (see [80]
and the literature cited there).1 The phase-space matrices, obtained in
Sect. 16 do not fall, strictly speaking, under this definition, one has to
undo the spectral shift first.

1 Here, too, special care is required, if the mass is singular, see [57].
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The advantage of our particular linearising (1.1) is that it not only enables
us to use the structure of dissipativity and J-symmetry but also gives a
proper physical framework of the energy phase space.

6. There is a special linearisation which establishes a connection with models
in Relativistic Quantum Mechanics. The equation (1.1) can be written in
the form (

d

dt
+
C1

2

)2

y +
(
K − C2

1

4

)
y = f1

with

C1 = L−1
2 CL−T2 , K1 = L−1

2 KL−T2 , y = LT2 x, f1 = L−1
2 f.

The substitution

y1 = y, y2 =
(
d

dt
+
C1

2

)
y

leads to
d

dt

[
y1
y2

]
=

[
−C1

2 I

−K1 + C2
1
4 −

C1
2

] [
y1
y2

]
+
[

0
f1

]
Here the phase-space matrix is J-symmetric with

J =
[

0 I
I 0

]
.

This is formally akin to the Klein-Gordon equation which describes spin-
less relativistic quantum particles and reads (in matrix environment)((

i
d

dt
+ V

)2

−H

)
y = 0

where V,H are symmetric matrices and H is positive definite. The same
linearisation leads here to the phase-space equation

i
d

dt

[
y1
y2

]
= H

[
y1
y2

]
, H =

[
V I
H V

]
.

Note the main difference: here the time is ’imaginary’ which, of course,
changes the dynamics dramatically. Nevertheless, the spectral proper-
ties of phase-space matrices are analogous: the overdampedness condi-
tion means in the relativistic case the spectral separation (again to the
plus and the minus group) which implies the uniform boundedness of the
matrix exponential

e−iHt, −∞ < t <∞

which is here J-unitary — another difference to our damped system.

Chapters 5 – 10.
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1. There are authoritative monographs on the geometry and the spectral
theory in the indefinite product spaces. These are Mal’cev [67] and Go-
hberg, Lancaster and Rodman [26] and more recently, [29].

2. Our Theorem 12.15 has an important converse: if all matrices from a
J-Hermitian neighbourhood of A produce only real spectrum near an
eigenvalue λ0 of A then this eigenvalue is J-definite. For a thorough
discussion of this topic see [26].

3. Related to Exercise 10.10 is the recent article [35] where the spectral
groups of the same sign are connected through the point infinity thus
enlarging the class of simply tractable cases.

4. Theorem 10.7 may be used to compute the eigenvalues by bisection which
is numerically attractive if the decomposition JA− µJ = G∗J ′G can be
quickly computed for various values of µ. In fact, bisection finds real
eigenvalues on a general, not necessarily definitisable A whenever the
decomposition JA− µJ = G∗J ′G shows a change of inertia. In order to
compute all of them this way one has to know a definitising shift, or more
generally, the roots of a definitising polynomial in Theorem 10.3. Indeed,
in the latter case the eigenvalues between two adjacent roots are of the
same type and by Theorem 10.8 all of them are captured by bisection.

5. Theorem 10.16 is borrowed from the work [45] which contains some fur-
ther results in this direction.

Chapter 12

1. Jordan canonical forms for J-Hermitian matrices are given in [56] or [79].
Numerical methods for block-diagonalising are described e.g. in [31].

2. J-orthogonal similarities were accepted as natural tool in computing J-
symmetric eigenvalues and eigenvectors long ago, see e.g. [11], [9], [38],
[85], [86] and in particular [37]. The latter article brings a new short proof
of the fact that for any J-orthogonal matrix U with a diagonal symmetry
J the inequality

κ(D1UD2) ≤ κ(U)

holds for any diagonal matrices D1, D2 (optimal scaling property). This
result is akin to our results in Proposition 10.17 and Theorem 12.19.
These are taken from [91] where some further results of this type can be
found.

3. The computation of an optimal block-diagonaliser, as given in Theorem
12.20 is far from satisfactory because its ’zeroth’ step, the construction of
the initial block-diagonaliser S, goes via the Schur decomposition which
uses a unitary similarity which then destroys the J-Hermitian property
of the initial matrix A; J-unitarity of the block diagonaliser is only re-
covered in the last step. To do the block-diagonalisation in preserving
the structure one would want to begin by reducing A by a jointly J, J ′-
unitary transformation to a ’triangular-like’ form. Such form does exist
(cf. [75]) and it looks like
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A′ =
[
T B
0 T ∗

]
, J ′ =

[
0 I
I 0

]
with T , say, upper triangular and B Hermitian. This form displays all
eigenvalues and is attractive to solve the Lyapunov equation, say A′∗X+
XA′ = −In blockwise as

T ∗X11 +X11T = −In/2
T ∗X12 +X12T

∗ = −X11 −B
TX22 +X22T

∗ = −In/2 −BX12 −X∗12B.

These are triangular Lyapunov/Sylvester equations of half order which
are solved in that succession. But there are serious shortcomings: (i) this
reduction is possible only in complex arithmetic (except in rare special
cases), (ii) no real eigenvalues are allowed, unless they have even multi-
plicities, (iii) there are no algorithms for this structure which would beat
the efficiency of the standard Schur-form reduction (cf. [22] and the liter-
ature cited there). To make a breakthrough here is a hard but important
line of research.

Chapter 13.

1. Some further informations on the matrix exponential are included in the
general monograph [34].

2. The fact that the knowledge of the spectrum alone is not enough for de-
scribing the behaviour of the differential equation was known long ago. A
possibility to make the spectrum ’more robust’ is to introduce so-called
’pseudospectra’ of different kinds. Rather than a set in C a pseudospec-
trum is a family of sets. A possible pseudospectrum of a matrix A is

σε(A) = {λ ∈ C : ‖(λI −A)−1‖ > 1/ε}.

With ε→ 0 we have σε(A)→ σ(A) but the speed of this convergence may
be different for different matrices and different eigenvalues. So, sometimes
for quite small ε the component of the set σε(A) containing some spectral
point may still be rather large. The role of the pseudospectra in estimating
decay and perturbation bounds is broadly discussed e.g. in [81] and the
literature cited there. See also [24], [25].2

3. As it could be expected, our bounds for the exponential decay are mostly
much better than those for general matrices (e.g. [44], [64]) because of
the special structure of our phase-space matrix. Further improved bounds
are given in [74] and [89]. Some comparisons can be found in [89].

Chapter 14

2 The Russian school uses the term spectral portrait instead of pseudospectrum.
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1. The literature on the quadratic eigenvalue problem is sheer enormous. Nu-
merous works are due to Peter Lancaster and his school and co-workers.
Few of all these works are cited in our bibliography; a good source for
both the information and the biography is the monograph by Lancaster,
Gohberg and Rodman, [28]. More recent presentations [65] and [80] also
include numerical and approximation issues as well as selection of applica-
tions which lead to various types of the matrices M,C,K and accordingly
to various structural properties of the derived phase-space matrices. An-
other general source is [68]. For the properties of J-definite eigenvalues
see also [59].

2. Numerical methods for our problems have recently been systematically
studied under the ’structural aspect’ that is, one avoids to form any
phase-space matrix and sticks at the original quadratic pencil, or else
identifies the types of the symmetry of the phase-space matrix and devel-
ops ’structured’ numerical methods and corresponding sensitivity theory.
Obviously, ’structure’ can be understood at various levels, from coarser
to finer ones. This research has been done intensively by the school of
Volker Mehrmann, substantial information, including bibliography, can
be found e.g. in [66], [22] and [41]. Several perturbation results in the
present volume are of this type, too.

3. For quadratic/polynomial numerical ranges see e.g. [69], [58]. A related
notion is the ’block-numerical range’, see e.g. [63], [62], [82]. All these
numerical ranges contain the spectrum just like Gershgorin circles or our
stretched Cassini ovals in Sect. 19.

4. Concerning overdamped systems see the pioneering work by Duffin [20]
as well as [51]. Recent results concerning criteria for overdampedness can
be found in [36], [33].

5. (Exercise 14.10) More on linearly independent eigenvectors can be found
in [28].

Chapter 20. A rigorous proof of Theorem 20.9 is found in [26].

Chapter 21

1. For results on the sensitivity (condition number) of the Lyapunov oper-
ator (21.6) see [6] and references there. A classical method for solving
Lyapunov and Sylvester equations with general coefficient matrices is
given in [5]. For more recent results see [43], [50].

2. Theorem 21.10 is taken from [16] where also some interesting phenomena
about the positioning of dampers are observed. The problem of optimal
positioning of dampers seems to be quite hard and it deserves more atten-
tion. Further results of optimal damping are found in [14], [15]. Related
to this is the so called ’eigenvalue assignment’ problem, see [18] and the
literature cited there.
The statement of Theorem 21.10 can be generalised to the penalty func-
tion
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X 7→ Tr(XS),

where S is positive semidefinite and commutes with Ω, see the disserta-
tion [73] which also contains an infinite dimensional version and applica-
tions to continuous damped systems.

3. For references on inverse spectral theory, applied to damped systems see
e.g. the works of Lancaster and coauthors [23], [55], [54]. A result on an
inverse spectral problem for the oscillator ladder with just one damper in
Example 1.1 is given in [87], [88]. In this special case it was experimen-
tally observed, (but yet not proved) that the spectral abscissa and the
minimal trace criterion (21.4) yield the same minimiser (independently
of the number of mass points).

4. An efficient algorithm for solving the Lyapunov equation with rank-one
damping is given in [88]. Efficient solving and trace-optimising of the
Lyapunov equation is still under development, see e.g. [83], [84] and the
literature cited there.

Chapter 22 Our perturbation bounds are especially designed for dissipative
or a least asymptotically stable matrices. As could be expected most common
bounds are not uniform in t (see e.g. [64]).
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